JP2008206321A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2008206321A
JP2008206321A JP2007040207A JP2007040207A JP2008206321A JP 2008206321 A JP2008206321 A JP 2008206321A JP 2007040207 A JP2007040207 A JP 2007040207A JP 2007040207 A JP2007040207 A JP 2007040207A JP 2008206321 A JP2008206321 A JP 2008206321A
Authority
JP
Japan
Prior art keywords
circuit
temperature
comparison
circuits
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007040207A
Other languages
Japanese (ja)
Other versions
JP5036343B2 (en
Inventor
Takashi Sugiyama
隆 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2007040207A priority Critical patent/JP5036343B2/en
Publication of JP2008206321A publication Critical patent/JP2008206321A/en
Application granted granted Critical
Publication of JP5036343B2 publication Critical patent/JP5036343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter that detects an abnormality of a branched main circuit including switching elements regardless of the presence or the absence of a fuse. <P>SOLUTION: A power converter supplies a desired output current to a load 3. The power converter includes at least one conversion arm 2X, which is composed by connecting branched main circuits, respectively including a plurality of switching elements Th1, Th2, and Th3, in parallel, each temperature detection means T1, T2, and T3 that directly or indirectly detects a temperature of each switching element Th1, Th2, and Th3, and a main circuit abnormality determination means 4 for detecting an abnormality of each branched main circuit respectively including the switching elements Th1, Th2, and Th3 while using a detected temperature of each element detected by each temperature detection means T1, T2, and T3 as input. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電力変換装置に係り、特に複数個のスイッチング素子を含む分岐主回路を並列接続した変換アームを有する電力変換装置に関する。   The present invention relates to a power converter, and more particularly, to a power converter having a conversion arm in which branch main circuits including a plurality of switching elements are connected in parallel.

大電流を出力するための電力変換装置においては、スイッチング素子を複数個並列接続して使用することがある。そして、スイッチング素子が短絡故障を起こしたとき、電力変換装置としての保護を行なう目的で、各々のスイッチング素子に直列にヒューズを挿入することも行なわれている。このような電力変換装置において、例えばヒューズが劣化して非導通状態になると、並列接続されたスイッチング素子のうち、正常なヒューズとスイッチング素子の直列回路(以下分岐主回路と称する。)に電流が集中してしまうという問題がある。しかるに、大電流を扱う電力変換装置においては、各々の分岐主回路の電流を検出して上記非導通異常を検出するのは構造的に困難な場合が多い。これに対して、各々の分岐主回路のヒューズの温度を検出することによって確実な電力変換装置の保護を行なおうとする提案が為されている(例えば特許文献1参照。)。
特開2004−248390号公報(第3−4頁、図1)
In a power converter for outputting a large current, a plurality of switching elements may be connected in parallel. And when a switching element causes a short circuit failure, a fuse is also inserted in series with each switching element for the purpose of protecting the power conversion device. In such a power conversion device, for example, when a fuse deteriorates and becomes non-conductive, a current flows in a series circuit (hereinafter referred to as a branch main circuit) of a normal fuse and a switching element among switching elements connected in parallel. There is a problem of concentration. However, in a power converter that handles a large current, it is often difficult to detect the non-conducting abnormality by detecting the current of each branch main circuit. On the other hand, a proposal has been made to reliably protect the power conversion device by detecting the temperature of the fuse of each branch main circuit (see, for example, Patent Document 1).
JP 2004-248390 A (page 3-4, FIG. 1)

特許文献1に示された手法は、各々のスイッチング素子に直列にヒューズが設けられている分岐主回路においてはスイッチング素子の非導通異常も検出可能となるが、並列接続されたスイッチング素子で形成される変換アームに対して直列に1個のヒューズしか設けられていない場合、またアームにヒューズが設けられていない場合のスイッチング素子の非導通異常を検出することは困難であるという問題がある。   In the branch main circuit in which a fuse is provided in series with each switching element, a non-conducting abnormality of the switching element can be detected, but the technique disclosed in Patent Document 1 is formed with switching elements connected in parallel. There is a problem that it is difficult to detect a non-conducting abnormality of the switching element when only one fuse is provided in series with respect to the conversion arm, or when no fuse is provided in the arm.

本発明は上記問題点に鑑みて為されたものであり、その目的はヒューズの有無に拘らずスイッチング素子を含む分岐主回路の異常を検出することが可能な電力変換装置を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a power conversion device capable of detecting an abnormality of a branch main circuit including a switching element regardless of the presence or absence of a fuse. .

上記目的を達成するために、本発明に係る電力変換装置は、所望の出力電流を負荷に供給する電力変換装置において、複数個のスイッチング素子を含む分岐主回路を並列接続してなる少なくとも1つの変換アームと、各々の前記スイッチング素子の温度を直接または間接的に検出する温度検出手段と、前記温度検出手段による各々のスイッチング素子の検出温度を入力として前記分岐主回路の異常を検出する主回路異常判定手段とを具備したことを特徴としている。   In order to achieve the above object, a power conversion device according to the present invention includes at least one branch main circuit including a plurality of switching elements connected in parallel in a power conversion device that supplies a desired output current to a load. A conversion arm; temperature detection means for directly or indirectly detecting the temperature of each of the switching elements; and a main circuit for detecting an abnormality of the branch main circuit with the detected temperature of each switching element by the temperature detection means as an input An abnormality determination means is provided.

