JP2004080865A - Failure diagnostic circuit for semiconductor - Google Patents

Failure diagnostic circuit for semiconductor Download PDF

Info

Publication number
JP2004080865A
JP2004080865A JP2002234695A JP2002234695A JP2004080865A JP 2004080865 A JP2004080865 A JP 2004080865A JP 2002234695 A JP2002234695 A JP 2002234695A JP 2002234695 A JP2002234695 A JP 2002234695A JP 2004080865 A JP2004080865 A JP 2004080865A
Authority
JP
Japan
Prior art keywords
temperature
circuit
series
diodes
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002234695A
Other languages
Japanese (ja)
Inventor
Tetsuo Abe
阿部 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002234695A priority Critical patent/JP2004080865A/en
Publication of JP2004080865A publication Critical patent/JP2004080865A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a abnormality diagnostic circuit for semiconductors, capable of detecting whether there is an OFF permanent fault in IGBTs connected in parallel, even while reducing the number of comparison circuits for failure diagnosis. <P>SOLUTION: In a module of an inverter, used with the plurality of IGBTs connected in parallel, the IGBTs connected in parallel are formed with the IGBT3 and temperature-detecting diodes 4 on the same semiconductor substrate 2. The plurality of temperature detecting diodes 4 are divided into at least two pairs connected in series, to supply current to the temperature detecting diodes 4, of which each pair is connected in series from a constant-current circuit 5, detect the difference in voltage drop, in each pair connected in series by a differential circuit 6; and if the difference voltage is in excess of a prescribed voltage, it determines that either of the IGBT2 is abnormal, and transmits a signal. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体モジュールの異常を検知する半導体素子の異常診断回路に関する。
【0002】
【従来の技術】
半導体素子とその半導体素子の温度検出用ダイオードとを集積した半導体基板を複数個収納した半導体モジュールにおいて、順方向電流電圧に基づいて半導体素子の温度異常を検出するため複数個の温度検出用ダイオードを直列に接続し、1個の定電流回路から各温度検出用ダイオードに一定電流を供給するとともに、基準電圧を発生する基準電圧電源と、各々の温度検出用ダイオードの両端の電圧を基準電圧と比較する比較回路とを直列に接続した回路を、各々の温度検出用ダイオードと並列に接続した温度検出装置が知られている(例えば、特開2002−107232号公報参照)。
【0003】
【発明が解決しようとする課題】
ところで、複数の半導体素子の温度検出回路とその電源を集積して小型化を図る場合に、上述した公知の温度検出装置では、温度検出用ダイオードの出力電圧と基準電圧とを比較する比較回路を半導体素子の数だけ用意しなければならず、半導体基板の面積が大きくなり、また温度異常検出配線の数が増えるという問題がある。
また、並列接続した複数の絶縁ゲートバイポーラ型トランジスタ(IGBT)に適用した場合、いずれか1つのIGBTが端子のオープン故障などの原因によりOFF固定故障となっても、IGBTの電流値が許容値以下である限り、残りのIGBTが電流を分散して負担し、放熱設計の余裕の中に埋もれて異常を検知できず、故障した以外の半導体素子基板に設計時に想定した以上の熱ストレスが集中し,クラックなどの2次故障が発生しやすく機器の寿命を縮める可能性があった。また、複数のIGBTのうちのひとつがOFF固定故障となった状態を的確に検知しようとする場合、個別にIGBTをONしてそれぞれの半導体基板に対応する温度検出用ダイオードの検出温度が上昇することを確認するなど特別な異常診断シーケンスと回路を用いる必要があった。
【0004】
本発明は、上記の問題点を解決するために、並列接続のいずれの半導体素子のOFF固定故障も簡単な回路と方法で検知できる半導体の異常診断回路を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため本発明は、複数の半導体素子とその温度を検出するための温度検出用ダイオードを内蔵した半導体モジュールの異常を検出する、半導体の異常診断回路において、前記温度検出用ダイオードを少なくとも2組に分け、各組ごとに含まれる前記温度検出用ダイオードを直列に接続し、該直列に接続された温度検出用ダイオードに定電流回路から一定電流を供給し、前記各組の温度検出用ダイオードの直列出力電圧和の差分演算をする差分演算手段と、該差分演算手段の出力する差分が所定値以上の場合を検出し信号を発する異常検知手段を備えたものとした。
【0006】
【発明の効果】
本発明により、複数の半導体素子の温度検出用ダイオードを同数個まとめて組とし、各組の温度検出用ダイオードを直列に接続し、その出力電圧和を組間で比較しているので、各組に含まれる半導体素子に1個でも異常があれば、各組の温度検出用ダイオードの出力電圧和に所定値以上の差が生じることにより検出できる。特に半導体素子を並列に接続している構成において、1つの半導体素子がOFF固定故障している場合にも、半導体素子の切り換え試験回路を設けることなく異常検出ができる。
【0007】
【発明の実施の形態】
以下本発明の実施の形態の第1の実施例を説明する。図1は電気自動車に用いられる三相同期モータのインバータに使用されるIGBTパワーモジュール回路の1相分のIGBTパワーモジュール回路であり、並列接続した複数のIGBTとその異常診断回路を示す。
本実施例では、要求される大電流に対応するためIGBT3(3a〜3d)を4個並列接続して1個の駆動信号S1によって制御している。IGBT3(3a〜3d)とその温度検出用ダイオード4(4a〜4d)とが同一の半導体基板2(2a〜2d)上に形成され内蔵されている。例えば半導体基板2aでは、IGBT3aと温度検出用ダイオード4aが同一半導体基板上に形成され、内蔵されている。他の半導体基板2b、2c、2dについても同様である。
【0008】
温度検出用ダイオードの4aと4bが直列に接続され、温度検出用ダイオードの4cと4dも直列に接続され、直列接続されたそれぞれの組ごとに個別の定電流回路5から一定電流の供給を受け、それぞれの直列出力電圧は差分回路6の−端子と+端子に接続されている。
差分回路6の出力は比較回路8、8’に接続され、差分回路6の出力である差電圧が正の場合と負の場合のいずれでも所定の電圧差Vref_diff以上であるか判別するため比較回路8と8’にはそれぞれ基準電圧回路7と7’が接続されている。
比較回路8、8’は所定の電圧差以上のときCPU11に比較異常信号S2を出力する。
【0009】
以下に本実施例の特徴である差分回路6の入力電圧を比較する基準電圧Vref_diffの設定方法を説明する。
ここで図1のように並列接続されているIGBT3a〜3dは4個とも同一の製造ロットのものであり、ゲート入力容量およびON電圧などの特性を揃えてあるため、ON/OFFのタイミング、各々のIGBTに流れる電流値が同一となるように設計してある。
また、各IGBTの温度検出用ダイオード4a〜4bも同一の製造ロットのものであり、同一レベルの順方向電流IFを流した場合、同一の温度環境下においては、温度検出用ダイオードはそれぞれ同一の電圧降下VFを発生するように特性値を揃えてある。この温度検出用ダイオード4の順方向電流による電圧降下のの温度依存性は約−2mV/℃である。
【0010】
さらに、並列接続された各IGBT3a〜3dの半導体基板2a〜2dは放熱構造が同一となるように配置してあり、各IGBT3a〜3dにて同一の電流損失が生じた場合、いずれのIGBTの半導体基板温度も同一となるように設計している。
【0011】
前述のように各IGBT3a〜3dおよび温度検出用ダイオード4a〜4dは、放熱条件も含めてそれぞれの特性値が同一となるように設計しているので、IGBT3a〜3dのどのような駆動パターンにおいても、全ての温度検出用ダイオード4a〜4dのそれぞれの電圧降下VFは同じ値を示す。
したがって、図1のように並列接続された複数のIGBT3の半導体基板2上に設けられた温度検出用ダイオード4を2組に分け、温度検出用ダイオード4a、4bの電圧降下の和と同じく温度検出用ダイオード4c、4dの電圧降下の和を比較しても、正常な状態で使用している限り、原理的に差は生じない。
【0012】
実際には同一製造ロットのIGBT、同一製造ロットの温度検出用ダイオードであっても、個々のIGBT間、個々の温度検出用ダイオード間では特性値に製造のばらつきがあり、さらに半導体モジュールの放熱構造においても同様に製造のばらつき及び放熱能力の空間分布を生じる。その結果、前述の2組の直列された温度検出用ダイオードの電圧降下の和を比較すると、わずかな差が生じる。この製造ばらつきによる差を考慮して、さらに製造ばらつきによる取りえる電圧差に余裕を加えて閾値Vref_diffを設定する。
具体的には、特性値のばらつきによって想定される温度検出用ダイオード1個あたりの電圧差をΔV1、実装のばらつきによって想定される1個あたりの電圧差をΔV2、出力電圧の和を取った温度検出用ダイオードの数をn、余裕率をCmとすると、
ref_diff=(ΔV1+ΔV2)×n×Cm     …(1)
となる。
【0013】
次に、並列接続された複数のIGBT3a〜3dのうち、いずれか1つがゲート−エミッタ端子間のショート故障、コレクタまたはエミッタ端子のオープン故障などにより、OFF固定故障となった場合の本実施例の半導体異常診断回路の動作について説明する。
このような故障が発生した場合、故障が発生したIGBTのコレクタ−エミッタ端子間には規定の電流が流れないため電流損失が発生せず、他の正常なIGBTと比較して半導体基板温度が低くなる。したがって、同一半導体基板上の温度検出用ダイオードの電圧降下は、他の正常なIGBTの温度検出用ダイオードの電圧降下より大きい。
【0014】
この結果2組に分けられた温度検出用ダイオードの電圧降下の和つまり直列出力電圧和の内、故障が発生したIGBTを含む側の直列出力電圧和の方が大きくなり、2組の直列出力電圧和の差が前述した閾値Vref_diffを越えれば、比較回路8または8’から比較異常信号S2がCPU11に出力される。
CPU11は比較異常信号S2を受けると、インバータの出力を例えば50%に制限するとともに、「比較異常警報」灯例えば黄灯を点灯して運転者に知らせる。
【0015】
本実施例のIGBT3は本発明の半導体素子を、差分回路6は差分演算手段を、比較回路8と8’は異常検知手段を構成する。
【0016】
本実施例は以上のように構成され、並列接続された複数のIGBTに対応して設けられた温度検出用ダイオードを2組に分け、それぞれの組の温度検出用ダイオードの直列出力電圧和を比較し、直列出力電圧和の差が閾値Vref_diffを越えたときに異常であると判断しているので、インバータの出力レベルによって、またインバータの環境状況によってIGBTの温度が変化するにもかかわらず、IGBT間の温度差を検出できる。
また、同一組内のIGBTが電圧降下の増減において同一方向に異常な兆候を示している場合、温度検出用ダイオードを直列に接続し、その直列電圧を用いていることから、S/Nが改善され、診断の信頼性が向上する。
さらに、温度検出用ダイオードを直列接続し、その直列された温度検出用ダイオードの電圧を比較する構成のため、比較回路の数を削減でき、簡単な診断回路を実現できている。
【0017】
なお、IGBT3と温度検出用ダイオード4とを必ずしも同一基板上に形成する必要はなく、IGBT3の近くに温度検出用ダイオード4を配置して半導体モジュールに内蔵してもよい。
さらに、CPU11は、インバータ本来の制御を行う、つまり駆動信号S1の制御を行う図示しないCPUと共用してもよい。
【0018】
次に、第2の実施例を説明する。本実施例の全体構成を図2に示す。
本実施例は、第1の実施例の2組に分けた温度検出ダイオード4の各組の直列出力電圧和を差分回路6で演算して、その差電圧から異常診断しているのに加えて、温度検出ダイオード4c、4dの組の直列出力電圧和は、過温度検知回路13の2つの比較回路9、9’に入力される。比較回路9には電圧Vref1’の基準電圧回路14が、比較回路9’には電圧Vref2’の基準電圧回路14’が接続される。それぞれの基準電圧を下回る温度検出ダイオード4c、4dの組の直列出力電圧和が入力すると、比較回路9からはCPU11に温度高警報信号S3が、比較回路9’からはCPU11に温度高高警報信号S4が出る。
他は、第1の実施例と同じである。
【0019】
1個のIGBTを過温度上昇から保護するために、温度高警報(インバータ出力50%に制限)発するための基準電圧をVref1、温度高高警報(インバータ停止)を発するための基準電圧をVref2とすると、基準電圧Vref1’と基準電圧Vref2’は以下のように算出される。
なお、温度検出用ダイオード4の順電流電圧降下は、温度が高いほど小さくなることから、Vref1>Vref2、Vref1’>Vref2’である。

