JP2008208147A - Styrenic resin and optical resin molded article comprising the same - Google Patents

Styrenic resin and optical resin molded article comprising the same Download PDF

Info

Publication number
JP2008208147A
JP2008208147A JP2005177546A JP2005177546A JP2008208147A JP 2008208147 A JP2008208147 A JP 2008208147A JP 2005177546 A JP2005177546 A JP 2005177546A JP 2005177546 A JP2005177546 A JP 2005177546A JP 2008208147 A JP2008208147 A JP 2008208147A
Authority
JP
Japan
Prior art keywords
resin
mass
less
styrene
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177546A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
淳 高橋
Yasuaki Taruta
泰明 樽田
Kenji Oshima
謙二 大嶋
Takeshi Yamada
毅 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005177546A priority Critical patent/JP2008208147A/en
Priority to PCT/JP2006/312049 priority patent/WO2006135015A1/en
Priority to TW095121632A priority patent/TW200712068A/en
Publication of JP2008208147A publication Critical patent/JP2008208147A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Abstract

<P>PROBLEM TO BE SOLVED: To provide a styrenic resin exhibiting low water absorption property and containing reduced amount of foreign matter, and an optical resin molded article comprising the same. <P>SOLUTION: The styrenic resin is produced by polymerizing 5-100 mass% of a styrenic monomer and 95-0 mass% of a (meth)acrylate based monomer, wherein the styrenic resin contains foreign matter insoluble in methyl ethyl ketone and having a particle diameter of ≥100 μm in an amount of ≤1 piece/g and foreign matter having a particle diameter of ≥10 μm in an amount of ≤1,000 pieces/g. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、異物の少ないスチレン系樹脂及びそれからなる光学用樹脂成形体に関する。詳しくは、吸水性が低く、異物の少ないスチレン系樹脂及びそれからなる光学用樹脂成形体に関する。   The present invention relates to a styrenic resin with little foreign matter and an optical resin molded body made of the same. Specifically, the present invention relates to a styrene resin having a low water absorption and a small amount of foreign matter, and an optical resin molded body made of the same.

PMMAは透明性等の光学性能に優れることから、光学製品に使用されてきた。しかし、PMMAは吸湿による寸法変化、反りが発生しやすいという課題があることから、MS樹脂やGPPS等のスチレン系樹脂が検討されている。
一方、スチレン系樹脂は耐吸水性や成形加工性に優れる反面、光学用PMMA樹脂に比べ異物が多く、光学用途に制限があった。これに対し、特許文献1では完全混合型反応槽を用い、気相部分のない満液状体で、断熱状態で塊状重合することにより異物を低減させる提案があるが、十分なものではなかった。
特開2001−342263号公報
PMMA has been used in optical products because of its excellent optical performance such as transparency. However, since PMMA has a problem that dimensional change and warpage are likely to occur due to moisture absorption, styrenic resins such as MS resin and GPPS have been studied.
On the other hand, styrene-based resins are excellent in water absorption resistance and molding processability, but have more foreign matters than optical PMMA resins, and have limited optical applications. On the other hand, Patent Document 1 proposes a method of reducing foreign matter by using a fully mixed reaction vessel and a bulk liquid in a heat-insulating state with a full liquid substance having no gas phase portion, but it is not sufficient.
JP 2001-342263 A

本発明者らは、耐吸水性に優れ、特定粒子径の異物が除去されたスチレン系樹脂及びそれからなる光学用樹脂成形体を提供するものである。   The inventors of the present invention provide a styrene-based resin having excellent water absorption resistance and from which foreign substances having a specific particle diameter have been removed, and an optical resin molded article comprising the same.

即ち、本発明は、(1)スチレン系単量体5〜100質量%と(メタ)アクリル酸エステル系単量体95〜0質量%とを重合して得られるスチレン系樹脂であり、該スチレン系樹脂中のメチルエチルケトンに不溶である粒子径100μm以上の異物が1個/g以下、粒子径10μm以上の異物が1000個/g以下であるスチレン系樹脂、(2)スチレン系単量体と(メタ)アクリル酸エステル系単量体の合計100質量部に対して、20質量部未満の溶剤を含んだ塊状連続重合により得られる(1)記載のスチレン系樹脂、(3)下記1)、2)及び3)から選ばれた1種以上の方法により得られる請求項1又は2記載のスチレン系樹脂。
1)重合後、残存単量体や溶剤を除去する工程を経て、ダイから溶融状態でストランド状に押し出し、冷却水で冷却した後或いは冷却しながらストランドをカッティングし、樹脂ペレットとする時、使用する冷却水を目開き5μm以下のフィルターを用いて濾過した水を使用する。
2)カッティングした樹脂ペレットは、HEPA(High−Efficiency Particulate Air)フィルターを通したクリーン度クラス1万以下のクリーンエアーを用いて乾燥する。
3)樹脂ペレットは、クリーン度クラス1万以下のクリーンルーム内で包装し、クラス1万を超える外気との接触を避ける。
(4)(1)〜(3)の何れか1項記載のスチレン系樹脂からなる光学用樹脂成形体である。
That is, the present invention is (1) a styrene resin obtained by polymerizing 5 to 100% by mass of a styrene monomer and 95 to 0% by mass of a (meth) acrylic acid ester monomer. 1 type / g or less of foreign matter having a particle diameter of 100 μm or more and 1000 pieces / g or less of foreign matter having a particle size of 10 μm or more, which is insoluble in methyl ethyl ketone, and (2) a styrene monomer ( (1) Styrenic resin described in (1) obtained by bulk continuous polymerization containing a solvent of less than 20 parts by mass with respect to a total of 100 parts by mass of the (meth) acrylic acid ester monomer, (3) 1) and 2 below 3) The styrenic resin according to claim 1 or 2 obtained by one or more methods selected from 3).
1) After polymerization, after removing the residual monomer and solvent, extrude into a strand in a molten state from the die, and after cooling with cooling water or cutting the strand while cooling to use as a resin pellet The cooling water to be used is water filtered through a filter having an opening of 5 μm or less.
2) The cut resin pellets are dried using clean air having a cleanness class of 10,000 or less that has passed through a HEPA (High-Efficiency Particulate Air) filter.
3) Package the resin pellets in a clean room with a cleanliness class of 10,000 or less and avoid contact with outside air exceeding the class 10,000.
(4) An optical resin molding comprising the styrene resin according to any one of (1) to (3).

本発明のスチレン系樹脂及びそれからなる光学用樹脂成形体は、耐吸水性に優れ、異物が少なく、光学用途に適しており有用である。 The styrenic resin of the present invention and an optical resin molded body comprising the same are excellent in water absorption resistance, have few foreign matters, are suitable for optical applications, and are useful.

以下に本発明を詳細に説明する。
スチレン系樹脂は、スチレン系単量体及び/又は(メタ)アクリル酸エステル系単量体を重合して得られる。
The present invention is described in detail below.
The styrene resin is obtained by polymerizing a styrene monomer and / or a (meth) acrylic acid ester monomer.

スチレン系単量体とは、スチレン、α−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン等をあげるが、好ましくはスチレンである。これらのスチレン系単量体は、それぞれ単独で用いてもよいが、2種類以上を併用してもよい。 Examples of the styrene monomer include styrene, α-methylstyrene, p-methylstyrene, pt-butylstyrene, and the like, and styrene is preferable. These styrenic monomers may be used alone or in combination of two or more.

使用する(メタ)アクリル酸エステル系単量体とは、メチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、2−メチルヘキシルメタクリレート、2−エチルヘキシルメタクリレート、オクチルメタクリレート、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−メチルヘキシルアクリレート、2−エチルヘキシルアクリレート、オクチルアクリレート等があげられるが、好ましくはメチルメタクリレート、n−ブチルアクリレートである。これらの(メタ)アクリル酸エステル系単量体は、それぞれ単独で用いてもよいが、2種類以上を併用してもよい。   The (meth) acrylic acid ester monomer used is methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-methylhexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate , 2-methylhexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, and the like, preferably methyl methacrylate and n-butyl acrylate. These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.

スチレン系単量体、(メタ)アクリル酸エステル系単量体の割合は、スチレン系単量体:(メタ)アクリル酸エステル系単量体=5〜100質量%:95〜0質量%であり、好ましくは31〜100質量%:69〜0質量%であり、さらに好ましくは51〜100質量%:49〜0質量%である。(メタ)アクリル酸エステル系単量体の割合が多くなると、吸水性や成型加工性が低下し、好ましくない場合がある。 The ratio of the styrene monomer and the (meth) acrylate monomer is styrene monomer: (meth) acrylate monomer = 5 to 100% by mass: 95 to 0% by mass. Preferably, it is 31-100 mass%: 69-0 mass%, More preferably, it is 51-100 mass%: 49-0 mass%. If the proportion of the (meth) acrylic acid ester monomer is increased, water absorption and molding processability may be deteriorated, which may not be preferable.

重合時、必要に応じてスチレン系単量体、(メタ)アクリル酸エステル系単量体と共重合可能なその他の単量体、例えばアクリロニトリル、メタクリル酸、無水マレイン酸等を使用することもできる。スチレン系単量体、(メタ)アクリル酸エステル系単量体と共重合可能なその他の単量体の添加割合は、スチレン系単量体と(メタ)アクリル酸エステル系単量体の合計100質量部に対して、50質量部未満である。
また、ポリブタジエンやスチレンブタジエン共重合ゴム等をスチレン系単量体、(メタ)アクリル酸エステル系単量体に溶解し、重合することもできる。ポリブタジエンやスチレンブタジエン共重合ゴム等の添加割合は、スチレン系単量体と(メタ)アクリル酸エステル系単量体の合計100質量部に対して、50質量部未満である。
At the time of polymerization, other monomers that can be copolymerized with styrene monomers and (meth) acrylic acid ester monomers, for example, acrylonitrile, methacrylic acid, maleic anhydride, etc. can be used as necessary. . The addition ratio of other monomers copolymerizable with the styrene monomer and the (meth) acrylate monomer is 100 in total of the styrene monomer and the (meth) acrylate monomer. It is less than 50 parts by mass with respect to parts by mass.
Further, polybutadiene, styrene butadiene copolymer rubber, or the like can be dissolved in a styrene monomer or a (meth) acrylic acid ester monomer and polymerized. The addition ratio of polybutadiene, styrene butadiene copolymer rubber or the like is less than 50 parts by mass with respect to 100 parts by mass in total of the styrene monomer and the (meth) acrylic acid ester monomer.

重合は、スチレン系単量体と(メタ)アクリル酸エステル系単量体の合計100質量部に対して、20質量部未満の溶剤を含んだ塊状連続重合であることが好ましい。溶剤としては、公知のものが使用できるが、好ましくはエチルベンゼン、トルエン、シクロヘキサンである。また、懸濁重合や乳化重合は、スチレン系樹脂中に懸濁分散剤や乳化分散剤が残存して異物が増加したり、透明性が低下するため、光学用途には適さない。
さらに、スチレン系単量体、(メタ)アクリル酸エステル系単量体、スチレン系単量体、(メタ)アクリル酸エステル系単量体と共重合可能なその他の単量体、及び溶剤は、目開き5μm以下のフィルターで濾過した後、使用することが好ましい。
The polymerization is preferably bulk continuous polymerization including a solvent of less than 20 parts by mass with respect to a total of 100 parts by mass of the styrene monomer and the (meth) acrylic acid ester monomer. As the solvent, known solvents can be used, and ethylbenzene, toluene and cyclohexane are preferred. In addition, suspension polymerization and emulsion polymerization are not suitable for optical applications because the suspension dispersant or emulsion dispersant remains in the styrene resin and foreign matter increases or transparency decreases.
Furthermore, styrene monomers, (meth) acrylate monomers, styrene monomers, other monomers copolymerizable with (meth) acrylate monomers, and solvents are: It is preferable to use after filtering with a filter having an opening of 5 μm or less.

重合時、公知の重合開始剤や連鎖移動剤を添加することができる。また、重合温度や重合時間は特に制限は無く、公知の条件で実施することが可能である。 During the polymerization, a known polymerization initiator or chain transfer agent can be added. The polymerization temperature and polymerization time are not particularly limited and can be carried out under known conditions.

重合は、好ましくは樹脂率70〜95質量%、さらに好ましくは樹脂率75〜85質量%まで行ない、その後、残存単量体や溶剤を除去する工程に導くことが好ましい。樹脂率が70%未満の場合は生産効率が悪く、95%以上の場合は重合溶液の粘度が高く、輸送が困難である。 The polymerization is preferably carried out to a resin rate of 70 to 95% by mass, more preferably to a resin rate of 75 to 85% by mass, and then led to a step of removing residual monomers and solvents. When the resin ratio is less than 70%, the production efficiency is poor, and when it is 95% or more, the viscosity of the polymerization solution is high and transportation is difficult.

重合後、残存単量体や溶剤を除去する工程を経て、ダイから溶融状態でストランド状に押し出し、冷却水で冷却した後或いは冷却しながらストランドをカッティングし、樹脂ペレットとすることが好ましい。更に、ここで使用する冷却水は目開き5μm以下のフィルターを用いて濾過した水であることが好ましい。   After the polymerization, a step of removing the residual monomer and solvent is preferably extruded from the die into a strand in a molten state, and after cooling with cooling water or with cooling, the strand is cut into resin pellets. Further, the cooling water used here is preferably water filtered using a filter having an opening of 5 μm or less.

