JP2010248318A - Optical molded article - Google Patents

Optical molded article Download PDF

Info

Publication number
JP2010248318A
JP2010248318A JP2009097198A JP2009097198A JP2010248318A JP 2010248318 A JP2010248318 A JP 2010248318A JP 2009097198 A JP2009097198 A JP 2009097198A JP 2009097198 A JP2009097198 A JP 2009097198A JP 2010248318 A JP2010248318 A JP 2010248318A
Authority
JP
Japan
Prior art keywords
styrene
copolymer
mass
monomer unit
optical molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009097198A
Other languages
Japanese (ja)
Inventor
Makoto Sato
佐藤誠
Jun Takahashi
高橋淳
Kazuya Shimamoto
島元和也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009097198A priority Critical patent/JP2010248318A/en
Publication of JP2010248318A publication Critical patent/JP2010248318A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical molded article that has good transparency and is less likely to cause the deformation due to heat and to cause the molding failure during the molding process. <P>SOLUTION: The optical molded article is formed from a styrene/methacrylic ester copolymer having (I) a mass ratio of a styrene monomer unit to a methacrylic ester monomer unit of 1:99-25:75, (II) a concentration of a residual methacrylic ester compound of not more than 1,000 ppm and (III) a Vicat softening point of not less than 107°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学用成形体に関するものである。 The present invention relates to an optical molded body.

透明性に優れた樹脂としてメタクリル樹脂が知られている。この樹脂は導光板をはじめとする光学用途、あるいは家電、OA機器用途に広く使用されている。しかしながら、市販のメタクリル樹脂は熱安定性を向上させるためにアクリル酸エステルが共重合されており、その結果耐熱性が低くなる。耐熱性が低いことから、上記機器からの発熱によって反りなどの変形が生じやすいという欠点がある。また、アクリル酸エステルは、樹脂組成を複雑にするため、透明性低下の要因になり得る。更に、成形する際に成形不良を起こしやすいという欠点も付与する。耐熱性を改善する手段として、メタクリル樹脂をイミド化剤によってイミド化するという手法が挙げられる。しかし、この手法は操作が多段階になるため煩雑であり、また、不純物も多くなるため、透明性低下を引き起こしてしまうという課題もある。 A methacrylic resin is known as a resin having excellent transparency. This resin is widely used in optical applications including light guide plates, home appliances, and office automation equipment. However, a commercially available methacrylic resin is copolymerized with an acrylate ester in order to improve thermal stability, and as a result, heat resistance is lowered. Since the heat resistance is low, there is a drawback in that deformation such as warpage is likely to occur due to heat generated from the device. Moreover, since acrylic ester makes a resin composition complicated, it can become a factor of transparency fall. Furthermore, there is a disadvantage that molding defects are likely to occur during molding. As a means for improving the heat resistance, there is a method of imidizing a methacrylic resin with an imidizing agent. However, this method is complicated because the operation is multistage, and there are also problems that transparency increases due to an increase in impurities.

特開2001−342263JP 2001-342263 A 特開2003−075648JP2003-075648 特開2006−052349JP 2006-052349 A 特開2006−052350JP 2006-052350 A 特願2007−252848Japanese Patent Application No. 2007-252848

本発明は、透明性が良好で熱によって変形を起こしにくく、成形時に成形不良を起こしにくい光学用成形体を提供するものである。 The present invention provides a molded article for optics that has good transparency, hardly undergoes deformation due to heat, and hardly causes molding defects during molding.

すなわち、本発明は、(1)(I)スチレン系単量体単位とメタクリル酸エステル系単量体単位の質量比が1:99〜25:75であり、(II)残存メタクリル酸エステル系化合物濃度が1000ppm以下であり、(III)ビカット軟化点が107°C以上であるスチレン−メタクリル酸エステル系共重合体からなる光学用成形体。(2)導光板である(1)記載の光学用成形体。 That is, the present invention provides (1) (I) a mass ratio of styrene monomer units to methacrylate ester monomer units of 1:99 to 25:75, and (II) residual methacrylate ester compounds. An optical molded article comprising a styrene-methacrylic acid ester copolymer having a concentration of 1000 ppm or less and (III) a Vicat softening point of 107 ° C. or more. (2) The optical molded body according to (1), which is a light guide plate.

本発明の光学用成形体は、耐熱性が良好であり、また、残存メタクリル酸エステル化合物量が低いことから透明性が高いため、光学、家電、OA機器用途に広く使用できる。更に、残存メタクリル酸エステル化合物量が低いことは該成形体の成形時に成形不良を起こしにくくするという効果も付与した。そのため、操作性、生産性が向上し、ひいてはコストダウンにもつながる。 The molded article for optics of the present invention has good heat resistance, and since the amount of residual methacrylic acid ester compound is low, it has high transparency, so that it can be widely used for optical, household appliances and OA equipment applications. Furthermore, the low amount of residual methacrylic acid ester compound also imparted the effect of making it difficult to cause molding defects during molding of the molded body. Therefore, operability and productivity are improved, which leads to cost reduction.

