JP2011172096A - Frequency adjustming device of piezoelectric vibrating device - Google Patents

Frequency adjustming device of piezoelectric vibrating device Download PDF

Info

Publication number
JP2011172096A
JP2011172096A JP2010035089A JP2010035089A JP2011172096A JP 2011172096 A JP2011172096 A JP 2011172096A JP 2010035089 A JP2010035089 A JP 2010035089A JP 2010035089 A JP2010035089 A JP 2010035089A JP 2011172096 A JP2011172096 A JP 2011172096A
Authority
JP
Japan
Prior art keywords
frequency
adjustment
frequency adjustment
measurement data
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010035089A
Other languages
Japanese (ja)
Inventor
Yoshimi Inami
良実 伊波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2010035089A priority Critical patent/JP2011172096A/en
Publication of JP2011172096A publication Critical patent/JP2011172096A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frequency adjustment device of a piezoelectric vibrating device with high quality and improved productivity. <P>SOLUTION: Frequency signals S2, S3 are transmitted from a frequency adjustment part to frequency counters 21, 22, respectively. As shown in a timing chart, operations for opening gates of the frequency counter circuits for a time 10ms based on a measurement starting signal, closing the gates and then transmitting measurement data to a control part 3 are repeated. The control part 3 receives the measurement data alternately from the frequency counter circuits 21, 22 and compares the measurement data with a preset frequency. On the stage where the measurement data become equal to or higher than the set frequency, the control part 3 transmits a control signal to the frequency adjustment part 1 to finish a frequency adjusting operation on a tuning fork type crystal vibrating element. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子機器に用いられる水晶振動子や水晶発振器等の圧電振動デバイスの周波数調整装置に関するものである。   The present invention relates to a frequency adjusting device for a piezoelectric vibrating device such as a crystal resonator or a crystal oscillator used in an electronic apparatus.

圧電振動デバイスは圧電振動板の表面に金属膜からなる複数の励振電極を形成し、各励振電極に交流電圧を印加することにより、特定の周波数信号を得る構成である。当該圧電振動デバイスは所定の周波数を得るために圧電振動板に対して質量付加または質量減少による周波数調整を行う。例えば、音叉型水晶振動子においては、その振動腕の先端領域に金属膜を形成し、当該金属膜にパーシャル蒸着によって金属材料を追加的に質量付加することにより、当該音叉型水晶振動子の周波数を連続的に低下させ、周波数調整を行っていた。   The piezoelectric vibration device is configured to obtain a specific frequency signal by forming a plurality of excitation electrodes made of a metal film on the surface of a piezoelectric diaphragm and applying an AC voltage to each excitation electrode. The piezoelectric vibrating device performs frequency adjustment by adding mass or decreasing mass to the piezoelectric vibrating plate in order to obtain a predetermined frequency. For example, in a tuning fork type crystal resonator, a metal film is formed on the tip region of the vibrating arm, and a metal material is additionally added to the metal film by partial vapor deposition, so that the frequency of the tuning fork type crystal resonator can be obtained. Was continuously reduced to adjust the frequency.

通常周波数の調整状況は、周波数カウンタ回路でその時点での周波数を測定することにより、所望の周波数になっているか否かをモニタリングし、所望の周波数に達している場合、周波数調整を完了させていた。   Normally, the frequency adjustment status is monitored by measuring the current frequency with a frequency counter circuit, and if it has reached the desired frequency, the frequency adjustment is completed. It was.

特開2007−43549号公報JP 2007-43549 A

ところで、パーシャル蒸着等の質量付加による周波数調整は例えば金属材料等の付加物質を連続的に付加する手法であり、またイオンミリング等の質量減少による周波数調整においても調整用の錘である金属材料が連続的に除去される手法である。このように周波数調整用の質量の加減は連続的に行われる。これに対して前記周波数カウンタ回路による周波数測定には一定時間を必要としていた。このため前記一定時間の初期の段階で設定(目標)周波数に達した場合でも、前記一定時間の終了まで周波数調整作業は続けられることになる。このように周波数測定の一定時間の間に目的の周波数を大きく越えてしまうことがあり、量産時においては全体として周波数バラツキが大きくなり、品質低下を招くことがあった。   By the way, frequency adjustment by mass addition such as partial vapor deposition is a method of continuously adding an additional substance such as a metal material, and the metal material which is an adjustment weight is also used in frequency adjustment by mass reduction such as ion milling. It is a technique that is continuously removed. In this way, the frequency adjustment mass is continuously adjusted. In contrast, frequency measurement by the frequency counter circuit requires a certain time. For this reason, even when the set (target) frequency is reached at the initial stage of the predetermined time, the frequency adjustment operation is continued until the end of the predetermined time. In this way, the target frequency may be greatly exceeded during a certain period of frequency measurement, resulting in a large frequency variation as a whole during mass production, leading to a reduction in quality.

本発明は上記問題点を解決するためになされたもので、品質に優れかつ生産性を向上させた圧電振動デバイスの周波数調整装置を提供するものである。   The present invention has been made to solve the above-described problems, and provides a frequency adjusting device for a piezoelectric vibration device that has excellent quality and improved productivity.

本発明は、上記目的を達成するためになされたもので、請求項1に記載したように、圧電振動素子に周波数調整用の質量を付加することにより、周波数調整を行う圧電振動デバイスの周波数調整装置であって、
圧電振動素子に周波数調整用の質量を付加する周波数調整部と、前記周波数調整部から出力された周波数信号を受け取るとともに、一定時間の間周波数測定する複数の周波数カウンタ回路と、各周波数カウンタ回路で測定した周波数の測定データを受け取るとともに、受け取った信号が設定周波数以下であるか否かを判定し、所定の周波数以下である場合、周波数調整停止信号を周波数調整装置に送信する制御部と、を有し、前記複数の周波数カウンタ回路は、前記周波数調整部からの周波数を測定する一定時間間隔を相互にずらせ、各々前記一定時間の周波数測定後、前記制御部に測定データを送信することを特徴とする圧電振動デバイスの周波数調整装置である。
The present invention has been made in order to achieve the above object. As described in claim 1, the frequency adjustment of a piezoelectric vibration device that performs frequency adjustment by adding a mass for frequency adjustment to the piezoelectric vibration element. A device,
A frequency adjustment unit that adds mass for frequency adjustment to the piezoelectric vibration element, a plurality of frequency counter circuits that receive a frequency signal output from the frequency adjustment unit and measure a frequency for a predetermined time, and each frequency counter circuit A control unit that receives measurement data of the measured frequency, determines whether the received signal is equal to or lower than a set frequency, and transmits a frequency adjustment stop signal to the frequency adjustment device if the received signal is equal to or lower than a predetermined frequency; And the plurality of frequency counter circuits mutually shift a fixed time interval for measuring the frequency from the frequency adjusting unit, and after each frequency measurement for the fixed time, transmits measurement data to the control unit. This is a frequency adjustment device for a piezoelectric vibration device.