Figure 2004080865
ここで、
: インバータの通常運用時の想定最高温度に対する温度検出用ダイオード4の電圧降下
【0020】
図3は、本実施例においてCPU11が実行する異常診断ロジックを示す。
CPU11は比較異常検知回路12からのS2、および上述のS3、S4の信号の有無によって以下のように異常診断を行う。
まず、ステップ101では、比較異常検知回路12において2組の温度検出用ダイオード4a、4bと4c、4dの直列出力電圧和の間に閾値Vref_diffを越えた差がある場合に出力されるS2信号の有無によって比較異常の可能性があるかどうかを判断する。閾値を越えた差がなければステップ102に進み、閾値を越えた差の場合はステップ104に進む。
ステップ102では、温度検出用ダイオード4c、4dの直列出力電圧和がVref1’を下回って、過温度検知回路13から温度高警報信号S3が出ていないか確認する。S3信号が出ていない場合にはステップ103に進む。S3信号が出ている場合にはステップ107へ進む。
ステップ103では、IGBTは全て正常と判断されて、正常状態を示す「正常」灯、例えば緑灯を点灯する。
【0021】
ステップ104では、温度検出用ダイオード4c、4dの直列出力電圧和がVref1’を下回って、過温度検知回路13から温度高警報信号S3が出ていないか確認する。S3信号が出ていない場合にはステップ105に進む。S3信号が出ている場合にはステップ107へ進む。
ステップ105では、IGBTのいずれかがOFF固定故障の可能性があるとして、インバータ出力を50%に制限する出力信号を出して、ステップ106に進む。
ステップ106では、IGBTは過温度状態ではないと判断されて、比較異常状態を示す「比較異常警報」灯、例えば黄灯を点灯する。
【0022】
ステップ107では、温度検出用ダイオード4c、4dの直列出力電圧和がVref2’を下回って、過温度検知回路13から温度高高警報信号S4が出ていないか確認する。S4信号が出ていない場合にはステップ108に進む。S4信号が出ている場合にはステップ110へ進む。
ステップ108では、IGBTは過温度状態ではあるがモータ駆動を停止する必要はない第1段階の過温度異常状態であると判断して、インバータ出力を50%に制限する出力信号を出す。
ステップ109では、過温度異常の第1段階状態を示す「温度高警報」灯、例えば赤灯を1つ点灯する。
【0023】
ステップ110では、IGBTは過温度状態が機器破損の可能性がある第2段階の過温度状態であると判断して、インバータ出力を停止する。
ステップ111では、過温度異常の第2段階状態を示す「温度高高警報」灯、例えば赤灯を2つ点灯する。
【0024】
本実施例におけるIGBT3は本発明の半導体素子に、差分回路6は差分演算手段に、比較回路8は異常検知手段に対応する。
【0025】
本実施例は以上のように構成され、第1の実施例と同じく、並列接続された複数のIGBTに対応して設けられた温度検出用ダイオードを2組に分け、それぞれの組の温度検出用ダイオードの直列出力電圧和を比較し、直列出力電圧和の差が閾値Vref_diffを越えたときに異常であると判断しているので、インバータの出力レベルによって、またインバータの環境状況によってIGBTの温度が変化するにもかかわらず、IGBT間の温度差を検出できる。
また、同一組内のIGBTが同一方向に異常な兆候を示している場合、温度検出用ダイオードを直列に接続し、その直列電圧を用いていることから、S/Nが改善され、診断の信頼性が向上する。
さらに、温度検出用ダイオードを直列接続し、その直列された温度検出用ダイオードの電圧を比較する構成のため、比較回路の数を削減でき、簡単な診断回路を実現できている。
【0026】
本実施例では、さらに各少なくとも1組の直列された温度検出用ダイオードの直列出力電圧和を過温度検知回路によって判定しているので、各組のIGBTが同時に過温度異常を生じている場合に比較異常検知回路12で異常を検知できなくても、過温度検知回路13によって異常を検知できる。
この過温度検知回路13も直列接続された温度検出用ダイオードの少なくとも1つの組に対して1個設けるようにしていることから従来のようなIGBT1個に対して1個の過温度検知回路を設けるよりも回路の数を大幅に削減でき、簡単な診断回路によって実現できている。
【0027】
同一製造ロットのIGBTで並列に接続されている複数のIGBTの1個が故障して過電流になっている場合、他のIGBTも同時に同じ故障をしている可能性が高いことから、本実施例においては比較異常回路で比較されている直列接続された温度検出用ダイオードの直列出力電圧和のうちの一方の直列出力電圧和だけを過温度検知回路13で判定する簡略化した構成としている。
その場合、過温度検知回路13の基準電圧Vref1’とVref2’を(2)、(3)式の代わりに次式のように簡略化してもよい。
ref1’=Vref1×n     …(2’)
ref2’=Vref2×n     …(3’)
【0028】
以上の本発明の実施例では、半導体素子としてIGBTを例に挙げて説明したが、半導体素子はIGBTに限定されず、例えばトランジスタ、SCR、ダイオードなどであってもよい。さらに、1個の半導体素子(IGBT)を内蔵する半導体基板を例に挙げて説明したが、2個以上の半導体素子を内蔵する半導体基板に対しても本願発明を適用することができる。
【0029】
【図面の簡単な説明】
【図1】本発明の第1の実施例の異常診断回路の構成を示す図である。
【図2】第2の実施例の構成を示す図である。
【図3】第2の実施例の異常診断ロジックを説明する図である。
【符号の説明】
1 半導体モジュール
2、2a〜2d 半導体基板
3、3a〜3d IGBT
4、4a〜4d 温度検出用ダイオード
5 定電流回路
6 差分回路
7、7’ 基準電圧回路
8、8’ 比較回路
9、9’ 比較回路
11   CPU
12   比較異常検知回路
13   過温度検知回路
14、14’  基準電圧回路
S1   IGBT駆動信号
S2   比較異常信号
S3   温度高警報信号
S4   温度高高警報信号[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor element abnormality diagnosis circuit that detects an abnormality of a semiconductor module.
[0002]
[Prior art]
In a semiconductor module containing a plurality of semiconductor substrates on each of which a semiconductor element and a temperature detection diode of the semiconductor element are integrated, a plurality of temperature detection diodes are used to detect a temperature abnormality of the semiconductor element based on a forward current voltage. Connect in series, supply a constant current from one constant current circuit to each temperature detection diode, and compare the voltage across both ends of each temperature detection diode with the reference voltage power supply that generates the reference voltage. There is known a temperature detecting device in which a circuit in which a comparison circuit is connected in series is connected in parallel with each of the temperature detecting diodes (for example, see Japanese Patent Application Laid-Open No. 2002-107232).
[0003]
[Problems to be solved by the invention]
By the way, when the temperature detection circuit of a plurality of semiconductor elements and its power supply are integrated to reduce the size, the above-described known temperature detection device includes a comparison circuit that compares the output voltage of the temperature detection diode with a reference voltage. It is necessary to prepare as many as the number of semiconductor elements, and there is a problem that the area of the semiconductor substrate increases and the number of temperature abnormality detection wirings increases.
Also, when applied to a plurality of insulated gate bipolar transistors (IGBTs) connected in parallel, the current value of the IGBT is below the allowable value even if any one of the IGBTs becomes an OFF-fixed fault due to a terminal open fault or the like. As long as the remaining IGBTs disperse and bear the current, they are buried in the margin of heat dissipation design and cannot detect abnormalities, and thermal stress more than expected at the time of design concentrates on the semiconductor element substrate other than the fault. Secondary failures such as cracks and the like are likely to occur and the life of the equipment may be shortened. In order to accurately detect a state in which one of the plurality of IGBTs has become an OFF fixed failure, the IGBTs are individually turned on, and the detection temperatures of the temperature detection diodes corresponding to the respective semiconductor substrates increase. It was necessary to use a special abnormality diagnosis sequence and circuit, such as confirming that it was correct.
[0004]
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor abnormality diagnosis circuit capable of detecting an OFF fixed failure of any semiconductor element connected in parallel with a simple circuit and method in order to solve the above problems.
[0005]
[Means for Solving the Problems]
Therefore, the present invention provides a semiconductor abnormality diagnosis circuit for detecting an abnormality of a semiconductor module including a plurality of semiconductor elements and a temperature detection diode for detecting the temperature thereof, wherein the temperature detection diodes are divided into at least two sets. The temperature detecting diodes included in each set are connected in series, a constant current is supplied from a constant current circuit to the temperature detecting diodes connected in series, and the temperature detecting diodes of each set are connected in series. It is provided with a difference calculating means for calculating a difference between the output voltage sums, and an abnormality detecting means for detecting a case where the difference output from the difference calculating means is equal to or more than a predetermined value and generating a signal.
[0006]
【The invention's effect】
According to the present invention, the same number of temperature detecting diodes of a plurality of semiconductor elements are put together into a set, the temperature detecting diodes of each set are connected in series, and the output voltage sum is compared between the sets. If any one of the semiconductor elements included in the group has an abnormality, it can be detected by a difference of a predetermined value or more in the sum of the output voltages of the temperature detecting diodes of each group. In particular, in a configuration in which semiconductor elements are connected in parallel, even when one semiconductor element has an OFF-fixed failure, an abnormality can be detected without providing a semiconductor element switching test circuit.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first example of the embodiment of the present invention will be described. FIG. 1 shows an IGBT power module circuit for one phase of an IGBT power module circuit used for an inverter of a three-phase synchronous motor used in an electric vehicle, and shows a plurality of IGBTs connected in parallel and an abnormality diagnosis circuit thereof.
In this embodiment, four IGBTs 3 (3a to 3d) are connected in parallel and controlled by one drive signal S1 in order to cope with a required large current. The IGBTs 3 (3a to 3d) and the temperature detecting diodes 4 (4a to 4d) are formed and built on the same semiconductor substrate 2 (2a to 2d). For example, in the semiconductor substrate 2a, the IGBT 3a and the temperature detecting diode 4a are formed on the same semiconductor substrate and are built therein. The same applies to the other semiconductor substrates 2b, 2c, 2d.
[0008]