本発明によれば、ヒューズの有無に拘らずスイッチング素子を含む分岐主回路の異常を検出することが可能な電力変換装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the power converter device which can detect the abnormality of the branch main circuit containing a switching element irrespective of the presence or absence of a fuse.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例1に係る電力変換装置を図1及び図2を参照して説明する。図1は本発明の実施例1に係る電力変換装置の回路構成図である。この図1においてはスイッチング素子としてサイリスタ素子を用い、これを3並列接続して3相サイリスタ整流回路を形成した例を示している。   Hereinafter, the power converter concerning Example 1 of the present invention is explained with reference to FIG.1 and FIG.2. FIG. 1 is a circuit configuration diagram of a power conversion apparatus according to Embodiment 1 of the present invention. FIG. 1 shows an example in which a thyristor element is used as a switching element, and three of these are connected in parallel to form a three-phase thyristor rectifier circuit.

3相交流電源1から与えられた交流電圧は3相ブリッジを構成する正側の変換アーム2U、2V及び2W、並びに負側の変換アーム2X、2Y及び2Zに与えられる。この3相ブリッジは3相サイリスタ整流回路であり、その直流出力は直流負荷設備3に給電される。   The AC voltage supplied from the three-phase AC power source 1 is supplied to the positive conversion arms 2U, 2V, and 2W and the negative conversion arms 2X, 2Y, and 2Z that constitute the three-phase bridge. This three-phase bridge is a three-phase thyristor rectifier circuit, and its DC output is fed to the DC load facility 3.

各々の変換アームはスイッチング素子としてサイリスタ素子を用い、これを3並列接続して構成されているが、全て同一の回路構成となっているので、変換アーム2Xのみについてその内部構成を図示している。尚、各々のサイリスタ素子には図示しない制御回路からゲートパルスが供給されて出力電流を調整するようになっている。   Each conversion arm uses a thyristor element as a switching element and is connected in parallel with each other. However, since all have the same circuit configuration, only the conversion arm 2X is shown with its internal configuration. . Each thyristor element is supplied with a gate pulse from a control circuit (not shown) to adjust the output current.

変換アーム2Xはサイリスタ素子Th1、Th2及びTh3の並列回路から構成されている。そしてサイリスタ素子Th1、Th2及びTh3の各々に直列にヒューズF1、F2及びF3が接続され、3つの分岐主回路を形成している。尚、ヒューズF1、F2及びF3はまとめて一つの変換アーム用ヒューズとしても良く、また取り付けを省略しても良い。   The conversion arm 2X includes a parallel circuit of thyristor elements Th1, Th2, and Th3. Fuses F1, F2, and F3 are connected in series to each of the thyristor elements Th1, Th2, and Th3 to form three branch main circuits. The fuses F1, F2, and F3 may be combined into one conversion arm fuse, or may be omitted.

各々のサイリスタ素子Th1、Th2及びTh3には温度検出器T1、T2及びT3が夫々取り付けられ、これらの温度検出信号は主回路異常判定回路4に与えられる。   Temperature detectors T1, T2, and T3 are attached to the thyristor elements Th1, Th2, and Th3, respectively, and these temperature detection signals are given to the main circuit abnormality determination circuit 4.

図2は変換アーム2Xのサイリスタ素子Th1の実装状態を示す構造図である。サイリスタ素子Th1は冷却フィンFinに密着して実装され、入水用配管P1から流入した冷却水が冷却フィンFinの内部を通過して熱交換を行ない、熱交換後の冷却水は出水用配管P2から流出するように構成されている。そして、サイリスタ素子Th1と冷却フィンFinとが接合する部分に温度検出器T1が埋め込まれている。尚、内部の接合部近辺に温度検出器T1が埋め込まれたサイリスタ素子Th1を用いれば、更に精度の良い温度検出が可能となる。   FIG. 2 is a structural diagram showing a mounting state of the thyristor element Th1 of the conversion arm 2X. The thyristor element Th1 is mounted in close contact with the cooling fin Fin, and the cooling water flowing in from the inlet pipe P1 passes through the inside of the cooling fin Fin to perform heat exchange, and the cooling water after the heat exchange is supplied from the outlet pipe P2. It is configured to flow out. A temperature detector T1 is embedded in a portion where the thyristor element Th1 and the cooling fin Fin are joined. In addition, if the thyristor element Th1 in which the temperature detector T1 is embedded in the vicinity of the internal junction is used, a more accurate temperature detection becomes possible.

以下、図1における主回路異常判定回路4の内部構成について説明する。   Hereinafter, the internal configuration of the main circuit abnormality determination circuit 4 in FIG. 1 will be described.

温度検出器T1、T2及びT3から得られた温度信号は比較回路CP1、CP2及びCP3に夫々入力され、共通に設けられた比較基準REFと夫々比較される。そして比較回路CP1、CP2及びCP3の出力は異常判定回路Fa1、Fa2及びFa3に夫々入力される。異常判定回路Fa1、Fa2及びFa3は比較回路CP1、CP2及びCP3の出力によってサイリスタ素子Th1、Th2及びTh3の異常判定を夫々行ない、その判定結果を制御処理回路Ctに与える。   The temperature signals obtained from the temperature detectors T1, T2, and T3 are input to the comparison circuits CP1, CP2, and CP3, respectively, and are compared with the comparison reference REF provided in common. The outputs of the comparison circuits CP1, CP2, and CP3 are input to the abnormality determination circuits Fa1, Fa2, and Fa3, respectively. The abnormality determination circuits Fa1, Fa2, and Fa3 perform abnormality determination of the thyristor elements Th1, Th2, and Th3, respectively, based on the outputs of the comparison circuits CP1, CP2, and CP3, and give the determination results to the control processing circuit Ct.

