JP2008207172A - Production method of oxygen enriched air and production device thereof - Google Patents

Production method of oxygen enriched air and production device thereof Download PDF

Info

Publication number
JP2008207172A
JP2008207172A JP2008015741A JP2008015741A JP2008207172A JP 2008207172 A JP2008207172 A JP 2008207172A JP 2008015741 A JP2008015741 A JP 2008015741A JP 2008015741 A JP2008015741 A JP 2008015741A JP 2008207172 A JP2008207172 A JP 2008207172A
Authority
JP
Japan
Prior art keywords
air
oxygen
nitrogen
adsorbent
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008015741A
Other languages
Japanese (ja)
Inventor
Futahiko Nakagawa
二彦 中川
Hiroyuki Ida
博之 井田
Hiroshi Kishimoto
啓 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp filed Critical JFE Steel Corp
Priority to JP2008015741A priority Critical patent/JP2008207172A/en
Publication of JP2008207172A publication Critical patent/JP2008207172A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method and production device capable of stably producing an oxygen enriched air for a long period of time without being influenced by moisture in the air when the oxygen enriched air is produced from the air by utilizing an adsorber for adsorbing nitrogen such as a zeolite. <P>SOLUTION: Adsorbers for adsorbing moisture 3, 4, interposing an adsorber for adsorbing nitrogen 2 the adsorbed amount of which increases in accordance with the increase of pressure, are arranged on both sides thereof, the adsorbers are rotated around axial centers thereof, and airs with different pressures are supplied to the adsorbers from the opposite directions, respectively. The airs are passed through the adsorber for adsorbing moisture, the adsorber for adsorbing nitrogen and the adsorber for adsorbing moisture in sequence, the air with relatively increased pressure is subjected to a dehydration treatment, a denitrification treatment, and a moisture enrichment treatment in sequence, and the air with the relatively decreased pressure is subjected to a dehydration treatment, a nitrogen enrichment treatment, and a moisture oxygen enrichment treatment in sequence, thereby enriching oxygen in the air with relatively increased pressure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気中の窒素成分を除去することによって空気から酸素富化空気を製造する方法及びその装置に関するものである。   The present invention relates to a method and apparatus for producing oxygen-enriched air from air by removing nitrogen components in the air.

鉄鉱石から溶銑を製造する高炉、或いは廃棄物の焼却炉や溶融炉、更には鋳片の加熱炉などへ吹き込まれる空気は、燃焼効率を上げるために、酸素濃度を増加させた酸素富化空気が吹き込まれることが多い。従来の酸素富化空気の製造方法は、深冷分離法、PSA法などにより、空気からほぼ100%濃度の高純度の酸素(「純酸素」という)を製造し、これに空気を混合して希釈し、所望する酸素濃度の酸素富化空気を製造していた。しかしながら、深冷分離法、PSA法を用いて純酸素を製造し、この純酸素を空気で希釈して酸素富化空気を製造する方法では、純酸素を製造する際に大きな動力を必要とし、使用する酸素富化空気の酸素濃度は低濃度であるにも拘わらず、結果的に大きな動力が必要となっていた。   The air that is blown into a blast furnace that produces hot metal from iron ore, an incinerator or melting furnace for waste, and a furnace for slabs is oxygen-enriched air with an increased oxygen concentration to increase combustion efficiency. Is often blown. A conventional method for producing oxygen-enriched air is to produce nearly 100% high-purity oxygen (referred to as “pure oxygen”) from air by a cryogenic separation method, a PSA method, etc., and then mix this with air. Dilution has produced oxygen-enriched air with the desired oxygen concentration. However, in the method of producing pure oxygen by using the cryogenic separation method and the PSA method and diluting the pure oxygen with air to produce oxygen-enriched air, a large amount of power is required when producing pure oxygen, Despite the low oxygen concentration of the oxygen-enriched air used, a large amount of power was required as a result.

この問題を解決するべく、特許文献1には、円筒型容器に窒素吸収用吸着剤であるゼオライトを充填させ、温度の低下に伴って窒素の吸着量が増加するというゼオライトの窒素吸収能力を利用し、前記円筒型容器の中心を軸として回転させ、回転する円筒型容器に温度の異なる2つの空気をそれぞれ独立して供給し、温度の低い側の空気の窒素をゼオライトで吸収し、吸収した窒素を温度の高い側の空気に放出し、これを連続して行うことにより、温度の低い側の空気の酸素富化を行う技術が提案されている。   In order to solve this problem, Patent Document 1 utilizes the nitrogen absorption ability of zeolite in which a cylindrical container is filled with zeolite, which is an adsorbent for nitrogen absorption, and the amount of nitrogen adsorbed increases as the temperature decreases. Then, the center of the cylindrical container is rotated as an axis, and two airs having different temperatures are independently supplied to the rotating cylindrical container, and the nitrogen of the lower temperature air is absorbed by the zeolite and absorbed. A technique has been proposed in which oxygen is enriched in air at a lower temperature side by releasing nitrogen into the air at a higher temperature side and performing this continuously.

特許文献1によれば、ゼオライトに温度の高い空気を流すことによって窒素がゼオライトに飽和しないので、長期間にわたり連続的に運転することができ、酸素富化空気の製造に当たり、動力の大幅な低下が可能になるとしている。
特開2001−70736号公報
According to Patent Document 1, since nitrogen is not saturated in the zeolite by flowing high temperature air through the zeolite, it can be operated continuously for a long period of time, and in the production of oxygen-enriched air, the power is greatly reduced. Is going to be possible.
JP 2001-70736 A

しかしながら、特許文献1には以下の問題点がある。   However, Patent Document 1 has the following problems.

即ち、ゼオライトは、窒素を吸収するための有力な吸着剤であるが、水分の吸着剤でもある。従って、ゼオライトが充填された円筒型容器に空気を流した場合、空気中の水分を吸収しながら窒素を吸収することになる。この吸収した水分をゼオライトから効率的に放出しない限り、吸収した水分によってゼオライトの吸収能は低下し、ゼオライトは、水分吸収用吸着剤としての機能のみならず、窒素吸収用吸着剤としての機能を消滅する。   That is, zeolite is a powerful adsorbent for absorbing nitrogen, but is also a moisture adsorbent. Therefore, when air is passed through a cylindrical container filled with zeolite, nitrogen is absorbed while absorbing moisture in the air. Unless the absorbed moisture is efficiently released from the zeolite, the absorbed capacity of the zeolite is reduced by the absorbed moisture, and the zeolite functions not only as a moisture absorbing adsorbent but also as a nitrogen absorbing adsorbent. Disappear.

特許文献1では、ゼオライトが充填された円筒型容器に、温度の異なる2つの空気をそれぞれ独立して供給しているが、これら2つの空気は脱水分処理を行っておらず、温度こそ異なるものの基本的に水分濃度が同等であり、従って、ゼオライトから水分を除去する作用は働かず、ゼオライトは水分を吸収し続け、やがて、水分吸収用吸着剤及び窒素吸収用吸着剤としての機能が停止する。つまり、特許文献1では、ゼオライトが水分を吸収することに起因して、長期間にわたって酸素富化空気を製造することができないという問題点がある。   In Patent Document 1, two airs having different temperatures are independently supplied to a cylindrical container filled with zeolite, but these two airs are not subjected to dehydration treatment, and the temperatures are different. The moisture concentration is basically the same, therefore, the action of removing moisture from the zeolite does not work, the zeolite continues to absorb moisture, and eventually the function as a moisture absorbing adsorbent and a nitrogen absorbing adsorbent stops. . That is, Patent Document 1 has a problem that oxygen-enriched air cannot be produced over a long period of time due to the fact that zeolite absorbs moisture.

また、従来、深冷分離法、PSA法などによってほぼ100%濃度の純酸素を製造する場合に、原料として空気を用いていたが、大量の酸素富化空気を安価に製造することができるならば、酸素富化空気を原料とした方が、深冷分離法、PSA法などによって純酸素を製造する場合にもトータル的に効率的である。   Conventionally, air is used as a raw material when producing almost 100% concentration of pure oxygen by a cryogenic separation method, a PSA method, etc. If a large amount of oxygen-enriched air can be produced at a low cost, For example, using oxygen-enriched air as a raw material is totally efficient even when pure oxygen is produced by a cryogenic separation method, a PSA method, or the like.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、ゼオライトなどの窒素吸収用吸着剤を利用して、空気から、高炉や加熱炉などへ燃焼用ガスとして供給される酸素富化空気を製造する、或いは純酸素を製造するための酸素富化空気を製造するに当たり、空気中の水分の影響を受けず、長期間にわたって安定して酸素富化空気を製造することのできる酸素富化空気の製造方法を提供することである。   The present invention has been made in view of the above circumstances. The object of the present invention is to supply oxygen as a combustion gas from air to a blast furnace or a heating furnace using an adsorbent for nitrogen absorption such as zeolite. In producing oxygen-enriched air for producing enriched air or pure oxygen, oxygen-enriched air can be produced stably over a long period of time without being affected by moisture in the air. It is to provide a method for producing oxygen-enriched air.

上記課題を解決するための第1の発明に係る酸素富化空気の製造方法は、圧力の増加に伴って窒素吸着量が増加する窒素吸収用吸着剤を挟んで、その両側にそれぞれ水分吸収用吸着剤を配置し、これらの吸着剤をその軸心を中心として回転させるとともに、これらの吸着剤に対してそれぞれ反対側の方向から圧力の異なる空気を供給し、これらの空気を水分吸収用吸着剤、窒素吸収用吸着剤、水分吸収用吸着剤の順に通過させ、相対的に圧力を高くした空気に対して脱水分処理、脱窒素処理、水分富化処理の順に処理を施し、相対的に圧力を下げた空気に対して脱水分処理、窒素富化処理、水分富化処理の順に処理を施し、相対的に圧力を高くした空気の酸素富化を行うことを特徴とするものである。   The method for producing oxygen-enriched air according to the first aspect of the present invention for solving the above-described problem is characterized in that a nitrogen-absorbing adsorbent whose amount of nitrogen adsorption increases with an increase in pressure is sandwiched between each side for moisture absorption. Adsorbents are arranged, and these adsorbents are rotated around their axes, and air with different pressures is supplied to these adsorbents from opposite directions to absorb these air for moisture absorption. Agent, nitrogen absorbent adsorbent, moisture absorbent adsorbent in this order, and relatively high-pressure air is processed in the order of dehydration treatment, denitrogenation treatment, moisture enrichment treatment, It is characterized by performing oxygen dehydration treatment, nitrogen enrichment treatment, moisture enrichment treatment in this order on the air whose pressure has been lowered, and oxygen enrichment of air at a relatively high pressure.

第2の発明に係る酸素富化空気の製造方法は、温度の低下に伴って窒素吸着量が増加する窒素吸収用吸着剤を挟んで、その両側にそれぞれ水分吸収用吸着剤を配置し、これらの吸着剤をその軸心を中心として回転させるとともに、これらの吸着剤に対してそれぞれ反対側の方向から温度の異なる空気を供給し、これらの空気を水分吸収用吸着剤、窒素吸収用吸着剤、水分吸収用吸着剤の順に通過させ、相対的に温度を低くした空気に対して脱水分処理、脱窒素処理、水分富化処理の順に処理を施し、相対的に温度を高くした空気に対して脱水分処理、窒素富化処理、水分富化処理の順に処理を施し、相対的に温度を低くした空気の酸素富化を行うことを特徴とするものである。   The method for producing oxygen-enriched air according to the second aspect of the present invention has a nitrogen absorbing adsorbent whose nitrogen adsorbing amount increases with a decrease in temperature, and a water absorbing adsorbent is disposed on each side of the nitrogen absorbing adsorbent. The adsorbent is rotated about its axis, and air having different temperatures is supplied to the adsorbents from opposite directions, and the air is adsorbed for moisture absorption and adsorbent for nitrogen absorption. Then, the moisture absorption adsorbent is passed through in order, and the relatively low temperature air is processed in the order of dehydration treatment, denitrification treatment, and moisture enrichment treatment, and the relatively high temperature air is treated. Thus, the treatment is performed in the order of dehydration treatment, nitrogen enrichment treatment, and moisture enrichment treatment, and oxygen enrichment of air at a relatively low temperature is performed.