上記調整方法によれば、前記複数の周波数カウンタ回路は、前記周波数測定部からの周波数を測定する一定時間間隔を相互にずらせ、各々前記一定時間の測定後、前記制御部に測定データを送信する方法を採用しているので、各周波数カウンタ回路の測定結果を、これまでの半分あるいは半分以下の時間間隔で制御部に送信することができる。制御部では受け取った測定データが所定の周波数以下であるか否かを判定するので、従来より早く、かつ高精度に周波数の測定結果に対する判定をすることができる。   According to the adjustment method, the plurality of frequency counter circuits shift a predetermined time interval for measuring the frequency from the frequency measurement unit, and transmit measurement data to the control unit after each measurement for the predetermined time. Since the method is employed, the measurement result of each frequency counter circuit can be transmitted to the control unit at a time interval that is half or less than half of the time. Since the control unit determines whether or not the received measurement data is equal to or lower than a predetermined frequency, it is possible to determine the frequency measurement result faster and more accurately than in the past.

また請求項2に示すように、圧電振動素子に周波数調整用の質量を減少させることにより、周波数調整を行う圧電振動デバイスの周波数調整装置であって、
圧電振動素子に周波数調整用の質量を減少させる周波数調整部と、前記周波数調整部から出力された周波数信号を受け取るとともに、一定時間の間周波数測定する複数の周波数カウンタ回路と、各周波数カウンタ回路で測定した周波数の測定データを受け取るとともに、受け取った測定データが所定の周波数以上であるか否かを判定し、所定の周波数以上である場合、周波数調整停止信号を周波数調整装置に送信する制御部と、を有し、前記複数の周波数カウンタ回路は、前記周波数調整部からの周波数を測定する一定時間間隔を相互にずらせ、各々前記一定時間の周波数測定後、前記制御部に測定データを送信することを特徴とする圧電振動デバイスの周波数調整装置であってもよい。
According to a second aspect of the present invention, there is provided a frequency adjusting device for a piezoelectric vibrating device that performs frequency adjustment by reducing the frequency adjusting mass in the piezoelectric vibrating element,
A frequency adjustment unit that reduces the frequency adjustment mass in the piezoelectric vibration element, a plurality of frequency counter circuits that receive the frequency signal output from the frequency adjustment unit and measure the frequency for a predetermined time, and each frequency counter circuit A control unit that receives measurement data of the measured frequency, determines whether or not the received measurement data is equal to or higher than a predetermined frequency, and if it is equal to or higher than a predetermined frequency, a control unit that transmits a frequency adjustment stop signal to the frequency adjustment device; And the plurality of frequency counter circuits mutually shift a predetermined time interval for measuring the frequency from the frequency adjusting unit, and after each frequency measurement for the predetermined time, transmits measurement data to the control unit. The frequency adjusting device of the piezoelectric vibration device characterized by the above may be used.

上記調整方法によれば、前記複数の周波数カウンタ回路は、前記周波数測定部からの周波数を測定する一定時間間隔を相互にずらせ、各々前記一定時間の測定後、前記制御部に測定データを送信する方法を採用しているので、各周波数カウンタ回路の測定結果を、これまでの半分あるいは半分以下の時間間隔で制御部に送信することができる。制御部では受け取った測定データが所定の周波数以上であるか否かを判定するので、従来より早く、かつ高精度に周波数の測定結果に対する判定をすることができる。   According to the adjustment method, the plurality of frequency counter circuits shift a predetermined time interval for measuring the frequency from the frequency measurement unit, and transmit measurement data to the control unit after each measurement for the predetermined time. Since the method is employed, the measurement result of each frequency counter circuit can be transmitted to the control unit at a time interval that is half or less than half of the time. Since the control unit determines whether or not the received measurement data is equal to or higher than a predetermined frequency, it is possible to determine the frequency measurement result faster and more accurately than in the past.

本発明によれば、周波数の測定結果に対する判定を早く、かつ高精度に得ることができるので、品質に優れかつ生産性を向上させた圧電振動デバイスの周波数調整装置を得ることができる。   According to the present invention, since it is possible to quickly and highly accurately determine the frequency measurement result, it is possible to obtain a frequency adjusting device for a piezoelectric vibrating device that is excellent in quality and improved in productivity.

本発明による第1の実施形態を示す圧電振動デバイスの周波数調整装置におけるシステム構成を示す図The figure which shows the system configuration | structure in the frequency adjustment apparatus of the piezoelectric vibrating device which shows 1st Embodiment by this invention. 本発明による第1の実施形態を示す周波数調整部を示す図The figure which shows the frequency adjustment part which shows 1st Embodiment by this invention. 図1のシステム構成によるタイミングチャートを示す図The figure which shows the timing chart by the system configuration | structure of FIG. 周波数調整に係る周波数上昇と周波数測定に係る時間間隔を示す図Diagram showing frequency rise for frequency adjustment and time interval for frequency measurement 本発明により周波数調整を行った圧電振動デバイスの分布を示す図The figure which shows distribution of the piezoelectric vibration device which frequency-adjusted by this invention 従来例により周波数調整を行った圧電振動デバイスの分布を示す図The figure which shows the distribution of the piezoelectric vibration device which frequency adjusted by the conventional example

以下、本発明による好ましい実施の形態について図面に基づいて説明する。
本発明による第1の実施の形態について、音叉型水晶振動素子を用いて、イオンミリングにより周波数調整を行う圧電振動デバイスの周波数調整装置を例にとり、図1乃至図5とともに説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
A first embodiment according to the present invention will be described with reference to FIGS. 1 to 5 by taking as an example a frequency adjusting device for a piezoelectric vibrating device that performs frequency adjustment by ion milling using a tuning fork type crystal vibrating element.

本発明による圧電振動デバイスの周波数調整装置は、周波数調整部1と周波数調整部1からの周波数信号を受け取る周波数カウンタ回路21および周波数カウンタ回路22と、各周波数カウンタ回路で測定したデータを受け取る制御部3とからなる。   The frequency adjustment device for a piezoelectric vibration device according to the present invention includes a frequency adjustment unit 1, a frequency counter circuit 21 and a frequency counter circuit 22 that receive frequency signals from the frequency adjustment unit 1, and a control unit that receives data measured by each frequency counter circuit. It consists of three.

周波数調整部1は、開口部を有するパッケージ13に収納された音叉型水晶振動素子132に対して、当該音叉型水晶振動素子132を励振させながらイオンミリングにより周波数調整を行い、調整時の周波数信号を外部に出力する構成である。   The frequency adjusting unit 1 adjusts the frequency of the tuning fork type crystal vibrating element 132 housed in the package 13 having the opening by ion milling while exciting the tuning fork type crystal vibrating element 132, and the frequency signal at the time of adjustment Is output to the outside.

音叉型水晶振動素子132は、図示していないが、一対の振動腕とこれら振動腕の一方を連結する音叉型形状を有し、かつ一方の振動腕の対向する主面に形成された励振電極と他方の振動腕の対向する側面に形成された励振電極とを共通接続し、また一方の振動腕の対向する側面に形成された励振電極と他方の振動腕の対向する主面に形成された励振電極とを共通接続した構成である。当該電極構成により音叉屈曲振動を行う。   Although not shown, the tuning-fork type quartz vibrating element 132 has a tuning-fork type shape that connects a pair of vibrating arms and one of these vibrating arms, and is formed on an opposing main surface of one vibrating arm. And the excitation electrode formed on the opposite side surface of the other vibrating arm are connected in common, and the excitation electrode formed on the opposite side surface of the one vibrating arm and the opposite main surface of the other vibrating arm are formed. In this configuration, the excitation electrode is connected in common. Tuning fork bending vibration is performed by the electrode configuration.

音叉型水晶振動素子132を収納するパッケージ13は開口部を有する箱形構成であり、セラミックからなる多層構成で、音叉型水晶振動素子を保持する電極パッドと、当該電極パッドを外部に導出する外部接続端子131a、131bを有している。   The package 13 that accommodates the tuning fork type crystal resonator element 132 has a box-shaped structure having an opening, and has a multilayer structure made of ceramic, an electrode pad that holds the tuning fork type crystal resonator element, and an external device that leads the electrode pad to the outside. Connection terminals 131a and 131b are provided.

各パッケージはパレット11に収納されている。パレット11は、SUS304ステンレス等からなる金属材やセラミック材等からなり、パッケージ保持用の収納部4aをマトリクス状に配した構成である。また、各収納部4aは上方に開口した凹形状であり、底部にはイオンビームを通過させる小さな開口(イオンビーム透過孔)111が形成されている。なお開口部分はイオンビームBが照射されるので、イオンエッチングに耐性のある材料を用い、パレットを保護する二重構成であってもよい。   Each package is stored in a pallet 11. The pallet 11 is made of a metal material made of SUS304 stainless steel or the like, a ceramic material, or the like, and has a configuration in which storage portions 4a for holding packages are arranged in a matrix. Each storage portion 4a has a concave shape opened upward, and a small opening (ion beam transmission hole) 111 through which an ion beam passes is formed at the bottom. In addition, since the ion beam B is irradiated to the opening portion, a double structure in which a material resistant to ion etching is used to protect the pallet may be used.

パレット11の下方にはイオンガン12が配置されている。イオンガン12は全体として円筒形状であり、内部構成は図示していないが、内部に熱陰極(フィラメント)と当該熱陰極の前面に円筒状に形成された陽極(アノード)と、陽極の前面に設けられた遮蔽グリッドと、その遮蔽グリッドの前面に設けられた加速グリッドと内部に不活性ガスを供給する供給口を有する構成である。この加速グリッドがイオンビームBの放射口となり、イオン粒子がビーム状に放射される。図示していないが、本実施の形態において加速グリッドは複数のグリッド開口を有し、これらグリッド開口が全体として略円形状に配置された構成である。   An ion gun 12 is disposed below the pallet 11. The ion gun 12 has a cylindrical shape as a whole, and the internal configuration is not shown, but a hot cathode (filament), an anode (anode) formed in a cylindrical shape in front of the hot cathode, and a front surface of the anode are provided. A shield grid, an acceleration grid provided in front of the shield grid, and a supply port for supplying an inert gas therein. The acceleration grid serves as a radiation port for the ion beam B, and ion particles are emitted in the form of a beam. Although not shown, in the present embodiment, the acceleration grid has a plurality of grid openings, and these grid openings are arranged in a substantially circular shape as a whole.

イオンガン12の加速グリッドの前面にはシャッタ121が配置されている。シャッタ121はイオンビームBの照射経路中に配置され、シャッタ121の開閉によりイオンビームの音叉型水晶振動素子の励振電極(金属膜)への照射を制御する。本実施例において、シャッタ121はイオンガンの放射面である加速グリッドの平面と平行に配置されているが、非平行状態に配置してもよい。   A shutter 121 is disposed in front of the acceleration grid of the ion gun 12. The shutter 121 is arranged in the irradiation path of the ion beam B, and the irradiation of the ion beam to the excitation electrode (metal film) of the tuning-fork type crystal vibrating element is controlled by opening and closing the shutter 121. In this embodiment, the shutter 121 is arranged in parallel with the plane of the acceleration grid, which is the radiation surface of the ion gun, but may be arranged in a non-parallel state.