次に動作について説明する。図1に示す3相サイリスタ整流回路を運転中に変換アーム2XのヒューズF1の断線またはサイリスタ素子Th1の点弧回路に異常が発生した場合を想定する。何れの故障によってもサイリスタ素子Th1に電流が通流しなくなり、サイリスタ素子Th1の温度は低下する。サイリスタ素子Th1を含む直列回路の異常(以下Th1分岐主回路の異常と言う。)により、健全なサイリスタ素子Th2及びTh3の電流は1.5倍に増大する。半導体素子の発生熱量は、ほぼ電流の2乗に比例するため、サイリスタ素子Th2及びTh3の発生熱量は約2倍となる。このようにして、サイリスタ素子Th1の温度が比較基準REFよりも所定値以上低下し、且つサイリスタ素子Th2及びTh3の温度が比較基準REFよりも所定値以上上昇したことを異常判定回路Fa1、Fa2及びFa3によって夫々判定し、その判定結果を制御処理回路Ctで演算解析することによってサイリスタ素子Th1回路の異常を検出することができる。   Next, the operation will be described. A case is assumed where, during operation of the three-phase thyristor rectifier circuit shown in FIG. 1, a disconnection of the fuse F1 of the conversion arm 2X or an abnormality occurs in the ignition circuit of the thyristor element Th1. Any failure causes no current to flow through the thyristor element Th1, and the temperature of the thyristor element Th1 decreases. Due to the abnormality of the series circuit including the thyristor element Th1 (hereinafter referred to as the abnormality of the Th1 branch main circuit), the currents of the sound thyristor elements Th2 and Th3 increase 1.5 times. Since the amount of heat generated by the semiconductor element is approximately proportional to the square of the current, the amount of heat generated by the thyristor elements Th2 and Th3 is approximately doubled. In this way, the abnormality determination circuits Fa1, Fa2 and the fact that the temperature of the thyristor element Th1 has decreased by a predetermined value or more than the comparison reference REF and the temperature of the thyristor elements Th2 and Th3 has increased by a predetermined value or more by the comparison reference REF. An abnormality of the thyristor element Th1 circuit can be detected by making a determination using Fa3 and calculating and analyzing the determination result using the control processing circuit Ct.

同様に、Th1回路とTh2回路の両方に異常が発生した場合はサイリスタ素子Th1及びTh2の温度は比較基準REFよりも低く、サイリスタ素子Th3の温度は比較基準REFよりも高くなるためTh1回路とTh2回路の両方の異常の検出が可能となる。以上をまとめると異常判定回路Fa1、Fa2及びFa3の判定結果に対応して以下のような分岐主回路異常の検出が可能となる。   Similarly, when an abnormality occurs in both the Th1 circuit and the Th2 circuit, the temperature of the thyristor elements Th1 and Th2 is lower than the comparison reference REF, and the temperature of the thyristor element Th3 is higher than the comparison reference REF. It is possible to detect both abnormalities in the circuit. In summary, the following branch main circuit abnormality can be detected corresponding to the determination results of the abnormality determination circuits Fa1, Fa2, and Fa3.

T1<REF、T2<REF、T3<REF---Th1〜Th3分岐主回路正常
T1<REF、T2>REF、T3>REF---Th1分岐主回路異常
T1>REF、T2<REF、T3>REF---Th2分岐主回路異常
T1>REF、T2>REF、T3<REF---Th3分岐主回路異常
T1<REF、T2<REF、T3>REF---Th1&Th2分岐主回路異常
T1>REF、T2<REF、T3<REF---Th2&Th3分岐主回路異常
T1<REF、T2>REF、T3<REF---Th3&Th1分岐主回路異常
尚、上記検出において、検出の遅れと検出精度のトレードオフが問題となるが、例えば、異常判定回路Fa1、Fa2及びFa3の異常判定の時定数をサイリスタ素子の保護協調曲線などから適切に選定することによりこの問題を解決することが可能となる。また、制御処理回路Ctの出力信号による保護動作としては、適用システムのニーズに合わせて、警報のみを出力、装置停止、あるいは出力低減による運転継続などが考えられる。
T1 <REF, T2 <REF, T3 <REF--Th1-Th3 branch main circuit normal T1 <REF, T2> REF, T3> REF--Th1 branch main circuit abnormality T1> REF, T2 <REF, T3> REF --- Th2 branch main circuit error T1> REF, T2> REF, T3 <REF --- Th3 branch main circuit error T1 <REF, T2 <REF, T3> REF --- Th1 & Th2 branch main circuit error T1> REF , T2 <REF, T3 <REF --- Th2 & Th3 branch main circuit error T1 <REF, T2> REF, T3 <REF --- Th3 & Th1 branch main circuit error In the above detection, tradeoff between detection delay and detection accuracy However, for example, by appropriately selecting the time constant for abnormality determination of the abnormality determination circuits Fa1, Fa2, and Fa3 from the protection coordination curve of the thyristor element, etc. This problem can be solved. Further, as the protection operation by the output signal of the control processing circuit Ct, it is conceivable to output only an alarm, stop the apparatus, or continue the operation by reducing the output according to the needs of the application system.

以上の分岐主回路異常の判定を、他の変換アームにおいても同様に行なうことによって、電力変換装置としての主回路異常の判定とこれに基づく保護動作を行なうことが可能となる。   By performing the above determination of the branch main circuit abnormality in the other conversion arms in the same manner, it is possible to determine the main circuit abnormality as the power conversion device and perform a protection operation based on the determination.

図3は本発明の実施例2に係る電力変換装置の回路構成図である。この実施例2の各部について、図1の本発明の実施例1に係る電力変換装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、主回路異常判定回路4A内の比較基準REFを電流指令IREFの値に応じて変化させるように構成した点である。   FIG. 3 is a circuit configuration diagram of the power conversion apparatus according to the second embodiment of the present invention. In the second embodiment, the same parts as those in the circuit configuration diagram of the power conversion apparatus according to the first embodiment of the present invention shown in FIG. The second embodiment is different from the first embodiment in that the comparison reference REF in the main circuit abnormality determination circuit 4A is changed according to the value of the current command IREF.

サイリスタ素子Th1、Th2及びTh3は、電流指令IREFに応じてそのゲート点弧角が制御されている。従って電流指令IREFが小さくなると通電期間が短くなりサイリスタ素子の温度が低下する。このため電流指令IREFが小さくなったとき、電流基準IREFの2乗に略比例して比較基準REFを低下させるようにすれば、電力変換装置の出力が定格出力よりも小さな領域においてもサイリスタ回路の異常を検出することが可能となり、主回路異常判定回路4Aの検出精度が向上する。   The thyristor elements Th1, Th2, and Th3 have their gate firing angles controlled in accordance with the current command IREF. Therefore, when the current command IREF is reduced, the energization period is shortened and the temperature of the thyristor element is lowered. Therefore, when the current command IREF is reduced, if the comparison reference REF is decreased approximately in proportion to the square of the current reference IREF, the thyristor circuit can be operated even in a region where the output of the power converter is smaller than the rated output. An abnormality can be detected, and the detection accuracy of the main circuit abnormality determination circuit 4A is improved.

図4は本発明の実施例3に係る電力変換装置の回路構成図である。この実施例3の各部について、図1の本発明の実施例1に係る電力変換装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例3が実施例1と異なる点は、主回路異常判定回路4Bにおいて、電流基準IREFに代えて平均値演算回路MEを設け、平均値演算回路MEは温度検出器T1、T2及びT3から得られた温度信号の平均値を演算するように構成した点である。   FIG. 4 is a circuit configuration diagram of the power conversion apparatus according to the third embodiment of the present invention. In the third embodiment, the same parts as those in the circuit configuration diagram of the power conversion apparatus according to the first embodiment of the present invention shown in FIG. The third embodiment differs from the first embodiment in that, in the main circuit abnormality determination circuit 4B, an average value calculation circuit ME is provided instead of the current reference IREF, and the average value calculation circuit ME is detected from the temperature detectors T1, T2, and T3. This is a point configured to calculate an average value of the obtained temperature signals.

この実施例3のように、平均値演算回路MEを用いて温度検出器出力の平均値を演算して比較基準とすることによりオフセット誤差を小さくすることか可能となる。従って、この実施例3は、特に並列接続されるサイリスタ素子数が多くなり、1回路異常時の健全回路の電流増加分が小さい場合において有効な異常検出が可能となる。   As in the third embodiment, it is possible to reduce the offset error by calculating the average value of the temperature detector output using the average value calculation circuit ME and using it as a comparison reference. Therefore, in the third embodiment, particularly when the number of thyristor elements connected in parallel is large and the increase in the current of the healthy circuit when one circuit is abnormal is small, an effective abnormality can be detected.

図5は本発明の実施例4に係る電力変換装置の回路構成図である。この実施例4の各部について、図1の本発明の実施例1に係る電力変換装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例4が実施例1と異なる点は、主回路異常判定回路4Cにおいて、比較回路CP1Aは温度検出器T1の検出温度と温度検出器T2の検出温度並びに温度検出器T1の検出温度と温度検出器T3の検出温度を比較するようにし、異常判定回路Fa1Aはこの2つの比較結果に基づいてTh1回路異常を出力するように構成した点である。比較回路CP2A、CP3Aについても同様に夫々温度検出器T2、T3の検出温度を他の二つの検出温度と比較し、異常判定回路Fa2A、Fa3Aはこれらの比較結果を受けてTh2回路異常、Th3回路異常を夫々制御処理回路Ctに出力する。   FIG. 5 is a circuit configuration diagram of a power conversion apparatus according to Embodiment 4 of the present invention. In the fourth embodiment, the same parts as those in the circuit configuration diagram of the power conversion apparatus according to the first embodiment of the present invention shown in FIG. The difference between the fourth embodiment and the first embodiment is that, in the main circuit abnormality determination circuit 4C, the comparison circuit CP1A detects the temperature detected by the temperature detector T1, the temperature detected by the temperature detector T2, and the temperature detected by the temperature detector T1. The detection temperature of the detector T3 is compared, and the abnormality determination circuit Fa1A is configured to output a Th1 circuit abnormality based on the two comparison results. Similarly, the comparison circuits CP2A and CP3A also compare the detected temperatures of the temperature detectors T2 and T3 with the other two detection temperatures, respectively, and the abnormality determination circuits Fa2A and Fa3A receive these comparison results to determine whether the Th2 circuit is abnormal or the Th3 circuit. Each abnormality is output to the control processing circuit Ct.

