JP2008205276A - Led driving circuit - Google Patents

Led driving circuit Download PDF

Info

Publication number
JP2008205276A
JP2008205276A JP2007040831A JP2007040831A JP2008205276A JP 2008205276 A JP2008205276 A JP 2008205276A JP 2007040831 A JP2007040831 A JP 2007040831A JP 2007040831 A JP2007040831 A JP 2007040831A JP 2008205276 A JP2008205276 A JP 2008205276A
Authority
JP
Japan
Prior art keywords
led
circuit
series connection
signal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007040831A
Other languages
Japanese (ja)
Other versions
JP5258202B2 (en
Inventor
Mitsuo Ohashi
光男 大橋
Iwao Sagara
岩男 相良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2007040831A priority Critical patent/JP5258202B2/en
Priority to US12/442,830 priority patent/US8324816B2/en
Priority to PCT/JP2007/070676 priority patent/WO2008050779A1/en
Publication of JP2008205276A publication Critical patent/JP2008205276A/en
Application granted granted Critical
Publication of JP5258202B2 publication Critical patent/JP5258202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED driving circuit capable of controlling lighting/putting out lights at a high speed by using a current pulse with a narrow width and of supplying a current-carrying current of high precision to an LED series connection circuit. <P>SOLUTION: The LED driving circuit includes: an LED series connection circuit 12 which serially connects many LEDs; a first switching device 13 which controls a current-carrying current of the LED series connection circuit 12; a second switching device 14 in which a cascade connection is carried out between the LED series connection circuit 12 and the first switching device 13; a current detecting resistor 15 which is connected between the first switching device 13 and a ground terminal; a buffer amplifier 19 which is connected to a base terminal of the first switching device 13; a multiplexer 20 which is connected to an input of the buffer amplifier 19 and switches an LED ON signal and an LED OFF signal; and a lighting time control circuit 24 which forms time durations of the LED ON signal and the LED OFF signal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、多数のLEDを直列接続したLED直列接続回路の通電電流をオン・オフ制御し、多数のLEDを一括で点灯および消灯するLED駆動回路に関する。   The present invention relates to an LED drive circuit that performs on / off control of an energization current of an LED series connection circuit in which a large number of LEDs are connected in series, and turns on and off a large number of LEDs at once.

従来から、照明装置などにおいては、多数のLEDを平面にマトリクス状に配置したLEDパネルが用いられている。係るLEDパネルにおいては、多数のLEDが直列接続され、その通電電流を駆動回路のスイッチング素子(トランジスタ)を用いてオン・オフ制御することで、多数のLEDの点灯・消灯を一括して制御することが行われている。
特開平6−77532号公報 特開2004−241908号公報
Conventionally, in lighting devices and the like, LED panels in which a large number of LEDs are arranged in a matrix on a plane are used. In such an LED panel, a large number of LEDs are connected in series, and the ON / OFF control of the energization current using a switching element (transistor) of the drive circuit controls the lighting / extinction of the large number of LEDs collectively. Things have been done.
JP-A-6-77532 JP 2004-241908 A

図6は、従来の一般的なLED駆動回路の例である。直列に多数(n個)のLEDを接続してLED直列接続回路12を構成し、これに直流電源11とスイッチング素子(トランジスタ)13とを直列に接続する。スイッチング素子13にはインバータ回路13aが制御端子(ベース)に接続され、スイッチング素子13をオン・オフ制御する制御信号が供給される。スイッチング素子13にオン信号電圧が供給されると、スイッチング素子13のコレクタ・エミッタ間はオン状態となり、電源11から通電電流が流れ、多数のLEDは一括で点灯する。スイッチング素子13にオフ信号電圧が供給されると、スイッチング素子13のコレクタ・エミッタ間はオフ状態となり、電源11からの通電電流が遮断され、多数のLEDは一括で消灯する。   FIG. 6 is an example of a conventional general LED drive circuit. A large number (n) of LEDs are connected in series to form an LED series connection circuit 12, and a DC power supply 11 and a switching element (transistor) 13 are connected in series thereto. An inverter circuit 13a is connected to the control terminal (base) of the switching element 13 and a control signal for controlling on / off of the switching element 13 is supplied. When the ON signal voltage is supplied to the switching element 13, the collector-emitter of the switching element 13 is turned on, an energizing current flows from the power supply 11, and a large number of LEDs are turned on collectively. When the off signal voltage is supplied to the switching element 13, the collector-emitter between the switching elements 13 is turned off, the energization current from the power source 11 is cut off, and a large number of LEDs are turned off collectively.

しかしながら、従来のLED駆動回路では、トランジスタ13の制御端子に入力する制御電圧がインバータ回路13aを使用しているため、この制約を受け、広範囲に制御電圧を設定できず、また制御精度も良くないという問題がある。また、LED駆動回路では多数のLEDを直列接続するため配線長が長くなり、浮遊インダクタンスおよび浮遊キャパシタンスが大きく、例えば10nS単位の狭幅の電流パルスを用いて高速に点灯・消灯の制御を行うことは難しいという問題があった。   However, in the conventional LED drive circuit, since the control voltage input to the control terminal of the transistor 13 uses the inverter circuit 13a, the control voltage cannot be set in a wide range due to this restriction, and the control accuracy is not good. There is a problem. In addition, in the LED driving circuit, since a large number of LEDs are connected in series, the wiring length becomes long, and the stray inductance and stray capacitance are large. For example, the lighting / extinguishing control can be performed at high speed using a narrow current pulse of 10 nS unit. There was a problem that was difficult.

本発明は上述した事情に基づいてなされたもので、例えば10nS単位の狭幅の電流パルスを用いて高速に点灯・消灯の制御を行なえ、且つ高精度の通電電流をLED直列接続回路に供給することが可能なLED駆動回路を提供することを目的とする。   The present invention has been made based on the above-mentioned circumstances. For example, it is possible to control lighting / extinguishing at high speed using a narrow current pulse in units of 10 nS, and to supply a highly accurate energization current to the LED series connection circuit. It is an object of the present invention to provide an LED driving circuit that can be used.

本発明のLED駆動回路は、多数のLEDを直列接続したLED直列接続回路と、前記LED直列接続回路の通電電流を制御する第1スイッチング素子と、前記LED直列接続回路と前記スイッチング素子との間にカスコード接続された第2スイッチング素子と、前記第1スイッチング素子と接地端子との間に接続された電流検出用抵抗器と、前記スイッチング素子のベース端子に接続したバッファアンプと、前記バッファアンプの入力に接続し、LEDオン信号とオフ信号とを切り換えるマルチプレクサと、前記LEDオン信号とオフ信号との時間を形成する点灯時間制御回路と、を備えたことを特徴とする。   The LED drive circuit of the present invention includes an LED series connection circuit in which a large number of LEDs are connected in series, a first switching element that controls an energization current of the LED series connection circuit, and the LED series connection circuit and the switching element. A second switching element cascode-connected to the first switching element, a current detection resistor connected between the first switching element and a ground terminal, a buffer amplifier connected to a base terminal of the switching element, and a buffer amplifier A multiplexer is connected to the input and switches between an LED on signal and an off signal, and a lighting time control circuit that forms a time between the LED on signal and the off signal.

本発明のLED駆動回路によれば、マルチプレクサを用いてLEDオン信号とオフ信号とを切り換えるので、高速のマルチプレクサと周波数帯域の広いバッファアンプを用いることで、第1スイッチング素子の高速のオン・オフが可能である。そして、LED直列接続回路と第1スイッチング素子との間に、ベース端子に直流バイアス電圧が印加された第2スイッチング素子をカスコード接続することで、いわゆるミラー効果の発生を防止し、LED直列接続回路通電電流の高速のオン・オフが可能となる。   According to the LED drive circuit of the present invention, since the LED on signal and the off signal are switched using the multiplexer, the high-speed multiplexer and the buffer amplifier having a wide frequency band are used, so that the first switching element can be quickly turned on and off. Is possible. Then, the so-called Miller effect is prevented by cascode-connecting the second switching element having a DC bias voltage applied to the base terminal between the LED series connection circuit and the first switching element, and the LED series connection circuit. The energization current can be turned on / off at high speed.

さらに、電流検出用抵抗器と並列にコンデンサを接続することで、LED直列接続回路の浮遊容量の電荷を上記コンデンサに逃がすことができ、これにより高速のスイッチング動作が可能となる。また、点灯時間制御回路は、LEDオン時間とLEDオフ時間とを設定する回路と、オン時間とオフ時間の可変長パルスを形成するカウンタとを備えることで、例えば10nS単位の時間間隔で任意の長さのオン・オフ時間の設定が可能となる。また、マルチプレクサのオン信号端子にD/A変換器の出力を接続することで、広範囲且つ高精度の通電電流の制御が可能であり、マルチプレクサのオフ信号端子に接地電圧を接続することで、高速の消灯が可能となる。   Furthermore, by connecting a capacitor in parallel with the current detection resistor, the charge of the stray capacitance of the LED series connection circuit can be released to the capacitor, thereby enabling a high-speed switching operation. Further, the lighting time control circuit includes a circuit for setting the LED on time and the LED off time, and a counter for forming a variable length pulse of the on time and the off time, so that an arbitrary time interval of, for example, 10 nS can be provided. The length on / off time can be set. In addition, by connecting the output of the D / A converter to the ON signal terminal of the multiplexer, it is possible to control the energizing current over a wide range and with high precision, and by connecting the ground voltage to the OFF signal terminal of the multiplexer, high speed Can be turned off.

従って、本発明のLED駆動回路によれば、高速でLED直列接続回路の点灯・消灯の制御を行なえ、且つ高精度の通電電流をLED直列接続回路に供給することが可能となる。   Therefore, according to the LED drive circuit of the present invention, the LED series connection circuit can be turned on and off at high speed, and a highly accurate energization current can be supplied to the LED series connection circuit.

以下、本発明の実施形態について、添付図面を参照して説明する。図1は、本発明の一実施形態のLED駆動回路を示す。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an LED driving circuit according to an embodiment of the present invention.

LED駆動回路は、直流電源11と、多数のLEDを直列接続したLED直列接続回路12と、LED直列接続回路12の通電電流を制御する第1スイッチング素子(トランジスタ)13と、LED直列接続回路12とスイッチング素子13との間にカスコード接続された第2スイッチング素子(トランジスタ)14と、トランジスタ13のエミッタと接地端子(GND)との間に接続され、LED直列接続回路12の通電電流を検出し、通電電流の検出電圧を発生する電流検出用抵抗器15とを備える。   The LED drive circuit includes a DC power source 11, an LED series connection circuit 12 in which a large number of LEDs are connected in series, a first switching element (transistor) 13 that controls the energization current of the LED series connection circuit 12, and the LED series connection circuit 12. The second switching element (transistor) 14 that is cascode-connected between the switching element 13 and the switching element 13 is connected between the emitter of the transistor 13 and the ground terminal (GND), and the energization current of the LED series connection circuit 12 is detected. And a current detection resistor 15 for generating a detection voltage of the energization current.