第3の発明に係る酸素富化空気の製造方法は、圧力の増加並びに温度の低下に伴って窒素吸着量が増加する窒素吸収用吸着剤を挟んで、その両側にそれぞれ水分吸収用吸着剤を配置し、これらの吸着剤をその軸心を中心として回転させるとともに、これらの吸着剤に対してそれぞれ反対側の方向から、他方に比べて相対的に圧力が高く且つ温度が低くなるように調整した圧力及び温度の異なる空気を供給し、これらの空気を水分吸収用吸着剤、窒素吸収用吸着剤、水分吸収用吸着剤の順に通過させ、相対的に圧力を高め且つ温度を低くした空気に対して脱水分処理、脱窒素処理、水分富化処理の順に処理を施し、相対的に圧力を下げ且つ温度を高くした空気に対して脱水分処理、窒素富化処理、水分富化処理の順に処理を施し、相対的に圧力を高め且つ温度を低くした空気の酸素富化を行うことを特徴とするものである。   According to a third aspect of the present invention, there is provided a method for producing oxygen-enriched air, wherein an adsorbent for moisture absorption is sandwiched between both sides of an adsorbent for absorption of nitrogen that increases in amount of nitrogen adsorption as the pressure increases and temperature decreases. Arrange and rotate these adsorbents around their axes, and adjust the adsorbent from the opposite direction so that the pressure is relatively higher and the temperature is lower than the other. The air having different pressure and temperature is supplied, and the air is passed through the moisture absorbing adsorbent, the nitrogen absorbing adsorbent, and the moisture absorbing adsorbent in this order, so that the pressure is relatively increased and the temperature is lowered. On the other hand, processing is performed in the order of dehydration treatment, denitrogenation treatment, and water enrichment treatment, and in the order of dehydration treatment, nitrogen enrichment treatment, and moisture enrichment treatment for air whose pressure is relatively lowered and temperature is relatively increased. Treated and relatively pressure Is characterized in carrying out the oxygen-enriched air was increased and the temperature low.

第4の発明に係る酸素富化空気の製造方法は、第1ないし第3の発明の何れかにおいて、前記脱水分処理、脱窒素処理、水分富化処理の順に処理を施されて製造される酸素富化空気は、高炉側壁の羽口から高炉内に吹き込まれる酸素富化空気、或いは、加熱炉または熱風炉で燃焼用ガスとして使用される酸素富化空気のうちの何れかであることを特徴とするものである。   A method for producing oxygen-enriched air according to a fourth aspect of the present invention is the method for producing oxygen-enriched air according to any one of the first to third aspects, wherein the dehydration treatment, the denitrification treatment, and the water enrichment treatment are performed in this order. The oxygen-enriched air is either oxygen-enriched air blown into the blast furnace from the tuyere of the blast furnace side wall, or oxygen-enriched air used as a combustion gas in a heating furnace or a hot air furnace. It is a feature.

第5の発明に係る酸素富化空気の製造方法は、第1ないし第3の発明の何れか1つに記載の酸素富化空気の製造方法に基づいて製造した酸素富化空気を空気で希釈し、希釈した後の混合ガスを高炉内に吹き込まれる酸素富化空気とすることを特徴とするものである。   According to a fifth aspect of the present invention, there is provided a method for producing oxygen-enriched air, wherein the oxygen-enriched air produced based on the method for producing oxygen-enriched air according to any one of the first to third aspects is diluted with air. The diluted mixed gas is oxygen-enriched air blown into the blast furnace.

第6の発明に係る酸素富化空気の製造方法は、第4または第5の発明において、前記脱水分処理、脱窒素処理、水分富化処理の順に処理を施されて製造される酸素富化空気の酸素濃度は30〜35%であることを特徴とするものである。   A method for producing oxygen-enriched air according to a sixth invention is the oxygen-enriched air produced by performing the treatment in the order of the dehydration treatment, denitrification treatment, and water enrichment treatment in the fourth or fifth invention. The oxygen concentration of air is 30 to 35%.

第7の発明に係る酸素富化空気の製造方法は、第1ないし第3の発明の何れかにおいて、前記脱水分処理、脱窒素処理、水分富化処理の順に処理を施されて製造される酸素富化空気は、高純度の純酸素を製造するための原料となる酸素富化空気であることを特徴とするものである。   A method for producing oxygen-enriched air according to a seventh aspect of the present invention is the method for producing oxygen-enriched air according to any one of the first to third aspects, wherein the dehydration treatment, the denitrification treatment, and the water enrichment treatment are performed in this order. The oxygen-enriched air is characterized by being oxygen-enriched air that is a raw material for producing high-purity pure oxygen.

第8の発明に係る酸素富化空気の酸素富化空気の製造方法は、第7の発明において、前記脱水分処理、脱窒素処理、水分富化処理の順に処理を施されて製造される酸素富化空気の酸素濃度は30%以上であることを特徴とするものである。   The method for producing oxygen-enriched air of oxygen-enriched air according to the eighth invention is the oxygen produced by performing the treatment in the order of the dehydration treatment, denitrification treatment, and water enrichment treatment in the seventh invention. The oxygen concentration of the enriched air is 30% or more.

第9の発明に係る酸素富化空気の製造装置は、軸心を中心として回転可能な第1の円筒型容器と、第1の円筒型容器を挟んで第1の円筒型容器の軸心方向に相対して配置された、軸心を中心として回転可能な第2及び第3の円筒型容器と、前記第1の円筒型容器に配置された窒素吸収用吸着剤と、前記第2の円筒型容器に配置された水分吸収用吸着剤と、前記第3の円筒型容器に配置された水分吸収用吸着剤と、第2の円筒型容器、第1の円筒型容器、第3の円筒型容器の順に通過する空気を供給するための第1の空気供給流路と、これとは反対方向の、第3の円筒型容器、第1の円筒型容器、第2の円筒型容器の順に通過する空気を供給するための第2の空気供給流路と、前記第1の空気供給流路によって供給された空気を受けるための第1の空気排出流路と、前記第2の空気供給流路によって供給された空気を受けるための第2の空気排出流路と、を備えることを特徴とするものである。   An apparatus for producing oxygen-enriched air according to a ninth aspect of the present invention is a first cylindrical container that is rotatable about an axis, and an axial direction of the first cylindrical container with the first cylindrical container interposed therebetween. 2nd and 3rd cylindrical containers which are arranged relative to the axis and which are rotatable about an axis, a nitrogen absorbing adsorbent which is arranged in the first cylindrical container, and the second cylinder Moisture absorbent adsorbent disposed in the mold container, moisture absorbent adsorbent disposed in the third cylindrical container, second cylindrical container, first cylindrical container, and third cylindrical mold A first air supply channel for supplying air that passes in the order of the containers, and a third cylindrical container, a first cylindrical container, and a second cylindrical container in the opposite direction. A second air supply passage for supplying air to be supplied, and a second air supply passage for receiving the air supplied by the first air supply passage. An air discharge passage of, is characterized in that and a second air discharge passage for receiving air supplied by said second air supply passage.

第10の発明に係る酸素富化空気の製造装置は、軸心を中心として回転可能な円筒型容器と、該円筒型容器に配置された窒素吸収用吸着剤と、該窒素吸収用吸着剤を挟んで前記円筒型容器に相対して配置された一対の水分吸収用吸着剤と、前記円筒型容器に対してそれぞれ反対側の方向から、水分吸収用吸着剤、窒素吸収用吸着剤、水分吸収用吸着剤の順に通過する空気を供給するための空気供給流路と、該空気供給流路によって供給され、前記円筒型容器を通過した空気を受けるための空気排出流路と、を備えることを特徴とするものである。   An apparatus for producing oxygen-enriched air according to a tenth aspect of the present invention includes a cylindrical container that is rotatable about an axis, a nitrogen absorbing adsorbent disposed in the cylindrical container, and the nitrogen absorbing adsorbent. A pair of moisture-absorbing adsorbents disposed opposite to the cylindrical container, and a moisture-absorbing adsorbent, a nitrogen-absorbing adsorbent, and moisture absorption from opposite directions with respect to the cylindrical container. An air supply channel for supplying air that passes through the adsorbent in order, and an air discharge channel for receiving the air supplied by the air supply channel and passing through the cylindrical container. It is a feature.

第11の発明に係る酸素富化空気の製造装置は、第9または第10の発明において、前記窒素吸収用吸着剤は、圧力の増加に伴って窒素の吸着量が増加する窒素吸収用吸着剤であって、前記空気供給流路を介して前記窒素吸収用吸着剤に対してそれぞれ反対側の方向から供給される空気は、それぞれ圧力が異なることを特徴とするものである。   An apparatus for producing oxygen-enriched air according to an eleventh aspect of the present invention is the ninth or tenth aspect of the present invention, wherein the nitrogen absorbing adsorbent is a nitrogen absorbing adsorbent in which the amount of nitrogen adsorbed increases as the pressure increases. The air supplied from the opposite direction to the nitrogen absorbing adsorbent via the air supply flow path has a different pressure.

第12の発明に係る酸素富化空気の製造装置は、第9または第10の発明において、前記窒素吸収用吸着剤は、温度の低下に伴って窒素の吸着量が増加する窒素吸収用吸着剤であって、前記空気供給流路を介して前記窒素吸収用吸着剤に対してそれぞれ反対側の方向から供給される空気は、それぞれ温度が異なることを特徴とするものである。   An apparatus for producing oxygen-enriched air according to a twelfth aspect of the present invention is the ninth or tenth aspect of the present invention, wherein the nitrogen-absorbing adsorbent is a nitrogen-absorbing adsorbent in which the amount of nitrogen adsorbed increases as the temperature decreases. The air supplied from the opposite directions to the nitrogen absorbing adsorbent via the air supply flow path has a different temperature.

本発明によれば、高炉などに供給する酸素富化空気を製造するに当たり、窒素吸収用吸着剤を挟んでその両側に水分吸収用吸着剤を配置し、これらの吸着剤に対して各々反対側の方向から空気を供給し、水分吸収用吸着剤、窒素吸収用吸着剤、水分吸収用吸着剤の順に通過させるので、供給された空気は先ず脱水分処理が施され、水分が除去された後に窒素吸収用吸着剤に接触するので、窒素吸収用吸着剤は水分の影響を受けることなく、供給される空気から窒素を吸着し、吸収した窒素を反対側から供給される空気に放出する。つまり、窒素吸収用吸着剤は、水分の影響を受けることなく、長期間にわたって連続的に窒素の吸着及び放出を遂行する。   According to the present invention, when producing oxygen-enriched air to be supplied to a blast furnace or the like, moisture absorbing adsorbents are arranged on both sides of the nitrogen absorbing adsorbent, and the opposite sides to these adsorbents. Since air is supplied from the direction of the water and adsorbed in the order of moisture absorbing adsorbent, nitrogen absorbing adsorbent, and moisture absorbing adsorbent, the supplied air is first subjected to dehydration treatment, and after moisture is removed. Since it is in contact with the nitrogen absorbing adsorbent, the nitrogen absorbing adsorbent adsorbs nitrogen from the supplied air without being affected by moisture, and releases the absorbed nitrogen into the air supplied from the opposite side. That is, the nitrogen absorbing adsorbent performs adsorption and release of nitrogen continuously over a long period of time without being affected by moisture.

また、水分吸収用吸着剤は、一方の側から供給される空気に接触し、この空気に含まれる水分を吸着するが、反対側から供給される空気は、窒素吸収用吸着剤を挟んで相対して設けた他方の水分吸収用吸着剤によって既に水分が除去された乾燥状態であり、水分を吸着した水分吸収用吸着剤は、円筒型容器の回転によって水分が除去された乾燥状態の空気と接触するので、吸着した水分を乾燥状態の空気に放出し、水分吸収用吸着剤中の水分吸着量は減少する。つまり、それぞれの水分吸収用吸着剤は水分の吸着と放出とを繰り返し行うので、水分吸収用吸着剤も長期間にわたって連続的にその機能を遂行する。   Further, the moisture absorbing adsorbent comes into contact with air supplied from one side and adsorbs moisture contained in the air, but the air supplied from the opposite side is relatively sandwiched between the nitrogen absorbing adsorbent. The moisture absorbent adsorbent that has already been dehydrated by the other moisture absorbent adsorbent provided in this way is a dry state from which moisture has been removed by rotation of the cylindrical container. Since it comes into contact, the adsorbed moisture is released to the dry air, and the amount of moisture adsorbed in the moisture absorbing adsorbent decreases. That is, since each moisture absorption adsorbent repeatedly performs adsorption and release of moisture, the moisture absorption adsorbent also performs its function continuously over a long period of time.

即ち、本発明によれば、空気中の水分の影響を受けず、長期間にわたって安定して、大きな動力を必要とせずに酸素富化空気を製造することができ、工業上有益な効果がもたらされるのみならず、CO2の発生量も削減され、自然環境上においても有益な効果がもたらされる。 That is, according to the present invention, oxygen-enriched air can be produced without being affected by moisture in the air, stably for a long period of time, and without requiring a large amount of power, resulting in an industrially beneficial effect. In addition, the generation amount of CO 2 is reduced, and a beneficial effect is also obtained in the natural environment.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明に係る酸素富化空気製造装置の概略斜視図、図2は、図1に示す、本発明に係る酸素富化空気製造装置の一部分を構成する第1の円筒型容器及び第2の円筒型容器の概略斜視図であり、(A)が第1の円筒型容器、(B)が第2の円筒型容器を示している。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic perspective view of an oxygen-enriched air production apparatus according to the present invention, and FIG. 2 is a first cylindrical container constituting a part of the oxygen-enriched air production apparatus according to the present invention shown in FIG. It is a schematic perspective view of a 2nd cylindrical container, (A) has shown the 1st cylindrical container, (B) has shown the 2nd cylindrical container.

図1に示すように、管体13の内部には、軸心2aを中心として電動機(図示せず)により回転可能な第1の円筒型容器2が配置され、この第1の円筒型容器2を挟み、軸心2aの方向に相対して第2の円筒型容器3及び第3の円筒型容器4が配置されている。第2の円筒型容器3及び第3の円筒型容器4は、その軸心方向を第1の円筒型容器2の軸心2aと同一とし、軸心2aを中心として電動機(図示せず)により回転可能となっている。この場合、これらの第1〜3の円筒型容器を同一の電動機で回転させても、また、それぞれ個別の電動機で回転させてもどちらでも構わない。個別の電動機で回転させる場合に回転数がそれぞれ異なっていても構わない。また、図1では回転方向が同一であるが、異なっていても構わない。   As shown in FIG. 1, a first cylindrical container 2 that can be rotated by an electric motor (not shown) around an axis 2 a is disposed inside the tube body 13, and the first cylindrical container 2. The second cylindrical container 3 and the third cylindrical container 4 are arranged so as to face each other in the direction of the axis 2a. The second cylindrical container 3 and the third cylindrical container 4 have the same axial direction as the axial center 2a of the first cylindrical container 2, and are driven by an electric motor (not shown) around the axial center 2a. It can be rotated. In this case, the first to third cylindrical containers may be rotated by the same electric motor, or may be rotated by individual electric motors. When rotating with an individual electric motor, the number of rotations may be different. In FIG. 1, the rotational directions are the same, but they may be different.

第1の円筒型容器2の内部は、図2(A)に示すように、軸心2aから放射状に伸びる仕切板8によって複数に仕切られており、仕切られたそれぞれの部位には、金網、ネット(図示せず)などで囲まれて、窒素吸収用吸着剤5が充填されている。窒素吸収用吸着剤5としては、ゼオライトを用いることが好ましい。尚、ゼオライトとは、結晶性無機酸化物であり、具体的には、結晶性シリケート、結晶性アルミノシリケート、結晶性メタロシリケート、結晶性アルミノホスフェート、結晶性メタロアルミノホスフェートなどで構成された結晶性マイクロポーラス物質である。また、仕切板8は、第1の円筒型容器2の剛性を確保するための補強材としても機能している。   As shown in FIG. 2 (A), the inside of the first cylindrical container 2 is partitioned into a plurality by partition plates 8 extending radially from the shaft center 2a. Surrounded by a net (not shown) or the like, the nitrogen absorbing adsorbent 5 is filled. As the nitrogen absorbing adsorbent 5, it is preferable to use zeolite. Zeolite is a crystalline inorganic oxide, specifically, a crystallinity composed of crystalline silicate, crystalline aluminosilicate, crystalline metallosilicate, crystalline aluminophosphate, crystalline metalloaluminophosphate, etc. It is a microporous material. The partition plate 8 also functions as a reinforcing material for ensuring the rigidity of the first cylindrical container 2.

また、第2の円筒型容器3の内部構造は、図2(B)に示すように、第1の円筒型容器2の内部構造と同一であり、仕切板8によって仕切られたそれぞれの部位には、金網、ネットなどで囲まれて、水分吸収用吸着剤6が充填されている。図示はしないが第3の円筒型容器4の内部構造も第2の円筒型容器3の内部構造と同一であり、仕切板8によって仕切られたそれぞれの部位には、水分吸収用吸着剤7が充填されている。水分吸収用吸着剤6及び水分吸収用吸着剤7としては、シリカゲルなどの慣用の水分吸収用吸着剤を使用することができる。   The internal structure of the second cylindrical container 3 is the same as the internal structure of the first cylindrical container 2 as shown in FIG. Is surrounded by a wire mesh, a net, etc., and is filled with a moisture absorbing adsorbent 6. Although not shown, the internal structure of the third cylindrical container 4 is the same as the internal structure of the second cylindrical container 3, and a moisture absorbing adsorbent 7 is provided at each part partitioned by the partition plate 8. Filled. As the moisture absorbing adsorbent 6 and the moisture absorbing adsorbent 7, a conventional moisture absorbing adsorbent such as silica gel can be used.

尚、第1の円筒型容器2、第2の円筒型容器3及び第3の円筒型容器4の内部構造を、図2に示す構造に替えて、図3に示すようなハニカム構造体で構成してもよい。つまり、仕切り板8で仕切られたそれぞれの部位に、表面に窒素吸収用吸着剤5が塗布されたハニカム構造体26を配置するようにしてもよい。第2の円筒型容器3及び第3の円筒型容器4では、ハニカム構造体26の表面に、窒素吸収用吸着剤5に替えて水分吸収用吸着剤6,7を塗布する。窒素吸収用吸着剤5及び水分吸収用吸着剤6,7での圧力損失を低減するためには、これらの吸着剤を、円筒型容器の内部に充填せずに、ハニカム構造体26に塗布することが好ましいが、窒素吸収用吸着剤5及び水分吸収用吸着剤6,7をハニカム構造体26の表面に厚く塗布することは難しく、必要量を塗布するためにはハニカム構造体26の形状が大きくなり、経済性を損なう場合もあるので、ハニカム構造体26を採用する場合には、その点を考慮する必要がある。尚、図3は、本発明に係る酸素富化空気製造装置の第1の円筒型容器の他の例を示す概略図であり、(A)が第1の円筒型容器2の斜視図、(B)がハニカム構造体26の拡大図である。   Note that the internal structure of the first cylindrical container 2, the second cylindrical container 3, and the third cylindrical container 4 is replaced with the structure shown in FIG. 2, and is configured with a honeycomb structure as shown in FIG. May be. That is, the honeycomb structure 26 having the surface coated with the nitrogen absorbing adsorbent 5 may be disposed at each portion partitioned by the partition plate 8. In the second cylindrical container 3 and the third cylindrical container 4, moisture absorbing adsorbents 6 and 7 are applied to the surface of the honeycomb structure 26 instead of the nitrogen absorbing adsorbent 5. In order to reduce pressure loss in the nitrogen absorbing adsorbent 5 and the moisture absorbing adsorbents 6 and 7, these adsorbents are applied to the honeycomb structure 26 without filling the inside of the cylindrical container. However, it is difficult to apply the nitrogen absorbing adsorbent 5 and the moisture absorbing adsorbents 6 and 7 thickly on the surface of the honeycomb structure 26, and the shape of the honeycomb structure 26 is required to apply a necessary amount. In some cases, the honeycomb structure 26 may be taken into consideration when the honeycomb structure 26 is adopted. FIG. 3 is a schematic view showing another example of the first cylindrical container of the oxygen-enriched air production apparatus according to the present invention, and (A) is a perspective view of the first cylindrical container 2, B) is an enlarged view of the honeycomb structure 26.

管体13の内部には、第1の円筒型容器2、第2の円筒型容器3及び第3の円筒型容器4を挟んで管体13の中心線を通る位置に分離板14が設置されており、分離板14によって管体13の内部に2つの流路が形成されている。つまり、図1において、左側下段の第1の空気供給流路9に供給された空気は、第2の円筒型容器3、第1の円筒型容器2、第3の円筒型容器4の順に通過し、右側下段の第1の空気排出流路11に排出するようになっている。一方、図1において、右側上段の第2の空気供給流路10に供給された空気は、第3の円筒型容器4、第1の円筒型容器2、第2の円筒型容器3の順に通過し、左側上段の第2の空気排出流路12に排出するようになっている。   Inside the tube body 13, a separation plate 14 is installed at a position passing through the center line of the tube body 13 with the first cylindrical container 2, the second cylindrical container 3, and the third cylindrical container 4 interposed therebetween. The separation plate 14 forms two flow paths inside the tube body 13. That is, in FIG. 1, the air supplied to the first air supply channel 9 on the lower left side passes in the order of the second cylindrical container 3, the first cylindrical container 2, and the third cylindrical container 4. And it discharges | emits to the 1st air discharge flow path 11 of the lower right stage. On the other hand, in FIG. 1, the air supplied to the second air supply channel 10 on the upper right side passes through the third cylindrical container 4, the first cylindrical container 2, and the second cylindrical container 3 in this order. Then, the air is discharged to the second air discharge channel 12 on the upper left side.

本発明においては、このように空気を逆向き方向に流すことを必須条件とする。但し、第1の円筒型容器2、第2の円筒型容器3及び第3の円筒型容器4は軸心2aを中心として連続的或いは断続的に回転しており、そのために、第1の空気供給流路9から供給された空気の全てが第1の空気排出流路11から排出するわけではなく、同様に、第2の空気供給流路10から供給された空気の全てが第2の空気排出流路12から排出するわけではなく、一部分の空気は相互に混合するが、本発明においては、一部分の空気の混合は問題としない。   In the present invention, it is an essential condition that air flows in the opposite direction. However, the first cylindrical container 2, the second cylindrical container 3, and the third cylindrical container 4 rotate continuously or intermittently about the axis 2a, and therefore, the first air Not all of the air supplied from the supply flow path 9 is discharged from the first air discharge flow path 11. Similarly, all of the air supplied from the second air supply flow path 10 is the second air. The air is not discharged from the discharge channel 12 and a part of the air is mixed with each other. However, in the present invention, the mixing of the part of the air is not a problem.