この実施例4のように、他の並列回路の検出器出力との相対比較を行うことにより、精度の高い異常検出が可能となる。   As in the fourth embodiment, it is possible to detect an abnormality with high accuracy by performing a relative comparison with the detector output of another parallel circuit.

この場合は、分岐主回路におけるヒューズF1の断線やサイリスタTh1の点弧回路異常により回路電流が全く流れなくなる場合のみならず、サイリスタTh1の経年特性変化による並列回路間の通流特性に差異が生じることに起因する分流の不平衡検出にも適用可能となる。   In this case, not only the circuit current does not flow at all due to the disconnection of the fuse F1 in the branch main circuit or the firing circuit abnormality of the thyristor Th1, but there is a difference in the flow characteristics between the parallel circuits due to the aging characteristic change of the thyristor Th1. Therefore, the present invention can also be applied to the detection of the unbalance of the shunt flow caused by this.

図6は本発明の実施例5に係る電力変換装置の回路構成図である。この実施例5の各部について、図1の本発明の実施例1に係る電力変換装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例5が実施例1と異なる点は、主回路異常判定回路4Dにおいて、比較回路CP1は温度検出器T1の検出温度と温度検出器T2の検出温度を比較するようにし、異常判定回路Fa1Bはこの比較結果に基づいてTh1またはTh2回路異常を出力するように構成した点である。比較回路CP2、CP3についても同様に夫々温度検出器T2、T3の検出温度を温度検出器T3、T1B検出温度と比較し、異常判定回路Fa2B、Fa3Bはこれらの比較結果を受けてTh2回路異常またはTh3回路異常、Th3回路異常またはTh1回路異常を制御処理回路Ctに夫々出力する。   FIG. 6 is a circuit configuration diagram of the power conversion device according to the fifth embodiment of the present invention. In each part of the fifth embodiment, the same parts as those in the circuit configuration diagram of the power conversion apparatus according to the first embodiment of the present invention shown in FIG. The fifth embodiment differs from the first embodiment in that in the main circuit abnormality determination circuit 4D, the comparison circuit CP1 compares the detection temperature of the temperature detector T1 with the detection temperature of the temperature detector T2, and the abnormality determination circuit Fa1B. Is a configuration that outputs a Th1 or Th2 circuit abnormality based on the comparison result. Similarly, the comparison circuits CP2 and CP3 also compare the detected temperatures of the temperature detectors T2 and T3 with the detected temperatures of the temperature detectors T3 and T1B, respectively, and the abnormality determination circuits Fa2B and Fa3B receive these comparison results to determine whether the Th2 circuit is abnormal or The Th3 circuit abnormality, Th3 circuit abnormality or Th1 circuit abnormality is output to the control processing circuit Ct.

以上のように変換アーム内の隣り合う2つのサイリスタ素子の温度を比較する構成によれば、2つ以上の回路が同時に異常とならない条件で、簡略化した異常検出を可能とする。従って1回路故障時に装置停止とするようなシステム構成の場合には、主回路異常判定回路の簡略化が可能となる。尚、上記で隣り合うという意味は、N(Nは整数)個のサイリスタ素子に対し、1番目のサイリスタ素子は2番目、2番目のサイリスタ素子は3番目と比較していき、N番目のサイリスタ素子は1番目と比較することを意味している。   As described above, according to the configuration in which the temperatures of two adjacent thyristor elements in the conversion arm are compared, simplified abnormality detection is possible under the condition that two or more circuits do not become abnormal at the same time. Therefore, in the case of a system configuration in which the apparatus is stopped when one circuit fails, the main circuit abnormality determination circuit can be simplified. In the above description, adjacent means that N (N is an integer) thyristor elements are compared with the second thyristor element, the second thyristor element, and the third thyristor element. The element means to compare with the first.

図7は本発明の実施例6に係る電力変換装置の変換アーム2Xのサイリスタ素子Th1の実装状態を示す構造図である。この実施例6の各部について、図2の本発明の実施例1に係る電力変換装置の変換アーム2Xのサイリスタ素子Th1の実装状態を示す構造図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例6が実施例1と異なる点は、温度検出器T1の取り付け位置をサイリスタ素子Th1に密接した位置とは異なる半導体素子冷却フィンFinの出口側直近とした点である。   FIG. 7 is a structural diagram illustrating a mounted state of the thyristor element Th1 of the conversion arm 2X of the power conversion apparatus according to the sixth embodiment of the present invention. Regarding the respective parts of the sixth embodiment, the same parts as those in the structural diagram showing the mounting state of the thyristor element Th1 of the conversion arm 2X of the power conversion device according to the first embodiment of the present invention shown in FIG. Is omitted. The difference between the sixth embodiment and the first embodiment is that the mounting position of the temperature detector T1 is set close to the outlet side of the semiconductor element cooling fin Fin, which is different from the position close to the thyristor element Th1.

この実施例6で示すように、温度検出器T1によって半導体素子冷却フィンFinの出口側直近の冷却水温度を検出することによってサイリスタ素子Th1の温度を間接的に検出することが可能となる。   As shown in the sixth embodiment, the temperature of the thyristor element Th1 can be indirectly detected by detecting the temperature of the cooling water closest to the outlet side of the semiconductor element cooling fin Fin by the temperature detector T1.

図8は本発明の実施例7に係る電力変換装置の変換アーム2Xのサイリスタ素子Th1の実装状態を示す構造図である。この実施例7の各部について、図2の本発明の実施例1に係る電力変換装置の変換アーム2Xのサイリスタ素子Th1の実装状態を示す構造図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例7が実施例1と異なる点は、冷却方式を風冷とし、温度検出器T1の取り付け位置をサイリスタ素子Th1に密接した位置とは異なる半導体素子風冷フィンFin1の出口側直近とした点である。   FIG. 8 is a structural diagram illustrating a mounted state of the thyristor element Th1 of the conversion arm 2X of the power conversion apparatus according to the seventh embodiment of the present invention. Regarding the respective parts of the seventh embodiment, the same parts as those of the structural diagram showing the mounting state of the thyristor element Th1 of the conversion arm 2X of the power conversion apparatus according to the first embodiment of the present invention shown in FIG. Is omitted. The difference between the seventh embodiment and the first embodiment is that the cooling method is air cooling, and the position where the temperature detector T1 is attached is close to the exit side of the semiconductor element wind cooling fin Fin1, which is different from the position close to the thyristor element Th1. Is a point.

この実施例7で示すように、温度検出器T1によって半導体素子風冷フィンFin1の出口側直近の冷却風温度を検出することによってサイリスタ素子Th1の温度を間接的に検出することが可能となる。   As shown in the seventh embodiment, the temperature of the thyristor element Th1 can be indirectly detected by detecting the temperature of the cooling air closest to the outlet side of the semiconductor element wind cooling fin Fin1 by the temperature detector T1.

本発明の実施例1に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 1 of this invention. 本発明の実施例1におけるサイリスタ素子の実装状態を示す構造図。FIG. 2 is a structural diagram showing a mounting state of a thyristor element in Embodiment 1 of the present invention. 本発明の実施例2に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 2 of this invention. 本発明の実施例3に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 3 of this invention. 本発明の実施例4に係る電力変換装置の回路構成図。The circuit block diagram of the power converter device which concerns on Example 4 of this invention. 本発明の実施例5に係る電力変換装置の回路構成図FIG. 5 is a circuit configuration diagram of a power conversion apparatus according to Embodiment 5 of the present invention. 本発明の実施例6におけるサイリスタ素子の実装状態を示す構造図。FIG. 9 is a structural diagram showing a mounted state of a thyristor element in Example 6 of the present invention. 本発明の実施例7におけるサイリスタ素子の実装状態を示す構造図。FIG. 9 is a structural diagram showing a mounting state of a thyristor element in Example 7 of the present invention.

符号の説明Explanation of symbols

1 3相交流電源
2U、2V、2W、2X、2Y、2Z 変換アーム
3 直流負荷設備
4、4A、4B、4C、4D 主回路異常判定回路
Th1、Th2、Th3 サイリスタ素子
F1、F2、F3 ヒューズ
T1、T2、T3 温度検出器
CP1、CP2、CP3、CP1A、CP2A、CP3A 比較回路
Fa1、Fa2,Fa3、Fa1A、Fa2A、Fa3A、Fa1B、Fa2B、Fa2C 故障判定回路
Ct 制御処理回路
1 3-phase AC power supply 2U, 2V, 2W, 2X, 2Y, 2Z Conversion arm 3 DC load equipment 4, 4A, 4B, 4C, 4D Main circuit abnormality determination circuit Th1, Th2, Th3 Thyristor elements F1, F2, F3 Fuse T1 T2, T3 Temperature detectors CP1, CP2, CP3, CP1A, CP2A, CP3A Comparison circuits Fa1, Fa2, Fa3, Fa1A, Fa2A, Fa3A, Fa1B, Fa2B, Fa2C Fault determination circuit Ct Control processing circuit

Claims (11)