LED直列接続回路12は、この実施形態では、n個のLEDを直列接続した回路をm列並列接続し、合計n×m個のLEDを直並列接続した2端子回路である。LEDを直列接続した回路には、それぞれ抵抗rを挿入することが好ましい。これにより、各LED直列接続回路のLED順方向電圧Vfにバラツキが存在しても、各LED直列接続回路にほぼ均等な通電電流を流すことができ、面光源としての明るさの均一性を確保することができる。なおLEDの直列接続数nと、これの並列接続数mはそれぞれ自然数(1,2,3,・・・)としても良い。例として、m=1の場合には、回路一列分のみを駆動する。   In this embodiment, the LED series connection circuit 12 is a two-terminal circuit in which m columns of circuits in which n LEDs are connected in series are connected in parallel, and a total of n × m LEDs are connected in series and parallel. It is preferable to insert a resistor r in each circuit in which LEDs are connected in series. As a result, even if there is a variation in the LED forward voltage Vf of each LED series connection circuit, it is possible to pass a substantially uniform energization current to each LED series connection circuit, ensuring uniformity of brightness as a surface light source. can do. The number n of LEDs connected in series and the number m of parallel connections thereof may be natural numbers (1, 2, 3,...), Respectively. For example, when m = 1, only one circuit row is driven.

LED直列接続回路12は、直流電源11とスイッチング素子(トランジスタ)13とに直列接続されているので、トランジスタ13がオン状態となると各LED直列接続回路にほぼ均等に通電電流が流れ、全LEDが点灯状態となり、トランジスタ13がオフ状態となると通電電流が遮断され、全LEDが消灯状態となる。従って、トランジスタ13をオン・オフ制御することで、全LEDを一括して点灯/消灯することができ、またオン時の通電電流の大きさを制御することで、全LEDを一括して明るさの制御をすることができる。   Since the LED series connection circuit 12 is connected in series to the DC power supply 11 and the switching element (transistor) 13, when the transistor 13 is turned on, an energization current flows through each LED series connection circuit almost evenly, and all the LEDs are connected. When the transistor 13 is turned on and the transistor 13 is turned off, the energization current is cut off and all the LEDs are turned off. Therefore, all the LEDs can be turned on / off collectively by controlling the on / off of the transistor 13, and all the LEDs can be brightened all at once by controlling the magnitude of the energization current when turned on. Can be controlled.

このため、直流電源11の電源電圧Vccは、直列接続した一列分のn個のLEDの点灯電圧(順方向電圧Vf×n個)と、スイッチング素子13,14のオン電圧と、電流検出用抵抗器15に形成される電圧との合計電圧となる。   For this reason, the power supply voltage Vcc of the DC power supply 11 includes the lighting voltage (forward voltage Vf × n) of n LEDs for one column connected in series, the ON voltage of the switching elements 13 and 14, and the current detection resistor. This is the total voltage with the voltage formed in the vessel 15.

次に、トランジスタ13の駆動回路について説明する。トランジスタ13のベース端子には、350MHz程度の帯域幅を有する広帯域バッファアンプ19の出力が接続され、バッファアンプ19には+VDDと−VDDの電源が供給され、略この電圧範囲内でアナログ電圧の出力が可能となっている。バッファアンプ19の入力には、10nSスイッチングおよび250MHz帯域幅を有する高速マルチプレクサ20の出力が接続されている。マルチプレクサ20は入力端子20aのLEDオン(点灯)信号と入力端子20bのLEDオフ(消灯)信号とを、コントローラ20cの制御により切り換えて出力するものである。 Next, a driving circuit for the transistor 13 will be described. The output of a wideband buffer amplifier 19 having a bandwidth of about 350 MHz is connected to the base terminal of the transistor 13, and power supplies of + V DD and −V DD are supplied to the buffer amplifier 19, and the analog voltage is approximately within this voltage range. Can be output. The output of the high speed multiplexer 20 having 10 nS switching and 250 MHz bandwidth is connected to the input of the buffer amplifier 19. The multiplexer 20 switches the LED on (lighting) signal of the input terminal 20a and the LED off (lights off) signal of the input terminal 20b under the control of the controller 20c and outputs them.

マルチプレクサ20の入力端子20aには、8ビットのD/A変換器21と8ビットの明るさ設定回路22とが接続されている。従って、明るさ設定回路22の8ビットのデジタル信号の組合せにより、D/A変換器21から256段階のアナログ電圧の出力が可能である。マルチプレクサ20の他方の入力端子20bには、接地端子が接続され、GND電圧が出力される。なお、入力端子20bには、負電圧を接続し、トランジスタ13のベース端子から電流を抜くことでより高速の消灯動作が行える。   An 8-bit D / A converter 21 and an 8-bit brightness setting circuit 22 are connected to the input terminal 20 a of the multiplexer 20. Therefore, 256 levels of analog voltage can be output from the D / A converter 21 by a combination of 8-bit digital signals from the brightness setting circuit 22. A ground terminal is connected to the other input terminal 20b of the multiplexer 20, and a GND voltage is output. Note that a negative voltage is connected to the input terminal 20b, and a current can be extracted from the base terminal of the transistor 13, whereby a faster light-off operation can be performed.

コントローラ20cには、カウンタ24が接続されLED直列接続回路のオン(点灯)とオフ(消灯)の時間を制御する。すなわち、コントローラ20cからオン信号が出力されるとマルチプレクサ20の出力が入力端子20aに切り換えられ、D/A変換器21から出力されるアナログ電圧がバッファアンプ19を介してスイッチング素子13のベース端子に供給され、ベース電圧に対応した通電電流がオン信号の期間中にLED直列接続回路12に流れる。コントローラ20cからオフ信号が出力されるとマルチプレクサ20の出力が入力端子20bに切り換えられ、GND電圧がバッファアンプ19を介してトランジスタ13のベース端子に供給され、トランジスタ13はオフ状態となり、オフ信号の期間中に、LED直列接続回路12に流れる通電電流が遮断される。   A counter 24 is connected to the controller 20c to control the on (lighting) and off (light extinguishing) time of the LED series connection circuit. That is, when an ON signal is output from the controller 20c, the output of the multiplexer 20 is switched to the input terminal 20a, and the analog voltage output from the D / A converter 21 is applied to the base terminal of the switching element 13 via the buffer amplifier 19. The supplied current corresponding to the base voltage flows to the LED series connection circuit 12 during the ON signal period. When the off signal is output from the controller 20c, the output of the multiplexer 20 is switched to the input terminal 20b, the GND voltage is supplied to the base terminal of the transistor 13 via the buffer amplifier 19, the transistor 13 is turned off, and the off signal During the period, the energization current flowing through the LED series connection circuit 12 is interrupted.