<用語の説明>
本願明細書において、「〜」という記号は「以上」及び「以下」を意味する。例えば、「A〜B」なる記載は、A以上でありB以下であることを意味する。
本願明細書において、「光学用成形体」とは、例えば、導光板、拡散板、レンズ等に代表される、光学用途に用いる部材を意味する。
<Explanation of terms>
In the present specification, the symbol “to” means “above” and “below”. For example, the description “A to B” means A or more and B or less.
In the specification of the present application, the “optical molded body” means a member used for optical purposes, such as a light guide plate, a diffusion plate, and a lens.

以下、本発明を詳細に説明する。
本発明で使用する光学用成形体は、スチレン系単量体単位およびメタクリル酸エステル系単量体単位で構成されるスチレン−メタクリル酸エステル系共重合体からなる。
Hereinafter, the present invention will be described in detail.
The molded article for optics used in the present invention is composed of a styrene-methacrylic ester copolymer comprising a styrene monomer unit and a methacrylic ester monomer unit.

スチレン系単量体単位としては、スチレン、α−メチルスチレン、β−メチルスチレン、p−メチルスチレンなどが挙げられるが、好ましくはスチレンである。これらのスチレン系単量体単位は単独であっても、二種類以上混合した単位であっても良い。 Examples of the styrene monomer unit include styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, and the like, and styrene is preferable. These styrenic monomer units may be a single unit or a unit in which two or more types are mixed.

メタクリル酸エステル系単量体単位としては、メチルメタクリレート、エチルメタクリレート、シクロヘキシルメタクリレート、フェニルメタクリレートなどが挙げられるが、好ましくはメチルメタクリレートである。これらのメタクリル酸エステル系単量体単位は単独であっても二種類以上混合した単位であっても良い。 Examples of the methacrylic acid ester monomer units include methyl methacrylate, ethyl methacrylate, cyclohexyl methacrylate, and phenyl methacrylate, with methyl methacrylate being preferred. These methacrylic acid ester monomer units may be used alone or as a mixture of two or more types.

スチレン系単量体単位とメタクリル酸エステル系単量体単位との比率は、質量比にして、スチレン系単量体単位:メタクリル酸エステル系単量体単位=1:99〜25:75であり、好ましくは2:98〜15:85である。スチレン系単量体単位が1質量%以上であると、成形不良を起こしにくくなる。メタクリル酸エステル系単量体単位が75質量%以上であると、透明性が向上し、また、熱によって変形しにくくなる。 The ratio of the styrene monomer unit to the methacrylic acid ester monomer unit is, as a mass ratio, styrene monomer unit: methacrylic acid ester monomer unit = 1: 99 to 25:75. Preferably, it is 2: 98-15: 85. When the styrene monomer unit is 1% by mass or more, molding defects are hardly caused. When the methacrylic acid ester monomer unit is 75% by mass or more, the transparency is improved and it is difficult to be deformed by heat.

スチレン系単量体単位およびメタクリル酸エステル系単量体単位からなる共重合体の製造方法には特に制限はないが、懸濁重合あるいは乳化重合を採用すると、重合の際に用いる分散剤や乳化剤が光学用成形体の内部に残り、光学用成形体の透明性低下の要因になる場合があるため、塊状重合や溶液重合が好ましい。製造コストや、フィルター濾過などの観点から、少量のトルエン、キシレン、エチルベンゼン、ヘキサン、シクロヘキサン、アセトン等の溶剤を使用した連続塊状重合が更に好ましい。 There is no particular limitation on the method for producing a copolymer comprising a styrene monomer unit and a methacrylic acid ester monomer unit, but if suspension polymerization or emulsion polymerization is employed, a dispersant or emulsifier used in the polymerization is used. May remain in the optical molded body and cause a decrease in the transparency of the optical molded body, and thus bulk polymerization and solution polymerization are preferable. From the viewpoints of production cost and filter filtration, continuous bulk polymerization using a small amount of a solvent such as toluene, xylene, ethylbenzene, hexane, cyclohexane, and acetone is more preferable.

単量体単位として、他の共重合可能な単量体についても用いることができる。 As the monomer unit, other copolymerizable monomers can also be used.