また、カッティングした樹脂ペレットは、HEPA(High−Efficiency Particulate Air)フィルター等を通したクリーン度クラス1万以下のクリーンエアーを用いて乾燥することが好ましい。更にクリーン度クラス1万以下のクリーンルーム内で包装し、クラス1万を超える外気との接触を避けることが好ましい。   The cut resin pellets are preferably dried using clean air having a cleanliness class of 10,000 or less that has passed through a HEPA (High-Efficiency Particulate Air) filter or the like. Furthermore, it is preferable to package in a clean room having a cleanliness class of 10,000 or less and avoid contact with outside air exceeding 10,000 classes.

スチレン系樹脂は、メチルエチルケトンに不溶である粒子径100μm以上の異物が1個/g以下、粒子径10μm以上の異物が1000個/g以下である。粒子径100μm以上の異物が1個/gを越えたり、粒子径10μm以上の異物が1000個/gを越えると、光学用途に用いることが困難となる。異物の低減は、フィルターの目開き、クリーンエアーのクリーン化度等により制御することができる。
なお、異物の測定は、樹脂を予め0.5μmのフィルターで濾過したメチルエチルケトンに溶解させ、この試料をレーザー光を利用した光散乱/光遮断方式による液体微粒子カウンター(HIAC,ROYCO社製)に通液し、樹脂中に含まれる異物の個数を測定した。
また、クリーン度の測定は、JIS B 9920に準じて、光散乱式粒子計数器 KC−03(リオン株式会社製)を用いて測定した。
The styrenic resin has 1 / g or less foreign matter having a particle diameter of 100 μm or more and 1000 / g or less foreign matter having a particle diameter of 10 μm or more, which is insoluble in methyl ethyl ketone. If the number of foreign matters having a particle diameter of 100 μm or more exceeds 1 / g or the number of foreign matters having a particle diameter of 10 μm or more exceeds 1000 / g, it is difficult to use for optical purposes. The reduction of foreign matter can be controlled by the opening of the filter, the degree of clean air, and the like.
In order to measure foreign matter, the resin was dissolved in methyl ethyl ketone that had been filtered through a 0.5 μm filter in advance, and this sample was passed through a liquid particle counter (HIAC, manufactured by ROYCO) using a light scattering / light blocking method using laser light. The number of foreign substances contained in the resin was measured.
The cleanness was measured using a light scattering type particle counter KC-03 (manufactured by Rion Co., Ltd.) according to JIS B 9920.

スチレン系樹脂は、飽和吸水率が好ましくは1.5%未満であり、さらに好ましくは1%未満である。飽和吸水率が1%以上であると、寸法変化、反りが大きくなり、光学用途への使用が困難になる場合がある。   The styrene resin preferably has a saturated water absorption rate of less than 1.5%, and more preferably less than 1%. When the saturated water absorption is 1% or more, the dimensional change and warpage increase, and it may be difficult to use for optical applications.

スチレン系樹脂は、JIS K7210に基づき、温度200℃、荷重49Nで測定されたメルトマスフローレイト(MFR)が、好ましくは1g/10分以上であり、さらに好ましくは2g/10分以上である。MFRが1g/10分未満であると成型加工性が劣り、大型成形品が得られなかったり、成形時間がかかる等の課題が発生する場合がある。 The styrene resin has a melt mass flow rate (MFR) measured at a temperature of 200 ° C. and a load of 49 N based on JIS K7210, preferably 1 g / 10 min or more, and more preferably 2 g / 10 min or more. If the MFR is less than 1 g / 10 minutes, the molding processability is inferior, and there are cases where problems such as a large molded product not being obtained or molding time taking.

スチレン系樹脂には、必要に応じて酸化防止剤、耐候剤、滑剤、可塑剤、着色剤、帯電防止剤、鉱油、難燃剤等の添加剤を添加することができ、製造時任意の段階で配合することができる。   Additives such as antioxidants, weathering agents, lubricants, plasticizers, colorants, antistatic agents, mineral oils, flame retardants, etc. can be added to the styrenic resin at any stage during production. Can be blended.

異物の少ないスチレン系樹脂は、射出成形、押出成形、圧縮成形、真空成形等の公知の方法により各種成形体に加工される。加工された光学用樹脂成形体は、導光板、光ディスク、スクリーンレンズ、反射防止フィルムや拡散フィルム等の光学フィルム用ベースフィルム等の光学用途に供される。   Styrenic resin with few foreign substances is processed into various molded articles by known methods such as injection molding, extrusion molding, compression molding, and vacuum molding. The processed optical resin molded body is used for optical applications such as a light guide plate, an optical disk, a screen lens, an antireflection film, a base film for an optical film such as a diffusion film, and the like.

次に、本発明を実施例を挙げて詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited by these examples.

実施例1
容積約20Lの完全混合型攪拌槽である第一反応器と容積約40Lの攪拌機付塔式プラグフロー型反応器である第二反応器を直列に接続し、さらに予熱器を付した脱揮槽を2基直列に接続して構成した。スチレン52質量%、メタクリル酸メチル(以下MMAと略す)48質量%で構成する単量体溶液85質量部に対し、エチルベンゼン15質量部、t−ブチルパーオキシイソプロピルモノカーボネート0.01質量部、n−ドデシルメルカプタン(以下n−DDMと略す)0.01質量部、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート0.05質量部を混合し原料溶液とした。
この原料溶液を目開き5μmのフィルターで濾過した後、毎時6.2kgで127℃に制御した第1反応器に供給した。第一反応器出口での転化率は34質量%であった。第一反応器から出た反応液を、入り口から流れの方向に向かって127℃から155℃の勾配がつくように調整した第二反応器に導入した。第二反応器出口での転化率は85質量%であった。次に予熱器で160℃に加温した後67kPaに減圧した第一脱揮槽に導入し、さらに予熱器で230℃に加温した後1.3kPaに減圧した第二脱揮槽に導入し単量体と溶剤を除去した。これをダイから溶融状態でストランド状に押し出し、目開き5μmのフィルターを用いて濾過した冷却水で冷却した後ストランドをカッティングし、樹脂ペレットとした。カッティングした樹脂ペレットは、HEPAフィルターを通したクリーン度クラス1万以下のクリーンエアーを用いて乾燥し、異物の少ないスチレン系樹脂を得た。得られた樹脂はクリーン度クラス1万以下のクリーンルーム内で試験を行い、得られた結果を表1に示した。
Example 1
A devolatilizing tank in which a first reactor which is a fully mixed stirring tank having a capacity of about 20 L and a second reactor which is a tower-type plug flow reactor with a stirring capacity of about 40 L are connected in series, and a preheater is further attached. Two units were connected in series. 15 parts by mass of ethylbenzene, 0.01 parts by mass of t-butylperoxyisopropyl monocarbonate, 85 parts by mass of monomer solution composed of 52% by mass of styrene and 48% by mass of methyl methacrylate (hereinafter abbreviated as MMA), n -0.01 parts by mass of dodecyl mercaptan (hereinafter abbreviated as n-DDM) and 0.05 parts by mass of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate were mixed to obtain a raw material solution. .
This raw material solution was filtered through a filter having an opening of 5 μm, and then fed to a first reactor controlled at 127 ° C. at 6.2 kg per hour. The conversion rate at the outlet of the first reactor was 34% by mass. The reaction solution exiting from the first reactor was introduced into a second reactor adjusted to have a gradient of 127 ° C. to 155 ° C. from the inlet toward the flow direction. The conversion rate at the outlet of the second reactor was 85% by mass. Next, after heating to 160 ° C. with a preheater, it was introduced into the first devolatilization tank reduced to 67 kPa, and further heated to 230 ° C. with a preheater and then introduced into the second devolatilization tank reduced to 1.3 kPa. Monomers and solvents were removed. This was extruded in the form of a strand from the die in a molten state, cooled with cooling water filtered using a filter having an opening of 5 μm, and then the strand was cut into resin pellets. The cut resin pellets were dried using clean air having a cleanliness class of 10,000 or less passed through a HEPA filter to obtain a styrene resin with few foreign matters. The obtained resin was tested in a clean room with a cleanliness class of 10,000 or less, and the obtained results are shown in Table 1.

実施例2
実施例1で得られた樹脂を、クリーン度クラス1万以下のクリーンルーム内に1日放置した後、試験を行った以外は実施例1と同様に実施した。結果を表1に示した。
Example 2
The resin obtained in Example 1 was carried out in the same manner as in Example 1 except that the test was performed after leaving the resin in a clean room with a cleanliness class of 10,000 or less for 1 day. The results are shown in Table 1.