すなわち、オン・オフ時間設定回路23a,23bにLED点灯のサイクルタイムとデューティ比が設定され、カウンタ24によりクロック源25からの例えば単位時間10nSのパルスが計数され、オン・オフ時間設定回路に設定したLEDのオン時間およびオフ時間の可変長パルスが形成され、コントローラ20cに出力される。従って、コントローラ20cは、LEDのオン時間設定回路23aおよびオフ時間設定回路23bにより設定されたタイミングで、マルチプレクサの入力端子を切り換え、LEDのオン信号およびオフ信号を出力する。   That is, the LED lighting cycle time and duty ratio are set in the on / off time setting circuits 23a and 23b, and the counter 24 counts, for example, a unit time of 10 nS pulses from the clock source 25, and sets it in the on / off time setting circuit. The variable on-time and off-time pulses of the LED are formed and output to the controller 20c. Therefore, the controller 20c switches the input terminal of the multiplexer at the timing set by the LED on-time setting circuit 23a and the off-time setting circuit 23b, and outputs the LED on signal and the off signal.

これにより、LEDのオン時間及びオフ時間を0〜48Hの範囲で10nSの整数倍(N倍)にて設定可能となり点滅周期は20nS〜48Hの範囲で10nS単位にて設定可能となる。従って点滅周期と点灯時間の比であるデューティ比も変更可能となる。但し、整数倍数Nは、0〜2^48程度とする。   As a result, the ON time and OFF time of the LED can be set in an integer multiple (N times) of 10 nS in the range of 0 to 48H, and the blinking period can be set in units of 10 nS in the range of 20 nS to 48H. Therefore, the duty ratio, which is the ratio between the blinking period and the lighting time, can also be changed. However, the integer multiple N is about 0 to 2 ^ 48.

次に、電流検出用抵抗器15の動作について説明する。図2は、抵抗器15の抵抗をRとしたときの第1スイッチング素子(トランジスタ)13の周辺の等価回路を示す。トランジスタ13のベース電圧Vbと、エミッタ電圧Veと、コレクタ電流Icと、エミッタ電流Ieと、ベース電流Ibとの関係は、(1)−(3)式に示すとおりとなる。
Vb=Vbe+R×Ie (1)
但し、Vbeはトランジスタのベース・エミッタ電圧、Ve=R×Ie
Ie=Ib+Ic (2)
Ic=hFE×Ib (3)
但し、hFEはトランジスタの電流増幅率
Next, the operation of the current detection resistor 15 will be described. FIG. 2 shows an equivalent circuit around the first switching element (transistor) 13 when the resistance of the resistor 15 is R. The relationship among the base voltage Vb, the emitter voltage Ve, the collector current Ic, the emitter current Ie, and the base current Ib of the transistor 13 is as shown in equations (1)-(3).
Vb = Vbe + R × Ie (1)
Where Vbe is the base-emitter voltage of the transistor, Ve = R × Ie
Ie = Ib + Ic (2)
Ic = h FE × Ib (3)
Where h FE is the transistor current gain

従って、(1)より、
Ie=(Vb−Vbe)/R (4)
(2)(3)より、
Ie=(1/hFE+1)×Ic (5)
ところで、例えばトランジスタ(2SC5610)では、hFEは150〜300であるので、(1/hFE+1)≒1であり、
Ie≒Ic (6)
従って、
Ic≒(Vb−Vbe)/R (7)
となる。
Therefore, from (1)
Ie = (Vb−Vbe) / R (4)
(2) From (3)
Ie = (1 / h FE + 1) × Ic (5)
Incidentally, for example, the transistor (2SC5610), since h FE is 150 to 300, a (1 / h FE +1) ≒ 1,
Ie≈Ic (6)
Therefore,
Ic≈ (Vb−Vbe) / R (7)
It becomes.

例えばトランジスタ(2SC5610)では、Vbeは0.7−1.0Vであり、Vbは0−4.5Vの範囲で微調整可能とし、(Vb−Vbe)を一定とすると、コレクタ電流Icは抵抗Rに略反比例することになる。例えば、(Vb−Vbe)を3Vに調整し、抵抗Rを1Ωとすると、コレクタ電流Icは3Aとなり、抵抗Rを10Ωとすると、コレクタ電流Icは0.3Aとなり、ベース電圧Vbを一定とすると定電流回路を構成することになる。   For example, in the transistor (2SC5610), Vbe is 0.7-1.0V, Vb can be finely adjusted in the range of 0-4.5V, and (Vb-Vbe) is constant, the collector current Ic is the resistance R Is approximately inversely proportional to For example, if (Vb−Vbe) is adjusted to 3V and the resistance R is 1Ω, the collector current Ic is 3A, and if the resistance R is 10Ω, the collector current Ic is 0.3A and the base voltage Vb is constant. A constant current circuit is formed.

しかしながら、ベース電圧Vbは、下記のように調整可能である。すなわち、マルチプレクサ20の入力端子20aには、8ビットのD/A変換器21と8ビットの明るさ設定回路22とが接続され、明るさ設定回路22の8ビットのデジタル信号の組合せにより、D/A変換器21から等間隔で256段階のアナログ電圧の出力がバッファアンプ19を介してトランジスタ13のベース端子に出力される。従って、この実施形態では、8ビットのD/A変換器21と8ビットの明るさ設定回路22とにより、バッファアンプ19の電源+VDDと−VDDの範囲で、等間隔の256ステップにベース電圧Vbを設定することが可能である。 However, the base voltage Vb can be adjusted as follows. That is, an 8-bit D / A converter 21 and an 8-bit brightness setting circuit 22 are connected to the input terminal 20a of the multiplexer 20, and the combination of the 8-bit digital signals of the brightness setting circuit 22 determines D An analog voltage output in 256 steps from the / A converter 21 at equal intervals is output to the base terminal of the transistor 13 via the buffer amplifier 19. Therefore, in this embodiment, the 8-bit D / A converter 21 and the 8-bit brightness setting circuit 22 are based on 256 steps at equal intervals in the range of the power supply + V DD and −V DD of the buffer amplifier 19. It is possible to set the voltage Vb.

一例として、ベース電圧Vbは0−4.5Vの範囲で調整可能となっていて、これにより(7)式に従って、LED直列接続回路12の通電電流(コレクタ電流Ic)の調整が可能となる。例えば、抵抗Rを1Ωとし、(Vb−Vbe)を1Vとすると1Aの通電電流が得られ、(Vb−Vbe)を3Vとすると3Aの通電電流が得られる。このように、D/A変換器21を備えることで、高精度且つ広範囲に通電電流の調整が可能である。   As an example, the base voltage Vb can be adjusted in the range of 0 to 4.5 V, and accordingly, the energization current (collector current Ic) of the LED series connection circuit 12 can be adjusted according to the equation (7). For example, if the resistance R is 1Ω and (Vb−Vbe) is 1V, an energization current of 1A is obtained, and if (Vb−Vbe) is 3V, an energization current of 3A is obtained. Thus, by providing the D / A converter 21, it is possible to adjust the energization current with high accuracy and in a wide range.

次に、カスコード接続したトランジスタ14の動作について説明する。図3(a)に示すように、従来の回路構成では、トランジスタ13のコレクタ・ベース間の寄生容量Cbc1によりミラー効果が生じ、回路の周波数特性においてカットオフ周波数が低下し、スイッチング速度が低下するという問題がある。   Next, the operation of the cascode-connected transistor 14 will be described. As shown in FIG. 3A, in the conventional circuit configuration, the mirror effect is generated by the parasitic capacitance Cbc1 between the collector and the base of the transistor 13, the cut-off frequency is lowered in the frequency characteristics of the circuit, and the switching speed is lowered. There is a problem.

すなわち、従来のエミッタ接地のトランジスタ増幅回路の等価回路は、図3(b)に示すようになる。このため、見かけ上のトランジスタ13の入力容量Ciは、
Ci=Cbc1×(1+Av)
となる。
但し、Cbc1:トランジスタ13のコレクタ・ベース間容量、Av:トランジスタ13の電圧利得(ゲイン)。
従って、図3(b)に示す等価増幅回路の電圧利得A1は、
A1=Vo/Vs=Av/(1+2πf×Ci×Rs×j)
で表される。但し、f:周波数、Rs:信号源内部抵抗、j:虚数。
That is, an equivalent circuit of a conventional transistor grounding circuit with a common emitter is as shown in FIG. Therefore, the apparent input capacitance Ci of the transistor 13 is
Ci = Cbc1 × (1 + Av)
It becomes.
Where Cbc 1 is the collector-base capacitance of the transistor 13, Av is the voltage gain of the transistor 13.
Therefore, the voltage gain A1 of the equivalent amplifier circuit shown in FIG.
A1 = Vo / Vs = Av / (1 + 2πf × Ci × Rs × j)
It is represented by Where f: frequency, Rs: signal source internal resistance, j: imaginary number.

このLED駆動回路においては、図1に示すように、LED直列接続回路12とスイッチング素子13との間にカスコード接続された第2スイッチング素子(トランジスタ)14を備える。このため、トランジスタ13のコレクタ電圧Vc1は、トランジスタ14がカスコード接続されているので、
Vc1=Vbi−Vbe2
となり、一定値に固定される。但し、Vbi:トランジスタ14のベースバイアス電圧、Vbe2:トランジスタ14のベース・エミッタ間電圧。
As shown in FIG. 1, the LED drive circuit includes a second switching element (transistor) 14 that is cascode-connected between the LED series connection circuit 12 and the switching element 13. For this reason, since the collector voltage Vc1 of the transistor 13 is cascode-connected to the transistor 14,
Vc1 = Vbi-Vbe2
And is fixed at a constant value. Where Vbi is the base bias voltage of the transistor 14, and Vbe2 is the base-emitter voltage of the transistor 14.

トランジスタ13のコレクタ・ベース間の容量端子間の電圧はVc1−Vb1となり、ミラー効果は発生しない。よって、ベース端子での見かけ上の入力容量もCbc1となるため、その等価回路は図3(c)に示すようになる。
このため、等価増幅回路の電圧利得A2は、
A2=Vo/Vs=Av/(1+2πf×Cbc1×Rs×j)
で表される。但し、f:周波数、Rs:信号源内部抵抗、j:虚数。
The voltage between the collector terminal and the base terminal of the transistor 13 is Vc1-Vb1, and the mirror effect does not occur. Therefore, the apparent input capacitance at the base terminal is also Cbc1, and its equivalent circuit is as shown in FIG.
Therefore, the voltage gain A2 of the equivalent amplifier circuit is
A2 = Vo / Vs = Av / (1 + 2πf × Cbc1 × Rs × j)
It is represented by Where f: frequency, Rs: signal source internal resistance, j: imaginary number.

カットオフ周波数は、従来例をfc1,本カスコード接続例をfc2とすると、それぞれ、
fc1=1/(2π×Ci×Rs)
fc2=1/(2π×Cbc1×Rs)
となる。
The cutoff frequency is fc1, and the cascode connection example is fc2, respectively.
fc1 = 1 / (2π × Ci × Rs)
fc2 = 1 / (2π × Cbc1 × Rs)
It becomes.