スチレン−メタクリル酸エステル系共重合体の分子量はGPC(ゲル・パーミエイション・クロマトグラフィー)にて測定されるポリスチレン換算の重量平均分子量(Mw)が7万〜15万であることが好ましく、分子量分布(重量平均分子量Mw/数平均分子量Mn)が1.7〜2.3であることが好ましい。
Mwが7万以上であると強い成形体が得られ、15万以下であると射出成形時の加工性が良好となる。またMw/Mnが1.7以上であると押出成形時の加工性が良好となり、2.3以下であると強い成形体を得ることができる。なお、MwやMw/Mnは重合時の温度や重合開始剤量等で調整できる。
The molecular weight of the styrene-methacrylate copolymer is preferably 70,000 to 150,000 in terms of polystyrene-equivalent weight average molecular weight (Mw) measured by GPC (gel permeation chromatography). The distribution (weight average molecular weight Mw / number average molecular weight Mn) is preferably 1.7 to 2.3.
If the Mw is 70,000 or more, a strong molded product is obtained, and if it is 150,000 or less, the workability during injection molding is good. Further, when Mw / Mn is 1.7 or more, workability at the time of extrusion molding is good, and when it is 2.3 or less, a strong molded product can be obtained. In addition, Mw and Mw / Mn can be adjusted with the temperature at the time of superposition | polymerization, the amount of polymerization initiators, etc.

残存メタクリル酸エステル系化合物は、共重合体に含まれるメタクリル酸エステル系単量体や二量体などの揮発性の不純物のことをいう。 The residual methacrylic ester compound refers to a volatile impurity such as a methacrylic ester monomer or a dimer contained in the copolymer.

スチレン−メタクリル酸エステル系共重合体に含まれる残存メタクリル酸エステル系化合物濃度は1000ppm以下であることが好ましく、より好ましくは800ppm以下、更に好ましくは500ppm以下である。残存メタクリル酸エステル濃度は少なければ少ないほど好ましい。残存メタクリル酸エステル系化合物濃度が1000ppm以下であると、成形不良を起こしにくくなる。 The concentration of the residual methacrylic ester compound contained in the styrene-methacrylic ester copolymer is preferably 1000 ppm or less, more preferably 800 ppm or less, and even more preferably 500 ppm or less. The lower the residual methacrylate concentration, the better. If the residual methacrylic ester compound concentration is 1000 ppm or less, molding defects are less likely to occur.

スチレン−メタクリル酸エステル系共重合体の残存メタクリル酸エステル系化合物を削減する方法として、真空度の異なる脱揮槽を二槽使用しての二段脱揮、あるいは重合によって得た共重合体を脱揮しながら再び押出しする方法など、公知の手法が採用できる。 As a method of reducing the residual methacrylic acid ester compound of the styrene-methacrylic acid ester copolymer, a two-stage devolatilization using two devolatilization tanks having different vacuum degrees, or a copolymer obtained by polymerization is used. Known methods such as a method of extruding again while devolatilizing can be employed.

スチレン−メタクリル酸エステル系共重合体のビカット軟化点は107℃以上であることが好ましい。ビカット軟化点が107℃以上であると、熱による変形を起こしにくくなる。 The Vicat softening point of the styrene-methacrylic acid ester copolymer is preferably 107 ° C. or higher. When the Vicat softening point is 107 ° C. or higher, deformation due to heat hardly occurs.

ビカット軟化点の調整方法として、共重合体におけるメタクリル酸エステル系単量体単位の組成比を変化させる方法や、共重合体中の残存メタクリル酸エステル系化合物濃度を低減させる方法、あるいは熱安定化を目的とし、同時に共重合する事があるアクリル酸エステルを共重合しないという方法などが挙げられる。 As a method of adjusting the Vicat softening point, a method of changing the composition ratio of the methacrylic ester monomer units in the copolymer, a method of reducing the residual methacrylic ester compound concentration in the copolymer, or heat stabilization For example, there may be mentioned a method in which an acrylate ester that may be copolymerized at the same time is not copolymerized.

光学用成形体として、導光板、拡散板、プロジェクションテレビのスクリーンレンズなどが挙げられる。中でも液晶ディスプレイ用の導光板や照明用の導光板として有用であり、特に、LEDを光源とする中〜大型液晶ディスプレイ用の導光板として有用である。 Examples of the optical molded body include a light guide plate, a diffusion plate, and a screen lens of a projection television. Among them, it is useful as a light guide plate for liquid crystal displays and a light guide plate for illumination, and particularly useful as a light guide plate for medium to large-sized liquid crystal displays using LEDs as light sources.

導光板の形状として、板型、くさび型など通常導光板として用いられる形状を採用できる。また、表面に何らかの賦形を施しても良い。 As the shape of the light guide plate, a shape normally used as a light guide plate such as a plate shape or a wedge shape can be adopted. Moreover, you may give some shaping to the surface.

光学用成形体の成形方法として、押出成形や射出成形など通常用いられる成形方法を採用できる。 As a molding method of the optical molded body, a conventionally used molding method such as extrusion molding or injection molding can be employed.

射出成形では、シリンダー温度230°C〜300°Cで成形するのが好ましい。温度が230°Cより高いと粘度が低くなり成形加工性が良い。また、300°Cより低いと、共重合体の分解が起こりにくくなり、成形体中における残存メタクリル酸エステル系化合物などの不純物が低減される。 In injection molding, it is preferable to mold at a cylinder temperature of 230 ° C to 300 ° C. When the temperature is higher than 230 ° C., the viscosity is lowered and the moldability is good. On the other hand, when the temperature is lower than 300 ° C., the copolymer is hardly decomposed, and impurities such as residual methacrylic ester compounds in the molded body are reduced.

共重合体に含まれる不純物は、光学用成形体の透明性低下を引き起こしてしまうため、少なければ少ないほど良い。これらを削減する方法として、押出しの際に目の細かいフィルターを用いて押出す方法が挙げられる。更に、この手法は、段落0015に示した残存メタクリル酸エステル系化合物を削減する手段としても用いることができるため、不純物の低減方法として効率が良い。 Impurities contained in the copolymer cause a decrease in the transparency of the optical molded article, so the smaller the better. As a method for reducing these, there is a method of extruding using a fine filter at the time of extrusion. Furthermore, since this method can be used as a means for reducing the residual methacrylic ester compound shown in paragraph 0015, it is efficient as a method for reducing impurities.

本発明に用いる共重合体には、可塑剤、滑剤、酸化防止剤、耐光剤、帯電防止剤、摺動剤、光拡散剤など通常用いられる添加剤を使用することができる。 For the copolymer used in the present invention, commonly used additives such as plasticizers, lubricants, antioxidants, light proofing agents, antistatic agents, sliding agents, and light diffusing agents can be used.

以下、本発明の詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, although the detailed content of this invention is demonstrated using an Example, this invention is not limited to a following example.

[試験例1]
攪拌翼に多段パドルを備えた容積20Lの完全混合型連続反応槽、容積11Lの塔式プラグフロー型連続反応槽、および予熱器を付したフラッシュ型脱揮槽を直列に接続した。メタクリル酸メチル79.2質量%、スチレン8.8質量%、およびエチルベンゼン12.0質量%で構成する溶液に対し、t-ブチルペルオキシイソプロピルモノカーボネート(1時間半減期温度118°C)0.009質量%、およびn-ドデシルメルカプタン0.32質量%を混合し、原料溶液とした。温度125°Cに制御した完全混合型連続反応槽に、上記の原料溶液を毎時3.9kgで供給した。完全混合型連続反応槽出口における転化率は57質量%であった。入り口から出口への温度勾配が、120°Cから150°Cの勾配がつく様に調整した塔式プラグフロー型連続反応槽に、この重合溶液を導いたところ、塔式プラグフロー型連続反応槽出口での転化率は77質量%であった。この重合溶液を予熱器で230°Cに加温しながら、1.3kPa.Aに減圧したフラッシュ型脱揮槽に導入し、槽内温度235°Cで未反応単量体および溶剤のエチルベンゼンを除去した。樹脂をギアポンプで抜き出し、ストランド状に押出し、切断することでペレット形状の共重合体を得た。
得られた共重合体は、Mw=7.8万、Mw/Mn=1.9であった。
[Test Example 1]
A complete mixing type continuous reaction tank with a capacity of 20 L equipped with a multistage paddle on a stirring blade, a column type plug flow type continuous reaction tank with a capacity of 11 L, and a flash type devolatilization tank with a preheater were connected in series. To a solution composed of 79.2% by weight of methyl methacrylate, 8.8% by weight of styrene, and 12.0% by weight of ethylbenzene, t-butylperoxyisopropyl monocarbonate (1 hour half-life temperature 118 ° C.) 0.009 Mass% and n-dodecyl mercaptan 0.32 mass% were mixed to prepare a raw material solution. The raw material solution was supplied at a rate of 3.9 kg / hour to a fully mixed continuous reaction tank controlled at a temperature of 125 ° C. The conversion rate at the fully mixed continuous reactor outlet was 57% by mass. When this polymerization solution was introduced into a column type plug flow type continuous reaction vessel adjusted so that the temperature gradient from the inlet to the outlet was 120 ° C to 150 ° C, a column type plug flow type continuous reaction vessel was obtained. The conversion rate at the outlet was 77% by mass. While this polymerization solution was heated to 230 ° C with a preheater, it was introduced into a flash-type devolatilization tank depressurized to 1.3 kPa.A, and unreacted monomer and ethylbenzene as a solvent were introduced at a tank temperature of 235 ° C. Removed. The resin was extracted with a gear pump, extruded into a strand, and cut to obtain a pellet-shaped copolymer.
The obtained copolymer was Mw = 78,000 and Mw / Mn = 1.9.

[試験例2]
メタクリル酸メチル79.8質量%、スチレン2.2質量%、およびエチルベンゼン18.0質量%で構成する溶液に対し、t-ブチルペルオキシイソプロピルモノカーボネート(1時間半減期温度118°C)0.006質量%、およびn-ドデシルメルカプタン0.32質量%を混合し、原料溶液とした。それ以外は、試験例1に示した方法と同様に行った。
得られた共重合体は、Mw=8.4万、Mw/Mn=2.0であった。
[Test Example 2]
T-Butylperoxyisopropyl monocarbonate (1 hour half-life temperature 118 ° C.) 0.006 with respect to a solution composed of 79.8% by weight of methyl methacrylate, 2.2% by weight of styrene and 18.0% by weight of ethylbenzene Mass% and n-dodecyl mercaptan 0.32 mass% were mixed to prepare a raw material solution. Otherwise, the same procedure as shown in Test Example 1 was performed.
The obtained copolymer was Mw = 84,000 and Mw / Mn = 2.0.

[試験例3]
メタクリル酸メチル65.5質量%、スチレン19.5質量%およびエチルベンゼン15%で構成する溶液に対し、t-ブチルペルオキシイソプロピルモノカーボネート(1時間半減期温度118°C)0.02質量%、およびn-ドデシルメルカプタン0.32質量%を混合し、原料溶液とした。それ以外は、試験例1に示した方法と同様に行った。
得られた共重合体は、Mw=7.6万、Mw/Mn=2.1であった。
[Test Example 3]
0.02% by mass of t-butylperoxyisopropyl monocarbonate (1 hour half-life temperature 118 ° C.) with respect to a solution composed of 65.5% by mass of methyl methacrylate, 19.5% by mass of styrene and 15% of ethylbenzene, and n-dodecyl mercaptan 0.32% by mass was mixed to prepare a raw material solution. Otherwise, the same procedure as shown in Test Example 1 was performed.
The obtained copolymer was Mw = 76,000 and Mw / Mn = 2.1.

[試験例4]
メタクリル酸メチル76.6質量%、スチレン8.8質量%、アクリル酸メチル2.6質量%およびエチルベンゼン12.0質量%で構成する溶液に対し、t-ブチルペルオキシイソプロピルモノカーボネート(1時間半減期温度118°C)0.009質量%、およびn-ドデシルメルカプタン0.32質量%を混合し、原料溶液とした。それ以外は、試験例1に示した方法と同様に行った。
得られた共重合体は、Mw=8.0万、Mw/Mn=2.0であった。
[Test Example 4]
To a solution composed of 76.6% by mass of methyl methacrylate, 8.8% by mass of styrene, 2.6% by mass of methyl acrylate, and 12.0% by mass of ethylbenzene, t-butylperoxyisopropyl monocarbonate (1 hour half-life) (Temperature 118 ° C.) 0.009% by mass and n-dodecyl mercaptan 0.32% by mass were mixed to obtain a raw material solution. Otherwise, the same procedure as shown in Test Example 1 was performed.
The obtained copolymer was Mw = 80,000 and Mw / Mn = 2.0.

[試験例5]
メタクリル酸メチル80質量%およびエチルベンゼン20%で構成する溶液に対し、t-ブチルペルオキシイソプロピルモノカーボネート(1時間半減期温度118°C)0.006質量%、およびn-ドデシルメルカプタン0.32質量%を混合し、原料溶液とした。それ以外は、試験例1に示した方法と同様に行った。
得られた共重合体は、Mw=8.3万、Mw/Mn=2.0であった。
[Test Example 5]
0.006% by mass of t-butylperoxyisopropyl monocarbonate (1 hour half-life temperature 118 ° C.) and 0.32% by mass of n-dodecyl mercaptan with respect to a solution composed of 80% by mass of methyl methacrylate and 20% of ethylbenzene Were mixed to obtain a raw material solution. Otherwise, the same procedure as shown in Test Example 1 was performed.
The obtained copolymer was Mw = 83,000 and Mw / Mn = 2.0.

[試験例6]
メタクリル酸メチル51質量%、スチレン34質量%およびエチルベンゼン15%で構成する溶液に対し、t-ブチルペルオキシイソプロピルモノカーボネート(1時間半減期温度118°C)0.05質量%、およびn-ドデシルメルカプタン0.32質量%を混合し、原料溶液とした。それ以外は、試験例1に示した方法と同様に行った。
得られた共重合体は、Mw=7.7万、Mw/Mn=1.9であった。
[Test Example 6]
0.05% by mass of t-butylperoxyisopropyl monocarbonate (1 hour half-life temperature 118 ° C.) and n-dodecyl mercaptan with respect to a solution composed of 51% by mass of methyl methacrylate, 34% by mass of styrene and 15% of ethylbenzene 0.32 mass% was mixed to make a raw material solution. Otherwise, the same procedure as shown in Test Example 1 was performed.
The obtained copolymer was Mw = 77,000 and Mw / Mn = 1.9.

[実施例1]
試験例1に示したペレット形状の共重合体を真空脱揮しながら、目開き5μmのメッシュを通じて再び押出し、ペレット形状の樹脂生成物とした。これを80°Cで3時間以上乾燥し、東芝機械社製射出成形機(IS130)を用いて、シリンダー温度250°C、金型温度70°Cの条件で縦126mm×横126mm×厚さ3mmの平板を成形した。
この平板を用いて、下記(1)〜(6)の測定および評価を行った。得られた結果を表1に示す。
[Example 1]
The pellet-shaped copolymer shown in Test Example 1 was extruded again through a mesh having a mesh size of 5 μm while vacuum devolatilization to obtain a pellet-shaped resin product. This was dried at 80 ° C for 3 hours or longer, and using an injection molding machine (IS130) manufactured by Toshiba Machine Co., Ltd., at a cylinder temperature of 250 ° C and a mold temperature of 70 ° C, 126 mm long × 126 mm wide × 3 mm thick A flat plate was formed.
Using this flat plate, the following measurements (1) to (6) were performed and evaluated. The obtained results are shown in Table 1.

[比較例1]
試験例1に示したペレット形状の共重合体を80°Cで3時間以上乾燥し、東芝機械社製射出成形機(IS130)を用いて、シリンダー温度250°C、金型温度70°Cの条件で縦126mm×横126mm×厚さ3mmの平板を成形した。この平板を用いて、下記(1)〜(6)の測定および評価を行った。得られた結果を表1に示す。
[Comparative Example 1]
The pellet-shaped copolymer shown in Test Example 1 was dried at 80 ° C. for 3 hours or more, and using a Toshiba Machine Co., Ltd. injection molding machine (IS130), the cylinder temperature was 250 ° C. and the mold temperature was 70 ° C. A flat plate having a length of 126 mm, a width of 126 mm, and a thickness of 3 mm was formed under the conditions. Using this flat plate, the following measurements (1) to (6) were performed and evaluated. The obtained results are shown in Table 1.

[実施例2]
試験例2に示したペレット形状の共重合体を用いた以外は、実施例1に示した条件で成形体を得た。得られた結果を表1に示す。
[Example 2]
A molded body was obtained under the conditions shown in Example 1 except that the pellet-shaped copolymer shown in Test Example 2 was used. The obtained results are shown in Table 1.

[実施例3]
試験例3に示したペレット形状の共重合体を用いた以外は、実施例1に示した条件で成形体を得た。得られた結果を表1に示す。
[Example 3]
A molded body was obtained under the conditions shown in Example 1 except that the pellet-shaped copolymer shown in Test Example 3 was used. The obtained results are shown in Table 1.

[比較例2]
試験例4に示したペレット形状の共重合体を用いた以外は、実施例1に示した条件で成形体を得た。得られた結果を表1に示す。
[Comparative Example 2]
A molded body was obtained under the conditions shown in Example 1 except that the pellet-shaped copolymer shown in Test Example 4 was used. The obtained results are shown in Table 1.

[比較例3]
試験例5に示したペレット形状の共重合体を用いた以外は、比較例1に示した条件で成形体を得た。得られた結果を表1に示す。
[Comparative Example 3]
A molded body was obtained under the conditions shown in Comparative Example 1 except that the pellet-shaped copolymer shown in Test Example 5 was used. The obtained results are shown in Table 1.

[比較例4]
試験例6に示したペレット形状の共重合体用いた以外は、実施例1に示した条件で成形体を得た。得られた結果を表1に示す。
[Comparative Example 4]
A molded body was obtained under the conditions shown in Example 1 except that the pellet-shaped copolymer shown in Test Example 6 was used. The obtained results are shown in Table 1.

なお、上記成形体の特性評価は下記の方法により行った。
(1)残存メタクリル酸エステル系化合物量
共重合体中の残存メタクリル酸エステル系化合物量は、下記のGC測定条件で測定した。
装置:島津製作所社製 GC12A FID検出器
カラム:ガラスカラム 3mmφ×3m
充填剤:ポリエチレングリコール
キャリアー:窒素
温度:カラム115 °C、注入口220 °C
試料ペレット0.5g、シクロペンタン0.001gをN,N−ジメチルホルムアミドに溶解させ、シクロペンタンを内部標準として測定した。
In addition, the characteristic evaluation of the said molded object was performed with the following method.
(1) Residual methacrylic ester compound amount The residual methacrylic ester compound amount in the copolymer was measured under the following GC measurement conditions.
Apparatus: GC12A FID detector column manufactured by Shimadzu Corporation: Glass column 3 mmφ × 3 m
Filler: Polyethylene glycol Carrier: Nitrogen temperature: Column 115 ° C, inlet 220 ° C
Sample pellets 0.5 g and cyclopentane 0.001 g were dissolved in N, N-dimethylformamide and measured using cyclopentane as an internal standard.

(2)ビカット軟化点
東芝機械株社製射出成形機(IS−80CNV)を用いて、シリンダー温度220°Cで縦12.7mm×横64mm×厚さ6.4mmの試験片を成形した。この試験片を用いてJIS−K7206に準拠し、荷重49.0Nの条件で測定した。
(2) Vicat softening point Using an injection molding machine (IS-80CNV) manufactured by Toshiba Machine Co., Ltd., a test piece having a length of 12.7 mm, a width of 64 mm, and a thickness of 6.4 mm was molded at a cylinder temperature of 220 ° C. Using this test piece, measurement was performed under the condition of a load of 49.0 N in accordance with JIS-K7206.

(3)光損失率
各実施例および比較例の成形体の端面を研磨し滑らかにした。
次に、以下に示す測定方法で平行光線透過率Y(%)を測定した。
装置:日本電色工業社製測定器(ASA−300A)
光路:研磨面を垂直に通過する部分

平行光線透過率をY (%)、屈折率をn、反射率をR(%)として、光損失率(%)を次の計算式によって算出した。
光損失率(%)= 100 − (Y +2R)
但し、R(%) =(n−1)2 /(n+1)2 ×100
(3) Light loss rate The end faces of the molded bodies of the examples and comparative examples were polished and smoothed.
Next, the parallel light transmittance Y (%) was measured by the following measuring method.
Apparatus: Measuring instrument (ASA-300A) manufactured by Nippon Denshoku Industries Co., Ltd.
Optical path: The part that passes vertically through the polished surface

The light loss rate (%) was calculated by the following formula, where the parallel light transmittance was Y (%), the refractive index was n, and the reflectance was R (%).
Light loss rate (%) = 100− (Y + 2R)
However, R (%) = (n -1) 2 / (n + 1) 2 × 100

(4)平均分子量
共重合体の数平均分子量(Mn)、重量平均分子量(Mw)は下記のGPC測定条件で測定した。
装置:昭和電工製 SYSTEM−21 Shodex
カラム:PLGel MIXED−Bを3本直列
温度:40℃
検出器:示差屈折率
溶媒:テトラヒドロフラン
濃度:2質量%
検量線:PL社製標準ポリスチレンを用いて作成し、平均分子量はポリスチレン換算値で表した。
(4) The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the average molecular weight copolymer were measured under the following GPC measurement conditions.
Equipment: SYSTEM-21 Shodex manufactured by Showa Denko
Column: 3 PLGel MIXED-B in series Temperature: 40 ° C
Detector: Differential refractive index Solvent: Tetrahydrofuran concentration: 2% by mass
Calibration curve: Prepared using standard polystyrene manufactured by PL, and the average molecular weight was expressed in terms of polystyrene.

(5)熱変形
ビカット軟化点測定において、ビカット軟化点が107℃以上のものを○、104℃以下のものを×とした。
(5) In the measurement of the heat deformation Vicat softening point, the one having a Vicat softening point of 107 ° C. or higher was rated as “◯”, and the one having 104 ° C. or lower was evaluated as “X”.

(6)成形不良
実施例、比較例に示した成形の条件において、ある時点からの成形品を5個連続で採取し、これを1サイクルとする。1サイクル中の成形品の中で成形不良が一つも発生しない場合、そのサイクルを「可」とし、一つ以上発生した場合、そのサイクルを「不可」とする。これを5サイクル繰り返し、5サイクル中で「不可」が1度もないものに「0」、1度以上あるものに「1」を付した。
(6) Molding failure Under the molding conditions shown in the examples and comparative examples, five molded products from a certain point in time are sampled continuously, and this is defined as one cycle. When no molding defect occurs in the molded product in one cycle, the cycle is determined as “permitted”, and when one or more defects occur, the cycle is determined as “impossible”. This was repeated for 5 cycles, and “0” was assigned to “no” in 5 cycles, and “1” was assigned to 1 or more.

Figure 2010248318
Figure 2010248318

本発明の樹脂成形体は耐熱性が良好であり、また、残存メタクリル酸エステル化合物量が低いことから透明性が高いため、光学、家電、OA機器用途に広く使用できる。透明性が高いことから、光学用成形体、とりわけ導光板に適する。更に、該成形体の成形時に成形不良を起こしにくいという利点もある。そのため、操作性、生産性の面でも効果的である。

The resin molded body of the present invention has good heat resistance and high transparency due to the low amount of residual methacrylic acid ester compound. Therefore, it can be widely used in optical, household appliances and OA equipment applications. Because of its high transparency, it is suitable for optical molded articles, particularly light guide plates. Furthermore, there is an advantage that molding defects are hardly caused when the molded body is molded. Therefore, it is also effective in terms of operability and productivity.

Claims (2)

(I)スチレン系単量体単位とメタクリル酸エステル系単量体単位の質量比が1:99〜25:75であり、(II)残存メタクリル酸エステル系化合物濃度が1000ppm以下であり、(III)ビカット軟化点が107°C以上であるスチレン−メタクリル酸エステル系共重合体からなる光学用成形体。 (I) The mass ratio of the styrene monomer unit to the methacrylic acid ester monomer unit is 1:99 to 25:75, (II) the residual methacrylic acid ester compound concentration is 1000 ppm or less, and (III ) An optical molded article made of a styrene-methacrylate copolymer having a Vicat softening point of 107 ° C or higher. 導光板である請求項1記載の光学用成形体。 The optical molded body according to claim 1, which is a light guide plate.
JP2009097198A 2009-04-13 2009-04-13 Optical molded article Pending JP2010248318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097198A JP2010248318A (en) 2009-04-13 2009-04-13 Optical molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097198A JP2010248318A (en) 2009-04-13 2009-04-13 Optical molded article

Publications (1)

Publication Number Publication Date
JP2010248318A true JP2010248318A (en) 2010-11-04

Family

ID=43311020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097198A Pending JP2010248318A (en) 2009-04-13 2009-04-13 Optical molded article

Country Status (1)

Country Link
JP (1) JP2010248318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513324A (en) * 2011-04-13 2014-05-29 エルジー・ケム・リミテッド Method for producing resin composition for optical film by continuous bulk polymerization method, method for producing optical film and polarizing plate using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931134A (en) * 1995-07-13 1997-02-04 Kuraray Co Ltd Methacrylic resin for light transmitter
JP2001342263A (en) * 2000-03-31 2001-12-11 Sumitomo Chem Co Ltd Resin molding for optical material and light guide plate comprising the same
JP2002114822A (en) * 2000-10-06 2002-04-16 Denki Kagaku Kogyo Kk Copolymer resin composition and method of manufacturing the same
JP2003075648A (en) * 2001-09-07 2003-03-12 Denki Kagaku Kogyo Kk Light guide plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931134A (en) * 1995-07-13 1997-02-04 Kuraray Co Ltd Methacrylic resin for light transmitter
JP2001342263A (en) * 2000-03-31 2001-12-11 Sumitomo Chem Co Ltd Resin molding for optical material and light guide plate comprising the same
JP2002114822A (en) * 2000-10-06 2002-04-16 Denki Kagaku Kogyo Kk Copolymer resin composition and method of manufacturing the same
JP2003075648A (en) * 2001-09-07 2003-03-12 Denki Kagaku Kogyo Kk Light guide plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513324A (en) * 2011-04-13 2014-05-29 エルジー・ケム・リミテッド Method for producing resin composition for optical film by continuous bulk polymerization method, method for producing optical film and polarizing plate using the same
US9346225B2 (en) 2011-04-13 2016-05-24 Lg Chem, Ltd. Method of preparing resin composition for optical film by using continuous bulk polymerization and methods of preparing optical film and polarizing plate using the resin composition

Similar Documents

Publication Publication Date Title
JP7411379B2 (en) Methacrylic resin, methacrylic resin composition, film
CN108779213B (en) Methacrylic resin composition and molded article
JP6055832B2 (en) Copolymer for improving heat resistance of methacrylic resin
JP5415788B2 (en) Light guide plate
JP5597550B2 (en) Optical molded body, light guide plate and light diffuser using the same
JP7025979B2 (en) Methacrylic resin molded parts, optical parts or automobile parts
JP7365104B2 (en) Methacrylic resin, methacrylic resin composition, film
KR101958719B1 (en) The light diffusion resin composition comprising a cross-linked polymer particles produced by using a polymerization dispersing agent and light diffusing molded article comprising the same
JP2009256493A (en) Methacrylic polymer and its manufacturing method
JP6151423B1 (en) Methacrylic resin composition, optical film, and optical component
JP2018009141A (en) Methacrylic resin, manufacturing method thereof, molded body, optical component or automobile component
WO2014010137A1 (en) Styrene-based resin composition for optical applications, molded product, and light guide plate
CN107540779B (en) Methacrylic resin composition, method for producing same, pellet, and molded body
JP5616573B2 (en) Styrenic resin composition for light diffusion plate and method for producing the same
JP6650401B2 (en) Method for producing (meth) acrylic resin composition
JP2010248318A (en) Optical molded article
JPWO2017094748A1 (en) Transparent high heat resistant styrenic copolymer
JP2012149157A (en) Styrene-based resin composition, plate-like molded article and light guide plate
TW202144444A (en) Optical styrene-based resin composition, light guide plate, and edge-light-type planar light-source unit
JP2012149156A (en) Styrene-based resin composition, plate-like molded article and light guide plate
JP2008291250A (en) Method for producing (meth)acrylate-styrene copolymer
JP2008208147A (en) Styrenic resin and optical resin molded article comprising the same
CN111655784B (en) Optical styrene resin composition and optical member
WO2022196827A1 (en) Methacrylic copolymer and method for producing same
JP2006124608A (en) Methacrylic resin composition for extruded sheet and method for producing its extruded sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203