The temperature detecting diodes 4a and 4b are connected in series, the temperature detecting diodes 4c and 4d are also connected in series, and a constant current is supplied from an individual constant current circuit 5 to each pair connected in series. The respective series output voltages are connected to the minus terminal and the plus terminal of the difference circuit 6.
The output of the difference circuit 6 is connected to the comparison circuits 8 and 8 ', and is used to determine whether the difference voltage output from the difference circuit 6 is greater than or equal to a predetermined voltage difference V ref_diff regardless of whether the difference voltage is positive or negative. Circuits 8 and 8 'are connected to reference voltage circuits 7 and 7', respectively.
The comparison circuits 8 and 8 'output a comparison abnormality signal S2 to the CPU 11 when the voltage difference is equal to or larger than a predetermined voltage difference.
[0009]
Hereinafter, a method of setting the reference voltage Vref_diff for comparing the input voltages of the difference circuit 6, which is a feature of the present embodiment, will be described.
Here, the four IGBTs 3a to 3d connected in parallel as shown in FIG. 1 are of the same production lot and have the same characteristics such as gate input capacitance and ON voltage. Are designed so that the current values flowing through the IGBTs are the same.
Further, the temperature detection diodes 4a to 4b of the respective IGBTs are also of the same production lot, and when the same level of forward current IF flows, the temperature detection diodes 4a to 4b are the same under the same temperature environment. The characteristic values are arranged so as to generate a voltage drop VF. The temperature dependency of the voltage drop due to the forward current of the temperature detecting diode 4 is about -2 mV / ° C.
[0010]
Further, the semiconductor substrates 2a to 2d of the IGBTs 3a to 3d connected in parallel are arranged so that the heat dissipation structure is the same, and when the same current loss occurs in each of the IGBTs 3a to 3d, The substrate temperature is designed to be the same.
[0011]
As described above, the IGBTs 3a to 3d and the temperature detecting diodes 4a to 4d are designed so that their characteristic values are the same including the heat radiation conditions. , All the voltage drops VF of the temperature detecting diodes 4a to 4d show the same value.
Therefore, the temperature detection diodes 4 provided on the semiconductor substrate 2 of the plurality of IGBTs 3 connected in parallel as shown in FIG. 1 are divided into two sets, and the temperature detection diodes 4a and 4b are used for the temperature detection as well. Even if the sum of the voltage drops of the diodes 4c and 4d is compared, there is no difference in principle as long as the diodes are used in a normal state.
[0012]
Actually, even in the case of IGBTs of the same manufacturing lot and temperature detecting diodes of the same manufacturing lot, there are manufacturing variations in the characteristic values between the individual IGBTs and between the individual temperature detecting diodes, and furthermore, the heat dissipation structure of the semiconductor module. In the same manner, a variation in manufacturing and a spatial distribution of heat radiation capability are generated. As a result, there is a slight difference when comparing the sum of the voltage drops of the two sets of temperature detecting diodes connected in series. The threshold value Vref_diff is set by taking into account the difference due to the manufacturing variation and adding a margin to the voltage difference that can be obtained due to the manufacturing variation.
Specifically, the voltage difference per one diode for temperature detection assumed by the variation of the characteristic value is ΔV1, the voltage difference per diode assumed by the variation of the mounting is ΔV2, and the temperature obtained by taking the sum of the output voltages When the number of detection diodes is n and the margin ratio is Cm,
Vref_diff = (ΔV1 + ΔV2) × n × Cm (1)
It becomes.
[0013]
Next, in this embodiment, when any one of the plurality of IGBTs 3a to 3d connected in parallel has a fixed OFF fault due to a short-circuit fault between a gate and an emitter terminal, an open fault at a collector or an emitter terminal, or the like. The operation of the semiconductor abnormality diagnosis circuit will be described.
When such a failure occurs, the specified current does not flow between the collector and the emitter terminal of the failed IGBT, so that no current loss occurs, and the semiconductor substrate temperature is lower than other normal IGBTs. Become. Therefore, the voltage drop of the temperature detecting diode on the same semiconductor substrate is larger than the voltage drops of the temperature detecting diodes of other normal IGBTs.
[0014]
As a result, of the sum of the voltage drops of the temperature detecting diodes divided into two sets, that is, the sum of the series output voltages, the sum of the series output voltages on the side including the failed IGBT becomes larger, and the two sets of the series output voltages If the difference between the sums exceeds the above-described threshold value Vref_diff , the comparison circuit 8 or 8 'outputs a comparison abnormality signal S2 to the CPU 11.
When receiving the comparison abnormality signal S2, the CPU 11 limits the output of the inverter to, for example, 50% and turns on a "comparison abnormality warning" lamp, for example, a yellow lamp to notify the driver.
[0015]
The IGBT 3 of this embodiment constitutes the semiconductor element of the present invention, the difference circuit 6 constitutes a difference calculation means, and the comparison circuits 8 and 8 'constitute abnormality detection means.
[0016]
In this embodiment, the temperature detecting diodes provided for the plurality of IGBTs connected in parallel are divided into two groups, and the series output voltage sums of the temperature detecting diodes of each group are compared. However, since the abnormality is determined when the difference between the series output voltage sums exceeds the threshold value Vref_diff , the temperature of the IGBT varies depending on the output level of the inverter and the environmental condition of the inverter. A temperature difference between IGBTs can be detected.
If the IGBTs in the same group show abnormal signs in the same direction in increasing or decreasing the voltage drop, the S / N is improved because the temperature detecting diodes are connected in series and the series voltage is used. And the reliability of diagnosis is improved.
Further, since the temperature detecting diodes are connected in series and the voltages of the serially connected temperature detecting diodes are compared, the number of comparison circuits can be reduced, and a simple diagnostic circuit can be realized.
[0017]
Note that the IGBT 3 and the temperature detection diode 4 do not necessarily need to be formed on the same substrate, and the temperature detection diode 4 may be arranged near the IGBT 3 and built in the semiconductor module.
Further, the CPU 11 may be shared with a CPU (not shown) that performs the original control of the inverter, that is, controls the drive signal S1.
[0018]
Next, a second embodiment will be described. FIG. 2 shows the overall configuration of this embodiment.
In the present embodiment, the sum of the series output voltages of the two sets of the temperature detecting diodes 4 divided into two sets of the first embodiment is calculated by the difference circuit 6, and the abnormality is diagnosed from the difference voltage. , The sum of the series output voltages of the set of the temperature detection diodes 4 c and 4 d is input to the two comparison circuits 9 and 9 ′ of the over-temperature detection circuit 13. Voltage V ref1 to the comparator circuit 9 'reference voltage circuit 14 is, the comparator circuit 9''reference voltage circuit 14' of the voltage V ref2 is connected to. When a series output voltage sum of a pair of temperature detecting diodes 4c and 4d lower than the respective reference voltages is input, a high temperature alarm signal S3 is sent from the comparison circuit 9 to the CPU 11, and a high temperature alarm signal is sent to the CPU 11 from the comparison circuit 9 '. S4 comes out.
Others are the same as the first embodiment.
[0019]
In order to protect one IGBT from an over-temperature rise, the reference voltage for issuing a high temperature alarm (limited to 50% inverter output) is V ref1 , and the reference voltage for issuing a high temperature alarm (inverter stop) is V If ref2 is used, the reference voltage Vref1 ' and the reference voltage Vref2' are calculated as follows.
Note that the forward current voltage drop of the temperature detecting diode 4 decreases as the temperature increases, so that V ref1 > V ref2 and V ref1 ′ > V ref2 ′ .
Figure 2004080865
here,
V * : Voltage drop of the temperature detecting diode 4 with respect to the assumed maximum temperature during normal operation of the inverter
FIG. 3 shows an abnormality diagnosis logic executed by the CPU 11 in the present embodiment.
The CPU 11 performs abnormality diagnosis as described below based on the presence or absence of the signals of S2 from the comparison abnormality detection circuit 12 and the above-described S3 and S4.
First, in step 101, the S2 signal output when there is a difference exceeding the threshold value Vref_diff between the sum of the series output voltages of the two sets of temperature detecting diodes 4a, 4b and 4c, 4d in the comparison abnormality detecting circuit 12. It is determined whether or not there is a possibility of a comparison abnormality based on the presence or absence of the error. If there is no difference exceeding the threshold, the process proceeds to step 102, and if the difference exceeds the threshold, the process proceeds to step 104.
In step 102, it is confirmed whether or not the sum of the series output voltages of the temperature detecting diodes 4 c and 4 d falls below V ref1 ′ and the over-temperature detecting circuit 13 outputs the high temperature warning signal S 3. If the S3 signal has not been output, the routine proceeds to step 103. When the S3 signal is output, the process proceeds to step 107.
In step 103, all the IGBTs are determined to be normal, and a "normal" light indicating a normal state, for example, a green light is turned on.
[0021]
In step 104, it is checked whether the sum of the series output voltages of the temperature detecting diodes 4 c and 4 d is lower than V ref1 ′ and the over-temperature detecting circuit 13 outputs the high temperature alarm signal S 3. If the S3 signal has not been output, the process proceeds to step 105. When the S3 signal is output, the process proceeds to step 107.
In step 105, it is determined that any of the IGBTs has a fixed OFF fault, an output signal for limiting the inverter output to 50% is output, and the process proceeds to step 106.
In step 106, it is determined that the IGBT is not in an over-temperature state, and a "comparison abnormality alarm" lamp indicating a comparison abnormality state, for example, a yellow lamp is turned on.
[0022]
In step 107, it is checked whether the sum of the serial output voltages of the temperature detecting diodes 4c and 4d falls below Vref2 ' , and the over-temperature detecting circuit 13 outputs the high temperature alarm signal S4. If the S4 signal has not been output, the process proceeds to step 108. When the S4 signal is output, the process proceeds to step 110.
In step 108, it is determined that the IGBT is in the first-stage over-temperature abnormal state where the IGBT is in the over-temperature state but it is not necessary to stop the motor drive, and outputs an output signal for limiting the inverter output to 50%.
In step 109, one "high temperature alarm" light, for example, one red light, indicating the first stage state of the over-temperature abnormality is turned on.
[0023]
In step 110, the IGBT determines that the over-temperature state is the second-stage over-temperature state in which there is a possibility of equipment damage, and stops the inverter output.
In step 111, two "high temperature alarm" lights, for example, two red lights, indicating the second stage state of the over-temperature abnormality are turned on.
[0024]
In the present embodiment, the IGBT 3 corresponds to the semiconductor element of the present invention, the difference circuit 6 corresponds to the difference calculation means, and the comparison circuit 8 corresponds to the abnormality detection means.
[0025]
This embodiment is configured as described above, and as in the first embodiment, the temperature detecting diodes provided corresponding to the plurality of IGBTs connected in parallel are divided into two sets, and the temperature detecting diodes of each set are divided into two sets. The sum of the series output voltages of the diodes is compared, and when the difference between the series output voltage sums exceeds the threshold value Vref_diff , it is determined to be abnormal. Therefore, the temperature of the IGBT depends on the output level of the inverter and the environmental condition of the inverter. However, the temperature difference between the IGBTs can be detected even though the temperature changes.
If the IGBTs in the same set show abnormal signs in the same direction, the temperature detection diodes are connected in series and the series voltage is used, so that the S / N is improved and the reliability of diagnosis is improved. The performance is improved.
Further, since the temperature detecting diodes are connected in series and the voltages of the serially connected temperature detecting diodes are compared, the number of comparison circuits can be reduced, and a simple diagnostic circuit can be realized.
[0026]
In the present embodiment, the sum of the series output voltages of the at least one set of temperature detecting diodes connected in series is determined by the over-temperature detecting circuit. Even if the comparison abnormality detection circuit 12 cannot detect the abnormality, the overtemperature detection circuit 13 can detect the abnormality.
Since one over-temperature detecting circuit 13 is also provided for at least one set of temperature detecting diodes connected in series, one over-temperature detecting circuit is provided for one IGBT as in the related art. The number of circuits can be greatly reduced as compared with that of the prior art, and it can be realized by a simple diagnostic circuit.
[0027]
When one of a plurality of IGBTs connected in parallel in an IGBT of the same manufacturing lot fails and an overcurrent occurs, it is highly possible that the other IGBTs also have the same failure at the same time. In the example, the over-temperature detection circuit 13 has a simplified configuration in which only one of the series output voltage sums of the series-connected temperature detection diodes that are compared in the comparison abnormal circuit is determined.
In that case, the reference voltages V ref1 ′ and V ref2 ′ of the over-temperature detection circuit 13 may be simplified as in the following equation instead of the equations (2) and (3).
V ref1 ′ = V ref1 × n (2 ′)
V ref2 ′ = V ref2 × n (3 ′)
[0028]
In the above-described embodiments of the present invention, an IGBT has been described as an example of a semiconductor element. However, the semiconductor element is not limited to an IGBT, and may be, for example, a transistor, an SCR, or a diode. Furthermore, the semiconductor substrate incorporating one semiconductor element (IGBT) has been described as an example, but the present invention can also be applied to a semiconductor substrate incorporating two or more semiconductor elements.
[0029]
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an abnormality diagnosis circuit according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a second embodiment.
FIG. 3 is a diagram illustrating an abnormality diagnosis logic according to a second embodiment.
[Explanation of symbols]
1 semiconductor module 2, 2a-2d semiconductor substrate 3, 3a-3d IGBT
4, 4a-4d Temperature detecting diode 5 Constant current circuit 6 Difference circuit 7, 7 'Reference voltage circuit 8, 8' Comparison circuit 9, 9 'Comparison circuit 11 CPU
12 comparison abnormality detection circuit 13 over-temperature detection circuit 14, 14 'reference voltage circuit S1 IGBT drive signal S2 comparison abnormality signal S3 high temperature alarm signal S4 high temperature alarm signal

Claims (3)

複数の半導体素子とその温度を検出するための温度検出用ダイオードを内蔵した半導体モジュールの異常を検出する、半導体の異常診断回路において、
前記温度検出用ダイオードを少なくとも2組に分け、
各組ごとに含まれる前記温度検出用ダイオードを直列に接続し、該直列に接続された温度検出用ダイオードに定電流回路から一定電流を供給し、
前記各組の温度検出用ダイオードの直列出力電圧和の差分演算をする差分演算手段と、
該差分演算手段の出力する差分が所定値以上の場合を検出し信号を発する異常検知手段を備えたことを特徴とする半導体素子の異常診断回路。
In a semiconductor abnormality diagnosis circuit for detecting abnormality of a semiconductor module including a plurality of semiconductor elements and a temperature detection diode for detecting the temperature thereof,
Dividing the temperature detecting diode into at least two sets,
The temperature detection diodes included in each set are connected in series, and a constant current is supplied from a constant current circuit to the temperature detection diodes connected in series,
Difference calculating means for calculating the difference between the series output voltage sums of the temperature detecting diodes of each set,
An abnormality diagnosis circuit for a semiconductor element, comprising: abnormality detection means for detecting a case where the difference output by the difference calculation means is equal to or more than a predetermined value and issuing a signal.
前記複数の半導体素子は並列に接続されていることを特徴とする請求項1に記載の半導体素子の異常診断回路。2. The abnormality diagnosis circuit according to claim 1, wherein the plurality of semiconductor elements are connected in parallel. 前記温度検出用ダイオードの直列出力電圧和のうち、少なくとも1組の温度検出用ダイオードの直列出力電圧和は、所定値の基準電圧と比較する比較回路を含む過温度検知回路に接続され、該過温度検知回路は前記基準電圧を下回ったとき信号を発することを特徴とする請求項1または2に記載の半導体素子の異常診断回路。Among the series output voltage sums of the temperature detection diodes, the series output voltage sums of at least one set of temperature detection diodes are connected to an over-temperature detection circuit including a comparison circuit for comparing with a reference voltage of a predetermined value, and 3. The abnormality diagnosis circuit for a semiconductor device according to claim 1, wherein the temperature detection circuit issues a signal when the temperature falls below the reference voltage.
JP2002234695A 2002-08-12 2002-08-12 Failure diagnostic circuit for semiconductor Withdrawn JP2004080865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234695A JP2004080865A (en) 2002-08-12 2002-08-12 Failure diagnostic circuit for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234695A JP2004080865A (en) 2002-08-12 2002-08-12 Failure diagnostic circuit for semiconductor

Publications (1)

Publication Number Publication Date
JP2004080865A true JP2004080865A (en) 2004-03-11

Family

ID=32019433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234695A Withdrawn JP2004080865A (en) 2002-08-12 2002-08-12 Failure diagnostic circuit for semiconductor

Country Status (1)

Country Link
JP (1) JP2004080865A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005354812A (en) * 2004-06-11 2005-12-22 Hitachi Ltd Inverter apparatus
JP2006042563A (en) * 2004-07-30 2006-02-09 Tokyo Electric Power Co Inc:The Power switching circuit, power converter, open circuit failure detecting method, and driving method of semiconductor switching device
JP2007040817A (en) * 2005-08-03 2007-02-15 Fuji Electric Device Technology Co Ltd Apparatus for detecting anomaly of semiconductor device for electric power
EP1956388A1 (en) * 2007-01-30 2008-08-13 TDK Corporation Radar system incorporating a HEMT with a switched check voltage (pinch-off-voltage) applied to its gate
JP2008206321A (en) * 2007-02-21 2008-09-04 Toshiba Mitsubishi-Electric Industrial System Corp Power converter
JP2008211964A (en) * 2007-01-29 2008-09-11 Daikin Ind Ltd Motor drive controller, hybrid system, and drive control method of motor drive controller
US7498975B2 (en) 2005-07-28 2009-03-03 Tdk Corporation Pulse radar system
JP2009240024A (en) * 2008-03-26 2009-10-15 Denso Corp Temperature detector
US7675763B2 (en) 2006-06-08 2010-03-09 Mitsubishi Electric Corporation Semiconductor power converter apparatus
JP2012191724A (en) * 2011-03-09 2012-10-04 Denso Corp Switching element driving circuit
US8854940B2 (en) 2003-04-14 2014-10-07 Koninklijke Philips N.V. Device for and method of recording information
CN108614167A (en) * 2016-12-09 2018-10-02 株洲中车时代电气股份有限公司 A kind of (PCC) power failure logging diagnostic system and method
CN112034394A (en) * 2020-11-03 2020-12-04 中南大学 Rectifier open-circuit fault diagnosis method based on current half-wave difference and electronic equipment
CN112304464A (en) * 2020-12-28 2021-02-02 杭州飞仕得科技有限公司 Temperature sampling transmission circuit and sampling control method and device thereof
CN113193744A (en) * 2021-04-12 2021-07-30 珠海格力电器股份有限公司 Control device and method for power device in discrete PFC circuit and electric equipment
CN117214650A (en) * 2023-11-09 2023-12-12 深圳市美鸿电子有限公司 Intelligent detection method and system for comprehensive performance of diode

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8854940B2 (en) 2003-04-14 2014-10-07 Koninklijke Philips N.V. Device for and method of recording information
JP2005354812A (en) * 2004-06-11 2005-12-22 Hitachi Ltd Inverter apparatus
JP2006042563A (en) * 2004-07-30 2006-02-09 Tokyo Electric Power Co Inc:The Power switching circuit, power converter, open circuit failure detecting method, and driving method of semiconductor switching device
JP4599926B2 (en) * 2004-07-30 2010-12-15 東京電力株式会社 Power switching circuit, power conversion device, open fault detection method, and module type semiconductor switching element driving method
US7498975B2 (en) 2005-07-28 2009-03-03 Tdk Corporation Pulse radar system
JP2007040817A (en) * 2005-08-03 2007-02-15 Fuji Electric Device Technology Co Ltd Apparatus for detecting anomaly of semiconductor device for electric power
US7675763B2 (en) 2006-06-08 2010-03-09 Mitsubishi Electric Corporation Semiconductor power converter apparatus
JP2008211964A (en) * 2007-01-29 2008-09-11 Daikin Ind Ltd Motor drive controller, hybrid system, and drive control method of motor drive controller
US7538718B2 (en) 2007-01-30 2009-05-26 Tdk Corporation Radar system
EP1956388A1 (en) * 2007-01-30 2008-08-13 TDK Corporation Radar system incorporating a HEMT with a switched check voltage (pinch-off-voltage) applied to its gate
JP2008206321A (en) * 2007-02-21 2008-09-04 Toshiba Mitsubishi-Electric Industrial System Corp Power converter
JP2009240024A (en) * 2008-03-26 2009-10-15 Denso Corp Temperature detector
JP2012191724A (en) * 2011-03-09 2012-10-04 Denso Corp Switching element driving circuit
CN108614167A (en) * 2016-12-09 2018-10-02 株洲中车时代电气股份有限公司 A kind of (PCC) power failure logging diagnostic system and method
CN112034394A (en) * 2020-11-03 2020-12-04 中南大学 Rectifier open-circuit fault diagnosis method based on current half-wave difference and electronic equipment
CN112034394B (en) * 2020-11-03 2021-01-15 中南大学 Rectifier open-circuit fault diagnosis method based on current half-wave difference and electronic equipment
CN112304464A (en) * 2020-12-28 2021-02-02 杭州飞仕得科技有限公司 Temperature sampling transmission circuit and sampling control method and device thereof
CN113193744A (en) * 2021-04-12 2021-07-30 珠海格力电器股份有限公司 Control device and method for power device in discrete PFC circuit and electric equipment
CN113193744B (en) * 2021-04-12 2024-03-29 珠海格力电器股份有限公司 Control device and method for power device in discrete PFC circuit and electrical equipment
CN117214650A (en) * 2023-11-09 2023-12-12 深圳市美鸿电子有限公司 Intelligent detection method and system for comprehensive performance of diode
CN117214650B (en) * 2023-11-09 2024-01-26 深圳市美鸿电子有限公司 Intelligent detection method and system for comprehensive performance of diode

Similar Documents

Publication Publication Date Title
US7675763B2 (en) Semiconductor power converter apparatus
JP2004080865A (en) Failure diagnostic circuit for semiconductor
CN101189795B (en) Electric power supply control apparatus and semiconductor device
CN106134047B (en) Semiconductor device
US10116296B2 (en) Semiconductor integrated circuit device and electronic device
US20090323238A1 (en) Electronic device including a protection circuit for a light-emitting device
JP5397571B2 (en) Control device
JP2011043505A (en) Battery voltage measuring device
US10859624B2 (en) Semiconductor device, electronic control unit and vehicle apparatus
ES2814099T3 (en) Switching device drive circuit for electrical power control
CN107796534B (en) Fault detection device for power conversion device, and vehicle
CN107466424B (en) Power module
JP2012100461A (en) Drive unit of power inverter circuit
JP5911014B2 (en) Inverter device and abnormality detection method for inverter device
JP6085495B2 (en) Semiconductor device
JP2008017615A (en) Load drive circuit
US20180231613A1 (en) Semiconductor device and battery monitoring system
US10097172B2 (en) Method for protecting a controllable semiconductor switch from overload and short-circuiting in a load circuit
US10830830B2 (en) Battery monitoring device for vehicle-mounted battery
US11920990B2 (en) In-vehicle temperature detection circuit
JP2001244411A (en) Driver ic module
JP2009168484A (en) Method for supplying burn-in power, burn-in board and semiconductor device
JPH04317365A (en) Semiconductor ic and data processing system incorporating same
US20230109365A1 (en) Device, semiconductor apparatus, gate driver, and power module
JP2009302183A (en) Connection failure detection circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101