実施例3
原料溶液を目開き5μmのフィルターで濾過しなかった以外は実施例1と同様に実施した。結果を表1に示した。
Example 3
The same procedure as in Example 1 was performed except that the raw material solution was not filtered with a filter having an opening of 5 μm. The results are shown in Table 1.

実施例4
HEPAフィルターを通したクリーンエアーを用いず、クリーン度クラス1万を越えるエアーを用いて乾燥した以外は実施例3と同様に実施した。結果を表1に示した。
Example 4
The same procedure as in Example 3 was performed except that the clean air passed through the HEPA filter was not used, and the air was dried using air having a cleanliness class exceeding 10,000. The results are shown in Table 1.

実施例5
単量体溶液を、MMAを使用せず、スチレン100質量%で構成した以外は実施例1と同様に実施した。結果を表1に示した。
Example 5
The monomer solution was implemented in the same manner as in Example 1 except that MMA was not used and 100% by mass of styrene was used. The results are shown in Table 1.

比較例1
実施例1で得られた樹脂を、クリーンルーム内に置かず、クリーン度クラス1万を超える外気中に1日放置した後、試験を行った以外は実施例1と同様に実施した。結果を表1に示した。
Comparative Example 1
The resin obtained in Example 1 was carried out in the same manner as in Example 1 except that the resin was not placed in a clean room but left in the outside air exceeding the cleanliness class 10,000 for 1 day and then tested. The results are shown in Table 1.

比較例2
冷却水を濾過せずに用いた以外は実施例4と同様に実施した。結果を表1に示した。
Comparative Example 2
The same operation as in Example 4 was performed except that the cooling water was used without being filtered. The results are shown in Table 1.

比較例3
単量体溶液を、スチレンを使用せず、MMA100質量%で構成した以外は実施例1と同様に実施した。結果を表1に示した。
Comparative Example 3
The monomer solution was carried out in the same manner as in Example 1 except that styrene was not used and the MMA was composed of 100% by mass. The results are shown in Table 1.

Figure 2008208147
Figure 2008208147

なお、評価は下記の方法によった。
(1) 成形体の異物の測定
得られた樹脂ペレットを東芝機械社製射出成形機を用いて、成形温度230℃、金型温度40℃で、縦210mm、横210mm、厚さ3mmのプレートを成形した。成形体について、歪み検査機を用いて目視にて含まれる異物個数を確認し、さらに倍率20倍の光学顕微鏡にて異物の大きさを計測し、「きょう雑物測定図表」(国立印刷局発行)を用いて大きさが0.01mm以上の異物の個数を求めた。成形品体異物の個数は4個未満を合格とした。
(2)飽和吸水率の測定
厚さ3mmのプレートを縦100mm、横50mmに切断して試験片を得た。試験片の重量を測定した後、23℃の純水に浸漬した。水分を飽和させた後、試験片の重量を測定して飽和吸水率を求めた。飽和吸水率が1.5%未満を合格とした。
(3)反り量の測定
(4)メルトマスフローレイト(MFR)の測定
Tダイ形式のシート押出機を用いて、シリンダー温度230℃で厚さ2mmのシートを得た。このシートより18cm×18cmの試験片を切り出し、試験片より大きめの鋼板に挟んで、90℃にて5時間加熱した後、24時間放冷した。試験片を取り出し、30cm×23cmの容器に平置きした後、試験片の片面のみが水に浸るように、容器に純水を注いだ。室温にて24時間放置した後、試験片の4隅の反り上がり量(mm)を測定し、これらの平均値を反り量とした。反り量が0.4mm以下を合格とした。
(4)メルトマスフローレイト(MFR)の測定
JIS K7210に基づき、温度200℃、荷重49Nで樹脂ペレットを用いて測定した(単位:g/10分)。なお、測定機は東洋精機製作所社製メルトインデックサ(F−F01)を使用した。MFRは1g/10分以上を合格とした。
The evaluation was based on the following method.
(1) Measurement of foreign matter in the molded body Using the injection molding machine manufactured by Toshiba Machine Co., Ltd., the obtained resin pellets were molded at a molding temperature of 230 ° C, a mold temperature of 40 ° C, and a 210 mm long, 210 mm wide, 3 mm thick plate. Molded. Check the number of foreign matter contained in the compact by visual inspection using a distortion inspection machine, and measure the size of the foreign matter with an optical microscope with a magnification of 20 times. ) Was used to determine the number of foreign matters having a size of 0.01 mm 2 or more. The number of molded product foreign bodies was less than 4 as acceptable.
(2) Measurement of saturated water absorption rate A plate having a thickness of 3 mm was cut into a length of 100 mm and a width of 50 mm to obtain a test piece. After measuring the weight of the test piece, it was immersed in pure water at 23 ° C. After saturating the water, the weight of the test piece was measured to determine the saturated water absorption. A saturated water absorption of less than 1.5% was considered acceptable.
(3) Measurement of warpage (4) Measurement of melt mass flow rate (MFR) Using a T-die type sheet extruder, a 2 mm thick sheet was obtained at a cylinder temperature of 230 ° C. A test piece of 18 cm × 18 cm was cut out from this sheet, sandwiched between steel plates larger than the test piece, heated at 90 ° C. for 5 hours, and then allowed to cool for 24 hours. After removing the test piece and placing it flat in a 30 cm × 23 cm container, pure water was poured into the container so that only one side of the test piece was immersed in water. After leaving at room temperature for 24 hours, the amount of warping (mm) at the four corners of the test piece was measured, and the average value of these was taken as the amount of warpage. A warpage amount of 0.4 mm or less was regarded as acceptable.
(4) Measurement of melt mass flow rate (MFR) Based on JIS K7210, it measured using resin pellets at a temperature of 200 ° C. and a load of 49 N (unit: g / 10 minutes). The measuring machine used was a Toyo Seiki Seisakusho melt indexer (F-F01). MFR passed 1 g / 10 min or more.

本発明のスチレン系樹脂及びそれからなる光学用樹脂成形体に関わる実施例は、成形体中の異物が少なく、吸水性が少ない。

Examples relating to the styrenic resin of the present invention and the optical resin molded body comprising the same have less foreign matter in the molded body and less water absorption.

Claims (4)

スチレン系単量体5〜100質量%と(メタ)アクリル酸エステル系単量体95〜0質量%とを重合して得られるスチレン系樹脂であり、該スチレン系樹脂中のメチルエチルケトンに不溶である粒子径100μm以上の異物が1個/g以下、粒子径10μm以上の異物が1000個/g以下であるスチレン系樹脂。   It is a styrene resin obtained by polymerizing 5 to 100% by mass of a styrene monomer and 95 to 0% by mass of a (meth) acrylic acid ester monomer, and is insoluble in methyl ethyl ketone in the styrene resin. A styrenic resin having 1 / g or less foreign matter having a particle size of 100 μm or more and 1000 / g or less foreign matter having a particle size of 10 μm or more. スチレン系単量体と(メタ)アクリル酸エステル系単量体の合計100質量部に対して、20質量部未満の溶剤を含んだ塊状連続重合により得られる請求項1記載のスチレン系樹脂。 The styrene resin according to claim 1, which is obtained by bulk continuous polymerization containing a solvent of less than 20 parts by mass with respect to a total of 100 parts by mass of the styrene monomer and the (meth) acrylic acid ester monomer. 下記1)、2)及び3)から選ばれた1種以上の方法により得られる請求項1又は2記載のスチレン系樹脂。
1)重合後、残存単量体や溶剤を除去する工程を経て、ダイから溶融状態でストランド状に押し出し、冷却水で冷却した後或いは冷却しながらストランドをカッティングし、樹脂ペレットとする時、使用する冷却水を目開き5μm以下のフィルターを用いて濾過した水を使用する。
2)カッティングした樹脂ペレットは、HEPA(High−Efficiency Particulate Air)フィルターを通したクリーン度クラス1万以下のクリーンエアーを用いて乾燥する。
3)樹脂ペレットは、クリーン度クラス1万以下のクリーンルーム内で包装し、クラス1万を超える外気との接触を避ける。
The styrenic resin according to claim 1 or 2 obtained by one or more methods selected from the following 1), 2) and 3).
1) After polymerization, after removing the residual monomer and solvent, extrude into a strand in a molten state from the die, and after cooling with cooling water or cutting the strand while cooling to use as a resin pellet The cooling water to be used is water filtered through a filter having an opening of 5 μm or less.
2) The cut resin pellets are dried using clean air having a cleanness class of 10,000 or less that has passed through a HEPA (High-Efficiency Particulate Air) filter.
3) Package the resin pellets in a clean room with a cleanliness class of 10,000 or less and avoid contact with outside air exceeding the class 10,000.
請求項1〜3の何れか1項記載のスチレン系樹脂からなる光学用樹脂成形体。   The optical resin molding which consists of a styrene-type resin in any one of Claims 1-3.
JP2005177546A 2005-06-17 2005-06-17 Styrenic resin and optical resin molded article comprising the same Pending JP2008208147A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005177546A JP2008208147A (en) 2005-06-17 2005-06-17 Styrenic resin and optical resin molded article comprising the same
PCT/JP2006/312049 WO2006135015A1 (en) 2005-06-17 2006-06-15 Styrenic resin and optical resin formed article comprising the same
TW095121632A TW200712068A (en) 2005-06-17 2006-06-16 Styrenic resin and optical resin formed article comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177546A JP2008208147A (en) 2005-06-17 2005-06-17 Styrenic resin and optical resin molded article comprising the same

Publications (1)

Publication Number Publication Date
JP2008208147A true JP2008208147A (en) 2008-09-11

Family

ID=37532369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177546A Pending JP2008208147A (en) 2005-06-17 2005-06-17 Styrenic resin and optical resin molded article comprising the same

Country Status (3)

Country Link
JP (1) JP2008208147A (en)
TW (1) TW200712068A (en)
WO (1) WO2006135015A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071152A1 (en) * 2008-12-17 2010-06-24 電気化学工業株式会社 Molded object for optical use, and lightguide plate and light diffuser both comprising same
KR102119789B1 (en) * 2020-02-03 2020-06-05 김하무 manufacturing methods diffuser plate for display by cars

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181018A (en) * 1997-12-22 1999-07-06 Nippon Steel Chem Co Ltd Production of transparent resin for optical material
JP2001342263A (en) * 2000-03-31 2001-12-11 Sumitomo Chem Co Ltd Resin molding for optical material and light guide plate comprising the same
JP4902057B2 (en) * 2000-04-28 2012-03-21 帝人化成株式会社 Manufacturing method of optical disk substrate
EP1369437A4 (en) * 2001-01-17 2005-01-12 Teijin Ltd Hydrogenated styrene polymer, process for producing the same, and molded object obtained therefrom
JP2003040925A (en) * 2001-05-25 2003-02-13 Mitsubishi Rayon Co Ltd Methacrylic polymer, plastic optical fiber and production method thereof, and plastic optical fiber cable and plastic optical fiber cable with plug
JP2003212923A (en) * 2002-01-29 2003-07-30 Nippon Zeon Co Ltd Alicyclic-structure-containing polymer hydrogenate and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071152A1 (en) * 2008-12-17 2010-06-24 電気化学工業株式会社 Molded object for optical use, and lightguide plate and light diffuser both comprising same
JP5597550B2 (en) * 2008-12-17 2014-10-01 電気化学工業株式会社 Optical molded body, light guide plate and light diffuser using the same
KR102119789B1 (en) * 2020-02-03 2020-06-05 김하무 manufacturing methods diffuser plate for display by cars

Also Published As

Publication number Publication date
WO2006135015A1 (en) 2006-12-21
TW200712068A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
EP2492288B1 (en) Methacrylic resin, molded body thereof, and method for producing methacrylic resin
JP6151423B1 (en) Methacrylic resin composition, optical film, and optical component
CN107540779B (en) Methacrylic resin composition, method for producing same, pellet, and molded body
JPWO2015098096A1 (en) Film production method, thermoplastic resin composition, molded article and film
JP2009215476A (en) Styrenic resin composition for light diffusing plate and process for producing the same
JP2019035015A (en) Methacrylic resin composition for optical member, molded body, and optical member
JP2008208147A (en) Styrenic resin and optical resin molded article comprising the same
JP7032885B2 (en) Methacrylic resin compositions, molded bodies, and optical members
JP2018009144A (en) Methacrylic resin composition, manufacturing method of the methacrylic resin composition, pellet and molded body
JP6967913B2 (en) Manufacturing method of methacrylic resin
JP2016203384A (en) Production method of optical film
JP6151422B1 (en) Methacrylic resin composition and optical component
JPH0251514A (en) Preparation of maleimide copolymer
JP5138177B2 (en) Acrylic syrup manufacturing method
JP7139670B2 (en) METHACRYLIC RESIN COMPOSITION AND METHOD FOR MANUFACTURING SAME
JP2006335804A (en) Imide resin, and optical film using the same
JP2014111748A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP6679848B2 (en) Active energy ray curable resin composition and molded product using the same
JP2010248318A (en) Optical molded article
JP2014133883A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP2014111751A (en) Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP5894381B2 (en) Resin composition, optical plate using the resin composition, and method for producing the same
JP6804222B2 (en) Styrene resin
JP2006297728A (en) Extrusion method constituted so as to control pressure of vent hole
JP2006193558A (en) Acrylic resin composition, acrylic resin plate, and method for producing the same