第1の空気供給流路9、第2の空気供給流路10、第1の空気排出流路11及び第2の空気排出流路12には、それぞれ配管(図示せず)が連結されており、これらの配管を介して第1の空気供給流路9及び第2の空気供給流路10へ空気が供給され、また、これらの配管を介して第1の空気排出流路11及び第2の空気排出流路12から排出される空気が所定の場所に導かれる。   A pipe (not shown) is connected to each of the first air supply channel 9, the second air supply channel 10, the first air discharge channel 11 and the second air discharge channel 12. The air is supplied to the first air supply flow path 9 and the second air supply flow path 10 through these pipes, and the first air discharge flow path 11 and the second air supply flow path 10 through these pipes. The air discharged from the air discharge channel 12 is guided to a predetermined place.

このようにして本発明に係る酸素富化空気製造装置1が構成されている。この酸素富化空気製造装置1を用い、以下のようにして空気から酸素富化空気を製造する。   In this way, the oxygen-enriched air production apparatus 1 according to the present invention is configured. Using this oxygen-enriched air production apparatus 1, oxygen-enriched air is produced from air as follows.

先ず、窒素吸収用吸着剤5として用いるゼオライトの窒素吸着能について説明する。図4は、ゼオライトの窒素吸着量と圧力との関係を定性的に示す図で、図5は、ゼオライトの窒素吸着量と圧力及び温度との関係を定性的に示す図である。   First, the nitrogen adsorption ability of the zeolite used as the nitrogen absorbing adsorbent 5 will be described. FIG. 4 is a diagram qualitatively showing the relationship between the nitrogen adsorption amount of zeolite and pressure, and FIG. 5 is a diagram qualitatively showing the relationship between the nitrogen adsorption amount of zeolite and pressure and temperature.

図4に示すように、ゼオライトは圧力が高くなるほど窒素吸着量が増加する性質があり、圧力P1の雰囲気下で空気をゼオライトに接触させると、ゼオライトは吸着量がC1値となるまで窒素を吸着する。これにより、空気の窒素は減少し、窒素が減少した分に相当するだけ酸素富化が行われる。一方、圧力P2(但し、P2<P1)では、ゼオライトの窒素吸着量はC2値に低下するので、C1値まで吸着していたゼオライトは、圧力P2の空気に触れると吸着していた窒素を放出し、ゼオライトの吸着量はC1値からC2値まで低下する。窒素が放出された空気の窒素含有量は増加し、窒素富化が行われる。 As shown in FIG. 4, zeolite has the property that the amount of nitrogen adsorption increases as the pressure increases. When air is brought into contact with zeolite in an atmosphere of pressure P 1 , the zeolite becomes nitrogen until the amount of adsorption reaches the C 1 value. To adsorb. As a result, nitrogen in the air is reduced, and oxygen enrichment is performed corresponding to the amount of reduced nitrogen. On the other hand, at the pressure P 2 (however, P 2 <P 1 ), the nitrogen adsorption amount of the zeolite decreases to the C 2 value, so that the zeolite adsorbed to the C 1 value is adsorbed when it comes into contact with the air at the pressure P 2. The released nitrogen is released, and the amount of zeolite adsorbed decreases from the C 1 value to the C 2 value. The nitrogen content of the air from which the nitrogen has been released increases and nitrogen enrichment takes place.

つまり、ゼオライトに圧力の異なる空気を接触させることで、圧力差により定まる窒素吸着量の差に応じて、相対的に圧力の高い空気の酸素富化が行われ、一方、相対的に圧力の低い空気の窒素富化が行われる。ゼオライトに圧力の異なる空気を交互に接触させることで、ゼオライトは窒素の吸着と放出とを繰り返し行い、窒素吸着量が一旦飽和に達したとしても、飽和状態のままで留まることはなく、半永久的に酸素富化が行われる。   In other words, by contacting the air with different pressures to the zeolite, oxygen enrichment of air having a relatively high pressure is performed according to the difference in the amount of nitrogen adsorption determined by the pressure difference, while the pressure is relatively low. Nitrogen enrichment of air is performed. By alternately contacting air with different pressures to the zeolite, the zeolite repeatedly adsorbs and releases nitrogen, and even if the amount of nitrogen adsorption once reaches saturation, it does not remain saturated and is semi-permanent. Oxygen enrichment is performed.

また、図5に示すように、ゼオライトは温度によっても窒素吸着量が異なり、圧力が一定であっても、温度の低下に伴って窒素吸着量が増加する。つまり、圧力をP3の一定値として、温度T2よりも低温の温度T1の空気をゼオライトに接触させると、ゼオライトは吸着量がC3値となるまで窒素を吸収する。これにより、空気の窒素は減少し、窒素が減少した分に相当するだけ酸素富化が行われる。一方、温度T2ではゼオライトの窒素吸着量はC4値に低下するので、ゼオライトは、温度T2の空気に触れると吸着していた窒素を放出し、ゼオライトの吸着量はC3値からC4値まで低下する。窒素が放出された空気の窒素含有量は増加し、窒素富化が行われる。 Further, as shown in FIG. 5, the amount of nitrogen adsorbed by zeolite varies depending on the temperature, and even if the pressure is constant, the amount of nitrogen adsorbed increases as the temperature decreases. That is, when the pressure is set to a constant value of P 3 and air having a temperature T 1 lower than the temperature T 2 is brought into contact with the zeolite, the zeolite absorbs nitrogen until the adsorption amount reaches the C 3 value. As a result, nitrogen in the air is reduced, and oxygen enrichment is performed corresponding to the amount of reduced nitrogen. Meanwhile, since the nitrogen adsorption amount of the temperature T 2 zeolite is reduced to C 4 value, zeolite releases nitrogen adsorbed Touching the temperature T 2 air, the amount of adsorption of zeolite C from C 3 value Decreases to 4 values. The nitrogen content of the air from which the nitrogen has been released increases and nitrogen enrichment takes place.

つまり、ゼオライトに温度の異なる空気を接触させることで、温度差により定まる窒素吸着量の差に応じて、相対的に温度の低い空気の酸素富化が行われ、一方、相対的に温度の高い空気の窒素富化が行われる。ゼオライトに温度の異なる空気を交互に接触させることで、ゼオライトは窒素の吸着と放出とを繰り返し行い、窒素吸着量が一旦飽和に達したとしても、飽和状態のままで留まることはなく、半永久的に酸素富化が行われる。   In other words, by contacting the air with different temperatures to the zeolite, oxygen enrichment of air having a relatively low temperature is performed according to the difference in the amount of nitrogen adsorption determined by the temperature difference, while the temperature is relatively high. Nitrogen enrichment of air is performed. By alternately contacting air at different temperatures with the zeolite, the zeolite repeatedly adsorbs and releases nitrogen, and even if the nitrogen adsorption amount once reaches saturation, it does not remain saturated and is semi-permanent. Oxygen enrichment is performed.

この場合、酸素富化する側の空気の圧力を高め且つ温度を低くすることで、図5からも伺い知れるように、ゼオライトの窒素吸着量の差はより大きくなり、酸素富化を効率的に行うことが可能となる。   In this case, by increasing the pressure of the air on the oxygen-enriched side and lowering the temperature, as can be seen from FIG. 5, the difference in the amount of nitrogen adsorbed by the zeolite becomes larger, and the oxygen enrichment is efficiently performed. Can be done.

次に、このようなゼオライトの窒素吸着能を利用して、酸素富化空気製造装置1により空気から酸素富化空気を製造する方法を説明する。   Next, a method for producing oxygen-enriched air from air using the oxygen-enriched air production apparatus 1 using such nitrogen adsorption ability of zeolite will be described.

図1において、第1の円筒型容器2、第2の円筒型容器3及び第3の円筒型容器4を、軸心2aを中心として連続的或いは断続的に回転させながら、第1の空気供給流路9から供給する空気の圧力を、第2の空気供給流路10から供給する空気の圧力よりも高くするか、または、第1の空気供給流路9から供給する空気の温度を、第2の空気供給流路10から供給する空気の温度よりも低くするか、若しくは、第1の空気供給流路9から供給する空気を、第2の空気供給流路10から供給する空気に比べて圧力を高く且つ温度を低くして、第1の空気供給流路9及び第2の空気供給流路10から空気を供給する。供給する空気の圧力調整は、例えば、空気を送風するための送風機の吐出圧力の調整などによって行い、供給する空気の温度調整は、供給配管にヒーター或いは加熱炉などの排熱が供給される熱交換器などを設置することによって行うことができる。   In FIG. 1, the first air supply is performed while continuously or intermittently rotating the first cylindrical container 2, the second cylindrical container 3, and the third cylindrical container 4 about the axis 2a. The pressure of the air supplied from the flow path 9 is made higher than the pressure of the air supplied from the second air supply flow path 10, or the temperature of the air supplied from the first air supply flow path 9 is changed to the first The temperature of the air supplied from the second air supply flow path 10 is lower than the temperature of the air supplied from the second air supply flow path 10 or the air supplied from the first air supply flow path 9 is compared with the air supplied from the second air supply flow path 10. Air is supplied from the first air supply channel 9 and the second air supply channel 10 by increasing the pressure and decreasing the temperature. The pressure of the supplied air is adjusted by, for example, adjusting the discharge pressure of a blower for blowing air, and the temperature of the supplied air is adjusted by heat that is supplied to the supply pipe by exhaust heat from a heater or a heating furnace. This can be done by installing an exchange or the like.

第1の空気供給流路9から供給された空気は、第2の円筒型容器3に充填された水分吸収用吸着剤6と接触して水分が除去され(「脱水分処理」という)、脱水分処理された空気は、第1の円筒型容器2に充填された窒素吸収用吸着剤5と接触する。ここで、第1の空気供給流路9から供給された空気は、第2の空気供給流路10から供給された空気に比較して圧力が高い、または温度が低い、若しくは圧力が高く且つ温度が低いので、ゼオライトなどからなる窒素吸収用吸着剤5によって窒素が吸着され、窒素が減少して、酸素富化が行われる(「脱窒素処理」という)。脱窒素処理は「酸素富化処理」ともいう。   The air supplied from the first air supply flow path 9 comes into contact with the moisture absorbing adsorbent 6 filled in the second cylindrical container 3 to remove moisture (referred to as “dehydration treatment”), and then dehydrated. The minutely processed air comes into contact with the nitrogen absorbing adsorbent 5 filled in the first cylindrical container 2. Here, the air supplied from the first air supply channel 9 has a higher pressure or a lower temperature than the air supplied from the second air supply channel 10, or a higher pressure and a higher temperature. Therefore, nitrogen is adsorbed by the nitrogen absorbing adsorbent 5 made of zeolite or the like, nitrogen is reduced, and oxygen enrichment is performed (referred to as “denitrification treatment”). The denitrification treatment is also referred to as “oxygen enrichment treatment”.

一方、第2の空気供給流路10から供給された空気は、第3の円筒型容器4に充填された水分吸収用吸着剤7と接触して脱水分処理が施され、脱水分処理された空気は、第1の円筒型容器2に流入し、第1の円筒型容器2に充填された窒素吸収用吸着剤5と接触する。第2の空気供給流路10から供給された空気は、第1の空気供給流路9から供給された空気に比較して圧力が低い、または温度が高い、若しくは圧力が低く且つ温度が高いので、この空気と接触することによってゼオライトなどからなる窒素吸収用吸着剤5の窒素吸着量が低下し、窒素吸着量の差分の窒素が第2の空気供給流路10から供給された空気に放出される。これにより、第2の空気供給流路10から供給された空気の窒素濃度が増加する(「窒素富化処理」という)。このようにすることで、窒素吸収用吸着剤5は窒素吸着量が飽和状態のままで留まることはなく、連続して窒素の吸着・放出を遂行する。   On the other hand, the air supplied from the second air supply channel 10 is contacted with the moisture absorbing adsorbent 7 filled in the third cylindrical container 4 to be subjected to the dehydration treatment and the dehydration treatment. The air flows into the first cylindrical container 2 and comes into contact with the nitrogen absorbing adsorbent 5 filled in the first cylindrical container 2. The air supplied from the second air supply channel 10 has a lower pressure or higher temperature than the air supplied from the first air supply channel 9, or a lower pressure and a higher temperature. The amount of nitrogen adsorbed by the nitrogen absorbing adsorbent 5 made of zeolite or the like is lowered by contact with the air, and nitrogen corresponding to the difference in the amount of nitrogen adsorbed is released to the air supplied from the second air supply channel 10. The Thereby, the nitrogen concentration of the air supplied from the second air supply channel 10 increases (referred to as “nitrogen enrichment process”). In this way, the nitrogen absorbing adsorbent 5 does not stay in a saturated nitrogen adsorption amount, and continuously performs nitrogen adsorption / release.

その後、第2の空気供給流路10から供給された、窒素富化処理された空気は、第2の円筒型容器3に流入し、水分吸収用吸着剤6と接触する。水分吸収用吸着剤6は、第1の空気供給流路9から供給された空気と接触し、この空気に含まれる水分を吸着しているが、第2の空気供給流路10から供給された空気は、第3の円筒型容器4に充填された水分吸収用吸着剤7によって既に水分が除去された乾燥状態の空気であるので、水分吸収用吸着剤6に吸着した水分は、第2の空気供給流路10から供給された空気に放出され、この空気の水分濃度は上昇する(「水分富化処理」という)。つまり、水分吸収用吸着剤6は、水分吸着量が飽和状態のままで留まることはなく、連続して水分の吸着・放出を遂行する。   Thereafter, the nitrogen-enriched air supplied from the second air supply channel 10 flows into the second cylindrical container 3 and contacts the moisture absorbing adsorbent 6. The moisture absorbing adsorbent 6 is in contact with the air supplied from the first air supply channel 9 and adsorbs moisture contained in the air, but is supplied from the second air supply channel 10. Since the air is dry air from which moisture has already been removed by the moisture absorbing adsorbent 7 filled in the third cylindrical container 4, the moisture adsorbed on the moisture absorbing adsorbent 6 It is discharged into the air supplied from the air supply flow path 10 and the moisture concentration of this air rises (referred to as “moisture enrichment process”). That is, the moisture absorbing adsorbent 6 does not stay in a saturated moisture adsorption amount, and continuously performs moisture adsorption / release.

同様に、第1の空気供給流路9から供給された、脱窒素処理つまり酸素富化処理された空気は、第3の円筒型容器4に流入し、水分吸収用吸着剤7と接触する。水分吸収用吸着剤7は、第2の空気供給流路10から供給された空気と接触して、この空気に含まれる水分を吸着しているが、第1の空気供給流路9から供給された空気は、第2の円筒型容器3に充填された水分吸収用吸着剤6によって既に水分が除去された乾燥状態の空気であるので、水分吸収用吸着剤7に吸着した水分は、第1の空気供給流路9から供給された空気に放出される。つまり、水分吸収用吸着剤7も、水分吸着量が飽和状態のままで留まることはなく、連続して水分の吸着・放出を遂行する。   Similarly, the denitrogenated or oxygen-enriched air supplied from the first air supply channel 9 flows into the third cylindrical container 4 and contacts the moisture absorbing adsorbent 7. The moisture absorbing adsorbent 7 is in contact with the air supplied from the second air supply channel 10 and adsorbs moisture contained in the air, but is supplied from the first air supply channel 9. Since the air is dry air from which moisture has already been removed by the moisture-absorbing adsorbent 6 filled in the second cylindrical container 3, the moisture adsorbed on the moisture-absorbing adsorbent 7 is The air is supplied to the air supplied from the air supply flow path 9. In other words, the moisture absorbing adsorbent 7 does not stay in a saturated moisture adsorption amount, and continuously performs moisture adsorption / release.

第1の円筒型容器2、第2の円筒型容器3及び第3の円筒型容器4の回転数は、各吸着剤の吸着量が飽和吸着量に達しないうちに180度回転(半回転)するように、各吸着剤の吸着能力に応じて設定すればよい。   The rotation speeds of the first cylindrical container 2, the second cylindrical container 3, and the third cylindrical container 4 are rotated 180 degrees (half rotation) before the adsorption amount of each adsorbent reaches the saturated adsorption amount. As such, it may be set according to the adsorption capacity of each adsorbent.

このように、本発明に係る酸素富化空気製造装置1によれば、窒素吸収用吸着剤5を挟んでその両側に水分吸収用吸着剤6及び水分吸収用吸着剤7を配置し、これらの吸着剤に対して各々反対側の方向から空気を供給するので、窒素吸収用吸着剤5は水分の影響を受けることなく、供給される空気から窒素を吸収するとともに吸収した窒素を反対側から供給される空気に放出し、また、水分吸収用吸着剤6及び水分吸収用吸着剤7は水分の吸着及び放出を交互に繰り返して行い、それにより、窒素吸収用吸着剤5、水分吸収用吸着剤6及び水分吸収用吸着剤7の吸着量は飽和状態のままで留まることはなく、長期間にわたって連続的に酸素富化空気を製造することが可能となる。   Thus, according to the oxygen-enriched air production apparatus 1 according to the present invention, the moisture absorbing adsorbent 6 and the moisture absorbing adsorbent 7 are arranged on both sides of the nitrogen absorbing adsorbent 5, and these Since air is supplied from the opposite direction to the adsorbent, the nitrogen absorbing adsorbent 5 absorbs nitrogen from the supplied air and supplies the absorbed nitrogen from the opposite side without being affected by moisture. The moisture absorbing adsorbent 6 and the moisture absorbing adsorbent 7 alternately repeat the adsorption and release of moisture, thereby the nitrogen absorbing adsorbent 5 and the moisture absorbing adsorbent. 6 and the moisture absorption adsorbent 7 do not remain saturated and oxygen-enriched air can be produced continuously over a long period of time.

尚、本発明に係る酸素富化空気製造装置1は、上記説明の範囲に限定されるものではなく、種々の変更が可能である。例えば、上記説明では窒素吸収用吸着剤5、水分吸収用吸着剤6及び水分吸収用吸着剤7がそれぞれ分離した円筒型容器に充填されているが、円筒型容器を1つとし、その1つの円筒型容器の内部に、水分吸収用吸着剤6、窒素吸収用吸着剤5、水分吸収用吸着剤7の順に配置してもよい。また、円筒型容器を管体13の内部に配置するとともに、空気の流路を管体13の内部に配置しているが、円筒型容器のみを管体13の内部に配置し、空気の流路は独立した配管としてもよい。更に、管体13を省略し、水分吸収用吸着剤6、窒素吸収用吸着剤5、水分吸収用吸着剤7が配置された円筒型容器に、空気の流路を直接取り付けるようにしてもよい。また更に、酸素富化処理する空気と窒素富化処理する空気とを上記説明とは反対の方向から酸素富化空気製造装置1に供給してもよい。更にまた、第1の円筒型容器2や第2の円筒型容器3などの構造は上記に限るものではなく、格子状の仕切板を配置するなどしても構わない。   The oxygen-enriched air production apparatus 1 according to the present invention is not limited to the above description, and various modifications can be made. For example, in the above description, the nitrogen absorbing adsorbent 5, the moisture absorbing adsorbent 6 and the moisture absorbing adsorbent 7 are filled in separate cylindrical containers, but one cylindrical container is used. The moisture absorbing adsorbent 6, the nitrogen absorbing adsorbent 5, and the moisture absorbing adsorbent 7 may be arranged in this order inside the cylindrical container. Further, while the cylindrical container is disposed inside the tube body 13 and the air flow path is disposed inside the tube body 13, only the cylindrical container is disposed inside the tube body 13, and the air flow The road may be an independent pipe. Further, the tube body 13 may be omitted, and the air flow path may be directly attached to a cylindrical container in which the moisture absorbing adsorbent 6, the nitrogen absorbing adsorbent 5, and the moisture absorbing adsorbent 7 are arranged. . Furthermore, the oxygen-enriched air and the nitrogen-enriched air may be supplied to the oxygen-enriched air production apparatus 1 from the opposite direction to the above description. Furthermore, the structure of the first cylindrical container 2 and the second cylindrical container 3 is not limited to the above, and a lattice-like partition plate may be disposed.

次に、本発明に係る酸素富化空気製造装置1で製造した酸素富化空気を、高炉側壁の羽口から高炉内に吹き込まれる酸素富化空気として利用する方法、加熱炉または熱風炉で燃焼用ガスとして使用される酸素富化空気として利用する方法、並びに、高純度の純酸素を製造するための原料となる酸素富化空気として利用する方法について、説明する。   Next, a method of using oxygen-enriched air produced by the oxygen-enriched air production apparatus 1 according to the present invention as oxygen-enriched air blown into the blast furnace from the tuyere of the blast furnace side wall, burning in a heating furnace or a hot stove A method of using oxygen-enriched air used as a working gas and a method of using oxygen-enriched air as a raw material for producing high purity pure oxygen will be described.

図6は、本発明により製造した酸素富化空気を高炉へ供給する工程図、図7は、本発明により製造した酸素富化空気を加熱炉へ供給する工程図、図8は、本発明により製造した酸素富化空気を純酸素製造装置へ供給する工程図である。図6〜8において、符号1は酸素富化空気製造装置、15は送風機、16は送風機、17は高炉送風機、18は高炉、19は送風機、20は加熱炉、21は圧縮機、22は深冷分離装置、23は圧縮機である。   6 is a process diagram for supplying oxygen-enriched air produced according to the present invention to a blast furnace, FIG. 7 is a process diagram for supplying oxygen-enriched air produced according to the present invention to a heating furnace, and FIG. It is process drawing which supplies manufactured oxygen enriched air to a pure oxygen manufacturing apparatus. 6-8, the code | symbol 1 is an oxygen enriched air manufacturing apparatus, 15 is a fan, 16 is a fan, 17 is a blast furnace fan, 18 is a blast furnace, 19 is a fan, 20 is a heating furnace, 21 is a compressor, 22 is deep A cold separator 23 is a compressor.

図6、図7、図8に示すように、本発明においては、送風機16を用いて酸素富化空気製造装置1(具体的には前述した第1の空気供給流路)に空気を供給し、供給した空気中の窒素を、酸素富化空気製造装置1に配置した窒素吸収用吸着剤により除去して酸素富化空気を製造する。酸素富化空気製造装置1の窒素吸収用吸着剤に吸着した窒素は、送風機15により、送風機16によって供給される空気とは反対側の方向から酸素富化空気製造装置1に供給される空気に放出され、窒素吸収用吸着剤における窒素の蓄積が防止される。得られた酸素富化空気を、高炉18、加熱炉20、深冷分離装置22に供給し、高炉18及び加熱炉20では燃焼用ガスとして使用し、深冷分離装置22では純酸素を製造する際の原料として使用する。   As shown in FIGS. 6, 7, and 8, in the present invention, air is supplied to the oxygen-enriched air production apparatus 1 (specifically, the first air supply channel described above) using a blower 16. Then, nitrogen in the supplied air is removed by the adsorbent for nitrogen absorption arranged in the oxygen-enriched air production apparatus 1 to produce oxygen-enriched air. Nitrogen adsorbed on the nitrogen-absorbing adsorbent of the oxygen-enriched air production apparatus 1 is converted into air supplied to the oxygen-enriched air production apparatus 1 from the direction opposite to the air supplied by the blower 16 by the blower 15. Released and nitrogen accumulation in the nitrogen absorbing adsorbent is prevented. The obtained oxygen-enriched air is supplied to the blast furnace 18, the heating furnace 20, and the cryogenic separator 22, and is used as a combustion gas in the blast furnace 18 and the heating furnace 20, and the cryogenic separator 22 produces pure oxygen. Used as raw material.

即ち、図6において、酸素富化空気製造装置1によって製造した、例えば酸素を30〜50%含有する酸素富化空気を、空気(酸素濃度21%)と混合して酸素濃度が24%程度の混合ガスとし、この混合ガスを酸素富化空気として高炉送風機17を用いて高炉18に送風することで、従来の純酸素から酸素富化空気を製造する場合に比べて大幅に少ない消費電力で、高炉操業を実施することが可能となる。当然ながら、酸素富化空気製造装置1によって製造した酸素富化空気を、希釈せずに、高炉送風機17を用いて高炉18に送風することもできる。   That is, in FIG. 6, the oxygen-enriched air produced by the oxygen-enriched air production apparatus 1 and containing, for example, 30 to 50% oxygen is mixed with air (oxygen concentration 21%) and the oxygen concentration is about 24%. By making this mixed gas into oxygen-enriched air and blowing it to the blast furnace 18 using the blast furnace blower 17, with much less power consumption compared to the case of producing oxygen-enriched air from conventional pure oxygen, Blast furnace operation can be carried out. Naturally, the oxygen-enriched air produced by the oxygen-enriched air production apparatus 1 can be blown to the blast furnace 18 using the blast furnace blower 17 without being diluted.

同様に、図7において、酸素富化空気製造装置1によって製造した、例えば酸素を25〜35%含有する酸素富化空気を、送風機19を用いて加熱炉20に燃焼用ガスとして供給することで、燃焼排ガスの顕熱が大幅に削減され、加熱炉20における燃料原単位を大幅に低減することが可能となる。   Similarly, in FIG. 7, oxygen-enriched air produced by the oxygen-enriched air production apparatus 1 and containing, for example, 25 to 35% oxygen is supplied to the heating furnace 20 as a combustion gas using the blower 19. The sensible heat of the combustion exhaust gas is greatly reduced, and the fuel consumption rate in the heating furnace 20 can be greatly reduced.

また、図8において、酸素富化空気製造装置1によって製造した、例えば酸素を30〜40%含有する酸素富化空気を、圧縮機21、深冷分離装置22、圧縮機23の順に処理して酸素濃度が99.6%程度の純酸素を製造することで、空気を原料として深冷分離装置22を用いて純酸素を製造する従来の場合に比べて、少ない全消費電力量で純酸素を製造することが可能となる。   Further, in FIG. 8, oxygen-enriched air produced by the oxygen-enriched air production apparatus 1 and containing, for example, 30 to 40% oxygen is processed in the order of the compressor 21, the cryogenic separator 22, and the compressor 23. By producing pure oxygen with an oxygen concentration of about 99.6%, pure oxygen can be produced with less total power consumption compared to the conventional case of producing pure oxygen using air as a raw material and using the cryogenic separator 22. It can be manufactured.

図1に示す酸素富化空気製造装置を用いて、高炉の羽口から吹き込む酸素富化空気を製造した。ここでは、酸素富化空気製造装置に供給する空気の圧力を変えて酸素富化空気を製造した。図9にそのフロー図を示す。図9において、符号1は酸素富化空気製造装置、15は送風機、17は高炉送風機、18は高炉である。   Using the oxygen-enriched air production apparatus shown in FIG. 1, oxygen-enriched air blown from the tuyere of the blast furnace was produced. Here, oxygen-enriched air was produced by changing the pressure of the air supplied to the oxygen-enriched air production apparatus. FIG. 9 shows the flow chart. In FIG. 9, reference numeral 1 is an oxygen-enriched air production apparatus, 15 is a blower, 17 is a blast furnace blower, and 18 is a blast furnace.

図9に示すように、酸素富化空気製造装置へ供給した空気は酸素富化処理され、酸素富化空気製造装置の出口では35%の酸素濃度の酸素富化空気が得られた。一方、窒素富化処理された空気の酸素濃度は11.3%まで低下した。   As shown in FIG. 9, the air supplied to the oxygen-enriched air production apparatus was subjected to oxygen enrichment treatment, and oxygen-enriched air having an oxygen concentration of 35% was obtained at the outlet of the oxygen-enriched air production apparatus. On the other hand, the oxygen concentration of the nitrogen-enriched air decreased to 11.3%.

得られた酸素濃度が35%の酸素富化空気を通常の空気で希釈して酸素濃度が23.5%の酸素富化空気とし、これを47000Nm3/hの流量で高炉に吹き込んだ。この場合に必要とする動力は約53.0MWであった。 The obtained oxygen-enriched air having an oxygen concentration of 35% was diluted with ordinary air to obtain oxygen-enriched air having an oxygen concentration of 23.5%, and this was blown into a blast furnace at a flow rate of 47000 Nm 3 / h. The power required in this case was about 53.0 MW.

比較のために、従来の、深冷分離装置を用いて酸素富化空気を製造する操業も実施した。図10に、深冷分離装置を用いて製造した酸素富化空気を高炉羽口に吹き込むときのフロー図を示す。図10において、符号17は高炉送風機、18は高炉、22は深冷分離装置、24は送風機、25は送風機である。   For comparison, an operation for producing oxygen-enriched air using a conventional cryogenic separator was also carried out. FIG. 10 shows a flow chart when oxygen-enriched air produced using a cryogenic separator is blown into the blast furnace tuyere. In FIG. 10, the code | symbol 17 is a blast furnace blower, 18 is a blast furnace, 22 is a cryogenic separation apparatus, 24 is a blower, 25 is a blower.

図10に示すように、深冷分離装置によりほぼ酸素濃度が100%の純酸素を製造し、これを通常の空気で希釈して酸素濃度が23.5%の酸素富化空気とし、これを47000Nm3/hの流量で高炉に吹き込んだ。この場合に必要とする動力は約59.5MWであった。 As shown in FIG. 10, pure oxygen having an oxygen concentration of approximately 100% is produced by a cryogenic separator, and this is diluted with normal air to obtain oxygen-enriched air having an oxygen concentration of 23.5%. The blast furnace was blown at a flow rate of 47000 Nm 3 / h. The power required in this case was about 59.5 MW.

このように、本発明を高炉の酸素富化空気の製造に適用することで、約10%の動力の削減効果が確認できた。   Thus, by applying the present invention to the production of oxygen-enriched air for a blast furnace, a power reduction effect of about 10% was confirmed.

図6に示す工程に沿って、酸素富化空気製造装置で製造した酸素富化空気を高炉に供給した。具体的には、5322百万Nm3/年の空気を酸素富化空気製造装置に供給して、酸素濃度が30%の酸素富化空気を3371百万Nm3/年の割合で製造し、この酸素富化空気を8426百万Nm3/年の空気で希釈・混合して、酸素濃度が23.5%の酸素富化空気を11797百万Nm3/年の割合で高炉に供給した。また、酸素富化空気製造装置には、窒素吸収用吸着剤の脱窒素用の空気として5322百万Nm3/年の空気を供給し、酸素濃度が15.3%の窒素富化空気(低酸素空気)を7273百万Nm3/年の割合で排出した。この場合、酸素富化空気製造装置で費やした電力は0.7億kWh/年、高炉送風に費やした電力は9.1億kWh/年で、合計9.8億kWh/年であった。また、酸素富化空気製造装置は、何ら問題を生ずることなく、1年間連続的に酸素富化空気を製造した。 In accordance with the process shown in FIG. 6, oxygen-enriched air produced by the oxygen-enriched air production apparatus was supplied to the blast furnace. Specifically, 5322 million Nm 3 / year of air is supplied to an oxygen-enriched air production apparatus, and oxygen-enriched air with an oxygen concentration of 30% is produced at a rate of 3371 million Nm 3 / year, the oxygen-enriched air 8426 one million Nm 3 / was diluted and mixed in the year of air, oxygen concentration was fed to the blast furnace to 23.5% of the oxygen-enriched air at a rate of 11797 one million Nm 3 / year. In addition, 5322 million Nm 3 / year of air is supplied to the oxygen-enriched air production apparatus as the denitrification air of the nitrogen absorbing adsorbent, and the nitrogen-enriched air (low oxygen concentration is 15.3%) Oxygen air) was discharged at a rate of 7273 million Nm 3 / year. In this case, the electric power consumed by the oxygen-enriched air production apparatus was 70 million kWh / year, and the electric power consumed by the blast furnace blast was 910 million kWh / year, which was 9.98 billion kWh / year. Moreover, the oxygen-enriched air production apparatus produced oxygen-enriched air continuously for one year without causing any problems.

従来の深冷分離法を用いて上記と同一組成及び同一流量の酸素富化空気を高炉に送風した場合の電力使用量は、深冷分離装置で1.8億kWh/年、酸素圧送で0.8億kWh/年、高炉送風で8.8億kWh/年で、合計11.4億kWh/年であり、本発明によって製造した酸素富化空気を使用することで、1.6億kWh/年の電力使用量を削減することができた。   When oxygen-enriched air having the same composition and flow rate as above is blown into a blast furnace using a conventional cryogenic separation method, the power consumption is 180 million kWh / year for the cryogenic separator and 0 for oxygen pumping. 800 million kWh / year, blast furnace blasting: 880 million kWh / year, totaling 1.14 billion kWh / year, and by using oxygen-enriched air produced according to the present invention, 160 million kWh / Electricity consumption per year could be reduced.

また、酸素富化空気製造装置で製造する酸素富化空気の酸素濃度を変化させて、そのときの電力削減量を求めた。求めた電力削減量をCO2の地中貯留に使用した場合を想定して、CO2削減量で評価した。図11に、求めたCO2削減量と酸素富化空気の酸素濃度との関係を示す。 Moreover, the oxygen concentration of the oxygen-enriched air produced by the oxygen-enriched air production apparatus was changed, and the power reduction amount at that time was obtained. Power reduction amount calculated on the assumption that used in geological storage CO 2, were evaluated by the CO 2 reduction. FIG. 11 shows the relationship between the obtained CO 2 reduction amount and the oxygen concentration of the oxygen-enriched air.

図11に示すように、酸素富化空気の酸素濃度が高くなるとともにCO2削減量は増加するが、酸素富化空気の酸素濃度が35%を超えると、CO2削減量が頭打ちとなり、一方、酸素富化空気の酸素濃度を高くするには、酸素富化空気製造装置を大型化するなどにより設備費が高くなり、従って、酸素富化空気製造装置で製造する酸素富化空気の酸素濃度は30〜35%が好ましいことが分かった。 As shown in FIG. 11, the CO 2 reduction amount increases as the oxygen concentration of the oxygen-enriched air increases. However, when the oxygen concentration of the oxygen-enriched air exceeds 35%, the CO 2 reduction amount reaches its peak. In order to increase the oxygen concentration of oxygen-enriched air, the equipment cost increases due to the size of the oxygen-enriched air production device, and therefore the oxygen concentration of oxygen-enriched air produced by the oxygen-enriched air production device It was found that 30 to 35% is preferable.

図7に示す工程に沿って、酸素富化空気製造装置で製造した、酸素濃度が25%の酸素富化空気を、製鉄所に備えられた熱風炉、熱間圧延工程の加熱炉、連続焼鈍炉などに供給した。その結果、排ガスの顕熱が大幅に低減し、従来、合計で624900Nm3/h使用していた燃料を、およそ8100Nm3/h(比率にして約1.3%)削減することができた。 In accordance with the process shown in FIG. 7, the oxygen-enriched air produced with an oxygen-enriched air production apparatus, with an oxygen concentration of 25%, is equipped with a hot blast furnace provided in an ironworks, a heating furnace for a hot rolling process, and continuous annealing. Supplied to a furnace. As a result, the sensible heat of the exhaust gas was greatly reduced, and it was possible to reduce the amount of fuel used in the past by a total of 624900 Nm 3 / h by about 8100 Nm 3 / h (ratio: about 1.3%).

また、酸素富化空気製造装置で製造する酸素富化空気の酸素濃度を変化させて、そのときのエネルギー削減量を求めた。求めたエネルギー削減量を電力削減量に換算し、更に電力削減量をCO2の地中貯留に使用した場合を想定して、CO2削減量で評価した。図12に、求めたCO2削減量と酸素富化空気の酸素濃度との関係を示す。 Moreover, the amount of energy reduction at that time was obtained by changing the oxygen concentration of the oxygen-enriched air produced by the oxygen-enriched air production apparatus. The energy reduction amount obtained by converting the power reduction amount, further assuming the case of using the power reduction amount on the geological storage of CO 2, was evaluated in a CO 2 reduction amount. FIG. 12 shows the relationship between the obtained CO 2 reduction amount and the oxygen concentration of the oxygen-enriched air.

図12に示すように、酸素富化空気の酸素濃度が高くなるとともにCO2削減量は増加するが、酸素富化空気の酸素濃度が50%を超えると、CO2削減量が頭打ちとなり、一方、酸素富化空気の酸素濃度を高くするには、酸素富化空気製造装置を大型化するなどにより設備費が高くなり、従って、酸素富化空気の酸素濃度は、30〜45%、より望ましくは30〜35%が好ましいことが分かった。 As shown in FIG. 12, the amount of CO 2 reduction increases as the oxygen concentration of the oxygen-enriched air increases, but when the oxygen concentration of the oxygen-enriched air exceeds 50%, the CO 2 reduction amount reaches its peak. In order to increase the oxygen concentration of the oxygen-enriched air, the equipment cost is increased by increasing the size of the oxygen-enriched air production apparatus. Therefore, the oxygen concentration of the oxygen-enriched air is more desirably 30 to 45%. It was found that 30 to 35% is preferable.

図8に示す工程に沿って、酸素富化空気製造装置で製造した酸素富化空気を、純酸素製造用の原料として深冷分離装置に供給し、酸素濃度が99.6%、圧力が500kPaの純酸素を製造した。その際に、酸素富化空気製造装置で製造する酸素富化空気の酸素濃度を25%、30%、35%、40%の4水準に変更し、それぞれの場合の酸素富化空気製造装置で費やす電力、及び、深冷分離装置で費やす電力を調査した。比較のために、従来の空気を原料とした場合の電力も調査した。純酸素の製造量を2077百万Nm3/年としたときの調査結果を表1に示す。表1のCO2削減量の欄は、電力削減量をCO2の地中貯留に使用した場合を想定して、CO2削減量として評価したものである。 In accordance with the steps shown in FIG. 8, oxygen-enriched air produced by an oxygen-enriched air production apparatus is supplied to a cryogenic separation apparatus as a raw material for producing pure oxygen, with an oxygen concentration of 99.6% and a pressure of 500 kPa. Of pure oxygen was produced. At that time, the oxygen concentration of the oxygen-enriched air produced by the oxygen-enriched air production apparatus is changed to four levels of 25%, 30%, 35% and 40%, and the oxygen-enriched air production apparatus in each case. The power consumed and the power consumed by the cryogenic separator were investigated. For comparison, electric power when using conventional air as a raw material was also investigated. Table 1 shows the survey results when the production amount of pure oxygen is 2077 million Nm 3 / year. The column of CO 2 reduction amount in Table 1 is evaluated as the CO 2 reduction amount on the assumption that the power reduction amount is used for CO 2 underground storage.

Figure 2008207172
Figure 2008207172

表1に示すように、酸素富化空気の酸素濃度が高くなるほど深冷分離装置で費やす電力は少なくなるが、酸素富化空気製造装置でも所定量の電力が必要であり、その結果、酸素濃度が25%の酸素富化空気を原料とした場合には、空気を原料とした場合よりも却って使用電力が増加した。しかしながら、酸素濃度が30%以上の酸素富化空気を原料とした場合には、トータルの電力使用量は従来の空気を原料とした場合に比べて改善することが確認できた。   As shown in Table 1, the higher the oxygen concentration of the oxygen-enriched air, the less power is consumed by the cryogenic separator, but the oxygen-enriched air production device also requires a predetermined amount of power, and as a result, the oxygen concentration However, when 25% oxygen-enriched air was used as the raw material, the electric power used was increased compared to when air was used as the raw material. However, when oxygen-enriched air having an oxygen concentration of 30% or more is used as a raw material, it has been confirmed that the total power consumption is improved as compared with the case where conventional air is used as a raw material.

本発明に係る酸素富化空気製造装置の概略斜視図である。1 is a schematic perspective view of an oxygen-enriched air production apparatus according to the present invention. 本発明に係る酸素富化空気製造装置の一部分を構成する第1の円筒型容器及び第2の円筒型容器の概略斜視図である。It is a schematic perspective view of the 1st cylindrical container and the 2nd cylindrical container which comprise a part of oxygen-enriched air manufacturing apparatus which concerns on this invention. 本発明に係る酸素富化空気製造装置の第1の円筒型容器の他の例を示す概略図である。It is the schematic which shows the other example of the 1st cylindrical container of the oxygen enriched air manufacturing apparatus which concerns on this invention. ゼオライトの窒素吸着量と圧力との関係を定性的に示す図である。It is a figure which shows qualitatively the relationship between the nitrogen adsorption amount of zeolite, and a pressure. ゼオライトの窒素吸着量と圧力及び温度との関係を定性的に示す図である。It is a figure which shows qualitatively the relationship between the nitrogen adsorption amount of zeolite, pressure, and temperature. 本発明に係る酸素富化空気製造装置により製造した酸素富化空気を高炉へ供給する工程図である。It is process drawing which supplies the oxygen enriched air manufactured with the oxygen enriched air manufacturing apparatus which concerns on this invention to a blast furnace. 本発明に係る酸素富化空気製造装置により製造した酸素富化空気を加熱炉へ供給する工程図である。It is process drawing which supplies the oxygen enriched air manufactured with the oxygen enriched air manufacturing apparatus which concerns on this invention to a heating furnace. 本発明に係る酸素富化空気製造装置により製造した酸素富化空気を純酸素製造装置へ供給する工程図である。It is process drawing which supplies the oxygen enriched air manufactured with the oxygen enriched air manufacturing apparatus which concerns on this invention to a pure oxygen manufacturing apparatus. 本発明の酸素富化空気製造装置を用いて製造した酸素富化空気を高炉羽口から吹き込むときのフロー図である。It is a flowchart when oxygen-enriched air manufactured using the oxygen-enriched air manufacturing apparatus of the present invention is blown from the blast furnace tuyere. 従来の深冷分離装置を用いて製造した酸素富化空気を高炉羽口から吹き込むときのフロー図である。It is a flow figure when blowing in oxygen-enriched air manufactured using the conventional cryogenic separator from a blast furnace tuyere. 実施例2におけるCO2削減量と酸素富化空気の酸素濃度との関係を示す図である。It is a diagram showing a relationship between oxygen concentration of CO 2 reduction and oxygen-enriched air in the second embodiment. 実施例3におけるCO2削減量と酸素富化空気の酸素濃度との関係を示す図である。It is a diagram showing a relationship between oxygen concentration of CO 2 reduction and oxygen-enriched air in the third embodiment.

符号の説明Explanation of symbols

1 酸素富化空気製造装置
2 第1の円筒型容器
2a 軸心
3 第2の円筒型容器
4 第3の円筒型容器
5 窒素吸収用吸着剤
6 水分吸収用吸着剤
7 水分吸収用吸着剤
8 仕切板
9 第1の空気供給流路
10 第2の空気供給流路
11 第1の空気排出流路
12 第2の空気排出流路
13 管体
14 分離板
15 送風機
16 送風機
17 高炉送風機
18 高炉
19 送風機
20 加熱炉
21 圧縮機
22 深冷分離装置
23 圧縮機
24 送風機
25 送風機
26 ハニカム構造体
DESCRIPTION OF SYMBOLS 1 Oxygen-enriched air production apparatus 2 1st cylindrical container 2a Axis center 3 2nd cylindrical container 4 3rd cylindrical container 5 Adsorbent for nitrogen absorption 6 Adsorbent for moisture absorption 7 Adsorbent for moisture absorption 8 Partition plate 9 First air supply flow path 10 Second air supply flow path 11 First air discharge flow path 12 Second air discharge flow path 13 Tubing body 14 Separation plate 15 Blower 16 Blower 17 Blast furnace blower 18 Blast furnace 19 Blower 20 Heating furnace 21 Compressor 22 Cryogenic separator 23 Compressor 24 Blower 25 Blower 26 Honeycomb structure

Claims (12)

圧力の増加に伴って窒素吸着量が増加する窒素吸収用吸着剤を挟んで、その両側にそれぞれ水分吸収用吸着剤を配置し、これらの吸着剤をその軸心を中心として回転させるとともに、これらの吸着剤に対してそれぞれ反対側の方向から圧力の異なる空気を供給し、これらの空気を水分吸収用吸着剤、窒素吸収用吸着剤、水分吸収用吸着剤の順に通過させ、相対的に圧力を高くした空気に対して脱水分処理、脱窒素処理、水分富化処理の順に処理を施し、相対的に圧力を下げた空気に対して脱水分処理、窒素富化処理、水分富化処理の順に処理を施し、相対的に圧力を高くした空気の酸素富化を行うことを特徴とする、酸素富化空気の製造方法。   A nitrogen absorbing adsorbent whose amount of nitrogen adsorption increases as the pressure increases is sandwiched, and moisture absorbing adsorbents are arranged on both sides of the adsorbent, and these adsorbents are rotated around their axes, Air with different pressures is supplied to the adsorbent in the opposite direction, and these air are passed through the adsorbent for moisture absorption, the adsorbent for nitrogen absorption, and the adsorbent for moisture absorption in this order, and the pressure is relatively high. The air that has been increased is subjected to dehydration treatment, denitrification treatment, and water enrichment treatment in this order, and the air that has undergone relatively low pressure is subjected to dehydration treatment, nitrogen enrichment treatment, and water enrichment treatment. A method for producing oxygen-enriched air, characterized in that the treatment is sequentially performed and oxygen enrichment of air at a relatively high pressure is performed. 温度の低下に伴って窒素吸着量が増加する窒素吸収用吸着剤を挟んで、その両側にそれぞれ水分吸収用吸着剤を配置し、これらの吸着剤をその軸心を中心として回転させるとともに、これらの吸着剤に対してそれぞれ反対側の方向から温度の異なる空気を供給し、これらの空気を水分吸収用吸着剤、窒素吸収用吸着剤、水分吸収用吸着剤の順に通過させ、相対的に温度を低くした空気に対して脱水分処理、脱窒素処理、水分富化処理の順に処理を施し、相対的に温度を高くした空気に対して脱水分処理、窒素富化処理、水分富化処理の順に処理を施し、相対的に温度を低くした空気の酸素富化を行うことを特徴とする、酸素富化空気の製造方法。   A nitrogen absorbent adsorbent whose nitrogen adsorption amount increases as the temperature decreases is sandwiched, and moisture absorbent adsorbents are arranged on both sides of the adsorbent, and these adsorbents are rotated around their axes. Air with different temperatures is supplied from the opposite direction to each adsorbent, and the air is passed through the adsorbent for moisture absorption, the adsorbent for nitrogen absorption, and the adsorbent for moisture absorption in this order. Air that has been lowered is subjected to dehydration treatment, denitrification treatment, and water enrichment treatment in this order, and air that has been relatively heated is subjected to dehydration treatment, nitrogen enrichment treatment, and water enrichment treatment. A method for producing oxygen-enriched air, characterized in that the treatment is sequentially performed to perform oxygen enrichment of air at a relatively low temperature. 圧力の増加並びに温度の低下に伴って窒素吸着量が増加する窒素吸収用吸着剤を挟んで、その両側にそれぞれ水分吸収用吸着剤を配置し、これらの吸着剤をその軸心を中心として回転させるとともに、これらの吸着剤に対してそれぞれ反対側の方向から、他方に比べて相対的に圧力が高く且つ温度が低くなるように調整した圧力及び温度の異なる空気を供給し、これらの空気を水分吸収用吸着剤、窒素吸収用吸着剤、水分吸収用吸着剤の順に通過させ、相対的に圧力を高め且つ温度を低くした空気に対して脱水分処理、脱窒素処理、水分富化処理の順に処理を施し、相対的に圧力を下げ且つ温度を高くした空気に対して脱水分処理、窒素富化処理、水分富化処理の順に処理を施し、相対的に圧力を高め且つ温度を低くした空気の酸素富化を行うことを特徴とする、酸素富化空気の製造方法。   A nitrogen absorbing adsorbent that increases in amount as the pressure increases and the temperature decreases is sandwiched, and moisture absorbing adsorbents are placed on both sides of the adsorbent, and these adsorbents rotate about their axes. In addition, air having different pressures and temperatures adjusted so that the pressure is relatively higher and the temperature is lower than the other is supplied from the direction opposite to each of these adsorbents. Moisture-absorbing adsorbent, nitrogen-absorbing adsorbent, and moisture-absorbing adsorbent are passed through in this order, and dehydration treatment, denitrification treatment, and water enrichment treatment are performed on air with relatively high pressure and low temperature. The air was treated in order, and the pressure was relatively lowered and the temperature was raised, and then the dehydration treatment, nitrogen enrichment treatment, and moisture enrichment treatment were conducted in this order to relatively increase the pressure and lower the temperature. Perform oxygen enrichment of air Wherein the method of oxygen-enriched air. 前記脱水分処理、脱窒素処理、水分富化処理の順に処理を施されて製造される酸素富化空気は、高炉側壁の羽口から高炉内に吹き込まれる酸素富化空気、或いは、加熱炉または熱風炉で燃焼用ガスとして使用される酸素富化空気のうちの何れかであることを特徴とする、請求項1ないし請求項3の何れか1つに記載の酸素富化空気の製造方法。   The oxygen-enriched air produced by performing the dehydration treatment, denitrogenation treatment, and water enrichment treatment in this order is oxygen-enriched air blown into the blast furnace from the tuyere of the blast furnace side wall, or a heating furnace or The method for producing oxygen-enriched air according to any one of claims 1 to 3, wherein the method is any one of oxygen-enriched air used as a combustion gas in a hot stove. 請求項1ないし請求項3の何れか1つに記載の酸素富化空気の製造方法に基づいて製造した酸素富化空気を空気で希釈し、希釈した後の混合ガスを高炉内に吹き込まれる酸素富化空気とすることを特徴とする酸素富化空気の製造方法。   The oxygen-enriched air produced based on the method for producing oxygen-enriched air according to any one of claims 1 to 3 is diluted with air, and the diluted mixed gas is blown into the blast furnace. A method for producing oxygen-enriched air, characterized by using enriched air. 前記脱水分処理、脱窒素処理、水分富化処理の順に処理を施されて製造される酸素富化空気の酸素濃度は30〜35%であることを特徴とする、請求項4または請求項5に記載の酸素富化空気の製造方法。   The oxygen concentration of oxygen-enriched air produced by performing the dehydration treatment, the denitrification treatment, and the water enrichment treatment in this order is 30 to 35%. A method for producing oxygen-enriched air as described in 1. above. 前記脱水分処理、脱窒素処理、水分富化処理の順に処理を施されて製造される酸素富化空気は、高純度の純酸素を製造するための原料となる酸素富化空気であることを特徴とする、請求項1ないし請求項3の何れか1つに記載の酸素富化空気の製造方法。   The oxygen-enriched air produced by performing the dehydration treatment, denitrification treatment, and moisture enrichment treatment in this order is oxygen-enriched air that is a raw material for producing high-purity pure oxygen. The method for producing oxygen-enriched air according to any one of claims 1 to 3, wherein the method is characterized in that: 前記脱水分処理、脱窒素処理、水分富化処理の順に処理を施されて製造される酸素富化空気の酸素濃度は30%以上であることを特徴とする、請求項7に記載の酸素富化空気の製造方法。   The oxygen-enriched air according to claim 7, wherein the oxygen concentration of oxygen-enriched air produced by performing the dehydration treatment, the denitrification treatment, and the water enrichment treatment in this order is 30% or more. A method for producing chemical air. 軸心を中心として回転可能な第1の円筒型容器と、第1の円筒型容器を挟んで第1の円筒型容器の軸心方向に相対して配置された、軸心を中心として回転可能な第2及び第3の円筒型容器と、前記第1の円筒型容器に配置された窒素吸収用吸着剤と、前記第2の円筒型容器に配置された水分吸収用吸着剤と、前記第3の円筒型容器に配置された水分吸収用吸着剤と、第2の円筒型容器、第1の円筒型容器、第3の円筒型容器の順に通過する空気を供給するための第1の空気供給流路と、これとは反対方向の、第3の円筒型容器、第1の円筒型容器、第2の円筒型容器の順に通過する空気を供給するための第2の空気供給流路と、前記第1の空気供給流路によって供給された空気を受けるための第1の空気排出流路と、前記第2の空気供給流路によって供給された空気を受けるための第2の空気排出流路と、を備えることを特徴とする、酸素富化空気の製造装置。   A first cylindrical container that can rotate around an axis, and a shaft that is disposed relative to the axial direction of the first cylindrical container across the first cylindrical container, and that can rotate around the axis. Second and third cylindrical containers, a nitrogen absorbing adsorbent disposed in the first cylindrical container, a moisture absorbing adsorbent disposed in the second cylindrical container, and the first 1st air for supplying the adsorbent for moisture absorption arranged in 3 cylindrical containers, and the air passing through the second cylindrical container, the first cylindrical container, and the third cylindrical container in this order A supply flow path, and a second air supply flow path for supplying air that passes in the order of the third cylindrical container, the first cylindrical container, and the second cylindrical container in the opposite direction; , A first air discharge channel for receiving air supplied by the first air supply channel, and the second air supply channel Accordingly, characterized in that it comprises a second air discharge passage for receiving the supplied air, apparatus for producing oxygen-enriched air. 軸心を中心として回転可能な円筒型容器と、該円筒型容器に配置された窒素吸収用吸着剤と、該窒素吸収用吸着剤を挟んで前記円筒型容器に相対して配置された一対の水分吸収用吸着剤と、前記円筒型容器に対してそれぞれ反対側の方向から、水分吸収用吸着剤、窒素吸収用吸着剤、水分吸収用吸着剤の順に通過する空気を供給するための空気供給流路と、該空気供給流路によって供給され、前記円筒型容器を通過した空気を受けるための空気排出流路と、を備えることを特徴とする、酸素富化空気の製造装置。   A cylindrical container rotatable around an axis, a nitrogen absorbing adsorbent disposed in the cylindrical container, and a pair of disposed relative to the cylindrical container with the nitrogen absorbing adsorber interposed therebetween Moisture absorbing adsorbent and air supply for supplying air passing in the order of the moisture absorbing adsorbent, the nitrogen absorbing adsorbent, and the moisture absorbing adsorbent from the opposite directions to the cylindrical container. An apparatus for producing oxygen-enriched air, comprising: a flow path; and an air discharge flow path for receiving air that is supplied by the air supply flow path and passes through the cylindrical container. 前記窒素吸収用吸着剤は、圧力の増加に伴って窒素の吸着量が増加する窒素吸収用吸着剤であって、前記空気供給流路を介して前記窒素吸収用吸着剤に対してそれぞれ反対側の方向から供給される空気は、それぞれ圧力が異なることを特徴とする、請求項9または請求項10に記載の酸素富化空気の製造装置。   The adsorbent for nitrogen absorption is an adsorbent for nitrogen absorption in which the amount of adsorbed nitrogen increases with an increase in pressure, and is opposite to the adsorbent for nitrogen absorption via the air supply channel. 11. The apparatus for producing oxygen-enriched air according to claim 9, wherein the air supplied from the direction is different in pressure. 11. 前記窒素吸収用吸着剤は、温度の低下に伴って窒素の吸着量が増加する窒素吸収用吸着剤であって、前記空気供給流路を介して前記窒素吸収用吸着剤に対してそれぞれ反対側の方向から供給される空気は、それぞれ温度が異なることを特徴とする、請求項9または請求項10に記載の酸素富化空気の製造装置。   The nitrogen-absorbing adsorbent is a nitrogen-absorbing adsorbent that increases the amount of nitrogen adsorbed as the temperature decreases, and is opposite to the nitrogen-absorbing adsorbent via the air supply channel. The apparatus for producing oxygen-enriched air according to claim 9 or 10, wherein the temperatures of the air supplied from different directions are different from each other.
JP2008015741A 2007-01-31 2008-01-28 Production method of oxygen enriched air and production device thereof Pending JP2008207172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015741A JP2008207172A (en) 2007-01-31 2008-01-28 Production method of oxygen enriched air and production device thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007021442 2007-01-31
JP2007021441 2007-01-31
JP2008015741A JP2008207172A (en) 2007-01-31 2008-01-28 Production method of oxygen enriched air and production device thereof

Publications (1)

Publication Number Publication Date
JP2008207172A true JP2008207172A (en) 2008-09-11

Family

ID=39783938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015741A Pending JP2008207172A (en) 2007-01-31 2008-01-28 Production method of oxygen enriched air and production device thereof

Country Status (1)

Country Link
JP (1) JP2008207172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012619A (en) * 2012-07-04 2014-01-23 Mitsubishi Chemicals Corp Oxygen manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012619A (en) * 2012-07-04 2014-01-23 Mitsubishi Chemicals Corp Oxygen manufacturing apparatus

Similar Documents

Publication Publication Date Title
US6500236B2 (en) Method for decarbonating waste gas and decarbonating apparatus
KR101268167B1 (en) Method for separating blast furnace gas
JP2019162628A (en) Process for integrated carbon dioxide gas separation from combustion gases
JP2000033218A (en) Method and apparatus for psa device using mixture of adsorbent
WO2020059197A1 (en) Carbon dioxide separation and recovery apparatus
CN102232003A (en) Multi-stage process for purifying carbon dioxide and producing sulfuric acid and nitric acid
CN113975938B (en) Rotary device and method for adsorbing and capturing carbon dioxide in flue gas at low temperature
CN102266702A (en) Method for capturing ammonia in industrial waste gas and equipment and application thereof
CN105944499B (en) A kind of method that temp.-changing adsorption removes sulfur dioxide in industrial tail gas
JP2009090979A (en) Small desiccant air conditioner
CN212283448U (en) Fixed bed type flue gas low-temperature adsorption desulfurization system
JP2004344703A (en) Method and apparatus for treating carbon dioxide
JP2008212845A (en) Carbon monoxide adsorbent, gas purification method, and gas purifier
JP2008207172A (en) Production method of oxygen enriched air and production device thereof
JP2009186101A (en) Operation method of heating furnace having heat storage type burner
JP2009257736A (en) Blast furnace gas separating method
KR100351621B1 (en) Multi Purpose Oxygen Generator using Pressure Swing Adsorption and Method
JP2009083851A (en) Small desiccant air conditioner
JP3592648B2 (en) Method and apparatus for using digestive gas
JPH0691128A (en) Continuous gas separation and recovery device
JP5339597B2 (en) Energy management method at steelworks
JP2005103335A (en) Thermal desorption type oxygen concentrating apparatus
CN117504528A (en) Fixed bed type flue gas purification system and control method thereof
JP2005326122A (en) Small desiccant air conditioner
JP2004275806A (en) Method and apparatus for treating sulfur oxide