従って、本例のカットオフ周波数fc2と、従来例のカットオフ周波数fc1との比を算定すると、
fc2/fc1=Ci/Cbc1=1+A
となり、略電圧利得Aに相当する分だけ、カットオフ周波数が改善されることになる。換言すれば、狭幅のパルス電流を印加することが可能となり、LEDを高速で点灯・消灯させることが可能となる。
Therefore, when the ratio between the cutoff frequency fc2 of this example and the cutoff frequency fc1 of the conventional example is calculated,
fc2 / fc1 = Ci / Cbc1 = 1 + A
Thus, the cutoff frequency is improved by an amount corresponding to the voltage gain A. In other words, a narrow pulse current can be applied, and the LED can be turned on / off at high speed.

次に、図1におけるダイオード26について説明する。このLED駆動回路においては、LED直列接続回路12に並列にダイオード26を接続している。一般に配線には寄生インダクタンスが存在するが、LED直列接続回路12は多数のLEDが直列接続された回路であり、配線長が特に長くなり、大きな寄生インダクタンスが存在する。このため、図4(a)に示すような等価回路となり、LED直列接続回路12の等価寄生インダクタンスをLとすると、LEDを点灯状態から消灯状態とする際に、寄生インダクタンスLによる逆起電圧Vrが発生する。
Vr=L×(ΔIc/Δt)
Next, the diode 26 in FIG. 1 will be described. In this LED drive circuit, a diode 26 is connected in parallel to the LED series connection circuit 12. Generally, there is a parasitic inductance in the wiring, but the LED series connection circuit 12 is a circuit in which a large number of LEDs are connected in series, the wiring length is particularly long, and there is a large parasitic inductance. For this reason, an equivalent circuit as shown in FIG. 4A is obtained. When the equivalent parasitic inductance of the LED series connection circuit 12 is L, the counter electromotive voltage Vr caused by the parasitic inductance L when the LED is turned off. Will occur.
Vr = L × (ΔIc / Δt)

この逆起電圧Vrは、特に高速スイッチングの際に高くなり、トランジスタ13のコレクタに印加される電圧Vswは、以下のとおりとなる。
Vsw=Vcc+Vr−Vf×n
但し、Vcc:電源電圧、Vf:LEDの順方向電圧、n:LED段数
このため、トランジスタ13のコレクタに印加される電圧Vswが、トランジスタ13のコレクタ・エミッタ間絶対最大定格電圧VCEOを超えると、トランジスタ13を損壊させることになる。
This counter electromotive voltage Vr becomes high particularly during high-speed switching, and the voltage Vsw applied to the collector of the transistor 13 is as follows.
Vsw = Vcc + Vr−Vf × n
However, Vcc: power source voltage, Vf: forward voltage of the LED, n: LED number Therefore, the voltage Vsw applied to the collector of the transistor 13 exceeds the absolute maximum rated voltage V CEO between the collector and the emitter of the transistor 13 The transistor 13 is damaged.

図4(b)に示すように、LED直列接続回路12に並列にダイオード26を接続することで、逆起電力Vrが発生しても、これをダイオード26を通る循環電流として逃がすことができ、トランジスタ13のコレクタ・エミッタ間に逆起電力Vrは印加されない。従って、LED直列接続回路12に並列にダイオード26を接続することで、ダイオード26が通電電流の高周波成分に対してバイパス回路を構成することとなり、LED駆動回路の高速化に寄与するものと考えられる。   As shown in FIG. 4B, by connecting the diode 26 in parallel to the LED series connection circuit 12, even if the back electromotive force Vr is generated, it can be released as a circulating current through the diode 26, The back electromotive force Vr is not applied between the collector and emitter of the transistor 13. Therefore, by connecting the diode 26 in parallel to the LED series connection circuit 12, the diode 26 constitutes a bypass circuit for the high-frequency component of the energization current, which is considered to contribute to speeding up the LED drive circuit. .

次に、図1におけるコンデンサ27について説明する。一般に配線には対GND間などに浮遊容量が存在するが、LED直列接続回路12は多数のLEDが直列接続された回路であり、配線長が特に長くなり、大きな浮遊容量が存在する。このため、LEDを点灯または消灯させるために、スイッチング素子をオン・オフしても、LEDが実際に点灯または消灯する際に遅延時間が発生し、高速(短時間)に点灯または消灯を行えないという問題がある。換言すれば、浮遊容量の充電時間等が遅延時間となる。   Next, the capacitor 27 in FIG. 1 will be described. In general, the wiring has a stray capacitance between GND and the like, but the LED series connection circuit 12 is a circuit in which a large number of LEDs are connected in series, and the wiring length is particularly long, and a large stray capacitance exists. For this reason, even if the switching element is turned on / off to turn on / off the LED, a delay time occurs when the LED is actually turned on / off, and cannot be turned on / off at high speed (short time). There is a problem. In other words, the charge time of the stray capacitance is the delay time.

従来例の等価回路を図5(a)に示す。浮遊容量をCf、通電電流(コレクタ電流)をIc、LEDを消灯状態から点灯状態とする浮遊容量Cfの電圧変化をΔV、LEDに流れる電流を無視すると、
Ton=ΔV×Cf/Ic
となり、これが遅延時間となる。例えば、ΔV=5V、Cf=1000pF、Ic=10mAとすると、遅延時間Tonは5×10−7(sec)となる。
An equivalent circuit of the conventional example is shown in FIG. If the stray capacitance is Cf, the energization current (collector current) is Ic, the voltage change of the stray capacitance Cf that turns the LED from the unlit state to the lit state is ΔV, and the current flowing through the LED is ignored,
Ton = ΔV × Cf / Ic
This is the delay time. For example, when ΔV = 5 V, Cf = 1000 pF, and Ic = 10 mA, the delay time Ton is 5 × 10 −7 (sec).