発振回路部14は周波数調整中の音叉型水晶振動素子の周波数信号を発生させ、当該周波数信号が後述の逓倍器2aに対して出力される。また、発振回路部14は、真空室内でパッケージの外部接続部131a,131bと当接するコンタクトプローブ141,142を有している。コンタクトプローブは図示しないアクチュエータにより上下動作し、前述の周波数調整動作に対応して動作制御が行われる。なお、コンタクトプローブは一対の端子構成でイオンガンの移動に同期して移動してもよいし、複数のコンタクトプローブの組を用意して、リレー切り換えにより周波数測定部と接続して周波数測定を行ってもよい。発振回路部14により発生させた周波数信号が周波数調整部への出力信号となる。   The oscillation circuit unit 14 generates a frequency signal of the tuning-fork type crystal vibrating element whose frequency is being adjusted, and the frequency signal is output to a multiplier 2a described later. In addition, the oscillation circuit unit 14 includes contact probes 141 and 142 that come into contact with the external connection portions 131a and 131b of the package in the vacuum chamber. The contact probe is moved up and down by an actuator (not shown), and operation control is performed corresponding to the above-described frequency adjustment operation. The contact probe may move in synchronism with the movement of the ion gun with a pair of terminal configurations, or a plurality of contact probe sets may be prepared and connected to the frequency measurement unit by switching the relay to perform frequency measurement. Also good. The frequency signal generated by the oscillation circuit unit 14 becomes an output signal to the frequency adjustment unit.

周波数カウンタ回路21、22は、入力したアナログ信号をデジタル信号(パルス信号)に変換し、そのパルス数を測定(カウント)する構成であり、周波数調整部1から周波数信号を受け取り、音叉型水晶振動素子の周波数を測定する。 具体的には各周波数カウンタ回路21,22の基準クロックに基づくゲート開放時間を設定し、当該ゲート開放時間内に入力したパルス数を測定することにより、調整中の音叉型水晶振動素子の周波数を測定する。測定データは制御部3に送信される。   The frequency counter circuits 21 and 22 are configured to convert an input analog signal into a digital signal (pulse signal) and measure (count) the number of pulses. The frequency counter circuit 21 and 22 receives the frequency signal from the frequency adjustment unit 1, Measure the frequency of the element. Specifically, by setting the gate opening time based on the reference clock of each frequency counter circuit 21, 22 and measuring the number of pulses input within the gate opening time, the frequency of the tuning-fork type crystal vibrating element under adjustment is adjusted. taking measurement. The measurement data is transmitted to the control unit 3.

図3に示すように周波数カウンタ回路21,22は周波数調整部1からの周波数を測定する一定時間間隔を相互にずらせている。具体的には周波数を測定する一定時間(ゲート開放時間)を各々10ms(ミリ秒)に設定した場合、周波数カウンタ回路21のゲート開放から約5ms後に周波数カウンタ回路22のゲート開放を行い、このゲートの開放閉鎖を順次連続的に繰り返す。各周波数カウンタ回路からはゲートを閉じた後、測定した測定データを制御部3に送信し、送信終了後再度ゲートを開放し周波数を測定する。これにより各周波数カウンタ回路21,22からは約5ms毎に制御部に対して測定データを送信することができる。なお、実際上は測定データの送信時間が約1ms程度必要となる。   As shown in FIG. 3, the frequency counter circuits 21 and 22 shift the predetermined time intervals for measuring the frequency from the frequency adjusting unit 1. Specifically, when the fixed time (gate open time) for measuring the frequency is set to 10 ms (milliseconds), the gate of the frequency counter circuit 22 is opened about 5 ms after the gate of the frequency counter circuit 21 is opened. Opening and closing are repeated sequentially. Each frequency counter circuit closes the gate, then transmits the measured measurement data to the control unit 3, and after completing the transmission, opens the gate again to measure the frequency. Thus, the measurement data can be transmitted from the frequency counter circuits 21 and 22 to the control unit about every 5 ms. In practice, the transmission time of measurement data requires about 1 ms.

制御部3は周波数調整部1への調整動作の制御や、周波数カウンタ回路21,22の測定動作の制御や、測定データの受信を行い、受信した測定データと設定(目標)周波数との比較を行う。そして当該比較結果に基づいて音叉型水晶振動素子に対する周波数調整を終了させるか継続させるかを決定する。 The control unit 3 controls the adjustment operation to the frequency adjustment unit 1, controls the measurement operation of the frequency counter circuits 21 and 22, and receives the measurement data, and compares the received measurement data with the set (target) frequency. Do. Then, based on the comparison result, it is determined whether to end or continue the frequency adjustment for the tuning fork type crystal resonator element.

具体的にはイオンミリングのように音叉型水晶振動素子に予め形成された周波数調整用の質量である調整金属膜を減少させることによって周波数調整を行う場合、調整金属膜の減少(除去)によって周波数が上昇する。制御部3は測定開始信号S4、S6をそれぞれ相互にずらせたタイミングで各周波数カウンタ回路に送信し、これにより一方の周波数カウンタ回路が遅延した状態でゲートを開放し、それぞれ一定時間周波数を測定する。各一定時間終了後、それぞれの周波数カウンタ回路からは相互に制御部3に測定データS5,S7が送信される。 Specifically, when frequency adjustment is performed by reducing the adjustment metal film, which is a mass for frequency adjustment formed in advance on the tuning-fork type crystal vibrating element, such as ion milling, the frequency is reduced by reducing (removing) the adjustment metal film. Rises. The control unit 3 transmits the measurement start signals S4 and S6 to each frequency counter circuit at a timing shifted from each other, thereby opening the gate in a state where one frequency counter circuit is delayed, and measuring the frequency for a certain period of time. . After each fixed time, the measurement data S5 and S7 are transmitted to the control unit 3 from the respective frequency counter circuits.

各周波数カウンタ回路21、22から受信した測定データS5、S7と制御部3に記録された設定周波数とを比較し、測定データが設定周波数より高ければ、周波数調整を終了すると判断し、周波数調整部1に調整終了の制御信号を送信する。測定データが設定周波数より低ければ、周波数調整を継続すると判断し、周波数調整部1に調整終了の制御信号を送信しない。これにより周波数調整動作は継続される。なお、設定によって調整継続の制御信号を送信することにより周波数調整動作を継続させてもよい。 The measurement data S5 and S7 received from the frequency counter circuits 21 and 22 are compared with the set frequency recorded in the control unit 3, and if the measurement data is higher than the set frequency, it is determined that the frequency adjustment is finished, and the frequency adjustment unit 1 is sent to the control signal for completion of adjustment. If the measurement data is lower than the set frequency, it is determined that the frequency adjustment is to be continued, and the adjustment end control signal is not transmitted to the frequency adjustment unit 1. Thereby, the frequency adjustment operation is continued. Note that the frequency adjustment operation may be continued by transmitting a control signal for continuing the adjustment according to the setting.

次に圧電振動子の周波数調整装置の実施例を説明する。図2に示すように周波数調整部1においては、励振電極および周波数調整用の質量である調整金属膜が形成された音叉型水晶振動素子132がパッケージに収納された状態で、パレット11に格納されている。パレット11はマトリクス状に収納部4aを有する構成で各収納部にパッケージ13が収納されている。 Next, an embodiment of a frequency adjusting device for a piezoelectric vibrator will be described. As shown in FIG. 2, in the frequency adjustment unit 1, the tuning fork type crystal resonator element 132 formed with the excitation electrode and the adjustment metal film which is the mass for frequency adjustment is stored in the pallet 11 in a state of being stored in the package. ing. The pallet 11 is configured to have the storage portions 4a in a matrix shape, and a package 13 is stored in each storage portion.

これらパレット11はイオンミリングが実施できる真空チャンバ内に配置され、イオンガン2により順次パレット内のパッケージに格納された音叉型水晶振動素子132の調整金属膜に対してイオンビームを照射し、調整金属膜の質量を減少させる。このとき発振回路部14により周波数調整中の音叉型水晶振動素子は励振されており、前記質量の減少に対応して漸次周波数信号が変化(上昇)している。当該周波数信号をパッケージの外部接続電極131a,131bに接触接続されたコンタクトプローブ141,142を介して音叉型水晶振動素子の周波数を測定している。発振回路部14からは前記周波数信号が後述の逓倍器2aに対して出力される。 These pallets 11 are arranged in a vacuum chamber in which ion milling can be performed, and an ion beam is applied to the adjustment metal film of the tuning-fork type crystal vibrating element 132 sequentially stored in the package in the pallet by the ion gun 2 to adjust the adjustment metal film. Reduce the mass of At this time, the tuning-fork type crystal vibrating element whose frequency is being adjusted is excited by the oscillation circuit unit 14, and the frequency signal gradually changes (increases) corresponding to the decrease in the mass. The frequency of the tuning fork type crystal vibrating element is measured via contact probes 141 and 142 in which the frequency signal is contact-connected to the external connection electrodes 131a and 131b of the package. The frequency signal is output from the oscillation circuit unit 14 to a multiplier 2a described later.

測定した周波数は周波数信号S2,S3として周波数カウンタ21,22にそれぞれ送信されるが、当該周波数信号S2,S3は各周波数カウンタ回路の前に配置された逓倍器2aにより逓倍され、当該逓倍された周波数信号が分岐され周波数カウンタ21,22に送信される。例えば周波数が3000倍に逓倍されており、音叉型水晶振動素子の周波数32.768KHzが98.304MHzに逓倍され、周波数カウンタ回路21,22にそれぞれ送信される。このような処理により、前述のゲート開放時間が10msであっても周波数測定の最小単位が1ppmとすることができ、高精度な周波数調整に寄与している。 The measured frequencies are transmitted to the frequency counters 21 and 22 as frequency signals S2 and S3, respectively. The frequency signals S2 and S3 are multiplied by a multiplier 2a arranged in front of each frequency counter circuit, and the multiplied frequency is obtained. The frequency signal is branched and transmitted to the frequency counters 21 and 22. For example, the frequency is multiplied by 3000 times, and the frequency 32.768 KHz of the tuning-fork type crystal vibrating element is multiplied to 98.304 MHz and transmitted to the frequency counter circuits 21 and 22, respectively. By such processing, even if the gate opening time is 10 ms, the minimum unit of frequency measurement can be 1 ppm, which contributes to highly accurate frequency adjustment.

周波数カウンタ回路21,22は図3のタイミングチャートに示すように、測定開始信号に基づき10msの時間に周波数カウンタ回路のゲートの開放を行い、ゲートを閉じた後測定データを制御部3に送信するという動作を繰り返している。前述のとおり 図3に示すように周波数カウンタ回路21,22は周波数調整部1からの周波数を測定する一定時間間隔を相互にずらせている。具体的には周波数を測定する一定時間(ゲート開放時間)を各々10ms(ミリ秒)に設定し、当該設定を各周波数カウンタ回路に記憶させる。この状態で制御部3から周波数カウンタ回路21に対し測定開始信号を送信し、周波数カウンタ回路21は測定開始信号の受信と上記設定に基づき10ms間ゲートを開放する。ゲート開放中はビジー信号(図示せず)を制御部に送信している。 As shown in the timing chart of FIG. 3, the frequency counter circuits 21 and 22 open the gate of the frequency counter circuit at a time of 10 ms based on the measurement start signal, and transmit the measurement data to the control unit 3 after closing the gate. The operation is repeated. As described above, as shown in FIG. 3, the frequency counter circuits 21 and 22 shift the fixed time intervals for measuring the frequency from the frequency adjustment unit 1. Specifically, the fixed time (gate opening time) for measuring the frequency is set to 10 ms (milliseconds), and the setting is stored in each frequency counter circuit. In this state, a measurement start signal is transmitted from the control unit 3 to the frequency counter circuit 21, and the frequency counter circuit 21 opens the gate for 10 ms based on the reception of the measurement start signal and the above setting. While the gate is open, a busy signal (not shown) is transmitted to the control unit.

周波数カウンタ回路21のゲート開放から約5ms後に、制御部3から周波数カウンタ回路22に対し測定開始信号S6を送信し、周波数カウンタ回路22は測定開始信号の受信と上記設定に基づき10ms間ゲートを開放する。ゲート開放中はビジー信号(図示せず)を制御部に送信している。 About 5 ms after the gate opening of the frequency counter circuit 21, the control unit 3 sends a measurement start signal S 6 to the frequency counter circuit 22. The frequency counter circuit 22 opens the gate for 10 ms based on the reception of the measurement start signal and the above setting. To do. While the gate is open, a busy signal (not shown) is transmitted to the control unit.

周波数カウンタ回路21のゲートが閉じた段階で、前記ビジー信号の送信は停止され、当該ビジー信号の停止に基づき、制御部3から読み出し命令信号(図示せず)を周波数カウンタ回路21に送信する。当該読み出し命令信号の受信に基づき、周波数カウンタ回路21から測定した測定データを制御部3に送信する。 When the gate of the frequency counter circuit 21 is closed, the transmission of the busy signal is stopped, and based on the stop of the busy signal, a read command signal (not shown) is transmitted from the control unit 3 to the frequency counter circuit 21. Based on the reception of the read command signal, the measurement data measured from the frequency counter circuit 21 is transmitted to the control unit 3.

また周波数カウンタ回路21のゲートが閉じてから約5ms後、周波数カウンタ回路22のゲートが閉じた段階で、前記ビジー信号の送信は停止され、当該ビジー信号の停止に基づき、制御部3から読み出し命令信号(図示せず)を周波数カウンタ回路22に送信する。当該読み出し命令信号の受信に基づき、周波数カウンタ回路22から測定した測定データを制御部3に送信する。 Further, about 5 ms after the gate of the frequency counter circuit 21 is closed, when the gate of the frequency counter circuit 22 is closed, the transmission of the busy signal is stopped, and a read command is sent from the control unit 3 based on the stop of the busy signal. A signal (not shown) is transmitted to the frequency counter circuit 22. Based on the reception of the read command signal, the measurement data measured from the frequency counter circuit 22 is transmitted to the control unit 3.

このように各周波数カウンタ回路21,22のゲート開放と閉鎖を順次連続的に繰り返す。前述のとおり各周波数カウンタ回路からはゲートを閉じた後、測定した測定データを制御部3に送信し、送信終了後再度ゲートを開放し周波数を測定する。これにより各周波数カウンタ回路21,22からは約5ms毎に制御部に対して測定データを送信することができる。なお、周波数カウンタ回路のゲート開放時間は制御部からの直接的な命令により行う構成としてもよく、制御部からのゲート開放信号とゲート閉鎖信号を所定時間間隔を持って送信し、周波数カウンタ回路の動作を制御してもよい。 Thus, the opening and closing of the gates of the frequency counter circuits 21 and 22 are successively repeated. As described above, after closing the gate from each frequency counter circuit, the measured measurement data is transmitted to the control unit 3, and after the transmission is completed, the gate is opened again to measure the frequency. Thus, the measurement data can be transmitted from the frequency counter circuits 21 and 22 to the control unit about every 5 ms. The gate opening time of the frequency counter circuit may be configured by a direct command from the control unit. The gate opening signal and the gate closing signal from the control unit are transmitted with a predetermined time interval, and the frequency counter circuit The operation may be controlled.

このような周波数カウンタ回路21,22の動作は制御部3の指令により制御される。前述のとおり測定開始信号を送信することにより、周波数カウンタ回路がゲートを開放する。また、ビジー信号の受信停止に基づき読み出し命令信号を周波数カウンタ回路に送信し、当該周波数カウンタ回路からの測定データを受信する。 The operations of the frequency counter circuits 21 and 22 are controlled by a command from the control unit 3. By transmitting the measurement start signal as described above, the frequency counter circuit opens the gate. Further, a read command signal is transmitted to the frequency counter circuit based on the reception stop of the busy signal, and measurement data from the frequency counter circuit is received.

図4はイオンミリングによる周波数調整において、周波数カウンタ回路21,22による周波数測定のタイミングを示すグラフである。周波数カウンタ回路21による測定C21の途中(中間)から周波数カウンタ回路22による測定C22が開始され、交互にずれた状態で周波数測定を行う。周波数測定後、制御部3に測定データを送信しており、測定に係る精度が向上している。 FIG. 4 is a graph showing timing of frequency measurement by the frequency counter circuits 21 and 22 in frequency adjustment by ion milling. The measurement C22 by the frequency counter circuit 22 is started in the middle (intermediate) of the measurement C21 by the frequency counter circuit 21, and the frequency measurement is performed in a state of being alternately shifted. After the frequency measurement, the measurement data is transmitted to the control unit 3, and the accuracy related to the measurement is improved.

図5は本発明による複数個の音叉型水晶振動素子を周波数調整した場合の周波数分布を示す図である。図6に示す従来の複数個の音叉型水晶振動素子を周波数調整した場合の周波数分布に較べてバラツキが抑制され、設定した周波数近傍に集中した状態で周波数調整が行われている。 FIG. 5 is a diagram showing a frequency distribution when the frequency of a plurality of tuning fork type crystal vibrating elements according to the present invention is adjusted. The variation is suppressed as compared with the frequency distribution when the frequency of the conventional tuning fork type crystal resonator elements shown in FIG. 6 is adjusted, and the frequency adjustment is performed in a state of being concentrated in the vicinity of the set frequency.

このように制御部3は周波数カウンタ回路21,22から交互に測定データを受信し、予め設定された設定周波数と比較を行い、設定周波数以上になった段階で周波数調整部1に制御信号を送信し、当該音叉型水晶振動素子に対する周波数調整動作を終了させる。そして、次の音叉型水晶振動素子に対する周波数調整を同様の手順で進める。パレットのすべてのパッケージに収納された音叉型水晶振動素子の周波数調整が終了すると、熱安定化処理等の後工程に移動する。 In this way, the control unit 3 alternately receives measurement data from the frequency counter circuits 21 and 22, compares it with a preset set frequency, and transmits a control signal to the frequency adjustment unit 1 when the set frequency is exceeded. Then, the frequency adjustment operation for the tuning fork type crystal resonator element is terminated. Then, the frequency adjustment for the next tuning-fork type crystal vibrating element is performed in the same procedure. When the frequency adjustment of the tuning fork type crystal vibrating elements stored in all the packages of the pallet is completed, the process proceeds to a subsequent process such as a thermal stabilization process.

なお上記実施の形態および実施例の説明において、イオンミリングにより周波数調整用の質量を減少させる周波数調整の例を示したが、例えば、電子ビーム、レーザービームの照射あるいは微粒子体を調整領域に吹き付けるサンドブラスト法等により周波数調整用の質量を減少させる手法を適用いてもよい。 In the above description of the embodiment and examples, an example of frequency adjustment in which the mass for frequency adjustment is reduced by ion milling has been described. For example, sand blasting that irradiates an adjustment region with an electron beam, a laser beam, or a fine particle body. A method of reducing the frequency adjustment mass by a method or the like may be applied.

また周波数調整用の質量を付加する装置にも適用することができる。具体的には周波数調整領域に金属膜を部分的に形成するパーシャル蒸着法等をあげることができる。このように周波数調整用の質量を付加する場合は、圧電振動素子の周波数が低下することにより調整が進められるので、設定周波数以下になった時点で周波数調整を終了するようにする必要がある。 The present invention can also be applied to an apparatus that adds mass for frequency adjustment. Specifically, a partial vapor deposition method in which a metal film is partially formed in the frequency adjustment region can be used. When adding the mass for frequency adjustment in this way, the adjustment is advanced by lowering the frequency of the piezoelectric vibration element. Therefore, it is necessary to end the frequency adjustment when the frequency becomes lower than the set frequency.

また2つの周波数カウンタ回路を用いたが、3つ以上の周波数カウンタ回路を用い、順次交互に測定を進める構成であってもよい。また周波数カウンタ回路におけるゲート開放時間すなわち周波数測定時間は10msに設定したが、それ以上(例えば12ms)またはそれ以下(例えば8ms)に設定してもよい。10ms以下に設定した場合は周波数測定の精度が低下するおそれがあるが、測定にかかる時間を短くすることができ、生産性向上に寄与する。また10ms以上に設定した場合は周波数測定の精度が向上するが、測定にかかる時間が長くなる。 In addition, although two frequency counter circuits are used, a configuration in which three or more frequency counter circuits are used and measurement is sequentially advanced may be employed. The gate open time in the frequency counter circuit, that is, the frequency measurement time is set to 10 ms, but may be set to be longer (for example, 12 ms) or shorter (for example, 8 ms). If it is set to 10 ms or less, the accuracy of frequency measurement may be reduced, but the time required for measurement can be shortened, which contributes to the improvement of productivity. In addition, when the time is set to 10 ms or more, the accuracy of frequency measurement is improved, but the time required for measurement becomes longer.

また逓倍器により音叉型水晶振動素子の周波数を3000倍に逓倍したが、3000倍以上の逓倍(例えば5000〜10000倍等の逓倍)を行ってもよい。この場合、周波数調整における分解能が高くなり調整精度が向上する。 Further, although the frequency of the tuning fork type crystal resonator element is multiplied by 3000 times by the multiplier, it may be multiplied by 3000 times or more (for example, multiplied by 5000 to 10000 times, etc.). In this case, the resolution in frequency adjustment is increased and the adjustment accuracy is improved.

さらに圧電振動素子として表面実装型のパッケージに収納した音叉型水晶振動素子を例示したが、リード端子付きのベースに接続したシリンダー型の水晶振動子に適用してもよい。また、ATカット水晶振動素子や水晶以外の他の圧電材料の圧電振動素子を用いてもよい。   Further, although a tuning fork type quartz crystal vibrating element housed in a surface mount type package is illustrated as a piezoelectric vibrating element, it may be applied to a cylinder type quartz crystal resonator connected to a base with lead terminals. Further, an AT-cut quartz crystal vibration element or a piezoelectric vibration element made of a piezoelectric material other than quartz may be used.

ATカット水晶振動素子の場合、励振電極上に質量付加の金属膜を形成することにより周波数調整したり、あるいは励振電極の膜厚を一部減少させることにより周波数調整を行う。質量付加の場合、パーシャル蒸着により金属膜を追加形成する例をあげることができる。また、励振電極の膜厚を減少させる場合、イオンミリングにより金属膜を一部除去する例をあげることができる。また水晶振動子以外にも水晶振動素子と発振回路用ICとを収納した水晶発振器に適用してもよい。   In the case of an AT-cut quartz resonator, the frequency is adjusted by forming a mass-added metal film on the excitation electrode, or the frequency is adjusted by partially reducing the thickness of the excitation electrode. In the case of mass addition, an example in which a metal film is additionally formed by partial vapor deposition can be given. Moreover, when reducing the film thickness of an excitation electrode, the example which removes a part of metal film by ion milling can be given. In addition to the crystal resonator, the present invention may be applied to a crystal oscillator that houses a crystal resonator element and an oscillation circuit IC.

なお、本発明は、その精神や主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   It should be noted that the present invention can be implemented in various other forms without departing from the spirit, gist, or main features. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

水晶振動子の量産に適用できる。   Applicable for mass production of crystal units.

1 周波数調整部
21,22 周波数カウンタ回路
3 制御部
DESCRIPTION OF SYMBOLS 1 Frequency adjustment part 21 and 22 Frequency counter circuit 3 Control part

Claims (2)

圧電振動素子に周波数調整用の質量を付加することにより、周波数調整を行う圧電振動デバイスの周波数調整装置であって、
圧電振動素子に周波数調整用の質量を付加する周波数調整部と、
前記周波数調整部から出力された周波数信号を受け取るとともに、一定時間の間周波数測定する複数の周波数カウンタ回路と、
各周波数カウンタ回路で測定した周波数の測定データを受け取るとともに、受け取った信号が設定周波数以下であるか否かを判定し、所定の周波数以下である場合、周波数調整停止信号を周波数調整装置に送信する制御部と、を有し、
前記複数の周波数カウンタ回路は、前記周波数調整部からの周波数を測定する一定時間間隔を相互にずらせ、各々前記一定時間の周波数測定後、前記制御部に測定データを送信することを特徴とする圧電振動デバイスの周波数調整装置。
A frequency adjustment device for a piezoelectric vibration device that performs frequency adjustment by adding a mass for frequency adjustment to the piezoelectric vibration element,
A frequency adjustment unit for adding mass for frequency adjustment to the piezoelectric vibration element;
A plurality of frequency counter circuits that receive the frequency signal output from the frequency adjustment unit and measure the frequency for a predetermined time;
Receives measurement data of the frequency measured by each frequency counter circuit, determines whether or not the received signal is equal to or lower than a set frequency, and transmits a frequency adjustment stop signal to the frequency adjustment device when the frequency is equal to or lower than a predetermined frequency. A control unit,
The plurality of frequency counter circuits mutually shift a predetermined time interval for measuring the frequency from the frequency adjusting unit, and after each frequency measurement for the predetermined time, transmits the measurement data to the control unit. Frequency adjustment device for vibration devices.
圧電振動素子に周波数調整用の質量を減少させることにより、周波数調整を行う圧電振動デバイスの周波数調整装置であって、
圧電振動素子に周波数調整用の質量を減少させる周波数調整部と、
前記周波数調整部から出力された周波数信号を受け取るとともに、一定時間の間周波数測定する複数の周波数カウンタ回路と、
各周波数カウンタ回路で測定した周波数の測定データを受け取るとともに、受け取った測定データが所定の周波数以上であるか否かを判定し、所定の周波数以上である場合、周波数調整停止信号を周波数調整装置に送信する制御部と、を有し、
前記複数の周波数カウンタ回路は、前記周波数調整部からの周波数を測定する一定時間間隔を相互にずらせ、各々前記一定時間の周波数測定後、前記制御部に測定データを送信することを特徴とする圧電振動デバイスの周波数調整装置。
A frequency adjustment device for a piezoelectric vibration device that performs frequency adjustment by reducing a mass for frequency adjustment in a piezoelectric vibration element,
A frequency adjustment unit for reducing the frequency adjustment mass in the piezoelectric vibration element;
A plurality of frequency counter circuits that receive the frequency signal output from the frequency adjustment unit and measure the frequency for a predetermined time;
While receiving the measurement data of the frequency measured by each frequency counter circuit, it is determined whether or not the received measurement data is equal to or higher than a predetermined frequency, and if it is equal to or higher than the predetermined frequency, a frequency adjustment stop signal is sent to the frequency adjustment device. A control unit for transmitting,
The plurality of frequency counter circuits mutually shift a predetermined time interval for measuring the frequency from the frequency adjusting unit, and after each frequency measurement for the predetermined time, transmits the measurement data to the control unit. Frequency adjustment device for vibration devices.
JP2010035089A 2010-02-19 2010-02-19 Frequency adjustming device of piezoelectric vibrating device Pending JP2011172096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035089A JP2011172096A (en) 2010-02-19 2010-02-19 Frequency adjustming device of piezoelectric vibrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035089A JP2011172096A (en) 2010-02-19 2010-02-19 Frequency adjustming device of piezoelectric vibrating device

Publications (1)

Publication Number Publication Date
JP2011172096A true JP2011172096A (en) 2011-09-01

Family

ID=44685735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035089A Pending JP2011172096A (en) 2010-02-19 2010-02-19 Frequency adjustming device of piezoelectric vibrating device

Country Status (1)

Country Link
JP (1) JP2011172096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001434A (en) * 2012-06-19 2014-01-09 Showa Shinku Co Ltd Shutter mechanism, shutter opening/closing method, program, and frequency adjustment apparatus having shutter mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940975A (en) * 1972-08-23 1974-04-17
JPH1161387A (en) * 1997-08-07 1999-03-05 Nec Corp Fine adjusting vapor deposition system and frequency regulating method
JP2002164759A (en) * 2000-11-24 2002-06-07 Daishinku Corp Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940975A (en) * 1972-08-23 1974-04-17
JPH1161387A (en) * 1997-08-07 1999-03-05 Nec Corp Fine adjusting vapor deposition system and frequency regulating method
JP2002164759A (en) * 2000-11-24 2002-06-07 Daishinku Corp Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001434A (en) * 2012-06-19 2014-01-09 Showa Shinku Co Ltd Shutter mechanism, shutter opening/closing method, program, and frequency adjustment apparatus having shutter mechanism

Similar Documents

Publication Publication Date Title
CN1706098B (en) Frequency regulating method for tuning fork type vibrator and tuning fork type vibrator frequency-regulated by the method
US20080129415A1 (en) Piezoelectric resonator, method of manufacturing the same and electronic part using the same
JP3460694B2 (en) Frequency adjusting device and frequency adjusting method for tuning fork vibrator and tuning fork vibrator whose frequency is adjusted by the method
JP2006025396A (en) Surface acoustic wave device, method of manufacturing the same, and electronic equipment
US20120181899A1 (en) Piezoelectric resonator and elastic wave device
JP2602215B2 (en) Frequency adjustment method of piezoelectric vibrator
JP2011172096A (en) Frequency adjustming device of piezoelectric vibrating device
JP2022044545A (en) Crystalline oscillator and start method of crystalline oscillator
JP6564745B2 (en) Film thickness sensor
JP5839219B2 (en) Strong excitation circuit and strong excitation method for piezoelectric element
JP2008078869A (en) Method for manufacturing oscillator
JPH04196708A (en) Frequency adjustment device and method for piezoelectric element
JP2004215226A (en) Frequency adjusting method for surface acoustic wave device and electronic equipment
JP2006086702A (en) Frequency adjuster and adjusting method of tuning fork oscillator, and tuning fork oscillator subjected to frequency adjustment by that method
JP6412384B2 (en) Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device
JP2009303097A (en) Piezoelectric device and manufacturing method thereof
JP5994081B2 (en) Frequency adjusting device, frequency adjusting method and program
JP2007192731A (en) Method and apparatus for measuring frequency characteristic
JP4567488B2 (en) Method for adjusting frequency of piezoelectric device
JP2013168742A (en) Frequency adjustment method for piezoelectric element, piezoelectric device, and electronic apparatus
JPS6220733B2 (en)
JP4724866B2 (en) Apparatus and method for adjusting frequency of piezoelectric device, and piezoelectric device
JP2001177372A (en) Piezoelectric vibrator, frequency adjustment method for the same and processing unit for frequency adjustment
JP4817237B2 (en) Piezoelectric element frequency adjusting device and frequency adjusting method
JP2009239731A (en) Piezoelectric oscillation device, tuning-fork piezoelectric vibration piece, and method for manufacturing tuning-fork piezoelectric vibration piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126