所望の出力電流を負荷に供給する電力変換装置であって、
複数個のスイッチング素子を含む分岐主回路を並列接続してなる少なくとも1つの変換アームと、
各々の前記スイッチング素子の温度を直接または間接的に検出する温度検出手段と、
前記温度検出手段による各々のスイッチング素子の検出温度を入力として前記分岐主回路の異常を判定する主回路異常判定手段と
を具備したことを特徴とする電力変換装置。
A power converter for supplying a desired output current to a load,
At least one conversion arm formed by connecting branch main circuits including a plurality of switching elements in parallel;
Temperature detecting means for directly or indirectly detecting the temperature of each of the switching elements;
A power converter comprising: main circuit abnormality determining means for determining abnormality of the branch main circuit by using the detected temperature of each switching element by the temperature detecting means as an input.
前記分岐主回路は、
前記各々のスイッチング素子にヒューズを夫々直列接続してなることを特徴とする請求項1に記載の電力変換装置。
The branch main circuit is:
The power conversion device according to claim 1, wherein a fuse is connected in series to each of the switching elements.
前記主回路異常判定手段は、
前記各々のスイッチング素子の検出温度と比較基準とを夫々比較する複数個の比較回路と、
この各々の比較回路の比較結果が異常レベルかどうかを夫々判断する複数個の回路異常検出回路と、
前記各々の回路異常検出回路の検出結果により装置の保護動作を行なうことができる制御処理回路と
を備えていることを特徴とする請求項1または請求項2に記載の電力変換装置。
The main circuit abnormality determination means includes
A plurality of comparison circuits for comparing the detection temperature of each of the switching elements and a comparison reference;
A plurality of circuit abnormality detection circuits each for determining whether or not the comparison result of each comparison circuit is an abnormal level;
The power conversion device according to claim 1, further comprising: a control processing circuit capable of performing a protection operation of the device based on a detection result of each of the circuit abnormality detection circuits.
前記比較基準を出力電流基準に応じて変化させるようにしたことを特徴とする請求項3に記載の電力変換装置。   The power conversion device according to claim 3, wherein the comparison reference is changed in accordance with an output current reference. 前記主回路異常判定手段は、
同一変換アーム内における前記各々のスイッチング素子の検出温度の平均値を演算する平均値演算回路と、
前記同一変換アーム内の前記各々の検出温度と前記平均値とを夫々比較する複数個の比較回路と、
この各々の比較回路の比較結果が異常レベルかどうかを夫々判断する複数個の回路異常検出回路と、
前記各々の回路異常検出回路の検出結果により装置の保護動作を行なうことができる制御処理回路と
を備えていることを特徴とする請求項1または請求項2に記載の電力変換装置。
The main circuit abnormality determination means includes
An average value calculation circuit for calculating an average value of the detected temperatures of the respective switching elements in the same conversion arm;
A plurality of comparison circuits for comparing each of the detected temperatures in the same conversion arm and the average value;
A plurality of circuit abnormality detection circuits each for determining whether or not the comparison result of each comparison circuit is an abnormal level;
The power conversion device according to claim 1, further comprising: a control processing circuit capable of performing a protection operation of the device based on a detection result of each of the circuit abnormality detection circuits.
前記主回路異常判定手段は、
同一変換アーム内における前記各々のスイッチング素子の検出温度と当該スイッチング素子以外のスイッチング素子の検出温度とを夫々比較する複数個の比較回路と、
この各々の比較回路の比較結果が異常レベルかどうかを夫々判断する複数個の回路異常検出回路と、
前記各々の回路異常検出回路の検出結果により装置の保護動作を行なう制御処理回路と
を備えていることを特徴とする請求項1または請求項2に記載の電力変換装置。
The main circuit abnormality determination means includes
A plurality of comparison circuits for comparing the detection temperature of each of the switching elements in the same conversion arm with the detection temperature of a switching element other than the switching element;
A plurality of circuit abnormality detection circuits each for determining whether or not the comparison result of each comparison circuit is an abnormal level;
The power conversion device according to claim 1, further comprising: a control processing circuit that performs a protection operation of the device based on a detection result of each circuit abnormality detection circuit.
前記主回路異常判定手段は、
同一変換アーム内における前記各々のスイッチング素子の検出温度と当該スイッチング素子に隣り合うスイッチング素子の検出温度とを夫々比較する複数個の比較回路と、
この各々の比較回路の比較結果が異常レベルかどうかを夫々判断する複数個の回路異常検出回路と、
前記各々の回路異常検出回路の検出結果により装置の保護動作を行なうことができる制御処理回路と
を備えていることを特徴とする請求項1または請求項2に記載の電力変換装置。
The main circuit abnormality determination means includes
A plurality of comparison circuits for comparing the detected temperature of each of the switching elements in the same conversion arm with the detected temperature of a switching element adjacent to the switching element;
A plurality of circuit abnormality detection circuits each for determining whether or not the comparison result of each comparison circuit is an abnormal level;
The power conversion device according to claim 1, further comprising: a control processing circuit capable of performing a protection operation of the device based on a detection result of each of the circuit abnormality detection circuits.
前記制御処理回路は、
前記回路異常検出回路の検出結果に基づき、異常が生じた分岐主回路を特定することのできる演算手段を有することを特徴とする請求項3乃至請求項7の何れか1項に記載の電力変換装置。
The control processing circuit includes:
8. The power conversion according to claim 3, further comprising an arithmetic unit that can identify a branch main circuit in which an abnormality has occurred based on a detection result of the circuit abnormality detection circuit. 9. apparatus.
前記温度検出手段は、
前記スイッチング素子の内部または前記スイッチング素子に密接して設けられた温度検出器によることを特徴とする請求項1乃至請求項8の何れか1項に記載の電力変換装置。
The temperature detecting means includes
The power conversion device according to any one of claims 1 to 8, wherein a temperature detector is provided in the switching element or in close contact with the switching element.
前記温度検出手段は、
前記スイッチング素子の水冷冷却フィン出口部近傍の水冷配管に設けられた温度検出器によることを特徴とする請求項1乃至請求項8の何れか1項に記載の電力変換装置。
The temperature detecting means includes
The power converter according to any one of claims 1 to 8, wherein the power converter is provided by a temperature detector provided in a water-cooled pipe in the vicinity of a water-cooled cooling fin outlet of the switching element.
前記温度検出手段は、
前記スイッチング素子の風冷冷却フィンの出口部近傍に設けられた温度検出器によることを特徴とする請求項1乃至請求項8の何れか1項に記載の電力変換装置。
The temperature detecting means includes
The power converter according to any one of claims 1 to 8, wherein a temperature detector is provided in the vicinity of the outlet of the air-cooling cooling fin of the switching element.
JP2007040207A 2007-02-21 2007-02-21 Power converter Active JP5036343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040207A JP5036343B2 (en) 2007-02-21 2007-02-21 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040207A JP5036343B2 (en) 2007-02-21 2007-02-21 Power converter

Publications (2)

Publication Number Publication Date
JP2008206321A true JP2008206321A (en) 2008-09-04
JP5036343B2 JP5036343B2 (en) 2012-09-26

Family

ID=39783210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040207A Active JP5036343B2 (en) 2007-02-21 2007-02-21 Power converter

Country Status (1)

Country Link
JP (1) JP5036343B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263692A (en) * 2009-05-07 2010-11-18 Hitachi Ltd Overheat protector for power converter
US9482702B2 (en) 2011-12-21 2016-11-01 Sony Corporation Detection apparatus, power receiving apparatus, non-contact power transmission system and detection method
US10330743B2 (en) 2011-12-26 2019-06-25 Sony Corporation Noncontact power transmission system to detect presence of a metallic foreign matter
US10352970B2 (en) 2011-12-21 2019-07-16 Sony Corporation Detection apparatus, power receiving apparatus, non-contact power transmission system and detection method
JP2023516832A (en) * 2020-06-11 2023-04-20 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ Open circuit fault self-diagnosis method, computerized probing system, and modular inverter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141922A (en) * 1985-12-13 1987-06-25 三菱電機株式会社 Protector for thyristor converter
JPH05168238A (en) * 1991-12-17 1993-07-02 Toshiba Corp Water cooled semiconductor power converter
JP2002107232A (en) * 2000-10-02 2002-04-10 Nissan Motor Co Ltd Temperature detector for semiconductor element module
JP2004080865A (en) * 2002-08-12 2004-03-11 Nissan Motor Co Ltd Failure diagnostic circuit for semiconductor
JP2004248390A (en) * 2003-02-13 2004-09-02 Toshiba Corp Semiconductor power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141922A (en) * 1985-12-13 1987-06-25 三菱電機株式会社 Protector for thyristor converter
JPH05168238A (en) * 1991-12-17 1993-07-02 Toshiba Corp Water cooled semiconductor power converter
JP2002107232A (en) * 2000-10-02 2002-04-10 Nissan Motor Co Ltd Temperature detector for semiconductor element module
JP2004080865A (en) * 2002-08-12 2004-03-11 Nissan Motor Co Ltd Failure diagnostic circuit for semiconductor
JP2004248390A (en) * 2003-02-13 2004-09-02 Toshiba Corp Semiconductor power converter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263692A (en) * 2009-05-07 2010-11-18 Hitachi Ltd Overheat protector for power converter
US9482702B2 (en) 2011-12-21 2016-11-01 Sony Corporation Detection apparatus, power receiving apparatus, non-contact power transmission system and detection method
US10036767B2 (en) 2011-12-21 2018-07-31 Sony Corporation Detection apparatus, power receiving apparatus, non-contact power transmission system and detection method
US10352970B2 (en) 2011-12-21 2019-07-16 Sony Corporation Detection apparatus, power receiving apparatus, non-contact power transmission system and detection method
US11029340B2 (en) 2011-12-21 2021-06-08 Sony Corporation Detection apparatus, power receiving apparatus, non-contact power transmission system and detection method
US10330743B2 (en) 2011-12-26 2019-06-25 Sony Corporation Noncontact power transmission system to detect presence of a metallic foreign matter
JP2023516832A (en) * 2020-06-11 2023-04-20 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ Open circuit fault self-diagnosis method, computerized probing system, and modular inverter
JP7395032B2 (en) 2020-06-11 2023-12-08 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ Open circuit fault self-diagnosis method, computerized exploration system, and modular inverter

Also Published As

Publication number Publication date
JP5036343B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
AU2005290575B2 (en) Power supply circuit protecting method and apparatus for the same
JP4805396B2 (en) Motor drive device
JP5542942B2 (en) Grounding device
JP5036343B2 (en) Power converter
JP2010154642A (en) Device for protecting power supply circuit of three-phase inverter
KR102274269B1 (en) Detecting shorted diodes
JP6772645B2 (en) Inverter device
JP2007330028A (en) Power conversion device and protection method for power conversion device
JP2009081905A (en) Apparatus and method for detecting break in distribution line
US9369035B2 (en) Power converter and method of operation
JP2005094912A (en) Fault detection device of current sensor
JP6834334B2 (en) Arc failure detection system
JPWO2019186752A1 (en) Power converter
JP6111656B2 (en) Phase loss detector for three-phase output wiring
JP6955951B2 (en) Discharge device
JP2021111980A (en) Control apparatus of thyristor rectifier and control method
JP2008206280A (en) Power conversion apparatus
JPWO2020065857A1 (en) Power converter
JP6226593B2 (en) Solar power system
JP2013059147A (en) Power conversion device
WO2017195370A1 (en) Electrical power converter
JP7363230B2 (en) Image forming device
JP5902566B2 (en) Current measurement system and current measurement method
JP2007318927A (en) Power supply unit and circuit protection method used therefor
JP2011108455A (en) Electronic breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250