本発明では、この遅延時間を短縮するため、LED直列接続回路12に並列にコンデンサ27(容量C)を接続している。この等価回路を図5(b)(c)に示す。LEDを消灯状態から点灯状態とするときの過渡応答は、図5(c)から浮遊容量Cfの電荷(初期電圧V1)がオン状態のトランジスタ13(オン抵抗Ron)を介して追加のコンデンサCに流入すると考えられ、下式により表現できる。
Cf×Vf=Cf×V1×(1+exp(−t×2/Ron/C))/2
In the present invention, in order to shorten this delay time, a capacitor 27 (capacitance C) is connected in parallel to the LED series connection circuit 12. This equivalent circuit is shown in FIGS. The transient response when the LED is switched from the OFF state to the ON state is as shown in FIG. 5C from the additional capacitor C via the transistor 13 (ON resistance Ron) in which the charge (initial voltage V1) of the stray capacitance Cf is ON. It is considered to flow in and can be expressed by the following equation.
Cf × Vf = Cf × V1 × (1 + exp (−t × 2 / Ron / C)) / 2

簡便のため、C=Cfとし、LEDに流れる電流を無視すると、
Vf=V1×(1+exp(−t×2/Ron/C))/2
これをt(秒)で解くと、
t=Ron×C×ln(V1/(2×Vf−V1))/2
となる。
For simplicity, if C = Cf and the current flowing through the LED is ignored,
Vf = V1 × (1 + exp (−t × 2 / Ron / C)) / 2
Solving this in t (seconds)
t = Ron × C × ln (V1 / (2 × Vf−V1)) / 2
It becomes.

例えば、Ron=100mΩ、C=1000pF、Cfの変化電圧ΔV=V1/3、として、消灯状態から点灯状態に移行するまでの時間をTonとすると、
Ton=5.5×10−11(秒)
となる。
従って、コンデンサCを電流検出用抵抗と並列に接続することで、約9000倍高速にスイッチングすることが可能となる。
For example, assuming that Ron = 100 mΩ, C = 1000 pF, Cf change voltage ΔV = V1 / 3, and the time from the turn-off state to the lighting state is Ton,
Ton = 5.5 × 10 −11 (seconds)
It becomes.
Therefore, by connecting the capacitor C in parallel with the current detection resistor, it becomes possible to perform switching approximately 9000 times faster.

一方、LEDを消灯させる際には、コンデンサ27が充電状態なため、トランジスタ13のベースに低い電圧(例えばGND電圧)を印加すると、コンデンサ27の端子間電圧(VC)分がトランジスタ13に対して逆バイアス電圧になるため、高速にトランジスタ13をオフ状態に遷移可能となる。従って、短時間(高速)にLEDを消灯することが可能となる。   On the other hand, when the LED is turned off, since the capacitor 27 is in a charged state, when a low voltage (for example, a GND voltage) is applied to the base of the transistor 13, the voltage across the terminal (VC) of the capacitor 27 is Since the reverse bias voltage is set, the transistor 13 can be switched to the OFF state at high speed. Therefore, the LED can be turned off in a short time (high speed).

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明の一実施形態のLED駆動回路の回路図である。It is a circuit diagram of the LED drive circuit of one Embodiment of this invention. 電流検出用抵抗器の周辺の等価回路図である。It is an equivalent circuit diagram around the resistor for current detection. カスコード接続したトランジスタの動作について説明する回路図である。It is a circuit diagram explaining the operation of a cascode-connected transistor. LED直列接続回路に並列に接続したダイオードの動作について説明する回路図である。It is a circuit diagram explaining the operation | movement of the diode connected in parallel with the LED serial connection circuit. 電流検出用抵抗器に並列に接続したコンデンサの動作について説明する回路図である。It is a circuit diagram explaining operation | movement of the capacitor | condenser connected in parallel with the resistor for electric current detection. 従来のLED駆動回路の一例を示す回路図である。It is a circuit diagram which shows an example of the conventional LED drive circuit.

符号の説明Explanation of symbols

11 直流電源
12 LED直列接続回路(LEDアレイ)
13 スイッチング素子(トランジスタ)
13a インバータ回路
14 スイッチング素子(トランジスタ)
15 電流検出用抵抗器
19 バッファアンプ
20 マルチプレクサ
20a,20b 入力端子
20c コントローラ
21 D/A変換器
22 明るさ設定回路
23a,23b オン・オフ時間設定回路
24 カウンタ(点灯時間制御回路)
25 クロック源
26 ダイオード
27 コンデンサ
11 DC power supply 12 LED series connection circuit (LED array)
13 Switching elements (transistors)
13a Inverter circuit 14 Switching element (transistor)
DESCRIPTION OF SYMBOLS 15 Current detection resistor 19 Buffer amplifier 20 Multiplexer 20a, 20b Input terminal 20c Controller 21 D / A converter 22 Brightness setting circuit 23a, 23b On / off time setting circuit 24 Counter (lighting time control circuit)
25 Clock source 26 Diode 27 Capacitor

Claims (6)

多数のLEDを直列接続したLED直列接続回路と、
前記LED直列接続回路の通電電流を制御する第1スイッチング素子と、
前記LED直列接続回路と前記スイッチング素子との間にカスコード接続された第2スイッチング素子と、
前記第1スイッチング素子と接地端子との間に接続された電流検出用抵抗器と、
前記スイッチング素子のベース端子に接続したバッファアンプと、
前記バッファアンプの入力に接続し、LEDオン信号とオフ信号とを切り換えるマルチプレクサと、
前記LEDオン信号とオフ信号との時間を形成する点灯時間制御回路と、
を備えたことを特徴とするLED駆動回路。
An LED series connection circuit in which a large number of LEDs are connected in series;
A first switching element that controls an energization current of the LED series connection circuit;
A second switching element cascode-connected between the LED series connection circuit and the switching element;
A current detection resistor connected between the first switching element and a ground terminal;
A buffer amplifier connected to a base terminal of the switching element;
A multiplexer connected to the input of the buffer amplifier for switching between an LED on signal and an off signal;
A lighting time control circuit for forming a time between the LED on signal and the off signal;
An LED driving circuit comprising:
前記電流検出用抵抗器と並列にコンデンサを接続したことを特徴とする請求項1記載のLED駆動回路。   The LED driving circuit according to claim 1, wherein a capacitor is connected in parallel with the current detection resistor. 前記点灯時間制御回路は、LEDオン時間とLEDオフ時間とを設定する回路と、
前記オン時間とオフ時間の可変長パルスを形成するカウンタとを備え、
前記オン時間に前記マルチプレクサが前記バッファアンプにオン信号を出力し、前記オフ時間に前記マルチプレクサが前記バッファアンプにオフ信号を出力することを特徴とする請求項1記載のLED駆動回路。
The lighting time control circuit includes a circuit for setting an LED on time and an LED off time;
A counter that forms a variable length pulse of the on-time and off-time,
2. The LED driving circuit according to claim 1, wherein the multiplexer outputs an ON signal to the buffer amplifier during the ON time, and the multiplexer outputs an OFF signal to the buffer amplifier during the OFF time.
前記マルチプレクサのオン信号端子にD/A変換器の出力を、
前記マルチプレクサのオフ信号端子に接地電圧を、それぞれ接続することを特徴とする請求項1記載のLED駆動回路。
The output of the D / A converter is connected to the ON signal terminal of the multiplexer.
2. The LED driving circuit according to claim 1, wherein a ground voltage is connected to each off signal terminal of the multiplexer.
多数のLEDを直列接続したLED直列接続回路と、
前記LED直列接続回路の通電電流を制御する第1スイッチング素子と、
前記第1スイッチング素子と接地端子との間に接続された電流検出用抵抗器と、
前記電流検出用抵抗器と並列に接続したコンデンサと、
を備えたことを特徴とするLED駆動回路。
An LED series connection circuit in which a large number of LEDs are connected in series;
A first switching element that controls an energization current of the LED series connection circuit;
A current detection resistor connected between the first switching element and a ground terminal;
A capacitor connected in parallel with the current detection resistor;
An LED driving circuit comprising:
前記LED直列接続回路と並列にダイオードを接続したことを特徴とする請求項1記載のLED駆動回路。   2. The LED drive circuit according to claim 1, wherein a diode is connected in parallel with the LED series connection circuit.
JP2007040831A 2006-10-18 2007-02-21 LED drive circuit Expired - Fee Related JP5258202B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007040831A JP5258202B2 (en) 2007-02-21 2007-02-21 LED drive circuit
US12/442,830 US8324816B2 (en) 2006-10-18 2007-10-17 LED driving circuit
PCT/JP2007/070676 WO2008050779A1 (en) 2006-10-18 2007-10-17 Led driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040831A JP5258202B2 (en) 2007-02-21 2007-02-21 LED drive circuit

Publications (2)

Publication Number Publication Date
JP2008205276A true JP2008205276A (en) 2008-09-04
JP5258202B2 JP5258202B2 (en) 2013-08-07

Family

ID=39782435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040831A Expired - Fee Related JP5258202B2 (en) 2006-10-18 2007-02-21 LED drive circuit

Country Status (1)

Country Link
JP (1) JP5258202B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154800A (en) * 1997-08-05 1999-02-26 Matsushita Electric Ind Co Ltd Light emitting diode drive circuit
JPH11330557A (en) * 1998-05-08 1999-11-30 Canon Inc Light source device and electronic equipment
JP2001251011A (en) * 2000-03-06 2001-09-14 Oki Electric Ind Co Ltd Laser diode driving circuit
JP2004039748A (en) * 2002-07-01 2004-02-05 Sumitomo Electric Ind Ltd Semiconductor laser drive circuit
JP2006114324A (en) * 2004-10-14 2006-04-27 Sony Corp Light emitting element driving device and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154800A (en) * 1997-08-05 1999-02-26 Matsushita Electric Ind Co Ltd Light emitting diode drive circuit
JPH11330557A (en) * 1998-05-08 1999-11-30 Canon Inc Light source device and electronic equipment
JP2001251011A (en) * 2000-03-06 2001-09-14 Oki Electric Ind Co Ltd Laser diode driving circuit
JP2004039748A (en) * 2002-07-01 2004-02-05 Sumitomo Electric Ind Ltd Semiconductor laser drive circuit
JP2006114324A (en) * 2004-10-14 2006-04-27 Sony Corp Light emitting element driving device and display device

Also Published As

Publication number Publication date
JP5258202B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
US8324816B2 (en) LED driving circuit
US11764683B2 (en) Light-emitting element driving control device
JP4017960B2 (en) Driving circuit
US20070127276A1 (en) Power supply and display
JP6681550B2 (en) Lighting device
CN102431486A (en) Automobile LED Driving Device
KR101305687B1 (en) LED Protection Circuit
JP2003100472A (en) Driving equipment for light emitting diode
JP5258199B2 (en) LED drive circuit
JP2013187528A (en) Light-emitting element drive
JP2005294758A (en) Light emitting element drive circuit
US10111285B2 (en) Adaptive turn-off delay time compensation for LED controller
CN113841336B (en) Negative voltage rail
JP5258202B2 (en) LED drive circuit
WO2013161201A1 (en) Driving device
JP4985870B1 (en) Constant current drive device and load drive device using the same
JP4998440B2 (en) Light emitting diode drive circuit
Hsia et al. Auto tracking DC/DC converter for adaptive LED driving system
JPH10246907A (en) Stroboscopic circuit
US5276358A (en) Circuitry and method for controlling voltage in an electronic circuit
KR102175899B1 (en) Emitting controller and liquid crystal display device
JP2010283740A (en) Photo mos relay drive circuit, and semiconductor test device using the same
US8760076B2 (en) PWM dimming circuit with multiple outputting paths of current for multiple LED strings
CN114554650B (en) LED drive circuit, bias voltage generator thereof and LED lighting device
TWI575829B (en) Control method for speeding up light emitting of laser diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees