JP2008205764A - Frequency adjustment apparatus of quartz vibrator, and frequency adjustment method thereof - Google Patents

Frequency adjustment apparatus of quartz vibrator, and frequency adjustment method thereof Download PDF

Info

Publication number
JP2008205764A
JP2008205764A JP2007038890A JP2007038890A JP2008205764A JP 2008205764 A JP2008205764 A JP 2008205764A JP 2007038890 A JP2007038890 A JP 2007038890A JP 2007038890 A JP2007038890 A JP 2007038890A JP 2008205764 A JP2008205764 A JP 2008205764A
Authority
JP
Japan
Prior art keywords
frequency
load
capacitance
series resonance
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007038890A
Other languages
Japanese (ja)
Other versions
JP4989253B2 (en
Inventor
Hiroyuki Soma
弘之 相馬
Masayoshi Shiraishi
政良 白石
Seigo Fukuchi
盛吾 福地
Toshiyuki Shimizu
敏志 清水
Masaru Matsuyama
勝 松山
Junya Fukuda
純也 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007038890A priority Critical patent/JP4989253B2/en
Publication of JP2008205764A publication Critical patent/JP2008205764A/en
Application granted granted Critical
Publication of JP4989253B2 publication Critical patent/JP4989253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frequency adjustment apparatus of a quartz vibrator by which fine adjustment of frequency can be performed without exchanging load capacity. <P>SOLUTION: The frequency adjustment apparatus of a quartz vibrator includes an adjustment chamber in which a plurality of the quartz vibrators are housed, a plurality of oscillating circuits where the plurality of quartz vibrators are connected each other via cables, a switching circuit which switches selectively oscillating outputs of the oscillating circuits, a frequency measuring means which takes in the outputs of the oscillating circuits to measure a series resonant frequency without loading Fr bearing a definite relation to a series resonant frequency in loading FL, a control means which presets a given frequency range containing the target frequency Fr* to take in the outputs of the frequency measuring means and instructs a processing of a frequency fine adjustment region of the quartz vibrator to be adjusted so that the measured series resonant frequency without loading Fr of the quartz vibrator to be adjusted falls within the given frequency range containing the target frequency Fr*, and a processing means which processes the quartz vibrator to be regulated based on a control output of the control means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水晶振動子の周波数調整装置及び水晶振動子の周波数調整方法に係り、特に音叉型水晶振動子の組立工程における周波数(負荷時直列共振周波数)を最終的に調整する所謂、微調整工程での水晶振動子の周波数調整を行うのに使用する水晶振動子の周波数調整装置及び水晶振動子の周波数調整方法に関する。   The present invention relates to a crystal resonator frequency adjusting apparatus and a crystal resonator frequency adjusting method, and in particular, a so-called fine adjustment that finally adjusts a frequency in a tuning fork type crystal resonator assembly process (series resonance frequency under load). The present invention relates to a crystal resonator frequency adjusting device and a crystal resonator frequency adjusting method used for frequency adjustment of a crystal resonator in a process.

水晶振動子は、振動体を保持容器内に封止した構造を有し、共振周波数近傍の周波数で振動する状態では、周知のように図14に示す等価回路で表される。同図において、R1は等価直列抵抗、C1は、等価直列容量、L1は等価直列インダクタンス、C0は等価直列抵抗R1、等価直列容量C1及び等価直列インダクタンスL1の直列回路に並列接続された、電極間容量と保持器の容量との合成容量である。   The crystal resonator has a structure in which a vibrating body is sealed in a holding container, and is expressed by an equivalent circuit shown in FIG. 14 in a state where it vibrates at a frequency near the resonance frequency. In the figure, R1 is an equivalent series resistance, C1 is an equivalent series capacitance, L1 is an equivalent series inductance, C0 is an equivalent series resistance R1, an equivalent series capacitance C1, and an equivalent series inductance L1 connected in parallel to each other. It is the combined capacity of the capacity and the capacity of the cage.

ここで、水晶振動子の負荷容量について簡単に説明しておく。水晶振動子を動作させる場合には発振回路に接続する。水晶振動子を発振回路に接続した状態を等価的に示すと図15のようになる。即ち図15に示すように、水晶振動子X1側から見た発振回路側は、等価入力容量Ciと等価入力抵抗−Riとの直列回路で表現できる。
また、水晶振動子X1側は、等価的に実効インダクタンスLeと実効抵抗Reとの直列回路で表現できる。図15の左側に示した図と右側に示した図は等価であり、等価入力抵抗−Riは負性抵抗であり、等価入力容量Ciは、負荷容量であり、これをCLと記すことにする。すなわち、負荷容量CLとは、水晶振動子を使用した発振回路において、水晶振動子から発振回路側を見た実効的な外部容量である。
Here, the load capacity of the crystal unit will be briefly described. When operating the crystal resonator, it is connected to an oscillation circuit. FIG. 15 shows an equivalent state where the crystal resonator is connected to the oscillation circuit. That is, as shown in FIG. 15, the oscillation circuit side viewed from the crystal resonator X1 side can be expressed by a series circuit of an equivalent input capacitance Ci and an equivalent input resistance -Ri.
The crystal resonator X1 side can be equivalently expressed by a series circuit of an effective inductance Le and an effective resistance Re. The diagram shown on the left side of FIG. 15 and the diagram shown on the right side are equivalent, the equivalent input resistance -Ri is a negative resistance, the equivalent input capacitance Ci is a load capacitance, and this is denoted as CL. . That is, the load capacitance CL is an effective external capacitance when an oscillation circuit using a crystal resonator is viewed from the crystal resonator.

従来の水晶振動子の周波数の最終調整(いわゆる、微調整)は、水晶振動子の組立工程において、振動片を保持器に接続した後、その保持器にキャップを圧入する前に実施する方法が慣用されている。   The final adjustment (so-called fine adjustment) of the frequency of the conventional crystal unit is performed by connecting the resonator element to the holder and then press-fitting the cap into the holder in the assembly process of the crystal unit. It is commonly used.

図16に従来の水晶振動子の周波数調整装置の構成を示す。同図において、周水晶振動子の周波数調整装置は、調整対象である水晶振動子101−1、101−2、…、101−nが収容されている室内が真空状態の調整室(真空チャンバー)100と、複数の水晶振動子101−1、101−2、…、101−nが、それぞれ、調整室100外においてケーブル150−1、150−2、…、150−nを介して接続される複数の発振回路111−1、111−2、…、111−nが組み込まれた計測基板1101、1102、…、110nと、計測基板1101、1102、…、110nから出力される発振回路出力を取り込み、選択的に出力するスイッチ121−1、121−2、…、121−nを有する切替回路120と、切替回路120から出力される発振回路出力を取り込み、発振周波数を計測する周波数カウンタ130とを有している。 FIG. 16 shows the configuration of a conventional frequency adjustment device for a crystal resonator. In the figure, the frequency adjusting device of the peripheral crystal resonator is an adjustment chamber (vacuum chamber) in which the chambers in which the crystal resonators 101-1, 101-2,. 100 and a plurality of crystal resonators 101-1, 101-2,..., 101-n are connected outside the adjustment chamber 100 via cables 150-1, 150-2,. a plurality of oscillation circuits 111-1 and 111-2, ..., 111-n is integrated measuring board 110 1, 110 2, ..., and 110 n, the measurement substrate 110 1, 110 2, ..., output from 110 n , 121-n having a switch 121-1, 121-2,..., 121-n for selectively outputting the oscillation circuit output and the oscillation circuit output output from the switching circuit 120, and measuring the oscillation frequency. And a frequency counter 130 for.

複数の水晶振動子101−1、101−2、…、101−nの各々の一端と、対応する複数の発振回路111−1、111−2、…、111−nの各々の一方の入力端との間には負荷容量CL1、CL2、…、CLnが接続されている。これらの負荷容量CL1、CL2、…、CLnは、調整室100内に収容されている。   One end of each of the plurality of crystal resonators 101-1, 101-2,..., 101-n and one input end of each of the corresponding plurality of oscillation circuits 111-1, 111-2,. Load capacitances CL1, CL2,..., CLn are connected to each other. These load capacities CL1, CL2,..., CLn are accommodated in the adjustment chamber 100.

上記構成において、真空状態の調整室100内に、負荷容量CLi(i=1〜n)を備えた発振回路111−1〜111−nにより発振させ、各発振回路の発振出力を切替回路120により選択的に取り込み、周波数カウンタ130により発振周波数を計測する。周波数カウンタ130で発振周波数をモニタしながら、調整室内に収容された調整対象となっている水晶振動子の微調整領域の重りをレーザで蒸発させて発振周波数(負荷時直列共振周波数FL)が目標周波数となるように調整している(特許文献1、2)。
特開2003−60470号公報 特開2003−133879号公報
In the above configuration, the oscillation circuit 111-1 to 111 -n having the load capacitance CLi (i = 1 to n) is oscillated in the vacuum adjustment chamber 100, and the oscillation output of each oscillation circuit is generated by the switching circuit 120. The oscillation frequency is measured by the frequency counter 130. While the oscillation frequency is monitored by the frequency counter 130, the weight of the fine adjustment region of the crystal unit to be adjusted accommodated in the adjustment chamber is evaporated by the laser, and the oscillation frequency (series resonance frequency FL during load) is set as the target. The frequency is adjusted (Patent Documents 1 and 2).
JP 2003-60470 A JP 2003-133879 A

しかしながら、多数の発振回路の各々に対応して水晶振動子に接続される負荷容量は、顧客毎に異なるために、周波数調整時に水晶振動子に接続された状態で調整室に収容されている負荷容量を変更するのに手間を要し、水晶振動子の効率的な生産を行うことができないという問題が有った。   However, since the load capacity connected to the crystal unit corresponding to each of a large number of oscillation circuits differs for each customer, the load accommodated in the adjustment chamber while being connected to the crystal unit at the time of frequency adjustment There was a problem that it took time and effort to change the capacity, and the quartz crystal could not be efficiently produced.

本発明は、このような事情に鑑みてなされたものであり、負荷容量を交換することなく、周波数の微調整をすることができる水晶振動子の周波数調整装置及び水晶振動子の周波数調整方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a crystal resonator frequency adjusting device and a crystal resonator frequency adjusting method capable of finely adjusting the frequency without exchanging the load capacity. The purpose is to provide.

上記目的を達成するために本発明の水晶振動子の周波数調整装置は、調整対象である複数の水晶振動子が収容されている調整室と、複数の水晶振動子が、それぞれ、ケーブルを介して接続される複数の発振回路と、前記複数の発振回路の発振出力を取り込み、選択的に出力する切替回路と、前記切替回路から出力される発振回路出力を取り込み、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)を計測する周波数計測手段と、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲を予め設定し、前記周波数計測手段の出力を取り込み、計測された調整対象の水晶振動子の無負荷時直列共振周波数(Fr)が目標周波数Fr*を含む所定の周波数範囲内となるように、調整対象の水晶振動子の周波数微調整領域の加工を指示する制御手段と、前記制御手段の制御出力に基づいて前記調整対象の水晶振動子を加工する加工手段とを有することを特徴とする。   In order to achieve the above object, the crystal resonator frequency adjusting device of the present invention includes an adjustment chamber in which a plurality of crystal resonators to be adjusted are accommodated, and a plurality of crystal resonators, each via a cable. A plurality of connected oscillation circuits, a switching circuit that captures and selectively outputs oscillation outputs of the plurality of oscillation circuits, and an oscillation circuit output that is output from the switching circuit, and a series resonance frequency (FL) under load Measuring means for measuring a no-load series resonance frequency (Fr) having a fixed relationship with the load, and a target frequency Fr of the no-load series resonance frequency (Fr) having a fixed relationship with the load-time series resonance frequency (FL). A predetermined frequency range including * is set in advance, the output of the frequency measuring means is taken in, and the measured series resonance frequency (Fr) at the time of no load of the crystal resonator to be adjusted includes the target frequency Fr * Control means for instructing processing of the frequency fine adjustment region of the crystal unit to be adjusted so as to be within a predetermined frequency range, and processing for processing the crystal unit to be adjusted based on the control output of the control unit Means.

上記構成からなる本発明の水晶振動子の周波数調整装置では、調整室内に収容された調整対象である複数の水晶振動子の各々が対応する、複数の発振回路の各々に接続され、これらの発振回路の出力が切替回路により選択的に出力され、これらの発振出力から周波数計測手段により負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)が計測される。
制御手段により、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲が予め設定され、前記周波数計測手段の出力に基づいて計測された調整対象の水晶振動子の無負荷時直列共振周波数(Fr)が目標周波数Fr*を含む所定の周波数範囲内となるように、調整対象の水晶振動子の周波数微調整領域の加工を指示が出され、加工手段により制御手段の制御出力に基づいて前記調整対象の水晶振動子を加工する。
これにより、従来のように負荷容量を交換することなく、負荷時直列共振周波数の微調整を行うことができ、水晶振動子の効率的な生産が可能となる。
In the crystal resonator frequency adjusting device of the present invention having the above-described configuration, each of the plurality of crystal resonators to be adjusted accommodated in the adjustment chamber is connected to each of the corresponding plurality of oscillation circuits, and these oscillations The output of the circuit is selectively output by the switching circuit, and the no-load series resonance frequency (Fr) having a fixed relationship with the on-load series resonance frequency (FL) is measured by the frequency measuring means from these oscillation outputs.
A predetermined frequency range including the target frequency Fr * of the no-load series resonance frequency (Fr) having a fixed relationship with the on-load series resonance frequency (FL) is set in advance by the control means, and is output to the output of the frequency measurement means. Based on the frequency fine tuning region of the crystal resonator to be adjusted, the series resonance frequency (Fr) at the time of no load of the crystal resonator to be adjusted measured based on the frequency is within a predetermined frequency range including the target frequency Fr *. Processing is instructed, and the crystal unit to be adjusted is processed by the processing unit based on the control output of the control unit.
This makes it possible to finely adjust the on-load series resonance frequency without exchanging the load capacity as in the conventional case, and enables efficient production of the crystal resonator.

また、本発明の水晶振動子の周波数調整装置は、前記制御手段は、複数の水晶振動子のサンプルを計測対象として前記複数の水晶振動子の無負荷時直列共振周波数(Fr)及び水晶振動子の電極間容量と保持器の容量との合成容量である並列容量C0を測定し、かつ前記複数の水晶振動子に基準の負荷容量CLnを接続して各水晶振動子の負荷時直列共振周波数(FL)を測定するとともに、上記測定結果から次式   In the crystal resonator frequency adjusting apparatus according to the present invention, the control means uses a plurality of crystal resonator samples as a measurement target, the no-load series resonance frequency (Fr) of the plurality of crystal resonators, and the crystal resonator. The parallel capacitance C0, which is the combined capacitance of the interelectrode capacitance and the capacitance of the cage, is measured, and a reference load capacitance CLn is connected to the plurality of crystal resonators, and the series resonance frequency (when loaded) of each crystal resonator FL), and the following equation

Figure 2008205764
により前記複数の水晶振動子の各々について直列等価容量C1を算出し、該算出された直列等価容量C1と、上記測定された並列容量C0とから、水晶振動子の直列等価容量C1、並列容量C0の平均値C0(a),C1(a)を算出し、該算出された平均値C0(a),C1(a)と、所望の負荷容量CL*を接続したときに測定して得られる負荷時直列共振周波数(FL)から前記目標周波数Fr*を次式
Figure 2008205764
The series equivalent capacitance C1 is calculated for each of the plurality of crystal resonators, and the series equivalent capacitance C1 and the parallel capacitance C0 of the crystal resonator are calculated from the calculated series equivalent capacitance C1 and the measured parallel capacitance C0. The average value C0 (a), C1 (a) is calculated, and the load obtained by measuring the calculated average value C0 (a), C1 (a) and the desired load capacity CL * is obtained. The target frequency Fr * is calculated from the time series resonance frequency (FL) as follows:

Figure 2008205764
により算出することを特徴とする。
Figure 2008205764
It is characterized by calculating by.

上記構成からなる本発明の水晶振動子の周波数調整装置では、複数の水晶振動子のサンプルを計測対象として前記複数の水晶振動子の無負荷時直列共振周波数(Fr)及び水晶振動子の電極間容量と保持器の容量との合成容量である並列容量C0を測定し、かつ前記複数の水晶振動子に基準の負荷容量CLnを接続して各水晶振動子の負荷時直列共振周波数(FL)を測定するとともに、上記測定結果から次式   In the crystal resonator frequency adjusting device of the present invention having the above-described configuration, a plurality of crystal resonator samples are subjected to measurement, the no-load series resonance frequency (Fr) of the plurality of crystal resonators, and between the electrodes of the crystal resonator A parallel capacitance C0, which is a combined capacitance of the capacitance and the capacitance of the cage, is measured, and a reference load capacitance CLn is connected to the plurality of crystal resonators, and the series resonance frequency (FL) at the time of loading of each crystal resonator is determined. As well as measuring,

Figure 2008205764
により前記複数の水晶振動子の各々について直列等価容量C1を算出し、該算出された直列等価容量C1と、上記測定された並列容量C0とから、水晶振動子の直列等価容量C1、並列容量C0の平均値C0(a),C1(a)を算出し、該算出された平均値C0(a),C1(a)と、所望の負荷容量CL*を接続したときに測定して得られる負荷時直列共振周波数(FL)から前記目標周波数Fr*を次式
Figure 2008205764
The series equivalent capacitance C1 is calculated for each of the plurality of crystal resonators, and the series equivalent capacitance C1 and the parallel capacitance C0 of the crystal resonator are calculated from the calculated series equivalent capacitance C1 and the measured parallel capacitance C0. The average value C0 (a), C1 (a) is calculated, and the load obtained by measuring the calculated average value C0 (a), C1 (a) and the desired load capacity CL * is obtained. The target frequency Fr * is calculated from the time series resonance frequency (FL) as follows:

Figure 2008205764
により算出する.
これにより、所望の負荷容量を水晶振動子に接続した際の無負荷時直列共振周波数(目標周波数)Fr*を算出することにより、水晶振動子の周波数調整範囲である、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲を予め設定することができる。
Figure 2008205764
Calculated by
Thus, by calculating the no-load series resonance frequency (target frequency) Fr * when a desired load capacity is connected to the crystal resonator, the load series resonance frequency (the frequency adjustment range of the crystal resonator ( A predetermined frequency range including the target frequency Fr * of the no-load series resonance frequency (Fr) having a fixed relationship with (FL) can be set in advance.

また、本発明の水晶振動子の周波数調整方法は、調整対象である複数の水晶振動子が、それぞれ、ケーブルを介して接続された複数の発振回路の発振出力を取り込み、切替回路により選択的に出力する第1のステップと、
前記切替回路から出力される発振回路出力を取り込み、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)を周波数計測手段により計測する第2のステップと、
制御手段により、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲を予め設定し、かつ前記周波数計測手段の出力を取り込み、計測された調整対象の水晶振動子の無負荷時直列共振周波数(Fr)が目標周波数Fr*を含む所定の周波数範囲内となるように、調整対象の水晶振動子の周波数微調整領域の加工を指示する第3のステップと、
前記制御手段の制御出力に基づいて加工手段により前記調整対象の水晶振動子を加工する第4のステップと、
を有することを特徴とする。
In addition, according to the frequency adjustment method of the crystal resonator of the present invention, the plurality of crystal resonators to be adjusted respectively capture the oscillation outputs of the plurality of oscillation circuits connected via the cables, and are selectively selected by the switching circuit. A first step of outputting;
A second step of taking an oscillation circuit output outputted from the switching circuit and measuring a no-load series resonance frequency (Fr) having a fixed relationship with a load series resonance frequency (FL) by a frequency measuring means;
A predetermined frequency range including a target frequency Fr * of the no-load series resonance frequency (Fr) having a fixed relationship with the load series resonance frequency (FL) is preset by the control means, and the output of the frequency measurement means Frequency adjustment region of the crystal resonator to be adjusted so that the no-load series resonance frequency (Fr) of the crystal resonator to be adjusted is within a predetermined frequency range including the target frequency Fr *. A third step for instructing the processing of
A fourth step of processing the crystal resonator to be adjusted by a processing unit based on a control output of the control unit;
It is characterized by having.

上記ステップからなる本発明の水晶振動子の周波数調整方法では、調整対象である複数の水晶振動子が、それぞれ、ケーブルを介して接続された複数の発振回路の発振出力が取り込まれ、切替回路により選択的に出力される。
また、前記切替回路から出力される発振回路出力が取り込まれ、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)が周波数計測手段により計測される。
制御手段により、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲が予め設定され、制御手段は、前記周波数計測手段の出力を取り込み、計測された調整対象の水晶振動子の無負荷時直列共振周波数(Fr)が目標周波数Fr*を含む所定の周波数範囲内となるように、調整対象の水晶振動子の周波数微調整領域の加工を指示し、加工手段は、前記制御手段の制御出力に基づいて前記調整対象の水晶振動子を加工する。
これにより、従来のように負荷容量を交換することなく、負荷時直列共振周波数の微調整を行うことができ、水晶振動子の効率的な生産が可能となる。
In the crystal resonator frequency adjustment method of the present invention comprising the above steps, a plurality of crystal resonators to be adjusted receive the oscillation outputs of a plurality of oscillation circuits connected via cables, respectively, and are switched by a switching circuit. Output selectively.
Further, the oscillation circuit output outputted from the switching circuit is taken in, and the no-load series resonance frequency (Fr) having a fixed relationship with the on-load series resonance frequency (FL) is measured by the frequency measuring means.
The control means presets a predetermined frequency range including the target frequency Fr * of the no-load series resonance frequency (Fr) having a fixed relationship with the load-time series resonance frequency (FL). The frequency of the crystal resonator to be adjusted is adjusted so that the no-load series resonance frequency (Fr) of the crystal resonator to be adjusted is within a predetermined frequency range including the target frequency Fr *. Processing of the fine adjustment area is instructed, and the processing means processes the crystal resonator to be adjusted based on the control output of the control means.
This makes it possible to finely adjust the on-load series resonance frequency without exchanging the load capacity as in the conventional case, and enables efficient production of the crystal resonator.

また、本発明の水晶振動子の周波数調整方法は、複数の水晶振動子のサンプルを計測対象として前記複数の水晶振動子の無負荷時直列共振周波数(Fr)及び水晶振動子の電極間容量と保持器の容量との合成容量である並列容量C0を測定する第5のステップと、
前記複数の水晶振動子に基準の負荷容量CLnを接続して各水晶振動子の負荷時直列共振周波数(FL)を測定する第6のステップと、
前記第5、第6のステップにおける測定結果から次式
Further, the frequency adjustment method for a crystal resonator according to the present invention includes a plurality of crystal resonator samples as a measurement target, a no-load series resonance frequency (Fr) of the plurality of crystal resonators, and an interelectrode capacitance of the crystal resonator. A fifth step of measuring a parallel capacity C0, which is a combined capacity with the capacity of the cage;
A sixth step of connecting a reference load capacitance CLn to the plurality of crystal resonators and measuring a series resonance frequency (FL) under load of each crystal resonator;
From the measurement results in the fifth and sixth steps,

Figure 2008205764
により前記複数の水晶振動子の各々について直列等価容量C1を算出する第7のステップと、
前記第7のステップにおいて算出された直列等価容量C1と、前記第5のステップにおいて測定された並列容量C0とから、水晶振動子の直列等価容量C1、並列容量C0の平均値C0(a),C1(a)を算出する第8のステップと、
前記第8のステップで算出された平均値C0(a),C1(a)と、所望の負荷容量CL*を接続したときに測定して得られる負荷時直列共振周波数(FL)とから前記目標周波数Fr*を次式
Figure 2008205764
A seventh step of calculating a series equivalent capacitance C1 for each of the plurality of crystal resonators by:
From the series equivalent capacitance C1 calculated in the seventh step and the parallel capacitance C0 measured in the fifth step, an average value C0 (a) of the series equivalent capacitance C1 and the parallel capacitance C0 of the crystal resonator, An eighth step of calculating C1 (a);
From the average values C0 (a) and C1 (a) calculated in the eighth step and a load series resonance frequency (FL) obtained by measurement when a desired load capacitance CL * is connected, the target The frequency Fr * is

Figure 2008205764
により算出する第9のステップと、
を有することを特徴とする。
Figure 2008205764
A ninth step of calculating by:
It is characterized by having.

上記ステップからなる本発明の水晶振動子の周波数調整方法では、複数の水晶振動子のサンプルを計測対象として前記複数の水晶振動子の無負荷時直列共振周波数(Fr)及び水晶振動子の電極間容量と保持器の容量との合成容量である並列容量C0を測定し、かつ前記複数の水晶振動子に基準の負荷容量CLnを接続して各水晶振動子の負荷時直列共振周波数(FL)を測定するとともに、上記測定結果から次式   In the crystal resonator frequency adjustment method of the present invention comprising the above steps, a plurality of crystal resonator samples are measured, and the series resonance frequency (Fr) of the plurality of crystal resonators at no load and between the electrodes of the crystal resonator are measured. A parallel capacitance C0, which is a combined capacitance of the capacitance and the capacitance of the cage, is measured, and a reference load capacitance CLn is connected to the plurality of crystal resonators, and the series resonance frequency (FL) at the time of loading of each crystal resonator is determined. As well as measuring,

Figure 2008205764
により前記複数の水晶振動子の各々について直列等価容量C1を算出し、該算出された直列等価容量C1と、上記測定された並列容量C0とから、水晶振動子の直列等価容量C1、並列容量C0の平均値C0(a),C1(a)を算出し、該算出された平均値C0(a),C1(a)と、所望の負荷容量CL*を接続したときに測定して得られる負荷時直列共振周波数(FL)から前記目標周波数Fr*を次式
Figure 2008205764
The series equivalent capacitance C1 is calculated for each of the plurality of crystal resonators, and the series equivalent capacitance C1 and the parallel capacitance C0 of the crystal resonator are calculated from the calculated series equivalent capacitance C1 and the measured parallel capacitance C0. The average value C0 (a), C1 (a) is calculated, and the load obtained by measuring the calculated average value C0 (a), C1 (a) and the desired load capacity CL * is obtained. The target frequency Fr * is calculated from the time series resonance frequency (FL) as follows:

Figure 2008205764
により算出する。
これにより、所望の負荷容量を水晶振動子に接続した際の無負荷時直列共振周波数(目標周波数)Fr*を算出することにより、水晶振動子の周波数調整範囲である、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲を予め設定することができる。
Figure 2008205764
Calculated by
Thus, by calculating the no-load series resonance frequency (target frequency) Fr * when a desired load capacity is connected to the crystal resonator, the load series resonance frequency (the frequency adjustment range of the crystal resonator ( A predetermined frequency range including the target frequency Fr * of the no-load series resonance frequency (Fr) having a fixed relationship with (FL) can be set in advance.

以上説明したように、本発明によれば、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲を予め設定し、調整対象の水晶振動子の無負荷時直列共振周波数(Fr)が目標周波数Fr*を含む所定の周波数範囲内となるように、調整対象の水晶振動子の周波数微調整領域の加工を行うようにしたので、従来のように負荷容量を交換することなく、負荷時直列共振周波数の微調整を行うことができ、水晶振動子の効率的な生産が可能となる。   As described above, according to the present invention, a predetermined frequency range including the target frequency Fr * of the no-load series resonance frequency (Fr) that has a certain relationship with the load series resonance frequency (FL) is set in advance. Then, the frequency fine adjustment region of the crystal unit to be adjusted is processed so that the no-load series resonance frequency (Fr) of the crystal unit to be adjusted falls within a predetermined frequency range including the target frequency Fr *. As a result, the series resonance frequency under load can be finely adjusted without exchanging the load capacity as in the prior art, and the crystal resonator can be efficiently produced.

以下、本発明の実施形態を、図面を参照して詳細に説明する。本発明の実施形態に係る水晶振動子の周波数調整装置の構成を図1に示す。同図において、本発明の実施形態に係る水晶振動子の周波数調整装置は、調整対象である水晶振動子10−1、10−2、…、10−nが収容されている室内が真空状態の調整室(真空チャンバー)1と、複数の水晶振動子10−1、10−2、…、10−nが、それぞれ、調整室1外においてケーブル50−1、50−2、…、50−nを介して接続される複数の発振回路20−1、20−2、…、20−nが組み込まれた計測基板21、22、…、2nと、計測基板21、22、…、2nから出力される発振回路出力を取り込み、選択的に出力するスイッチ30−1、30−2、…、30−nを有する切替回路3と、切替回路3から出力される発振回路出力を取り込み、各発振回路20−1、20−2、…、20−nの発振周波数を計測する周波数カウンタ4と、水晶振動子の周波数調整を行うための加工を行う加工装置5と、各部を制御する制御部6とを有している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of a crystal resonator frequency adjusting device according to an embodiment of the present invention. In the figure, the frequency adjustment device for the crystal resonator according to the embodiment of the present invention is such that the chamber in which the crystal resonators 10-1, 10-2,. The adjustment chamber (vacuum chamber) 1 and the plurality of crystal resonators 10-1, 10-2,..., 10-n are respectively connected to the cables 50-1, 50-2,. , 2n, and measurement boards 2 1 , 2 2 ,..., 20- n, and the measurement boards 2 1 , 2 2 ,. 2, the switching circuit 3 having switches 30-1, 30-2,..., 30 -n that take in and selectively output the oscillation circuit output output from 2 n , and the oscillation circuit output output from the switching circuit 3 Capture and measure the oscillation frequency of each oscillation circuit 20-1, 20-2, ..., 20-n And the wave number counter 4, and a processing unit 5 for processing for adjusting the frequency of the crystal oscillator, and a control unit 6 that controls each unit.

切替回路3は、スイッチ30−1、30−2、…、30−nを有しており、制御部6の制御により、発振回路20−1、20−2、…、20−nの出力が順次、時分割的に周波数カウンタ4に取り込まれるようになっている。
加工装置5は、例えば、レーザ加工装置であり、レーザ加工装置を構成するレーザ発振器のレーザ種としては、例えば、YAGレーザが使用される。
The switching circuit 3 includes switches 30-1, 30-2,..., 30-n, and the outputs of the oscillation circuits 20-1, 20-2,. The frequency counter 4 is sequentially fetched in a time division manner.
The processing apparatus 5 is, for example, a laser processing apparatus, and, for example, a YAG laser is used as a laser type of a laser oscillator constituting the laser processing apparatus.

加工装置5は、図2に示すように、レーザ発振器(図示せず)から出射するレーザビーム210をセラミックパッケージに収納された水晶振動子200の周波数微調整領域201に照射して周波数微調整領域201に形成されている重りを部分的に蒸発させる。これにより水晶振動子の直列共振周波数の周波数調整を行う。   As shown in FIG. 2, the processing device 5 irradiates a frequency fine adjustment region 201 of a crystal resonator 200 housed in a ceramic package with a laser beam 210 emitted from a laser oscillator (not shown). The weight formed on 201 is partially evaporated. This adjusts the frequency of the series resonance frequency of the crystal resonator.

また、加工装置5は、レーザ加工装置以外の手段としては、例えば、アルゴン等のイオンを照射するイオン照射装置を使用することができる。例えば、図3に示すように、アルゴン等のイオン流310をセラミックパッケージに収納された水晶振動子300の片面に窓の開いた301に照射して周波数微調整領域301を薄く削って周波数調整を行う。図3(A)は、セラミックパッケージに収納された水晶振動子の周波数微調整領域にイオン照射している状態を示す説明図であり、図3(B)は、図3(A)におけるX−X切断線による断面図である。   Moreover, the processing apparatus 5 can use the ion irradiation apparatus which irradiates ions, such as argon, as means other than a laser processing apparatus, for example. For example, as shown in FIG. 3, an ion flow 310 such as argon is irradiated on one side of a crystal resonator 300 housed in a ceramic package to a window 301 having a window open, and the frequency fine adjustment region 301 is thinned to adjust the frequency. Do. FIG. 3A is an explanatory diagram showing a state in which ions are radiated to a frequency fine adjustment region of a crystal resonator housed in a ceramic package, and FIG. 3B is an X− in FIG. It is sectional drawing by a X cut line.

制御部6は、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲を予め設定し、周波数カウンタ4の出力を取り込み、計測された調整対象の水晶振動子10−1、10−2、…、10−nの無負荷時直列共振周波数(Fr)が目標周波数Fr*を含む所定の周波数範囲内となるように、調整対象の水晶振動子10−1、10−2、…、10−nの周波数微調整領域の加工を加工装置5に指示する機能を有している。なお、周波数カウンタ4は本発明の周波数計測手段に、加工装置5は本発明の加工手段に、制御部6は本発明の制御手段にそれぞれ相当する。     The control unit 6 presets a predetermined frequency range including the target frequency Fr * of the no-load series resonance frequency (Fr) having a fixed relationship with the load-time series resonance frequency (FL), and outputs the output of the frequency counter 4. The no-load series resonance frequency (Fr) of the crystal resonators 10-1, 10-2,..., 10-n that have been captured and measured is within a predetermined frequency range including the target frequency Fr *. , 10-n of the crystal resonators 10-1, 10-2 to 10 -n to be adjusted. The frequency counter 4 corresponds to the frequency measuring means of the present invention, the processing device 5 corresponds to the processing means of the present invention, and the control unit 6 corresponds to the control means of the present invention.

本発明の実施形態に係る水晶振動子の周波数調整装置では、複数の水晶振動子10−1、10−2、…、10−nの各々の一端と、対応する複数の発振回路20−1、20−2、…、20−nの各々の一方の入力端との間には負荷容量は接続されていない。すなわち、本発明の実施形態に係る水晶振動子の周波数調整装置では、水晶振動子に容量負荷を接続しない状態の直列共振周波数(無負荷時直列共振周波数)を測定し、検出された無負荷時直列共振周波数が、所望の負荷時直列共振周波数の調整範囲に相当する無負荷時直列共振周波数の調整範囲に入るように調整する。   In the crystal resonator frequency adjusting device according to the embodiment of the present invention, one end of each of the plurality of crystal resonators 10-1, 10-2,..., 10-n and the corresponding plurality of oscillation circuits 20-1, No load capacitance is connected between one input terminal of each of 20-2,..., 20-n. That is, in the frequency adjustment device for a crystal resonator according to the embodiment of the present invention, the series resonance frequency (no-load series resonance frequency) in a state where no capacitive load is connected to the crystal resonator is measured, and the detected no-load time Adjustment is made so that the series resonance frequency falls within the adjustment range of the no-load series resonance frequency corresponding to the adjustment range of the desired load series resonance frequency.

上記構成からなる本発明の実施形態に係る水晶振動子の周波数調整装置の動作を、図4及び図7に示すフローチャートに基づいて説明する。図4は、所望の(必要な)負荷容量を水晶振動子に接続した場合における負荷時直列共振周波数FLと一定の関係にある無負荷時直列共振周波数Fr*の値を予め求める処理を示している。   The operation of the crystal resonator frequency adjusting apparatus according to the embodiment of the present invention having the above-described configuration will be described with reference to the flowcharts shown in FIGS. FIG. 4 shows a process for obtaining in advance the value of the no-load series resonance frequency Fr * having a fixed relationship with the on-load series resonance frequency FL when a desired (necessary) load capacitance is connected to the crystal resonator. Yes.

図4において、まず水晶振動子の無負荷時直列共振周波数Fr及び水晶振動子の等価回路における並列容量C0を測定する(ステップ400)。
基準とする負荷容量(以下、基準負荷容量と記す。)CLnをCLn=12.5pFとし、この基準負荷容量を、振動片がウェハに接続されている水晶振動子に接続した状態で直列共振周波数の粗調整をし、この調整後にケースを圧入して水晶振動子として完成させる。次いで、完成した複数個(例えば、k個)の水晶振動子S1,S2,…,Skについて、インピーダンスアナライザを用いて、無負荷時直列共振周波数Fr及び並列容量C0を測定する。
なお、並列容量C0は、保持容器との間で形成される容量を含むから水晶振動子を完成体で計測する必要が有る。
In FIG. 4, first, the no-load series resonance frequency Fr of the crystal resonator and the parallel capacitance C0 in the equivalent circuit of the crystal resonator are measured (step 400).
Reference load capacitance (hereinafter referred to as reference load capacitance) CLn is set to CLn = 12.5 pF, and this reference load capacitance is connected to a crystal resonator in which a resonator element is connected to a wafer. After this adjustment, the case is press-fitted to complete the crystal unit. Next, the no-load series resonance frequency Fr and the parallel capacitance C0 are measured with respect to the completed plural (for example, k) crystal resonators S1, S2,.
In addition, since the parallel capacitance C0 includes a capacitance formed with the holding container, it is necessary to measure the crystal resonator with a completed body.

次に、インピーダンスアナライザを用いて、先のk個の水晶振動子S1,S2,…,Skのサンプルについて基準負荷容量CLn=12.5pFを測定治具を用いて接続し、負荷時直列共振周波数FLを測定する(ステップ401)。
さらに、ステップ402では、ステップ400、401で求めた水晶振動子の無負荷時直列共振周波数Fr及び水晶振動子の等価回路における並列容量C0並びに、負荷時直列共振周波数FLは、次式(9)に従うとして、水晶振動子の直列等価容量C1を算出する。
Next, an impedance analyzer is used to connect a reference load capacitance CLn = 12.5 pF with respect to the samples of the previous k crystal resonators S1, S2,... FL is measured (step 401).
Further, in step 402, the no-load series resonance frequency Fr of the crystal resonator obtained in steps 400 and 401, the parallel capacitance C0 in the equivalent circuit of the crystal resonator, and the load series resonance frequency FL are expressed by the following equation (9). As a result, the series equivalent capacitance C1 of the crystal resonator is calculated.

Figure 2008205764
因みに、上式(9)の導出過程について説明する。既述した図14に示す水晶振動子の等価回路において、直列共振回路の共振周波数frは、次式で表される。
Figure 2008205764
Incidentally, the derivation process of the above equation (9) will be described. In the equivalent circuit of the crystal resonator shown in FIG. 14 described above, the resonance frequency fr of the series resonance circuit is expressed by the following equation.

Figure 2008205764
また、図14に示す水晶振動子の等価回路において、並列共振周波数faは、次式で表される
Figure 2008205764
In the equivalent circuit of the crystal unit shown in FIG. 14, the parallel resonance frequency fa is expressed by the following equation.

Figure 2008205764
一方、負荷容量CLを水晶振動子に接続した場合は、図5(A)のようになる。しかし、実用的な範囲では、制御部6では、図5(B)に示すように負荷容量が水晶振動子に対し、並列接続されたものとして近似してもさしつかえないとされる。
したがって、式(11)において、C0の代わりに、C0+CLで置き換えて式を変形すると、次式が得られる。
Figure 2008205764
On the other hand, when the load capacitor CL is connected to a crystal resonator, the result is as shown in FIG. However, in a practical range, the control unit 6 can approximate the load capacitance as being connected in parallel to the crystal resonator as shown in FIG. 5B.
Accordingly, in the equation (11), when the equation is modified by replacing it with C0 + CL instead of C0, the following equation is obtained.

Figure 2008205764
すなわち、式(9)が導出される。
上式(9)により、k個の水晶振動子S1,S2,…,Skのサンプルの直列等価容量C1を算出する。このようにして得られたk個の並列容量C0及び直列等価容量C1の値から並列容量C0及び直列等価容量C1の平均値C0(a),C1(a)を算出する。
Figure 2008205764
That is, Expression (9) is derived.
The series equivalent capacitance C1 of the samples of k crystal resonators S1, S2,..., Sk is calculated by the above equation (9). Average values C0 (a) and C1 (a) of the parallel capacitance C0 and the series equivalent capacitance C1 are calculated from the values of the k parallel capacitances C0 and the series equivalent capacitance C1 thus obtained.

次いで、ステップ402で算出した並列容量C0、直列等価容量C1の平均値C0(a),C1(a)及び負荷時直列共振周波数FLから必要な負荷容量値CL*を接続した場合における無負荷時直列共振周波数Fr*を算出する(ステップ403)。例えば、4pFの負荷容量CLを水晶振動子に接続した場合における負荷時直列共振周波数FLがFL=32768Hzの場合には、式(9)より無負荷時直列共振周波数Fr*の値が求められる。具体的には、C1(a)=0.001978pF、C0(a)=0.857pFとし、式(9)に代入すると、Fr*=32761.33(Hz)となる。
さらに、べつの所望の負荷容量CL*を水晶振動子に接続した場合における無負荷時直列共振周波数Fr*についても同様に求めることができる。このようにして算出した所望の負荷容量CL*に対する無負荷時直列共振周波数Fr*の一例を図5に示す。このような所望の負荷容量CL*に対する無負荷時直列共振周波数Fr*の値を示すデータを図1に示す制御部6内のメモリにテーブルとして記憶させておく。
Next, when no load is applied when the necessary load capacitance value CL * is connected from the parallel capacitance C0 calculated in step 402, the average values C0 (a) and C1 (a) of the series equivalent capacitance C1, and the series resonance frequency FL when loaded. A series resonance frequency Fr * is calculated (step 403). For example, when a load series resonance frequency FL when a load capacitance CL of 4 pF is connected to a crystal resonator is FL = 32768 Hz, the value of the no-load series resonance frequency Fr * is obtained from Equation (9). Specifically, when C1 (a) = 0.1978pF, C0 (a) = 0.857pF, and substitution into the equation (9), Fr * = 32761.33 (Hz).
Furthermore, the no-load series resonance frequency Fr * when another desired load capacitance CL * is connected to the crystal resonator can be obtained in the same manner. An example of the no-load series resonance frequency Fr * with respect to the desired load capacity CL * calculated in this way is shown in FIG. Data indicating the value of the no-load series resonance frequency Fr * for the desired load capacity CL * is stored as a table in the memory in the control unit 6 shown in FIG.

このような状態下において、制御部6は、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲を設定する(ステップ500)。すなわち、目標周波数Fr*に対し例えば、公差を考慮してFr*±20ppmに設定される。
次いで、調整対象となる所定数(K=n個)の水晶振動子を調整室1内にセットし、水晶振動子の個数を計数するカウンタKの計数値KをK=1にする(ステップ501)。
Under such a state, the control unit 6 sets a predetermined frequency range including the target frequency Fr * of the no-load series resonance frequency (Fr) that is in a fixed relation with the load series resonance frequency (FL) ( Step 500). That is, for example, the target frequency Fr * is set to Fr * ± 20 ppm in consideration of the tolerance.
Next, a predetermined number (K = n) of crystal resonators to be adjusted are set in the adjustment chamber 1, and the count value K of the counter K that counts the number of crystal resonators is set to K = 1 (step 501). ).

更に、ステップ502では、K番目の水晶振動子のサンプルの無負荷時直列共振周波数Frを周波数カウンタ4により測定し、測定された無負荷時直列共振周波数Frが無負荷時直列共振周波数Frの目標周波数Fr*を含む所定の周波数範囲になるまで、制御部6の制御下に加工装置5は、調整対象となっている水晶振動子の周波数微調整領域の加工を続行する(ステップ503)。   Further, in step 502, the no-load series resonance frequency Fr of the sample of the Kth crystal resonator is measured by the frequency counter 4, and the measured no-load series resonance frequency Fr is the target of the no-load series resonance frequency Fr. Until the predetermined frequency range including the frequency Fr * is reached, the processing device 5 continues to process the fine frequency adjustment region of the crystal resonator to be adjusted under the control of the control unit 6 (step 503).

次いで、周波数カウンタ4により測定された、調整対象となっている水晶振動子の無負荷時直列共振周波数Frが目標周波数Fr*を含む所定の周波数範囲になったか否かが判定される(ステップ504)。ステップ504の判定が否定された場合には、ステップ503に戻り、加工装置5は、調整対象となっている水晶振動子の周波数微調整領域の加工を続行する。   Next, it is determined whether or not the no-load series resonance frequency Fr of the crystal unit to be adjusted measured by the frequency counter 4 falls within a predetermined frequency range including the target frequency Fr * (step 504). ). If the determination in step 504 is negative, the process returns to step 503, and the processing apparatus 5 continues the processing of the frequency fine adjustment region of the crystal resonator to be adjusted.

ステップ504の判定が肯定された場合には、水晶振動子の個数を計数するカウンタKの計数値Kを+1インクリメントし(ステップ505)、所定数(K=n個)の水晶振動子のサンプルの加工を終了したか否か、すなわち、周波数調整を終了したか否かが判定される(ステップ506)。ステップ506の判定が否定された場合には、ステップ502に戻り、ステップ502〜505まで既述した処理を繰り返す。ステップ506の判定が肯定された場合、すなわち、所定数(K=n個)の水晶振動子のサンプルの周波数調整を終了した判定された場合には、この処理を終了する。   If the determination in step 504 is affirmative, the count value K of the counter K that counts the number of crystal resonators is incremented by +1 (step 505), and a predetermined number (K = n) of crystal resonator samples are counted. It is determined whether or not the processing is finished, that is, whether or not the frequency adjustment is finished (step 506). If the determination in step 506 is negative, the process returns to step 502, and the processes described in steps 502 to 505 are repeated. If the determination in step 506 is affirmative, that is, if it is determined that the frequency adjustment of a predetermined number (K = n) of crystal resonator samples has been completed, this processing ends.

上記処理を複数の所望の(必要な)値の負荷容量CL*(例えば、CL*=3pF,4pF,6pF,7.5pF,12.5pF,20pF)について、それぞれ、1ロットずつ、製造する場合には、それぞれ、各負荷容量CL*に対応する目標周波数Fr*を含む所定の周波数範囲を設定して実行することにより、水晶振動子の負荷時直列共振周波数の周波数微調整を間接的に行うことができる。
すなわち、所望の負荷容量CL*を接続して使用する水晶振動子の直列共振周波数を、負荷容量を接続せずに、負荷時直列共振周波数の微調整を行うことができ、水晶振動子の効率的な生産が可能となる。
When the above process is performed for each of a plurality of desired (necessary) load capacitances CL * (for example, CL * = 3 pF, 4 pF, 6 pF, 7.5 pF, 12.5 pF, 20 pF). In each of these, a predetermined frequency range including the target frequency Fr * corresponding to each load capacitance CL * is set and executed, thereby indirectly performing fine adjustment of the on-load series resonance frequency of the crystal resonator. be able to.
In other words, the series resonance frequency of the crystal resonator used by connecting the desired load capacitance CL * can be finely adjusted without connecting the load capacitance, and the efficiency of the crystal resonator can be adjusted. Production becomes possible.

従来技術では、所望の負荷容量CL*の容量値が替わる毎に調整室内で水晶振動子に接続される負荷容量を交換する必要が有った。実際の水晶振動子の負荷時直列共振周波数の微調整においては、調整室内に、数十個の水晶振動子を収容して、時分割処理して周波数の微調整を行うため、調整対象となる水晶振動子の数だけ負荷容量を用意する必要が有る。これらの数の負荷容量を、負荷容量の容量値を変更する毎に交換するため、非常に非効率的であった。
本発明では、負荷時直列共振周波数と一定の関係にある無負荷時直列共振周波数の目標周波数Fr*を図4に示す処理により、予め算出しておくことにより、制御部6により実行される制御プログラムの目標値(無負荷時直列共振周波数の目標周波数Fr*)のみを入力することにより、水晶振動子の負荷時直列共振周波数の周波数微調整を実施することができる。
In the prior art, it is necessary to exchange the load capacitance connected to the crystal unit in the adjustment chamber every time the capacitance value of the desired load capacitance CL * is changed. In the actual fine adjustment of the series resonance frequency when the crystal unit is loaded, dozens of crystal units are accommodated in the adjustment chamber, and the frequency is adjusted by time division processing. It is necessary to prepare the load capacity as many as the number of crystal units. Since these numbers of load capacities are exchanged each time the capacity value of the load capacities is changed, it is very inefficient.
In the present invention, the control executed by the control unit 6 by calculating in advance the target frequency Fr * of the no-load series resonance frequency having a fixed relationship with the on-load series resonance frequency by the processing shown in FIG. By inputting only the target value of the program (target frequency Fr * of the no-load series resonance frequency), it is possible to finely adjust the frequency of the series resonance frequency when the crystal resonator is loaded.

本発明の実施形態に係る周波数調整装置により最終的に周波数の微調整を行い、完成した水晶振動子のサンプルに対し、所望の負荷容量CL*の一例としてCL*=4pFを接続してネットワークアナライザで負荷時直列共振周波数FLを測定した結果を図8に示す。図8は複数の水晶振動子のサンプルについて負荷時直列共振周波数FLを測定し、32.768KHzからの偏差を求めて、その分布を示した図である。全てのサンプルについて負荷時直列共振周波数FLの標準偏差は、±20ppm以内に収まっており、このような小さい容量値の負荷容量の場合においても、負荷時直列共振周波数FLの値は、大きくばらつくことなく求められる。
尚、上述の実施形態においては、発振回路を調整室外に設置した例で説明したが、発振回路が調整室内に設置されてもよいことは明白である。
The frequency adjustment device according to the embodiment of the present invention finely adjusts the frequency finally, and a completed crystal resonator sample is connected to CL * = 4 pF as an example of a desired load capacitance CL * to be a network analyzer. FIG. 8 shows the result of measuring the on-load series resonance frequency FL. FIG. 8 is a diagram showing a distribution obtained by measuring a series resonance frequency FL under load for a plurality of crystal resonator samples and obtaining a deviation from 32.768 KHz. The standard deviation of the load series resonance frequency FL is within ± 20 ppm for all samples, and the load series resonance frequency FL varies greatly even in the case of such a small load capacity. Needed without.
In the above-described embodiment, the example in which the oscillation circuit is installed outside the adjustment chamber has been described. However, it is obvious that the oscillation circuit may be installed in the adjustment chamber.

本発明の効果について、更に検討する。本発明では、水晶振動子の無負荷時直列共振周波数Frを測定し、その測定値を所要の範囲内に収まるように周波数調整を行っているが、この手法は、調整対象となるロットの水晶振動子の特性は、一定の範囲に加工されていることが前提となっている。   The effect of the present invention will be further examined. In the present invention, the no-load series resonance frequency Fr of the crystal resonator is measured, and the frequency adjustment is performed so that the measured value falls within the required range. The characteristics of the vibrator are premised on being processed within a certain range.

すなわち、完成品にした場合に測定される等価直列容量C1と並列容量C0の値は、定められる工程の作業標準に従って製造された場合には、大きくばらつくことはないとの前提で考えられている。仮に、等価直列容量C1や並列容量C0の値が大きく異なったものであったとしてもそれは極僅かであり、工程の異常や、作業のミスなどによって発生したものであり、製造の歩留まりに大きく影響しないとしている。   That is, it is assumed that the values of the equivalent series capacitance C1 and the parallel capacitance C0 measured in the case of a finished product do not vary greatly when manufactured in accordance with the working standard of the determined process. . Even if the values of the equivalent series capacitance C1 and the parallel capacitance C0 are greatly different, it is very small, and it is caused by a process abnormality or a work mistake, which greatly affects the manufacturing yield. Not to do.

図9に、負荷時直列共振周波数FLの値と外観の相異による各種の水晶振動子のサンプルの等価直列容量C1、並列容量C0及び容量比C0/C1(=γ)の平均値と標準偏差(図では偏差と略記している。)との関係を示す。同図において、(a)〜(e)は、1.2mmのシリンダパッケージ型の音叉型水晶振動子である。(a)〜(d)は、それぞれ、発振周波数が異なる。音叉腕の長さが異なり、発振周波数が高くなるに従って、振動腕の長さが短くなり、並列容量C0及び等価直列容量C1の値も小さくなっていく。容量比γ自体の値は増加している。   FIG. 9 shows the average value and standard deviation of the equivalent series capacitance C1, the parallel capacitance C0, and the capacitance ratio C0 / C1 (= γ) of various crystal resonator samples depending on the value of the series resonance frequency FL under load and the difference in appearance. (Abbreviated as deviation in the figure). In the figure, (a) to (e) are 1.2 mm cylinder package type tuning fork type crystal resonators. Each of (a) to (d) has a different oscillation frequency. The length of the tuning fork arm is different, and the length of the vibrating arm is shortened as the oscillation frequency is increased, and the values of the parallel capacitance C0 and the equivalent series capacitance C1 are also decreased. The value of the capacity ratio γ itself is increasing.

(e)の水晶振動子は、(a)のシリンダ型パッケージの水晶振動子をエポキシ樹脂でモールドした表面実装型の水晶振動子である。もとのシリンダ型パッケージのアウターリード部を更に外部電極端子をなすリードフレームに接続した構造をしており、(a)の水晶振動子に比較して、並列容量C0及び等価直列容量C1の値の標準偏差がやや大きくなるが、容量比γの値はあまり変化せず、かつ標準偏差自体も(a)の水晶振動子の場合と同様であり、ばらつきは少ない。   The crystal resonator of (e) is a surface mount type crystal resonator in which the crystal resonator of the cylinder type package of (a) is molded with epoxy resin. It has a structure in which the outer lead portion of the original cylinder type package is further connected to a lead frame that forms an external electrode terminal, and the values of the parallel capacitance C0 and the equivalent series capacitance C1 are compared with the crystal resonator of FIG. However, the value of the capacitance ratio γ does not change so much, and the standard deviation itself is the same as in the case of the crystal resonator of FIG.

図9の(f)の水晶振動子は、2mmのシリンダパッケージ型の音叉型水晶振動子の例であるが、(a)〜(e)の水晶振動子と異なり、故意に振動片の外形寸法を精度悪く製作したものであり、並列容量C0及び等価直列容量C1の値の標準偏差が大きい。図9から明らかなように、(a)の水晶振動子に比して並列容量C0及び等価直列容量C1の値の標準偏差は、10倍以上の値となっている。また、容量比γの標準偏差も大きい。
ところで、負荷時直列共振周波数FLと無負荷時直列共振周波数Frとの関係は既述したように、次式で表された。
9F is an example of a 2 mm cylinder package type tuning fork type crystal resonator. Unlike the crystal resonators of FIGS. 9A to 9E, the external dimensions of the resonator element are intentionally different. Is produced with poor accuracy, and the standard deviation of the values of the parallel capacitance C0 and the equivalent series capacitance C1 is large. As is clear from FIG. 9, the standard deviation of the values of the parallel capacitor C0 and the equivalent series capacitor C1 is 10 times or more as compared with the crystal resonator of FIG. Also, the standard deviation of the capacity ratio γ is large.
Incidentally, as described above, the relationship between the series resonance frequency FL when loaded and the series resonance frequency Fr when no load is expressed by the following equation.

Figure 2008205764
ここで負荷時直列共振周波数FLと無負荷時直列共振周波数Frとの差を無負荷時直列共振周波数Frで除した値(以下、負荷時周波数オフセット量と記す。)DLを導入して、等価定数(C0、C1)との関係を考察する。C1≪C0+CLとすると、負荷時周波数オフセット量DLは、
Figure 2008205764
Here, a value obtained by dividing the difference between the series resonance frequency Fr when loaded and the series resonance frequency Fr when no load is divided by the series resonance frequency Fr when no load is applied (hereinafter referred to as a frequency offset amount when loaded) DL is introduced to obtain an equivalent. Consider the relationship with constants (C0, C1). When C1 << C0 + CL, the load frequency offset amount DL is

Figure 2008205764
となる。上式(14)は、ある特定の並列容量C0及び等価直列容量C1を有する1つの水晶振動子の負荷容量に対する関係を示す式であり、負荷時周波数オフセット量DLの負荷容量CL依存性を示している。この負荷時周波数オフセット量DLの負荷容量CL依存性を示す特性曲線は、CL曲線と呼ばれ、模式的に図10に示す。式(14)において、負荷容量CLが無限大に大きくなるときは、右辺の分母は無限大になり、従って、右辺は0に近づく。このときは、DL=0である。
一方、負荷容量CLが小さくなり、数pFの値に近づくと、負荷時周波数オフセット量DLの値は急激に増加して図10に示す曲線を描くこととなる。
Figure 2008205764
It becomes. The above equation (14) is an equation showing the relationship with respect to the load capacitance of one crystal resonator having a specific parallel capacitance C0 and equivalent series capacitance C1, and shows the load capacitance CL dependence of the load frequency offset amount DL. ing. A characteristic curve indicating the dependency of the load frequency offset amount DL on the load capacitance CL is called a CL curve, and is schematically shown in FIG. In the equation (14), when the load capacity CL increases to infinity, the denominator on the right side becomes infinity, and therefore the right side approaches 0. At this time, DL = 0.
On the other hand, when the load capacitance CL decreases and approaches a value of several pF, the value of the on-load frequency offset amount DL increases rapidly and draws a curve shown in FIG.

負荷時周波数オフセット量DLと等価定数及び負荷容量CLとの関係を大まかに示したのが、図11である。図11は、図9で示した等価定数を有する水晶振動子において、負荷容量CLが4pFと20pFの場合に負荷時周波数オフセット量DLの値がどの程度のレンジ(幅)を持つのかを示している。負荷時周波数オフセット量DLの値のレンジが狭い場合には、本発明による周波数調整装置(または周波数調整方法)で微調整した水晶振動子の周波数が狭い範囲に分布することを示し、逆に負荷時周波数オフセット量DLの値のレンジが広い場合には、完成した水晶振動子の発振周波数が広くばらつくことを示している。   FIG. 11 roughly shows the relationship between the load frequency offset amount DL, the equivalent constant, and the load capacitance CL. FIG. 11 shows the range (width) of the load frequency offset amount DL when the load capacitance CL is 4 pF and 20 pF in the crystal resonator having the equivalent constant shown in FIG. Yes. When the range of the frequency offset amount DL at the time of loading is narrow, it indicates that the frequency of the crystal resonator finely adjusted by the frequency adjusting device (or frequency adjusting method) according to the present invention is distributed in a narrow range, and conversely the load When the range of the value of the hourly frequency offset amount DL is wide, it indicates that the oscillation frequency of the completed crystal resonator varies widely.

図11では、大まかに見積もるために並列容量C0は、その平均値を採用し、容量比γの値は、容量比γの値の平均値に標準偏差の3倍の値を加算した値と、減算した値、即ち、(容量比γの平均値+3σ)と(容量比γの平均値−3σ)の場合を採用した。負荷時周波数オフセット量DLの最大値は、容量比γが(容量比γの平均値−3σ)の時に、負荷時周波数オフセット量DLの最小値は、容量比γが(容量比γの平均値+3σ)の時に与えられる。   In FIG. 11, the parallel capacitor C0 adopts an average value for rough estimation, and the value of the capacity ratio γ is obtained by adding the value of three times the standard deviation to the average value of the capacity ratio γ, Subtracted values, that is, (average value of capacity ratio γ + 3σ) and (average value of capacity ratio γ−3σ) were employed. The maximum value of the load frequency offset amount DL is when the capacity ratio γ is (average value of the capacity ratio γ−3σ), and the minimum value of the load frequency offset amount DL is the capacity ratio γ (the average value of the capacity ratio γ). + 3σ).

図11に示されるように、負荷容量CLが大きい場合(CL=20pF)には、負荷時周波数オフセット量DLのレンジは小さい。したがって、本発明の周波数調整装置(または周波数調整方法)による水晶振動子の直列共振周波数の微調整で周波数のばらつきの範囲は十分小さくできることを示している。   As shown in FIG. 11, when the load capacitance CL is large (CL = 20 pF), the range of the load frequency offset amount DL is small. Therefore, it is shown that the range of frequency variation can be sufficiently reduced by fine adjustment of the series resonance frequency of the crystal resonator by the frequency adjusting device (or frequency adjusting method) of the present invention.

しかし、故意に精度が悪くなるように製作した結果、等価定数のばらつきの大きい(f)の水晶振動子の場合には、負荷時周波数オフセット量DLのレンジが大きく、18.6ppmとなっている。したがって、仕上がりの公差を±10ppmに設定した場合には、歩留まりが低下することが予想される。この場合には、負荷容量を接続して直列共振周波数を調整する従来方法を採用せざるを得ない。   However, as a result of intentionally making the accuracy worse, in the case of the crystal resonator of (f) having a large variation in equivalent constant, the range of the load frequency offset amount DL is large and is 18.6 ppm. . Therefore, when the finishing tolerance is set to ± 10 ppm, the yield is expected to decrease. In this case, a conventional method of adjusting the series resonance frequency by connecting a load capacitor has to be adopted.

負荷容量CLが4pFのように小さい値の場合は、(a)〜(e)の水晶振動子では、負荷時周波数オフセット量DLのレンジが約8〜11ppmの範囲となる。これは、負荷容量CLが、CL=20pFの場合より周波数のばらつき範囲は拡大することを意味するが、公差が±20ppmのような設定の場合は、十分に設定範囲内に調整可能であることを示している。
以上に説明した図11の意味するところをCL曲線で示すと、図12及び図13に示すようになる。図12は、(e)の水晶振動子の場合のCL曲線であり、図13は、(f)の水晶振動子の場合のCL曲線である。
When the load capacitance CL is a small value such as 4 pF, in the crystal resonators (a) to (e), the range of the load frequency offset amount DL is in the range of about 8 to 11 ppm. This means that the frequency variation range is larger than when the load capacitance CL is CL = 20 pF. However, when the tolerance is set to ± 20 ppm, it can be sufficiently adjusted within the setting range. Is shown.
The meaning of FIG. 11 described above is indicated by the CL curve as shown in FIGS. FIG. 12 is a CL curve in the case of the crystal resonator of (e), and FIG. 13 is a CL curve in the case of the crystal resonator of (f).

本発明の実施形態に係る水晶振動子の周波数調整装置の構成を示すブロック図。The block diagram which shows the structure of the frequency adjustment apparatus of the crystal oscillator which concerns on embodiment of this invention. 図1に示した本発明の実施形態に係る水晶振動子の周波数調整装置における加工装置の一例を示す説明図。Explanatory drawing which shows an example of the processing apparatus in the frequency adjustment apparatus of the crystal oscillator based on embodiment of this invention shown in FIG. 図1に示した本発明の実施形態に係る水晶振動子の周波数調整装置における加工装置の他の例を示す説明図。Explanatory drawing which shows the other example of the processing apparatus in the frequency adjustment apparatus of the crystal oscillator based on embodiment of this invention shown in FIG. 図1に示した本発明の実施形態に係る水晶振動子の周波数調整装置において、周波数調整時に必要な制御部内のメモリに予め格納される無負荷時共振周波数の目標周波数値のデータを取得する手順を示すフローチャート。In the frequency adjusting apparatus for a crystal resonator according to the embodiment of the present invention shown in FIG. 1, a procedure for acquiring data of a target frequency value of a no-load resonance frequency stored in advance in a memory in a control unit necessary for frequency adjustment The flowchart which shows. 負荷時直列共振周波数と無負荷時直列共振周波数との関係式の導出過程を説明するための図。The figure for demonstrating the derivation | leading-out process of the relational expression of the series resonance frequency at the time of load, and the series resonance frequency at the time of no load. 図4に示した手順により取得した、水晶振動子に接続されるべき所望の負荷容量の容量値と、それに対応する無負荷時直列共振周波数の目標周波数の値との関係を示すテーブルの内容を示す図。The contents of the table showing the relationship between the capacity value of the desired load capacity to be connected to the crystal unit and the target frequency value of the no-load series resonance frequency corresponding to the crystal capacity obtained by the procedure shown in FIG. FIG. 図1に示した本発明の実施形態に係る水晶振動子の周波数調整装置の動作を示すフローチャート。The flowchart which shows operation | movement of the frequency adjustment apparatus of the crystal oscillator based on embodiment of this invention shown in FIG. 複数の水晶振動子のサンプルについて負荷時直列共振周波数FLを測定し、その測定値の平均値から、標準偏差を求めてその分布を示した図。The figure which measured the on-series resonance frequency FL about the sample of several crystal oscillator, calculated | required the standard deviation from the average value of the measured value, and showed the distribution. 負荷時直列共振周波数FLの値と外観の相異による各種の水晶振動子のサンプルの等価直列容量C1、並列容量C0及び容量比C0/C1の平均値と標準偏差との関係を示す図。The figure which shows the relationship between the average value and standard deviation of the equivalent series capacity | capacitance C1, the parallel capacity | capacitance C0, and the capacitance ratio C0 / C1 of the sample of various crystal oscillators by the difference in the value of the series resonance frequency FL at the time of load, and external appearance. 水晶振動子の負荷時周波数オフセット量DLの負荷容量CL依存性を示すCL曲線を模式的に示した図。The figure which showed typically the CL curve which shows the load capacity CL dependence of the frequency offset amount DL at the time of a crystal oscillator. 図9で示した等価定数を有する水晶振動子において、負荷容量CLが4pFと20pFの場合に負荷時周波数オフセット量DLの値がどの程度のレンジ(幅)を持つのかを示す図。FIG. 10 is a diagram showing a range (width) of a value of a load frequency offset amount DL when the load capacitance CL is 4 pF and 20 pF in the crystal resonator having the equivalent constant shown in FIG. 9. 図11に示したデータに基づいて特定の水晶振動子の場合のCL曲線を示した図。The figure which showed CL curve in the case of a specific crystal oscillator based on the data shown in FIG. 図11に示したデータに基づいて他の水晶振動子の場合のCL曲線を示した図。The figure which showed CL curve in the case of another crystal resonator based on the data shown in FIG. 水晶振動子の等価回路を示す図。The figure which shows the equivalent circuit of a crystal oscillator. 水晶振動子を発振回路に接続した状態を等価的に示した説明図。Explanatory drawing which equivalently showed the state which connected the crystal oscillator to the oscillation circuit. 従来の水晶振動子の周波数調整装置の構成を示すブロック図。The block diagram which shows the structure of the frequency adjustment apparatus of the conventional crystal oscillator.

符号の説明Explanation of symbols

1…調整室
1、22、…、2n…計測基板
3…切替回路
4…周波数カウンタ
5…加工装置
6…制御部
DESCRIPTION OF SYMBOLS 1 ... Adjustment room 2 1 , 2 2 , ... 2 n ... Measurement board 3 ... Switching circuit 4 ... Frequency counter 5 ... Processing device 6 ... Control part

Claims (4)

調整対象である複数の水晶振動子が収容されている調整室と、
複数の水晶振動子が、それぞれ、ケーブルを介して接続される複数の発振回路と、
前記複数の発振回路の発振出力を取り込み、選択的に出力する切替回路と、
前記切替回路から出力される発振回路出力を取り込み、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)を計測する周波数計測手段と、
負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲を予め設定し、前記周波数計測手段の出力を取り込み、計測された調整対象の水晶振動子の無負荷時直列共振周波数(Fr)が目標周波数Fr*を含む所定の周波数範囲内となるように、調整対象の水晶振動子の周波数微調整領域の加工を指示する制御手段と、
前記制御手段の制御出力に基づいて前記調整対象の水晶振動子を加工する加工手段と、
を有することを特徴とする水晶振動子の周波数調整装置。
An adjustment chamber containing a plurality of crystal resonators to be adjusted; and
A plurality of crystal resonators each connected via a cable, a plurality of oscillation circuits;
A switching circuit for capturing and selectively outputting the oscillation outputs of the plurality of oscillation circuits;
A frequency measuring means for taking in an oscillation circuit output outputted from the switching circuit and measuring a no-load series resonance frequency (Fr) having a fixed relationship with a load series resonance frequency (FL);
A predetermined frequency range including the target frequency Fr * of the no-load series resonance frequency (Fr) having a fixed relationship with the load series resonance frequency (FL) is set in advance, and the output of the frequency measuring means is taken in and measured. Instructing the processing of the fine frequency adjustment region of the crystal unit to be adjusted so that the no-load series resonance frequency (Fr) of the crystal unit to be adjusted falls within a predetermined frequency range including the target frequency Fr *. Control means;
Processing means for processing the crystal resonator to be adjusted based on the control output of the control means;
A frequency adjusting device for a crystal resonator, comprising:
前記制御手段は、
複数の水晶振動子のサンプルを計測対象として前記複数の水晶振動子の無負荷時直列共振周波数(Fr)及び水晶振動子の電極間容量と保持器の容量との合成容量である並列容量C0を測定し、かつ前記複数の水晶振動子に基準の負荷容量CLnを接続して各水晶振動子の負荷時直列共振周波数(FL)を測定するとともに、上記測定結果から次式
Figure 2008205764
により前記複数の水晶振動子の各々について直列等価容量C1を算出し、該算出された直列等価容量C1と、上記測定された並列容量C0とから、水晶振動子の直列等価容量C1、並列容量C0の平均値C0(a),C1(a)を算出し、該算出された平均値C0(a),C1(a)と、所望の負荷容量CL*を接続したときに測定して得られる負荷時直列共振周波数(FL)から前記目標周波数Fr*を次式
Figure 2008205764
により算出することを特徴とする請求項1に記載の水晶振動子の周波数調整装置。
The control means includes
A parallel capacitance C0, which is a combined capacity of the no-load series resonance frequency (Fr) of the plurality of crystal resonators and the capacitance between the electrodes of the crystal resonator and the capacitance of the cage, is measured using samples of the plurality of crystal resonators. The reference load capacitance CLn is connected to the plurality of crystal resonators to measure the on-load series resonance frequency (FL) of each crystal resonator.
Figure 2008205764
The series equivalent capacitance C1 is calculated for each of the plurality of crystal resonators, and the series equivalent capacitance C1 and the parallel capacitance C0 of the crystal resonator are calculated from the calculated series equivalent capacitance C1 and the measured parallel capacitance C0. The average value C0 (a), C1 (a) is calculated, and the load obtained by measuring the calculated average value C0 (a), C1 (a) and the desired load capacity CL * is obtained. The target frequency Fr * is calculated from the time series resonance frequency (FL) as follows:
Figure 2008205764
The frequency adjustment device for a crystal resonator according to claim 1, wherein
調整対象である複数の水晶振動子が、それぞれ、ケーブルを介して接続された複数の発振回路の発振出力を取り込み、切替回路により選択的に出力する第1のステップと、
前記切替回路から出力される発振回路出力を取り込み、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)を周波数計測手段により計測する第2のステップと、
制御手段により、負荷時直列共振周波数(FL)と一定の関係にある無負荷時直列共振周波数(Fr)の目標周波数Fr*を含む所定の周波数範囲を予め設定し、かつ前記周波数計測手段の出力を取り込み、計測された調整対象の水晶振動子の無負荷時直列共振周波数(Fr)が目標周波数Fr*を含む所定の周波数範囲内となるように、調整対象の水晶振動子の周波数微調整領域の加工を指示する第3のステップと、
前記制御手段の制御出力に基づいて加工手段により前記調整対象の水晶振動子を加工する第4のステップと、
を有することを特徴とする水晶振動子の周波数調整方法。
A first step in which a plurality of crystal resonators to be adjusted each receive an oscillation output of a plurality of oscillation circuits connected via a cable and selectively output by a switching circuit;
A second step of taking an oscillation circuit output outputted from the switching circuit and measuring a no-load series resonance frequency (Fr) having a fixed relationship with a load series resonance frequency (FL) by a frequency measuring means;
A predetermined frequency range including a target frequency Fr * of the no-load series resonance frequency (Fr) having a fixed relationship with the load series resonance frequency (FL) is preset by the control means, and the output of the frequency measurement means Frequency adjustment region of the crystal resonator to be adjusted so that the no-load series resonance frequency (Fr) of the crystal resonator to be adjusted is within a predetermined frequency range including the target frequency Fr *. A third step for instructing the processing of
A fourth step of processing the crystal resonator to be adjusted by a processing unit based on a control output of the control unit;
A method for adjusting the frequency of a crystal resonator, comprising:
複数の水晶振動子のサンプルを計測対象として前記複数の水晶振動子の無負荷時直列共振周波数(Fr)及び水晶振動子の電極間容量と保持器の容量との合成容量である並列容量C0を測定する第5のステップと、
前記複数の水晶振動子に基準の負荷容量CLnを接続して各水晶振動子の負荷時直列共振周波数(FL)を測定する第6のステップと、
前記第5、第6のステップにおける測定結果から次式
Figure 2008205764
により前記複数の水晶振動子の各々について直列等価容量C1を算出する第7のステップと、
前記第7のステップにおいて算出された直列等価容量C1と、前記第5のステップにおいて測定された並列容量C0とから、水晶振動子の直列等価容量C1、並列容量C0の平均値C0(a),C1(a)を算出する第8のステップと、
前記第8のステップで算出された平均値C0(a),C1(a)と、所望の負荷容量CL*を接続したときに測定して得られる負荷時直列共振周波数(FL)とから前記目標周波数Fr*を次式
Figure 2008205764
により算出する第9のステップと、
を有することを特徴とする請求項3に記載の水晶振動子の周波数調整方法。
A parallel capacitance C0, which is a combined capacity of the no-load series resonance frequency (Fr) of the plurality of crystal resonators and the capacitance between the electrodes of the crystal resonator and the capacitance of the cage, is measured using samples of the plurality of crystal resonators. A fifth step of measuring;
A sixth step of connecting a reference load capacitance CLn to the plurality of crystal resonators and measuring a series resonance frequency (FL) under load of each crystal resonator;
From the measurement results in the fifth and sixth steps,
Figure 2008205764
A seventh step of calculating a series equivalent capacitance C1 for each of the plurality of crystal resonators by:
From the series equivalent capacitance C1 calculated in the seventh step and the parallel capacitance C0 measured in the fifth step, an average value C0 (a) of the series equivalent capacitance C1 and the parallel capacitance C0 of the crystal resonator, An eighth step of calculating C1 (a);
From the average values C0 (a) and C1 (a) calculated in the eighth step and a load series resonance frequency (FL) obtained by measurement when a desired load capacitance CL * is connected, the target The frequency Fr * is
Figure 2008205764
A ninth step of calculating by:
The frequency adjustment method for a crystal resonator according to claim 3, wherein:
JP2007038890A 2007-02-20 2007-02-20 Quartz crystal frequency adjusting device and crystal frequency adjusting method Expired - Fee Related JP4989253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038890A JP4989253B2 (en) 2007-02-20 2007-02-20 Quartz crystal frequency adjusting device and crystal frequency adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038890A JP4989253B2 (en) 2007-02-20 2007-02-20 Quartz crystal frequency adjusting device and crystal frequency adjusting method

Publications (2)

Publication Number Publication Date
JP2008205764A true JP2008205764A (en) 2008-09-04
JP4989253B2 JP4989253B2 (en) 2012-08-01

Family

ID=39782789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038890A Expired - Fee Related JP4989253B2 (en) 2007-02-20 2007-02-20 Quartz crystal frequency adjusting device and crystal frequency adjusting method

Country Status (1)

Country Link
JP (1) JP4989253B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205126A (en) * 2011-03-25 2012-10-22 Citizen Finetech Miyota Co Ltd Frequency measurement method for tuning-fork crystal vibrator, and frequency measurement device
CN112800714A (en) * 2020-12-30 2021-05-14 科大讯飞股份有限公司 Printed circuit board design method and related device
CN116880430A (en) * 2023-09-08 2023-10-13 东晶电子金华有限公司 Control method and system for fine tuning alignment of full-automatic resonator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486553B1 (en) * 2022-07-18 2023-01-09 김광희 Device for adjusting ultrasonic resonance frequency and method for controlling the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181558A (en) * 1994-12-21 1996-07-12 Seiko Epson Corp Piezoelectric element, piezoelectric vibrator, their manufacture and machining device unit
JPH11195946A (en) * 1998-01-06 1999-07-21 Tokki Corp Frequency adjustment device
JPH11355089A (en) * 1998-06-05 1999-12-24 Murata Mfg Co Ltd Manufacture of piezoelectric resonator
JP2002164759A (en) * 2000-11-24 2002-06-07 Daishinku Corp Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method
JP2006086702A (en) * 2004-09-15 2006-03-30 Citizen Miyota Co Ltd Frequency adjuster and adjusting method of tuning fork oscillator, and tuning fork oscillator subjected to frequency adjustment by that method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181558A (en) * 1994-12-21 1996-07-12 Seiko Epson Corp Piezoelectric element, piezoelectric vibrator, their manufacture and machining device unit
JPH11195946A (en) * 1998-01-06 1999-07-21 Tokki Corp Frequency adjustment device
JPH11355089A (en) * 1998-06-05 1999-12-24 Murata Mfg Co Ltd Manufacture of piezoelectric resonator
JP2002164759A (en) * 2000-11-24 2002-06-07 Daishinku Corp Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method
JP2006086702A (en) * 2004-09-15 2006-03-30 Citizen Miyota Co Ltd Frequency adjuster and adjusting method of tuning fork oscillator, and tuning fork oscillator subjected to frequency adjustment by that method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205126A (en) * 2011-03-25 2012-10-22 Citizen Finetech Miyota Co Ltd Frequency measurement method for tuning-fork crystal vibrator, and frequency measurement device
CN112800714A (en) * 2020-12-30 2021-05-14 科大讯飞股份有限公司 Printed circuit board design method and related device
CN112800714B (en) * 2020-12-30 2024-05-31 科大讯飞股份有限公司 Printed circuit board design method and related device
CN116880430A (en) * 2023-09-08 2023-10-13 东晶电子金华有限公司 Control method and system for fine tuning alignment of full-automatic resonator
CN116880430B (en) * 2023-09-08 2023-11-28 东晶电子金华有限公司 Control method and system for fine tuning alignment of full-automatic resonator

Also Published As

Publication number Publication date
JP4989253B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4989253B2 (en) Quartz crystal frequency adjusting device and crystal frequency adjusting method
JP2007043338A (en) Temperature compensated crystal resonator, crystal oscillator, and manufacturing method of temperature compensated crystal resonator
US10284154B1 (en) System and method for generating high-voltage radio frequency signals using an electronically tuned resonator
CN1706098B (en) Frequency regulating method for tuning fork type vibrator and tuning fork type vibrator frequency-regulated by the method
CN108566114B (en) Excitation frequency selection method of ultrasonic transducer
JP2004304766A (en) Oscillation circuit, adjustment method therefor, and mass measurement apparatus using the same
TW201236362A (en) Piezoelectric oscillator
JP2013161666A (en) Mass spectroscope and method of adjusting mass spectroscope
US20140125422A1 (en) Self-oscillation circuit
EP3742612A1 (en) Cryogenic radio-frequency resonator for surface ion traps
KR20180055294A (en) FBAR Oscillator and Gas Sensing System using the FBAR Oscillator
JP6215077B2 (en) Quartz processing apparatus and method
JP2007116563A (en) Crystal oscillator
JP6402883B2 (en) Tuning fork type crystal resonator frequency measuring device and frequency measuring method
JP5326219B2 (en) Method for measuring frequency of piezoelectric vibration element
JP2007192731A (en) Method and apparatus for measuring frequency characteristic
JPH11352162A (en) Frequency characteristic measuring device
JP4228686B2 (en) Piezoelectric vibrator manufacturing apparatus and manufacturing method thereof
JP7265384B2 (en) Frequency dip temperature adjustment method
JP2011142444A (en) Method for manufacturing piezoelectric oscillator, and piezoelectric oscillator
JP6301620B2 (en) Oscillator and method of manufacturing oscillator
US6772491B2 (en) Manufacturing method for ceramic oscillator
US20140041454A1 (en) Piezoelectric resonator, etching amount detecting device, and oscillator
Wang et al. A Comsol analysis of packaging structures and parameters of quartz crystal resonators
JP2011172096A (en) Frequency adjustming device of piezoelectric vibrating device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Ref document number: 4989253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees