JP4985870B1 - Constant current drive device and load drive device using the same - Google Patents

Constant current drive device and load drive device using the same Download PDF

Info

Publication number
JP4985870B1
JP4985870B1 JP2011216342A JP2011216342A JP4985870B1 JP 4985870 B1 JP4985870 B1 JP 4985870B1 JP 2011216342 A JP2011216342 A JP 2011216342A JP 2011216342 A JP2011216342 A JP 2011216342A JP 4985870 B1 JP4985870 B1 JP 4985870B1
Authority
JP
Japan
Prior art keywords
current
load
terminal
input
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011216342A
Other languages
Japanese (ja)
Other versions
JP2014082226A (en
Inventor
春樹 内畠
隆 小泉
一人 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011216342A priority Critical patent/JP4985870B1/en
Priority to PCT/JP2011/007322 priority patent/WO2013046285A1/en
Application granted granted Critical
Publication of JP4985870B1 publication Critical patent/JP4985870B1/en
Publication of JP2014082226A publication Critical patent/JP2014082226A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Abstract

【課題】電流駆動される負荷が使用環境及びその個体バラツキ等により、その電圧降下に変動もしくは固体差を生じる場合、負荷に所定の駆動電圧を供給しても、負荷の電圧降下変動に起因して必ず、電流駆動回路の両端電圧が上昇する影響を受け、電力損失もしくは、それによる発熱を生じる。
【解決手段】負荷を流れる電流を第1の電流経路となる第1の電流駆動回路21と、分流して第2の電流経路となり、第1の電流駆動回路21と並列に配置された第2の電流駆動回路27とに流し、第2の電流駆動回路27に接続した分流電流設定用抵抗43で発熱を分散することにより、電流駆動回路での発熱を抑え、負荷に所定の定電流を流す構成とする。
【選択図】図1
When a current-driven load fluctuates or varies in its voltage drop due to the usage environment and individual variations, etc., even if a predetermined driving voltage is supplied to the load, it is caused by fluctuations in the voltage drop of the load. Therefore, the voltage at both ends of the current driving circuit is always affected and power loss or heat generation is caused.
A current flowing through a load is shunted with a first current driving circuit that serves as a first current path, and a second current path is shunted, and a second current path arranged in parallel with the first current driving circuit. Current is distributed to the current drive circuit 27, and heat generation is dispersed by the shunt current setting resistor 43 connected to the second current drive circuit 27, thereby suppressing heat generation in the current drive circuit and allowing a predetermined constant current to flow through the load. The configuration.
[Selection] Figure 1

Description

本発明は、負荷を定電流駆動する定電流駆動装置およびそれを用いた負荷駆動装置に関わるものである。特に、その応用例の一つとしては、発光ダイオード(Light Emitting Diode:以下、LEDと記す)等の発光素子駆動装置および発光装置に関するものである。   The present invention relates to a constant current driving device that drives a load at a constant current and a load driving device using the constant current driving device. In particular, as one of application examples thereof, the present invention relates to a light emitting element driving device such as a light emitting diode (hereinafter referred to as LED) and a light emitting device.

なお、負荷を定電流駆動する装置としては、発光素子駆動装置および発光装置に限定するものではない。   The device for driving the load at a constant current is not limited to the light emitting element driving device and the light emitting device.

従来の負荷駆動装置として、LED等の発光素子を備えた発光素子駆動装置および発光装置について、図8、図9に示す構成が提案されている(例えば、特許文献1参照)。   As a conventional load driving device, a configuration shown in FIG. 8 and FIG. 9 has been proposed for a light emitting element driving device and a light emitting device including light emitting elements such as LEDs (for example, see Patent Document 1).

図8において、発光素子群10A、10B、10C(総称10)はそれぞれ複数の例えばLED素子から構成され、発光素子群10のそれぞれのアノードが共通接続され、アノードからカソードへ順方向に電流が流れるように直列接続されている。この発光素子群10のそれぞれのアノード側には、電圧変換部50で生成される電圧VOUTが供給される。また、発光素子群10のそれぞれのカソード側には、電流駆動回路20A、20B、20C(総称20)が接続され、各発光素子群10を電流駆動している。   In FIG. 8, each of the light emitting element groups 10A, 10B, and 10C (generic name 10) is composed of a plurality of LED elements, for example, and the anodes of the light emitting element groups 10 are commonly connected, and current flows in the forward direction from the anode to the cathode. Are connected in series. A voltage VOUT generated by the voltage conversion unit 50 is supplied to each anode side of the light emitting element group 10. Further, current drive circuits 20A, 20B, and 20C (generic name 20) are connected to the respective cathode sides of the light emitting element groups 10 to drive each light emitting element group 10 with current.

また、発光素子群10A、10B、10Cと電流駆動回路20A、20B、20Cとのそれぞれの接続点は、電圧降下検出回路30A、30B、30Cに接続され、各接続点の電位の検出結果は制御信号生成部40に供給される。発光素子群10の端子間電圧は、LED素子のVFバラツキや駆動電流値や温度特性により変動するため、各接続点の電位は異なる電位となる。従って、制御信号生成部40は発光素子群10A、10B、10Cのうち順方向電圧による電圧降下が最も大きい、すなわち各接続点のうちで最も低い電位となる電位を特定し、この電位が電流駆動回路20が所望の動作を果たせる一定以上の電位となるように電圧変換部50にフィードバックし、電圧変換部50で生成される電圧VOUTを調整する。すなわち、発光素子群10の端子間電圧が最も大きくなる発光素子群10を駆動する電流駆動回路20への印加電圧が駆動可能な必要最小限の電圧となるように電圧VOUTを調整することにより、発光駆動装置の電力を必要かつ最適なものとできるようにしている。   The connection points of the light emitting element groups 10A, 10B, and 10C and the current drive circuits 20A, 20B, and 20C are connected to the voltage drop detection circuits 30A, 30B, and 30C, and the detection result of the potential at each connection point is controlled. It is supplied to the signal generator 40. Since the voltage between the terminals of the light emitting element group 10 varies depending on the VF variation of LED elements, the drive current value, and the temperature characteristics, the potentials at the connection points are different. Therefore, the control signal generation unit 40 identifies the potential that has the largest voltage drop due to the forward voltage among the light emitting element groups 10A, 10B, and 10C, that is, the lowest potential among the connection points, and this potential is current driven. The voltage is fed back to the voltage conversion unit 50 so that the circuit 20 has a certain potential or more that can perform a desired operation, and the voltage VOUT generated by the voltage conversion unit 50 is adjusted. That is, by adjusting the voltage VOUT so that the voltage applied to the current drive circuit 20 that drives the light emitting element group 10 in which the inter-terminal voltage of the light emitting element group 10 becomes the maximum is the minimum voltage that can be driven, The power of the light emission driving device can be made necessary and optimum.

図9は、図8における発光素子群10および電流駆動回路20の1系列について具体的に示した従来の定電流駆動装置を示す。   FIG. 9 shows a conventional constant current driving device specifically showing one series of the light emitting element group 10 and the current driving circuit 20 in FIG.

発光素子群10は、N個(Nは2以上の整数)のLED素子3が直列接続され、アノード側端Paには駆動電源1が接続され、電圧VOUTが供給され、カソード側端Pcには、電流駆動回路21と電流設定用抵抗23が直列接続されている。電流設定用抵抗23の他端は接地端子2に接続されている。電流駆動回路21は、駆動用MOSトランジスタ24とオペアンプ25とからなり、駆動用MOSトランジスタ24のドレインがカソード側端Pcに、ソースが電流設定用抵抗23の一端であるノードPsに接続され、ゲートはオペアンプ25の出力が接続されている。オペアンプ25の非反転入力には電流設定用電源34が接続され、反転入力には駆動用MOSトランジスタ24のソースが接続されている。オペアンプ25は、電流設定用抵抗23の両端の電圧、つまり、駆動用MOSトランジスタ24のソースの電位が電流設定用電源34の電位と同じになるように駆動用MOSトランジスタ24を駆動する。   In the light emitting element group 10, N (N is an integer of 2 or more) LED elements 3 are connected in series, the drive power source 1 is connected to the anode side end Pa, the voltage VOUT is supplied, and the cathode side end Pc is connected to the cathode side end Pc. The current driving circuit 21 and the current setting resistor 23 are connected in series. The other end of the current setting resistor 23 is connected to the ground terminal 2. The current driving circuit 21 includes a driving MOS transistor 24 and an operational amplifier 25. The drain of the driving MOS transistor 24 is connected to the cathode side end Pc, and the source is connected to a node Ps which is one end of the current setting resistor 23. Is connected to the output of the operational amplifier 25. A current setting power supply 34 is connected to the non-inverting input of the operational amplifier 25, and the source of the driving MOS transistor 24 is connected to the inverting input. The operational amplifier 25 drives the driving MOS transistor 24 so that the voltage across the current setting resistor 23, that is, the potential of the source of the driving MOS transistor 24 is the same as the potential of the current setting power supply 34.

特開2007−242477号公報JP 2007-242477 A

従来の発光素子駆動装置では、発光素子駆動装置を含めた発光装置全体としてのより効率的な駆動を可能ならしめるものであり、発光素子群を構成する個々のLED順方向電圧VFの総和が、温度条件等の環境変化の影響で変動することや、個体バラツキによる複数系列の発光素子群間で電圧差異が発生することで、それぞれの電流駆動回路へ印加される電圧が大きくなることについては考慮されていない。つまり、最適化された系列以外の電流駆動回路の端子間電圧が大きく、消費電力は大きくなり、その結果、チップの発熱が大きくなるという課題がある。発光素子駆動装置の製品傾向としては、発光素子群および電流駆動回路の系列数が多くなったり、発光素子群を構成するLED素子の直列数が多くなったりして、回路規模が大きくなったり、電源電圧が大きくなる方向であり、その課題はより顕著になる。   The conventional light emitting element driving device enables more efficient driving of the entire light emitting device including the light emitting element driving device, and the sum of the individual LED forward voltages VF constituting the light emitting element group is as follows. Consider that the voltage applied to each current drive circuit increases due to fluctuations caused by environmental changes such as temperature conditions, and voltage differences between light emitting element groups of multiple series due to individual variations. It has not been. That is, there is a problem that the voltage between the terminals of the current drive circuit other than the optimized series is large, the power consumption is large, and as a result, the heat generation of the chip is large. As a product trend of the light emitting element driving device, the number of series of the light emitting element group and the current driving circuit is increased, the number of series of LED elements constituting the light emitting element group is increased, the circuit scale is increased, The power supply voltage is increasing, and the problem becomes more prominent.

本発明の定電流駆動装置は、このような課題を解決するためになされたもので、本発明は、駆動負荷の電圧降下の変動による、各電流駆動回路で生じる電力損失およびそれにより発生する各電流駆動回路での発熱を低減することを目的とする。   The constant current drive device of the present invention has been made to solve such problems, and the present invention relates to power loss generated in each current drive circuit due to fluctuations in the voltage drop of the drive load and each of the power loss generated thereby. An object is to reduce heat generation in the current driving circuit.

本発明のある形態に係る負荷を電流で駆動する定電流駆動装置は、一端が第1の電源に接続される前記負荷の他端と接続される第1の端子と、一端が第2の電源に接続される、前記負荷に流す電流の電流値を設定する電流設定用素子の他端と接続される第2の端子と、一端が前記負荷または前記電流設定用素子の他端と接続される分流電流設定用素子の他端と接続される第3の端子と、前記第1の端子と前記第2の端子との間に接続される第1の電流駆動回路と、前記分流設定用素子の一端が前記負荷の他端に接続されている場合は、前記第3の端子と前記第2の端子との間に接続され、前記分流設定用素子の一端が前記電流設定用素子の他端に接続されている場合は、前記第3の端子と前記第1の端子との間に接続される第2の電流駆動回路とを備え、前記負荷に流れる電流を前記第1の電流駆動回路と前記第2の電流駆動回路に分流して流すように構成されている。
A constant current driving apparatus for driving a load according to an embodiment of the present invention with a current has a first terminal connected to the other end of the load, one end connected to a first power supply, and a second power supply connected thereto, a second terminal connected to the other end of the current setting device for setting the current value of the current flowing to the load, one end is connected to the other end of the load or the current setting device a third terminal connected to the other end of the shunt current setting element, a first current driver circuit which is connected between the first terminal and the second terminal, the shunt setting element When one end is connected to the other end of the load, it is connected between the third terminal and the second terminal, and one end of the shunt setting element is connected to the other end of the current setting element. when connected, the second current driver times connected between said third terminal and said first terminal With the door, and is configured with a current flowing through the load to flow in shunt to the first current driver circuit and the second current driver circuit.

前記第1の電流駆動回路は、第1のオペアンプと第1のトランジスタからなり、前記第1のトランジスタは前記第1の端子と前記第2の端子の端子間に電流が流れるように接続され、前記第1のトランジスタの制御端子は、前記第1のオペアンプの出力と接続され、前記第1のオペアンプの一方の入力には、前記第2の端子が接続され、前記第1のオペアンプの他方の入力には、前記負荷に電流を流す電流値を設定する電流設定用電源が接続される第4の端子を備え、前記第2の電流駆動回路は、前記第1の端子または前記第2の端子と、前記第3の端子との間に流れる分流の是非を制御するスイッチング素子と、前記スイッチング素子のオン・オフを制御する分流制御回路を備えた構成である。   The first current driving circuit includes a first operational amplifier and a first transistor, and the first transistor is connected so that a current flows between terminals of the first terminal and the second terminal, The control terminal of the first transistor is connected to the output of the first operational amplifier, the second terminal is connected to one input of the first operational amplifier, and the other terminal of the first operational amplifier is connected. The input includes a fourth terminal to which a current setting power source for setting a current value for flowing a current to the load is connected, and the second current driving circuit includes the first terminal or the second terminal And a switching element for controlling whether or not the current flows between the third terminal and a current dividing control circuit for controlling on / off of the switching element.

本発明によれば、負荷に流れる電流を第2の電流駆動回路に分流し、第2の電流駆動回路と直列接続された分流電流設定用素子で電圧降下を生じ、発熱を吸収することができる。これにより、第1の電流駆動回路への印加電圧の上昇を抑え、それにより発生する発熱を抑制することができる。これにより、同一半導体基板上に構成される定電流駆動装置の搭載数を増やすことや複数の駆動負荷の直列数を増やすことも電源電圧を高くすることも可能となり、多くの電流駆動回路や駆動負荷を搭載でき、システムの簡略化を図ることができる。   According to the present invention, the current flowing through the load is shunted to the second current driving circuit, and a voltage drop is generated by the shunt current setting element connected in series with the second current driving circuit, so that heat generation can be absorbed. . As a result, an increase in the voltage applied to the first current drive circuit can be suppressed, and heat generated thereby can be suppressed. This makes it possible to increase the number of constant current drive devices configured on the same semiconductor substrate, increase the number of series of multiple drive loads, and increase the power supply voltage. A load can be mounted, and the system can be simplified.

本発明の実施の形態1に係る定電流駆動装置を示す回路図1 is a circuit diagram showing a constant current driving device according to a first embodiment of the present invention. 本発明の実施の形態2に係る定電流駆動装置を示す回路図The circuit diagram which shows the constant current drive device concerning Embodiment 2 of this invention 本発明の実施の形態3に係る定電流駆動装置を示す回路図The circuit diagram which shows the constant current drive device concerning Embodiment 3 of this invention 本発明の実施の形態4に係る定電流駆動装置を示す回路図Circuit diagram showing a constant current driving apparatus according to Embodiment 4 of the present invention. 本発明の実施の形態5に係る定電流駆動装置を示す回路図Circuit diagram showing a constant current driving apparatus according to Embodiment 5 of the present invention. 本発明の実施の形態6に係る定電流駆動装置を示す回路図Circuit diagram showing a constant current driving apparatus according to Embodiment 6 of the present invention. 本発明の実施の形態7に係る定電流駆動装置を示す回路図Circuit diagram showing a constant current driving apparatus according to Embodiment 7 of the present invention. 従来の定電流駆動回路を含む発光素子駆動装置を示す構成図Configuration diagram showing a light emitting element driving device including a conventional constant current driving circuit 従来の発光素子駆動装置における定電流駆動回路を示す回路図Circuit diagram showing a constant current driving circuit in a conventional light emitting element driving device

以下、本発明の実施の形態を、図面を参照しながら説明する。以下では、全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted.

(実施の形態1)
図1は、本発明の実施の形態1に係る負荷を駆動する定電流駆動装置の構成例を示した回路図である。ここでは、発光素子群および電流駆動回路の1系列について具体的に示す。
(Embodiment 1)
FIG. 1 is a circuit diagram showing a configuration example of a constant current driving device for driving a load according to Embodiment 1 of the present invention. Here, one series of the light emitting element group and the current driving circuit is specifically shown.

図1において、駆動負荷として、例えばN個(Nは2以上の整数)のLED素子3が直列接続された発光素子群10のアノード側端Paは駆動電源1に接続され、電圧VOUTが供給され、カソード側端Pcには、発光素子群10を駆動する定電流駆動装置26と電流設定用抵抗23が直列に接続され、電流設定用抵抗23の一端は接地端子2に接続されている。カソード側端Pcと電流設定用抵抗23の他端であるノードPsの間に接続される定電流駆動装置26は、発光素子群10を流れる電流の第1の電流経路となる第1の電流駆動回路21と、第1の電流駆動回路21と並列に配置され、分流して第2の電流経路となる第2の電流駆動回路27とからなる。第2の電流駆動回路27は接続点Pdで分流電流設定用抵抗43と直列接続され、カソード側端PcとノードPsの間に接続される。   In FIG. 1, as a driving load, for example, an anode side end Pa of a light emitting element group 10 in which N (N is an integer of 2 or more) LED elements 3 are connected in series is connected to a driving power source 1 and supplied with a voltage VOUT. A constant current driving device 26 for driving the light emitting element group 10 and a current setting resistor 23 are connected in series to the cathode side end Pc, and one end of the current setting resistor 23 is connected to the ground terminal 2. The constant current drive device 26 connected between the cathode side end Pc and the node Ps which is the other end of the current setting resistor 23 is a first current drive that becomes a first current path of a current flowing through the light emitting element group 10. The circuit 21 and a second current drive circuit 27 that are arranged in parallel with the first current drive circuit 21 and shunt to form a second current path. The second current drive circuit 27 is connected in series with the shunt current setting resistor 43 at the connection point Pd, and is connected between the cathode side end Pc and the node Ps.

第1の電流駆動回路21は、駆動用MOSトランジスタ24とオペアンプ25とからなり、駆動用MOSトランジスタ24のドレインはカソード側端Pcに、ソースはノードPsに接続され、ゲートはオペアンプ25の出力が接続されている。オペアンプ25の非反転入力には電流設定用電源34が接続され、設定電圧Vsが印加され、反転入力には駆動用MOSトランジスタ24のソース(ノードPs)が接続されている。第1の電流駆動回路21は、オペアンプ25を動作させ、電流設定用抵抗23の両端の電圧、つまり、ノードPsの電位Vpsが電流設定用電源34の設定電圧Vsと同じになるように駆動用MOSトランジスタ24を駆動する。   The first current drive circuit 21 includes a drive MOS transistor 24 and an operational amplifier 25. The drain of the drive MOS transistor 24 is connected to the cathode side end Pc, the source is connected to the node Ps, and the output of the operational amplifier 25 is connected to the gate. It is connected. A current setting power supply 34 is connected to the non-inverting input of the operational amplifier 25, the setting voltage Vs is applied, and the source (node Ps) of the driving MOS transistor 24 is connected to the inverting input. The first current drive circuit 21 operates the operational amplifier 25 to drive the voltage across the current setting resistor 23, that is, the potential Vps of the node Ps to be the same as the set voltage Vs of the current setting power supply 34. The MOS transistor 24 is driven.

第2の電流駆動回路27は、駆動用MOSトランジスタ28とコンパレータ29とからなり、駆動用MOSトランジスタ28のドレインは分流電流設定用抵抗43を介してカソード側端Pcに、ソースはノードPsに接続され、ゲートはコンパレータ29の出力が接続されている。コンパレータ29の非反転入力には分流電流制御用電源35が接続され、設定電圧Vcが印加され、反転入力にはカソード側端Pcが接続されている。カソード側端Pcの電位Vpcが分流電流制御用電源35の電位Vc以下の場合は、駆動用MOSトランジスタ28はオン状態であり、第2の電流駆動回路27に電流が流れ、電位Vpcが電位Vcより大きい場合は、駆動用MOSトランジスタ28はオフ状態であり、第2の電流駆動回路27に電流が流れない。   The second current drive circuit 27 includes a drive MOS transistor 28 and a comparator 29. The drain of the drive MOS transistor 28 is connected to the cathode side end Pc via the shunt current setting resistor 43, and the source is connected to the node Ps. The output of the comparator 29 is connected to the gate. A non-inverted input of the comparator 29 is connected to a shunt current control power supply 35, to which a set voltage Vc is applied, and a cathode side end Pc is connected to an inverted input. When the potential Vpc at the cathode side end Pc is equal to or lower than the potential Vc of the shunt current control power source 35, the driving MOS transistor 28 is in an on state, a current flows through the second current driving circuit 27, and the potential Vpc becomes the potential Vc. If larger, the driving MOS transistor 28 is in an off state, and no current flows through the second current driving circuit 27.

第2の電流駆動回路27を設けて、発光素子群10を流れる電流を第1の電流駆動回路21と分流して流すことにより、例えば、分流電流設定用抵抗43を集積回路の外部に設けて発熱を逃がすことにより、第1の電流駆動回路21と第2の電流駆動回路27での電力損失、発熱を抑えることができる効果がある。   By providing the second current driving circuit 27 and shunting the current flowing through the light emitting element group 10 with the first current driving circuit 21, for example, a shunt current setting resistor 43 is provided outside the integrated circuit. By releasing the heat generation, there is an effect that power loss and heat generation in the first current drive circuit 21 and the second current drive circuit 27 can be suppressed.

なお、第2の電流駆動回路27は分流電流設定用抵抗43と直列接続され、カソード側端PcとノードPsの間に接続されるが、分流電流設定用抵抗43をノードPs側に設けても構わない。   The second current drive circuit 27 is connected in series with the shunt current setting resistor 43 and is connected between the cathode side end Pc and the node Ps. However, the shunt current setting resistor 43 may be provided on the node Ps side. I do not care.

さらに、詳細の動作について説明する。   Further, detailed operation will be described.

発光素子群10を流れる電流は第1の電流駆動回路21と第2の電流駆動回路27とに分流し、再び合流して電流設定用抵抗23に流れる。発光素子群10に流れる電流をILED、第1の電流駆動回路21に流れる電流をIctrl、第2の電流駆動回路27に流れる電流をIbp、電流設定用抵抗23に流れる電流をIrsとすると、次式が成立する。   The current flowing through the light emitting element group 10 is shunted to the first current driving circuit 21 and the second current driving circuit 27, joined again, and flows to the current setting resistor 23. If the current flowing through the light emitting element group 10 is ILED, the current flowing through the first current driving circuit 21 is Ictrl, the current flowing through the second current driving circuit 27 is Ibp, and the current flowing through the current setting resistor 23 is Irs, then The formula holds.

Irs=Ictrl+Ibp=ILED ・・・ (1)
また、第1の電流駆動回路21の駆動用MOSトランジスタ24が動作している条件下において、オペアンプ25が、ノードPsの電位Vpsを設定電圧Vsに保ちつつ、電流設定用抵抗23(抵抗値をRsとする)に流れる電流値をIrs=Vs/Rsにて定電流となるように駆動用MOSトランジスタ24をフィードバック制御する。つまり、この時、所定の駆動電流として設定される定電流ILEDは、次式で表される。
Irs = Ictrl + Ibp = ILED (1)
Further, under the condition that the driving MOS transistor 24 of the first current driving circuit 21 is operating, the operational amplifier 25 maintains the potential Vps of the node Ps at the set voltage Vs, while the current setting resistor 23 (the resistance value is changed). The drive MOS transistor 24 is feedback-controlled so that the current value flowing in the Rs) is constant at Irs = Vs / Rs. That is, at this time, the constant current ILED set as the predetermined drive current is expressed by the following equation.

ILED=Irs=Ictrl+Ibp=Vs/Rs ・・・ (2)
実施の形態1においては、電流ILEDを所定の定電流とするのは、駆動用MOSトランジスタ24、オペアンプ25によるフィードバック制御によるものであるため、駆動用MOSトランジスタ24には電流が流れている状態であることが必要動作条件となる。すなわち、
Ictrl>0 ・・・ (3)
Ibp<Vs/Rs ・・・ (4)
となる。
ILED = Irs = Ictrl + Ibp = Vs / Rs (2)
In the first embodiment, the current ILED is set to a predetermined constant current by feedback control by the driving MOS transistor 24 and the operational amplifier 25, so that a current flows through the driving MOS transistor 24. It is a necessary operating condition. That is,
Ictrl> 0 (3)
Ibp <Vs / Rs (4)
It becomes.

さらに、駆動用MOSトランジスタ24が正常に動作するためには、駆動用MOSトランジスタ24の両端電圧Vx(電圧値もVxとする)は、Vx=Vpc−Vpsの必要最低電圧が存在し、これをVminとする。最低電圧Vminは、駆動用MOSトランジスタ24のオン抵抗(抵抗値をRon1とする)と、所定の電流ILEDにより決まる値で、
Vmin=Ron1×ILED ・・・ (5)
が必要となる。
Further, in order for the driving MOS transistor 24 to operate normally, the voltage Vx across the driving MOS transistor 24 (the voltage value is also assumed to be Vx) has a necessary minimum voltage of Vx = Vpc−Vps. Vmin. The minimum voltage Vmin is a value determined by the on-resistance of the driving MOS transistor 24 (the resistance value is Ron1) and a predetermined current ILED.
Vmin = Ron1 × ILED (5)
Is required.

第2の電流駆動回路27において、駆動用MOSトランジスタ28のオン抵抗の抵抗値をRonbとし、分流電流設定用抵抗43の抵抗値をRdとすると、第2の電流駆動回路27に流れる電流Ibpは、
Ibp=(Vpc−Vps)/(Ronb+Rd) ・・・ (6)
となる。
In the second current drive circuit 27, when the resistance value of the on-resistance of the driving MOS transistor 28 is Ronb and the resistance value of the shunt current setting resistor 43 is Rd, the current Ibp flowing through the second current drive circuit 27 is ,
Ibp = (Vpc−Vps) / (Ronb + Rd) (6)
It becomes.

電流Ibpが式(4)を満足しない状態は、LED素子3のショートなどにより、想定以上に発光素子群10の順方向電圧VFの総和、すなわち、両端電圧VLEDが低くなり、その結果、カソード側端Pcの電位Vpcの上昇により、第2の電流駆動回路27に流れる電流Ibpが所定値より増大(Ibp>Vs/Rs)した異常状態であることを示している。   The state where the current Ibp does not satisfy the formula (4) is that the sum of the forward voltages VF of the light emitting element group 10, that is, the both-end voltage VLED becomes lower than expected due to short-circuiting of the LED element 3. This indicates that the current Ibp flowing through the second current drive circuit 27 has increased from a predetermined value (Ibp> Vs / Rs) due to the increase in the potential Vpc of the terminal Pc.

コンパレータ29の入力である電位Vcは、そのような異常状態での必要以上の分流動作を停止するために設けられている。すなわち、カソード側端Pcの電位Vpcの上昇による必要以上の異常電流が第2の電流駆動回路27および発光素子群10に生じることを防止する働きをする。   The potential Vc, which is the input of the comparator 29, is provided in order to stop an unnecessarily diversion operation in such an abnormal state. That is, it functions to prevent the abnormal current more than necessary due to the increase in the potential Vpc of the cathode side end Pc from being generated in the second current driving circuit 27 and the light emitting element group 10.

そのような異常状態においては、第1の電流駆動回路21への電流駆動を停止する制御を設けてもよい。その実施形態について、次に説明する。   In such an abnormal state, control for stopping the current drive to the first current drive circuit 21 may be provided. The embodiment will be described next.

(実施の形態2)
図2は本発明の実施の形態2に係る負荷を駆動する定電流駆動装置26Aの構成例を示した回路図であり、実施の形態1に係る定電流駆動装置26に、異常状態で第1の電流駆動回路21の電流駆動を停止する構成を追加したものである。基本的な構成は、実施の形態1と同じであるので、差異の構成についてのみ説明する。
(Embodiment 2)
FIG. 2 is a circuit diagram showing a configuration example of a constant current drive device 26A for driving a load according to the second embodiment of the present invention. The constant current drive device 26 according to the first embodiment has a first state in an abnormal state. The configuration for stopping the current drive of the current drive circuit 21 is added. Since the basic configuration is the same as that of the first embodiment, only the configuration of the difference will be described.

図2において、第2の電流駆動回路27A内におけるコンパレータ29Aの出力を第1の電流駆動回路21に、具体的にはオペアンプ25の入力に供給する構成を有する。これにより、異常状態では、コンパレータ29Aの出力が駆動用MOSトランジスタ28をオフ状態にし、第2の電流駆動回路27Aに電流が流れないようにするのに加えて、オペアンプ25の出力を通して、駆動用MOSトランジスタ24をオフ状態にし、第1の電流駆動回路21に電流が流れないようにする。つまり、実施の形態1において、第2の電流駆動回路27の駆動を停止することにより、電流設定用抵抗23へ流れる電流が一時的に減少し、ノードPsの電位Vpsが下がり、再び駆動用MOSトランジスタ24に流れ出すのを防ぐ働きをする。   2, the output of the comparator 29A in the second current drive circuit 27A is supplied to the first current drive circuit 21, specifically to the input of the operational amplifier 25. As a result, in an abnormal state, the output of the comparator 29A turns off the driving MOS transistor 28 so that no current flows through the second current driving circuit 27A. The MOS transistor 24 is turned off so that no current flows through the first current drive circuit 21. That is, in the first embodiment, by stopping the driving of the second current driving circuit 27, the current flowing to the current setting resistor 23 is temporarily reduced, the potential Vps of the node Ps is lowered, and the driving MOS is again performed. It serves to prevent the transistor 24 from flowing out.

異常状態の発生条件は、式(4)、(6)より、
Ibp=(Vpc−Vps)/(Ronb+Rd)<Vs/Rs ・・・ (7)
となる。従って、駆動用MOSトランジスタ28のオン抵抗の抵抗値Ronbおよび分流電流設定用抵抗43の抵抗値Rdのパラメータ設定はこの条件を満足するように行う必要がある。
The occurrence condition of the abnormal state is from the equations (4) and (6)
Ibp = (Vpc−Vps) / (Ronb + Rd) <Vs / Rs (7)
It becomes. Therefore, the parameter setting of the resistance value Ronb of the on-resistance of the driving MOS transistor 28 and the resistance value Rd of the shunt current setting resistor 43 needs to be performed so as to satisfy this condition.

実施の形態1,2について、発熱の低減効果をパラメータの一例を用いて説明する。ここで例示するパラメータは本実施の形態の一例であり、本発明の構成を限定するものではない。
(パラメータ)
・発光素子群10に流れる電流:ILED=0.1A
・電流設定用抵抗23の抵抗値:Rs=5Ω
・オペアンプ25の設定電圧:Vs=ILED×Rs=0.1A×5Ω=0.5V
・駆動用MOSトランジスタ24のオン抵抗:Ron1=5Ω
・駆動用MOSトランジスタ24の両端に印加すべき必要最低電圧:
Vmin=ILED×Ron1=0.1A×5Ω=0.5V
・発光素子群10のLED直列接続数:10個(N=10)、
・各LED素子3における個体バラツキ、並びに温度等の使用環境による順方向電圧VF値のバラツキ範囲:
3.0V±0.2V(VF0±ΔVFと表記)
・発光素子群10の順方向電圧VFの総和であるVLEDの変動値は、
VLED(最大値)=3.2V×10=32V
VLED(最小値)=2.8V×10=28V
であり、その変動値は、ΔVLED=32V−28V=4V
・また、発光素子群10のアノード側端Paに印加される駆動電圧Voutは、変動を加味した最適な固定値であり、VLEDがVF変動による最大値となる場合の設定が必要となる。
Vout=VLED(最大値)+Vmin+Vs=32V+0.5V+0.5V=33V
・分流電流設定用抵抗43の抵抗値:Rd=45Ω
・駆動用MOSトランジスタ28のオン抵抗:Ronb=5Ω
なお、本実施の形態においては、第1の電流駆動回路21、第2の電流駆動回路27が同一半導体基板上に形成されており、駆動素子、即ち、それぞれ並列に配置された駆動用MOSトランジスタ24、駆動用MOSトランジスタ28が、電力損失並びに発熱課題に関わる素子であり、本実施の形態での電力損失の最大値をW’maxとして、これを算出する。
In the first and second embodiments, the effect of reducing heat generation will be described using an example of parameters. The parameters exemplified here are examples of the present embodiment and do not limit the configuration of the present invention.
(Parameter)
Current flowing in the light emitting element group 10: ILED = 0.1A
-Resistance value of current setting resistor 23: Rs = 5Ω
・ Setting voltage of operational amplifier 25: Vs = ILED × Rs = 0.1A × 5Ω = 0.5V
On resistance of the driving MOS transistor 24: Ron1 = 5Ω
The necessary minimum voltage to be applied across the driving MOS transistor 24:
Vmin = ILED × Ron1 = 0.1A × 5Ω = 0.5V
-Number of LEDs connected in series in the light emitting element group 10: 10 (N = 10),
・ Individual variation in each LED element 3 and variation range of forward voltage VF value depending on usage environment such as temperature:
3.0V ± 0.2V (Indicated as VF0 ± ΔVF)
The fluctuation value of VLED that is the sum of the forward voltage VF of the light emitting element group 10 is
VLED (maximum value) = 3.2V × 10 = 32V
VLED (minimum value) = 2.8V × 10 = 28V
The fluctuation value is ΔVLED = 32V−28V = 4V
In addition, the drive voltage Vout applied to the anode side end Pa of the light emitting element group 10 is an optimal fixed value that takes into account fluctuations, and needs to be set when the VLED has the maximum value due to VF fluctuations.
Vout = VLED (maximum value) + Vmin + Vs = 32V + 0.5V + 0.5V = 33V
-Resistance value of shunt current setting resistor 43: Rd = 45Ω
On resistance of driving MOS transistor 28: Ronb = 5Ω
In the present embodiment, the first current driving circuit 21 and the second current driving circuit 27 are formed on the same semiconductor substrate, and driving elements, that is, driving MOS transistors arranged in parallel, respectively. 24, the driving MOS transistor 28 is an element related to the power loss and the heat generation problem, and the maximum value of the power loss in this embodiment is set as W′max.

また、電力損失が最大値W’maxとなるのは、(Vpc−Vps)が最大時であり、これをVxmaxと表記すると、次式(8)より求まる。   Further, the power loss becomes the maximum value W′max when (Vpc−Vps) is the maximum, and when this is expressed as Vxmax, it can be obtained from the following equation (8).

Vxmax=(VLED[最大値]+Vmin+Vs)−Vs−VLED[最小値])
=(VLED[最大値]−VLED[最小値])+Vmin
=ΔVLED+Vmin
=(N×ΔVF×2)+Vmin=4V+0.5V=4.5V ・・・ 式(8)
さらにこの時の電力損失の最大値W’max、すなわち、駆動用MOSトランジスタ24および駆動用MOSトランジスタ28での電力損失は、従来の電力損失の最大値から発熱分散抵抗である分流電流設定用抵抗43で生じる電力損失(Wdと記す)分を差し引いたものであり、下記の式より求まる。
Vxmax = (VLED [maximum value] + Vmin + Vs) −Vs−VLED [minimum value])
= (VLED [maximum value] -VLED [minimum value]) + Vmin
= ΔVLED + Vmin
= (N × ΔVF × 2) + Vmin = 4V + 0.5V = 4.5V (8)
Further, the maximum power loss value W′max at this time, that is, the power loss in the driving MOS transistor 24 and the driving MOS transistor 28 is a shunt current setting resistor that is a heat generation dispersion resistance from the conventional maximum power loss value. This is a value obtained by subtracting the power loss (denoted as Wd) generated at 43 and is obtained from the following equation.

Ibp=(Vpc−Vps)/(Ronb+Rd)
=Vxmax/(Ronb+Rd)
=4.5V/(45Ω+5Ω)=0.09A
Wd=Ibp^2×Rd
=0.09A^2×45Ω=0.3645W
従来の電力損失の最大値は、
W=ILED×Vxmax
=0.1A×4.5V=0.45Wであるから
W’max=0.45W−0.3645W=0.0855W
となり、定電流駆動装置26での電力損失は、従来の約20%にまで低減できることになる。
Ibp = (Vpc−Vps) / (Ronb + Rd)
= Vxmax / (Ronb + Rd)
= 4.5V / (45Ω + 5Ω) = 0.09A
Wd = Ibp ^ 2 × Rd
= 0.09A ^ 2 x 45Ω = 0.3645W
The conventional maximum power loss is
W = ILED × Vxmax
= 0.1A × 4.5V = 0.45W W′max = 0.45W−0.3645W = 0.0855W
Thus, the power loss in the constant current driving device 26 can be reduced to about 20% of the conventional one.

ここで、定電流駆動装置26がICに実装される環境として、例えば紙フェノールのプリント基板を想定すると、その熱抵抗は約60℃/Wである。   Here, as an environment in which the constant current driving device 26 is mounted on an IC, for example, assuming a printed board of paper phenol, its thermal resistance is about 60 ° C./W.

従って、駆動用MOSトランジスタの発熱量は、温度上昇としては、従来が
ΔT=0.45W×60℃/W=+27℃であったのに対し、本願では
ΔT=0.0855W×60℃/W=+5.13℃となり、大幅に抑えることができる。
Therefore, the heat generation amount of the driving MOS transistor is ΔT = 0.45 W × 60 ° C./W=+27° C. as a temperature rise, whereas in the present application, ΔT = 0.0855 W × 60 ° C./W. = + 5.13 ° C., which can be significantly reduced.

ここで、一般的に許容される温度上昇値を想定すると、制約は半導体のジャンクション温度が125℃を超えないとするのが一般的である。今、使用の周囲環境を70℃と想定すると、許容温度上昇値は、125℃−70℃=55℃となる。   Here, assuming a generally allowable temperature increase value, the restriction is generally that the junction temperature of the semiconductor does not exceed 125 ° C. Assuming that the ambient environment of use is 70 ° C., the allowable temperature increase value is 125 ° C.−70 ° C. = 55 ° C.

この場合、搭載可能な定電流駆動装置の系列数M(M:整数)は、
M=55℃/5.13℃≦10(従来構成の場合は、M≦2)
までとなり、搭載可能な系列数を従来に比べて大幅に増やすことができる。
In this case, the number M (M: integer) of series of constant current drive devices that can be mounted is
M = 55 ° C./5.13° C. ≦ 10 (in the case of the conventional configuration, M ≦ 2)
Thus, the number of series that can be installed can be greatly increased compared to the conventional system.

また、系列数M=1の時の許容可能なLED素子の直列数N1は、
N1=10×55℃/5.13℃≦107(従来構成の場合は、N1≦20)
までとなり、搭載可能なLED素子の直列数を大幅に増やすことができる。
In addition, when the number of series M = 1, the allowable number N1 of LED elements in series is
N1 = 10 × 55 ° C./5.13° C. ≦ 107 (N1 ≦ 20 in the case of the conventional configuration)
Thus, the number of LED elements that can be mounted can be significantly increased.

すなわち、本発明の実施の形態によれば、駆動負荷の電圧降下の変動(一例として、LED素子3の順方向電圧VFバラツキ等に起因して発生する発光素子群を構成する個々のLED素子3の順方向電圧VFの総和の変動)による、定電流駆動装置で生じる電力損失および、それにより発生する定電流駆動装置での発熱を大幅に低減できる。その結果として、(1)同一半導体基板上に構成される定電流駆動装置の搭載数の発熱による制約を緩和し、より多くの系列数の定電流駆動装置を同一ICに搭載でき、システムの簡略化を図ることができる、(2)発熱制約となる課題の原因となった複数の駆動負荷間での電圧降下差異および使用環境もしくは個体バラツキに起因する電圧降下変動の許容量が緩和されることとなり、LED素子の直列数をより多く実現でき、システムの簡略化を図ることができる。   That is, according to the embodiment of the present invention, fluctuations in the voltage drop of the drive load (for example, the individual LED elements 3 constituting the light emitting element group generated due to the forward voltage VF variation of the LED elements 3 and the like) The power loss caused by the constant current drive device due to the fluctuation of the sum of the forward voltage VF) and the heat generation in the constant current drive device caused thereby can be greatly reduced. As a result, (1) the restriction due to heat generation of the number of constant current drive devices configured on the same semiconductor substrate is relaxed, and a larger number of constant current drive devices can be mounted on the same IC, thus simplifying the system. (2) Tolerance of voltage drop difference between multiple drive loads that caused the problem of heat generation restriction and voltage drop fluctuation caused by usage environment or individual variation is eased. Thus, the number of LED elements in series can be increased, and the system can be simplified.

なお、ここで説明した数字は、本発明を具体的に説明するために例示したものであり、本発明は例示された数字に限定されない。   In addition, the number demonstrated here is illustrated in order to demonstrate this invention concretely, and this invention is not limited to the illustrated number.

(実施の形態3)
図3は、本発明の実施の形態3に係る負荷を駆動する定電流駆動装置の構成例を示した回路図である。実施の形態1からの変更点としては、定電流駆動装置26を定電流駆動装置26Bとし、第2の電流駆動回路27Bを動作させる分流制御手段を異なるものにしている。実施の形態1と同一の構成のものは、その符号を同じとし、説明を省略し、差異の構成についてのみ説明する。
(Embodiment 3)
FIG. 3 is a circuit diagram showing a configuration example of a constant current drive device for driving a load according to Embodiment 3 of the present invention. As a change from the first embodiment, the constant current driving device 26 is changed to a constant current driving device 26B, and the diversion control means for operating the second current driving circuit 27B is different. Components having the same configurations as those of the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different configurations are described.

第1の電流駆動回路21の構成、動作は実施の形態1と同一のため、説明を省略する。   Since the configuration and operation of the first current drive circuit 21 are the same as those of the first embodiment, description thereof is omitted.

第2の電流駆動回路27Bは、駆動用MOSトランジスタ28とコンパレータ29Bとからなり、駆動用MOSトランジスタ28のドレインは分流電流設定用抵抗43を介してカソード側端Pcに、ソースはノードPsに接続され、ゲートはコンパレータ29Bの出力が接続されている。コンパレータ29Bの非反転入力には分流電流制御用電源37が接続され、電流設定用電源34の設定電圧Vsに対し、設定電圧Vαだけ高い電位が印加され、反転入力には駆動用MOSトランジスタ24のソース(ノードPs)が接続されている。   The second current drive circuit 27B includes a drive MOS transistor 28 and a comparator 29B. The drain of the drive MOS transistor 28 is connected to the cathode side end Pc via the shunt current setting resistor 43, and the source is connected to the node Ps. The output of the comparator 29B is connected to the gate. A non-inverting input of the comparator 29B is connected to a shunt current control power source 37, and a potential higher by the set voltage Vα than the set voltage Vs of the current setting power source 34 is applied, and the inverting input of the driving MOS transistor 24 is applied. A source (node Ps) is connected.

通常動作においては、オペアンプ25とコンパレータ29Bの反転入力が共にノードPsに接続されており、オペアンプ25は実施の形態1同様にノードVpsが電流設定用電源34の設定電圧Vsに等しくなる様に制御されつつ、駆動用MOSトランジスタ24をオン状態にしており、コンパレータ29Bの非反転入力には、設定電圧Vsより高い電位(Vs+Vα)が印加されているため、駆動用MOSトランジスタ28もコンパレータ29Bにより、オン状態にされている。つまり、発光素子群10を流れる電流は第1の電流駆動回路21と第2の電流駆動回路27Bとに分流して流れている。集積回路の外部に設けた分流電流設定用抵抗43に分流することにより、外部に発熱を逃がすことができ、第1の電流駆動回路21と第2の電流駆動回路27Bでの電力損失、発熱を抑えることが可能となる。   In normal operation, the inverting inputs of the operational amplifier 25 and the comparator 29B are both connected to the node Ps, and the operational amplifier 25 is controlled so that the node Vps is equal to the set voltage Vs of the current setting power supply 34 as in the first embodiment. However, since the driving MOS transistor 24 is turned on and a potential (Vs + Vα) higher than the set voltage Vs is applied to the non-inverting input of the comparator 29B, the driving MOS transistor 28 is also controlled by the comparator 29B. It is turned on. That is, the current flowing through the light emitting element group 10 is divided and flows into the first current driving circuit 21 and the second current driving circuit 27B. By diverting the current to the shunt current setting resistor 43 provided outside the integrated circuit, heat generation can be released to the outside, and power loss and heat generation in the first current drive circuit 21 and the second current drive circuit 27B can be prevented. It becomes possible to suppress.

ここで、実施の形態1でも記載の通り、LED素子3のショートなど、想定以上に順方向電圧VFの総和VLEDが低くなると、カソード側端Pcの電位の上昇により、第2の電流経路である第2の電流駆動回路27Bへの電流が増加し、第1の電流駆動回路21の駆動用MOSトランジスタ24に流れる電流Ictrl=0となる。この状態では、電流設定用抵抗23に流れる電流が所定値:Irs=Vs/Rsを超えるため、ノードPsの電位Vpsは上昇し、Vps>Vsとなり、Vps>Vs+Vαとなった時点で、コンパレータ29Bにより、駆動用MOSトランジスタ28がオフし、第2の電流駆動回路27Bには電流が流れないようになる。すなわち、カソード側端Pcの電位の上昇による必要以上の異常電流が第2の電流経路および駆動負荷に生じることを防止できる。   Here, as described in the first embodiment, when the total VLED of the forward voltage VF becomes lower than expected, such as when the LED element 3 is short-circuited, the potential of the cathode side end Pc is increased, which is the second current path. The current to the second current driving circuit 27B increases, and the current Ictrl = 0 flowing in the driving MOS transistor 24 of the first current driving circuit 21 is obtained. In this state, since the current flowing through the current setting resistor 23 exceeds a predetermined value: Irs = Vs / Rs, the potential Vps of the node Ps rises, and when Vps> Vs and Vps> Vs + Vα, the comparator 29B As a result, the driving MOS transistor 28 is turned off, so that no current flows through the second current driving circuit 27B. That is, it is possible to prevent an abnormal current more than necessary due to a rise in the potential of the cathode side end Pc from being generated in the second current path and the driving load.

この実施の形態3では、電源Vαは比較的微小な電圧であるため、IC内部で生成することが可能となり、実施の形態1で必要とした分流電流制御用電源35を不要とするので、実施の形態1に比べて、より簡易な構成で、同一の効果を得ることができる。   In the third embodiment, since the power source Vα is a relatively minute voltage, it can be generated inside the IC, and the shunt current control power source 35 required in the first embodiment is not required. Compared to the first embodiment, the same effect can be obtained with a simpler configuration.

なお、本構成での発熱低減効果は、実施の形態1と同様であるので説明は省略する。   In addition, since the heat generation reduction effect in this configuration is the same as that in the first embodiment, description thereof is omitted.

上記のような異常状態において、第1の電流駆動回路21への電流駆動を停止する制御を設けてもよい。その実施形態について、次に説明する。   In the abnormal state as described above, control for stopping the current drive to the first current drive circuit 21 may be provided. The embodiment will be described next.

(実施の形態4)
図4は本発明の実施の形態4に係る負荷を駆動する定電流駆動装置26Cの構成例を示した回路図であり、実施の形態3に係る定電流駆動装置26Bに、異常状態で第1の電流駆動回路21の電流駆動を停止する構成を追加したものである。基本的な構成は、実施の形態3と同じであるので、差異の構成についてのみ説明する。
(Embodiment 4)
FIG. 4 is a circuit diagram showing a configuration example of a constant current driving device 26C for driving a load according to the fourth embodiment of the present invention. The constant current driving device 26B according to the third embodiment has a first state in an abnormal state. The configuration for stopping the current drive of the current drive circuit 21 is added. Since the basic configuration is the same as that of the third embodiment, only the configuration of the difference will be described.

図4において、第2の電流駆動回路27C内のコンパレータ29Cの出力を第1の電流駆動回路21に、具体的にはオペアンプ25の入力に供給する構成を有する。これにより、異常状態では、コンパレータ29Cの出力が駆動用MOSトランジスタ28をオフ状態にし、第2の電流駆動回路27Cに電流が流れないようにするのに加えて、オペアンプ25の出力を通して、駆動用MOSトランジスタ24をオフ状態にし、第1の電流駆動回路21に電流が流れないようにする。   4, the output of the comparator 29C in the second current drive circuit 27C is supplied to the first current drive circuit 21, specifically to the input of the operational amplifier 25. Thus, in an abnormal state, the output of the comparator 29C turns off the driving MOS transistor 28 so that no current flows through the second current driving circuit 27C. The MOS transistor 24 is turned off so that no current flows through the first current drive circuit 21.

実施の形態4と実施の形態3の相違は、実施の形態2と実施の形態1の相違と同様のため、動作の説明は省略する。   Since the difference between the fourth embodiment and the third embodiment is the same as the difference between the second embodiment and the first embodiment, description of the operation is omitted.

(実施の形態5)
図5は、本発明の実施の形態5に係る負荷を駆動する定電流駆動装置の構成例を示した回路図である。実施の形態3からの変更点としては、定電流駆動装置26Bを定電流駆動装置26Dとし、第2の電流駆動回路27Dを動作させる分流制御手段を異なるものにしている。実施の形態3と同一の構成のものは、その符号を同じとし、説明を省略し、差異の構成についてのみ説明する。
(Embodiment 5)
FIG. 5 is a circuit diagram showing a configuration example of a constant current drive device for driving a load according to Embodiment 5 of the present invention. As a change from the third embodiment, the constant current driving device 26B is a constant current driving device 26D, and the diversion control means for operating the second current driving circuit 27D is different. Components having the same configurations as those of the third embodiment are denoted by the same reference numerals, description thereof is omitted, and only the configuration of differences is described.

第1の電流駆動回路21の構成、動作は実施の形態3と同一のため、説明を省略する。   Since the configuration and operation of the first current drive circuit 21 are the same as those of the third embodiment, description thereof is omitted.

第2の電流駆動回路27Dは、駆動用MOSトランジスタ28とオペアンプ36とからなり、駆動用MOSトランジスタ28のドレインは分流電流設定用抵抗43を介してカソード側端Pcに、ソースはノードPsに接続され、ゲートはオペアンプ36の出力が接続されている。オペアンプ36の非反転入力には分流電流制御用電源37が接続され、電流設定用電源34の設定電圧Vsに対し、設定電圧Vαだけ高い電位が印加され、反転入力には駆動用MOSトランジスタ24のソース(ノードPs)が接続されている。   The second current drive circuit 27D includes a drive MOS transistor 28 and an operational amplifier 36. The drain of the drive MOS transistor 28 is connected to the cathode side terminal Pc via the shunt current setting resistor 43, and the source is connected to the node Ps. The output of the operational amplifier 36 is connected to the gate. A non-inverting input of the operational amplifier 36 is connected with a shunt current control power source 37, and a potential higher than the setting voltage Vs of the current setting power source 34 by the set voltage Vα is applied. A source (node Ps) is connected.

通常動作においては、オペアンプ25とオペアンプ36の反転入力が共にノードPsに接続されており、オペアンプ25は実施の形態3同様にノードVpsが電流設定用電源34の設定電圧Vsに等しくなる様に制御されつつ、駆動用MOSトランジスタ24をオン状態にしており、オペアンプ36の非反転入力には、設定電圧Vsより高い電位(Vs+Vα)が印加されているため、駆動用MOSトランジスタ28もオペアンプ36により、オン状態にされている。つまり、発光素子群10を流れる電流は第1の電流駆動回路21と第2の電流駆動回路27Dとに分流して流れている。集積回路の外部に設けた分流電流設定用抵抗43に分流することにより、外部に発熱を逃がすことができ、第1の電流駆動回路21と第2の電流駆動回路27Dでの電力損失、発熱を抑えることが可能となる。   In normal operation, the inverting inputs of the operational amplifier 25 and the operational amplifier 36 are both connected to the node Ps, and the operational amplifier 25 is controlled so that the node Vps is equal to the set voltage Vs of the current setting power supply 34 as in the third embodiment. However, since the driving MOS transistor 24 is turned on and a potential (Vs + Vα) higher than the set voltage Vs is applied to the non-inverting input of the operational amplifier 36, the driving MOS transistor 28 is also driven by the operational amplifier 36. It is turned on. That is, the current flowing through the light emitting element group 10 is divided and flows into the first current driving circuit 21 and the second current driving circuit 27D. By diverting the current to the shunt current setting resistor 43 provided outside the integrated circuit, heat can be released to the outside, and power loss and heat generation in the first current drive circuit 21 and the second current drive circuit 27D can be reduced. It becomes possible to suppress.

ここで、実施の形態1でも記載の通り、LED素子3のショートなど、想定以上に順方向電圧VFの総和VLEDが低くなると、カソード側端Pcの電位の上昇により、第2の電流経路である第2の電流駆動回路27Dへの電流が増加し、第1の電流駆動回路21の駆動用MOSトランジスタ24に流れる電流Ictrl=0となる。この状態では、電流設定用抵抗23に流れる電流が所定値:Irs=Vs/Rsを超えるため、ノードPsの電位Vpsは上昇し、Vps>Vsとなるが、オペアンプ36の非反転入力に与えられる電位により、Vpsは、Vs+Vαより上昇しない。すなわち、
ILED=(Vs+Vα)/Rs
となる当初の所定の電流値Vs/Rsよりわずかに大きな一定の電流値で駆動を継続する構成となる。これにより、カソード側端Pcの電位の上昇による必要以上の異常電流を第2の電流経路および駆動負荷に生じることを防止できる。
Here, as described in the first embodiment, when the total VLED of the forward voltage VF becomes lower than expected, such as when the LED element 3 is short-circuited, the potential of the cathode side end Pc is increased, which is the second current path. The current to the second current driving circuit 27D increases, and the current Ictrl = 0 flowing in the driving MOS transistor 24 of the first current driving circuit 21 is obtained. In this state, since the current flowing through the current setting resistor 23 exceeds a predetermined value: Irs = Vs / Rs, the potential Vps of the node Ps rises and Vps> Vs, but is given to the non-inverting input of the operational amplifier 36. Depending on the potential, Vps does not rise above Vs + Vα. That is,
ILED = (Vs + Vα) / Rs
The driving is continued at a constant current value slightly larger than the initial predetermined current value Vs / Rs. Thereby, it is possible to prevent an abnormal current more than necessary due to a rise in the potential of the cathode side end Pc from being generated in the second current path and the driving load.

なお、本構成での発熱低減効果は、実施の形態1と同様であるので説明は省略する。   In addition, since the heat generation reduction effect in this configuration is the same as that in the first embodiment, description thereof is omitted.

別途カソード側端Pcの電位Vpcを検知し、カソード側端Pcの電位上昇の程度が大きい場合には、本構成に加えて、第1の電流駆動回路21および第2の電流駆動回路27Dの双方を停止する制御を設けてもよい。その実施形態について、次に説明する。   If the potential Vpc of the cathode side end Pc is separately detected and the potential rise of the cathode side end Pc is large, both the first current drive circuit 21 and the second current drive circuit 27D are added to this configuration. You may provide control which stops. The embodiment will be described next.

(実施の形態6)
図6は本発明の実施の形態6に係る負荷を駆動する定電流駆動装置26Eの構成例を示した回路図であり、実施の形態5に係る定電流駆動装置26Dに、異常状態で第1の電流駆動回路21および第2の電流駆動回路27Dの電流駆動を停止する構成を追加したものである。基本的な構成は、実施の形態5と同じであるので、差異の構成についてのみ説明する。
(Embodiment 6)
FIG. 6 is a circuit diagram showing a configuration example of a constant current drive device 26E for driving a load according to the sixth embodiment of the present invention. The constant current drive device 26D according to the fifth embodiment has a first state in an abnormal state. The configuration for stopping the current drive of the current drive circuit 21 and the second current drive circuit 27D is added. Since the basic configuration is the same as that of the fifth embodiment, only the configuration of the difference will be described.

実施の形態5に係る定電流駆動装置26Dに対し、カソード側端Pcの電位Vpcを検知するために、反転入力にカソード側端Pcが接続され、電位Vpcが加えられ、非反転入力に所定の電源39が接続され、電位Vceが印加されたコンパレータ38が追加されている。コンパレータ38の出力は、オペアンプ25とオペアンプ36の両方に入力され、カソード側端Pcの電位Vpcが異常状態で、所定の電源39の電位Vceより高くなった場合にオペアンプ25とオペアンプ36の出力を介して、駆動用MOSトランジスタ24および駆動用MOSトランジスタ28をオフ状態にし、負荷の電流駆動を停止する。   For the constant current drive device 26D according to the fifth embodiment, in order to detect the potential Vpc of the cathode side end Pc, the cathode side end Pc is connected to the inverting input, the potential Vpc is applied, and a predetermined value is applied to the non-inverting input. A power supply 39 is connected, and a comparator 38 to which the potential Vce is applied is added. The output of the comparator 38 is input to both the operational amplifier 25 and the operational amplifier 36, and the output of the operational amplifier 25 and the operational amplifier 36 is output when the potential Vpc of the cathode side end Pc is higher than the potential Vce of the predetermined power supply 39 in an abnormal state. Thus, the driving MOS transistor 24 and the driving MOS transistor 28 are turned off, and the current driving of the load is stopped.

なお、本構成での発熱低減効果は、実施の形態1と同様であるので説明は省略する。   In addition, since the heat generation reduction effect in this configuration is the same as that in the first embodiment, description thereof is omitted.

(実施の形態7)
本発明における実施の形態1〜6においては、1系統の発光素子群を駆動する構成を用いて説明を行ってきた。
(Embodiment 7)
In Embodiments 1 to 6 of the present invention, description has been made using a configuration for driving one light emitting element group.

従来技術でも述べた通り、2系統以上の複数系列の発光素子群を駆動する場合には、LED素子の順方向電圧VFバラツキ等の影響が、各々の系列間での個体差によりより大きな影響となるため、本願発明における実施形態は2系統以上の複数系列の発光素子群を駆動する場合にはさらに有効となる。   As described in the prior art, when driving a plurality of groups of light emitting element groups of two or more systems, the influence of the forward voltage VF variation of the LED elements is larger due to individual differences between the series. Therefore, the embodiment of the present invention is more effective when driving a plurality of light emitting element groups of two or more systems.

図7は、本発明の実施の形態を用いて4系統からなる発光素子群を駆動する場合の構成図を示したものである。ここでは、実施の形態1を用いて説明するが、実施の形態2〜6についても同様であり、説明を省略する。   FIG. 7 shows a configuration diagram in the case of driving a light emitting element group consisting of four systems using the embodiment of the present invention. Here, the description will be made using the first embodiment, but the same applies to the second to sixth embodiments, and the description thereof will be omitted.

図7において、駆動負荷として、例えばN個(Nは2以上の整数)のLED素子3が直列接続された発光素子群11〜14のアノード側端Pa1〜Pa4は駆動電源1に共通接続され、電圧VOUTが供給され、カソード側端Pc1〜Pc4には、発光素子群11〜14をそれぞれ駆動する定電流駆動装置261〜264と電流設定用抵抗231〜234が直列に接続され、電流設定用抵抗231〜234の一端は接地端子2に接続されている。カソード側端Pc1〜Pc4と電流設定用抵抗231〜234の他端であるノードPs1〜Ps4の間に接続される定電流駆動装置261〜264は、発光素子群11〜14を流れる電流の第1の電流経路となる第1の電流駆動回路21と、第1の電流駆動回路21と並列に配置され、分流して第2の電流経路となる第2の電流駆動回路27とからなる。各第2の電流駆動回路27はそれぞれ分流電流設定用抵抗431〜434と直列接続され、カソード側端Pc1〜Pc4とノードPs1〜Ps4の間に接続される。   In FIG. 7, as drive loads, for example, the anode side ends Pa1 to Pa4 of the light emitting element groups 11 to 14 in which N (N is an integer of 2 or more) LED elements 3 are connected in series are commonly connected to the drive power supply 1. A voltage VOUT is supplied, and constant current driving devices 261 to 264 and current setting resistors 231 to 234 for driving the light emitting element groups 11 to 14 and the current setting resistors 231 to 234 are connected in series to the cathode side ends Pc1 to Pc4, respectively. One ends of 231 to 234 are connected to the ground terminal 2. The constant current driving devices 261 to 264 connected between the cathode side ends Pc1 to Pc4 and the nodes Ps1 to Ps4 which are the other ends of the current setting resistors 231 to 234 are the first currents flowing through the light emitting element groups 11 to 14, respectively. The first current driving circuit 21 serving as a current path and the second current driving circuit 27 disposed in parallel with the first current driving circuit 21 and shunted to form a second current path. Each second current drive circuit 27 is connected in series with the shunt current setting resistors 431 to 434, and is connected between the cathode side ends Pc1 to Pc4 and the nodes Ps1 to Ps4.

各第1の電流駆動回路21のオペアンプの非反転入力には電流設定用電源34が接続され、設定電圧Vsが印加されており、各第2の電流駆動回路27のコンパレータの非反転入力には分流電流制御用電源35が接続され、設定電圧Vcが印加されている。なお、ここでは、電流設定用電源34および分流電流制御用電源35は定電流駆動装置261〜264に共通接続しているが個々の電源を接続しても構わない。   A current setting power source 34 is connected to the non-inverting input of the operational amplifier of each first current driving circuit 21, and the setting voltage Vs is applied. The non-inverting input of the comparator of each second current driving circuit 27 is A shunt current control power source 35 is connected and a set voltage Vc is applied. Here, the current setting power source 34 and the shunt current control power source 35 are commonly connected to the constant current driving devices 261 to 264, but individual power sources may be connected.

動作については、実施の形態1と同様であるので省略するが、第2の電流駆動回路27へ分流して電流が流れることにより、分流電流設定用抵抗431〜434で電力損失を分散させることにより、定電流駆動装置261〜264での電力損失並びにそれに起因する発熱を抑制することができ、各実施の形態の通りの以下の効果が得られる。   Since the operation is the same as in the first embodiment, a description thereof will be omitted. However, by dividing the current to the second current driving circuit 27 and flowing the current, the power loss is dispersed by the shunt current setting resistors 431 to 434. In addition, power loss in the constant current driving devices 261 to 264 and heat generation resulting therefrom can be suppressed, and the following effects as in the respective embodiments can be obtained.

(1)同一半導体基板上に構成される電流駆動装置の搭載数の発熱による制約を緩和し、より多くの電流駆動装置を同一ICに搭載でき、システムの簡略化を図ることができる。   (1) The restriction due to heat generation of the number of current drive devices configured on the same semiconductor substrate can be alleviated, and more current drive devices can be mounted on the same IC, thereby simplifying the system.

(2)発熱制約となる課題の原因となった複数の駆動負荷間での電圧降下差異および使用環境もしくは個体バラツキに起因する電圧降下変動の許容量が緩和されることとなり、LED素子の直列数をより多く実現でき、システムの簡略化を図ることができる。   (2) The number of LED elements in series will be reduced because the voltage drop difference between multiple drive loads that has caused the problem of heat generation restriction and the allowable amount of voltage drop fluctuation due to usage environment or individual variation will be alleviated. Can be realized more and the system can be simplified.

(3)複数の駆動負荷間での電圧降下差異および使用環境もしくは個体バラツキに起因する電圧変動の許容量が緩和されるため、個々のLED素子のVFバラツキを緩和できるため、LEDの選別を不要とし、システムのコスト抑制にも寄与できる。   (3) Since the voltage drop difference between multiple drive loads and the allowable amount of voltage fluctuations caused by the usage environment or individual variations are alleviated, the VF variation of each LED element can be alleviated, thus eliminating the need for LED selection. And can contribute to cost reduction of the system.

本発明は、発光素子駆動装置、発光装置およびそれらを用いた表示パネル駆動装置に利用できる。   The present invention can be used for a light emitting element driving device, a light emitting device, and a display panel driving device using them.

10〜14 発光素子群
21 第1の電流駆動回路
23 電流設定用抵抗
24、28 駆動用MOSトランジスタ
25、36 オペアンプ
26、26A〜26E 定電流駆動装置
27、27A〜27E 第2の電流駆動回路
29、29A〜29E、38 コンパレータ
34 電流設定用電源
35 分流電流制御用電源
43 分流電流設定用抵抗
10 to 14 Light emitting element group 21 First current driving circuit 23 Current setting resistor 24, 28 Driving MOS transistor 25, 36 Operational amplifier 26, 26A to 26E Constant current driving device 27, 27A to 27E Second current driving circuit 29 , 29A to 29E, 38 Comparator 34 Current setting power source 35 Shunt current control power source 43 Shunt current setting resistor

Claims (19)

負荷を電流で駆動する定電流駆動装置であって、
一端が第1の電源に接続される前記負荷の他端と接続される第1の端子と、
一端が第2の電源に接続される、前記負荷に流す電流の電流値を設定する電流設定用素子の他端と接続される第2の端子と、
一端が前記負荷または前記電流設定用素子の他端と接続される分流電流設定用素子の他端と接続される第3の端子と、
前記第1の端子と前記第2の端子との間に接続される第1の電流駆動回路と、
前記分流設定用素子の一端が前記負荷の他端に接続されている場合は、前記第3の端子と前記第2の端子との間に接続され、前記分流設定用素子の一端が前記電流設定用素子の他端に接続されている場合は、前記第3の端子と前記第1の端子との間に接続される第2の電流駆動回路とを備え、
前記負荷に流れる電流を前記第1の電流駆動回路と前記第2の電流駆動回路に分流して流すことを特徴とする定電流駆動装置。
A constant current driving device for driving a load with current,
A first terminal connected to the other end of the load, one end of which is connected to a first power source;
A second terminal connected to the other end of the current setting element for setting a current value of a current flowing through the load, one end of which is connected to a second power source;
A third terminal connected to the other end of the shunt current setting element having one end connected to the load or the other end of the current setting element;
A first current drive circuit connected between the first terminal and the second terminal;
When one end of the shunt setting element is connected to the other end of the load, it is connected between the third terminal and the second terminal, and one end of the shunt setting element is the current setting A second current drive circuit connected between the third terminal and the first terminal, when connected to the other end of the device for use ,
A constant current driving apparatus characterized in that a current flowing through the load is divided and supplied to the first current driving circuit and the second current driving circuit.
前記第1の電流駆動回路は、第1のオペアンプと第1のトランジスタからなり、
前記第1のトランジスタは前記第1の端子と前記第2の端子の間に電流が流れるように接続され、前記第1のトランジスタの制御端子は、前記第1のオペアンプの出力と接続され、前記第1のオペアンプの一方の入力には、前記第2の端子が接続され、前記第1のオペアンプの他方の入力には、前記負荷に電流を流す電流値を設定する電流設定用電源が接続される第4の端子を備えていることを特徴とする請求項1記載の定電流駆動装置。
The first current driving circuit includes a first operational amplifier and a first transistor,
The first transistor is connected so that a current flows between the first terminal and the second terminal, and a control terminal of the first transistor is connected to an output of the first operational amplifier, One input of the first operational amplifier is connected to the second terminal, and the other input of the first operational amplifier is connected to a current setting power source for setting a current value to flow current to the load. The constant current drive device according to claim 1, further comprising a fourth terminal.
前記第2の電流駆動回路は、前記第1の端子または前記第2の端子と、前記第3の端子との間に流れる分流の是非を制御するスイッチング素子と、前記スイッチング素子のオン・オフを制御する分流制御回路を備えたことを特徴とする請求項2記載の定電流駆動装置。 The second current driving circuit includes a switching element that controls whether or not the current flows between the first terminal or the second terminal and the third terminal, and turns on / off the switching element. 3. The constant current drive device according to claim 2, further comprising a shunt control circuit for controlling. 前記スイッチング素子は第2のトランジスタであり、前記第2のトランジスタの制御端子は、前記分流制御回路である第1のコンパレータの出力と接続され、前記第1のコンパレータの一方の入力には、前記第1の端子が接続され、前記第1のコンパレータの他方の入力には、分流電流設定用電源が接続される第5の端子を備えていることを特徴とする請求項3記載の定電流駆動装置。 The switching element is a second transistor, and a control terminal of the second transistor is connected to an output of a first comparator that is the shunt control circuit, and one input of the first comparator has the input 4. The constant current drive according to claim 3, wherein a first terminal is connected, and the other input of the first comparator includes a fifth terminal to which a shunt current setting power source is connected. apparatus. 前記スイッチング素子は第2のトランジスタであり、前記第2のトランジスタの制御端子は、前記分流制御回路である第1のコンパレータの出力と接続され、前記第1のコンパレータの一方の入力には、前記第2の端子が接続され、前記第1のコンパレータの他方の入力には、前記電流設定用電源の電位より高い電位を有する第3の電源が接続される第5の端子を備えていることを特徴とする請求項3記載の定電流駆動装置。 The switching element is a second transistor, and a control terminal of the second transistor is connected to an output of a first comparator that is the shunt control circuit, and one input of the first comparator has the input A second terminal is connected, and the other input of the first comparator includes a fifth terminal to which a third power source having a potential higher than the potential of the current setting power source is connected. 4. The constant current drive device according to claim 3, wherein 前記第1のコンパレータの出力を前記第1のオペアンプに入力し、前記第1のトランジスタのオン・オフを制御可能としたことを特徴とする請求項4または5のいずれかに記載の定電流駆動装置。 6. The constant current drive according to claim 4, wherein an output of the first comparator is input to the first operational amplifier so that on / off of the first transistor can be controlled. apparatus. 前記スイッチング素子は第2のトランジスタであり、前記第2のトランジスタの制御端子は、前記分流制御回路である第2のオペアンプの出力と接続され、前記第2のオペアンプの一方の入力には、前記第2の端子が接続され、前記第2のオペアンプの他方の入力には、前記電流設定用電源の電位より高い電位を有する第3の電源が接続される第5の端子を備えていることを特徴とする請求項3記載の定電流駆動装置。 The switching element is a second transistor, and a control terminal of the second transistor is connected to an output of a second operational amplifier serving as the shunt control circuit, and one input of the second operational amplifier includes the input A second terminal is connected, and the other input of the second operational amplifier is provided with a fifth terminal to which a third power supply having a potential higher than the potential of the current setting power supply is connected. 4. The constant current drive device according to claim 3, wherein 一方の入力が前記第1の端子に接続され、他方の入力が前記第1の端子の電位検知のため比較される電位検知用電源が接続される第6の端子に接続される第2のコンパレータを備え、
前記第2のコンパレータの出力を前記第1のオペアンプおよび前記第2のオペアンプに入力し、前記第1のトランジスタおよび前記第2のトランジスタのオン・オフを制御可能としたことを特徴とする請求項7記載の定電流駆動装置。
A second comparator having one input connected to the first terminal and the other input connected to a sixth terminal to which a potential detection power source to be compared for potential detection of the first terminal is connected With
The output of the second comparator is input to the first operational amplifier and the second operational amplifier so that on / off of the first transistor and the second transistor can be controlled. 8. The constant current drive device according to 7.
一端が第1の電源に接続され、電流で駆動される負荷と、
一端が第2の電源に接続され、前記負荷に流す電流の電流値を設定する電流設定用素子と、
前記負荷の他端と前記電流設定用素子の他端の間に接続された第1の電流駆動回路と、
前記負荷の他端と前記電流設定用素子の他端の間に、分流電流設定用素子と直列接続され、前記第1の電流駆動回路と並列に接続された第2の電流駆動回路とを備え、
前記負荷に流れる電流を前記第1の電流駆動回路と前記第2の電流駆動回路に分流して流すことを特徴とする負荷駆動装置。
A load connected at one end to a first power source and driven by current;
A current setting element that has one end connected to a second power source and sets a current value of a current flowing through the load;
A first current drive circuit connected between the other end of the load and the other end of the current setting element;
A second current drive circuit connected in series with the shunt current setting element and connected in parallel with the first current drive circuit between the other end of the load and the other end of the current setting element; ,
A load driving apparatus characterized in that a current flowing through the load is divided and supplied to the first current driving circuit and the second current driving circuit.
負荷は直列接続された複数の発光素子であることを特徴とする請求項9記載の負荷駆動装置。 The load driving apparatus according to claim 9, wherein the load is a plurality of light emitting elements connected in series. 電流設定用素子および分流電流設定用素子は抵抗であることを特徴とする請求項9記載の負荷駆動装置。 10. The load driving device according to claim 9, wherein the current setting element and the shunt current setting element are resistors. 前記第1の電流駆動回路は、第1のオペアンプと第1のトランジスタからなり、
前記第1のトランジスタは前記負荷の他端と前記電流設定用素子の他端の間に電流が流れるように接続され、前記第1のトランジスタの制御端子は、前記第1のオペアンプの出力と接続され、前記第1のオペアンプの一方の入力には、前記電流設定用素子の他端が接続され、前記第1のオペアンプの他方の入力には、前記負荷に電流を流す電流値を設定する電流設定用電源が接続されていることを特徴とする請求項9記載の負荷駆動装置。
The first current driving circuit includes a first operational amplifier and a first transistor,
The first transistor is connected so that a current flows between the other end of the load and the other end of the current setting element, and a control terminal of the first transistor is connected to an output of the first operational amplifier. The other end of the current setting element is connected to one input of the first operational amplifier, and the other input of the first operational amplifier sets a current value for setting a current value to flow through the load. 10. The load driving device according to claim 9, wherein a power supply for setting is connected.
前記第2の電流駆動回路は、前記負荷の他端または前記電流設定用素子の他端と、前記分流電流設定用素子の一端との間に流れる分流の是非を制御するスイッチング素子と、前記スイッチング素子のオン・オフを制御する分流制御回路を備えたことを特徴とする請求項12記載の負荷駆動装置。 The second current driving circuit includes: a switching element that controls whether or not a shunt current flows between the other end of the load or the other end of the current setting element and one end of the shunt current setting element; and the switching 13. The load driving device according to claim 12, further comprising a shunt control circuit for controlling on / off of the element. 前記スイッチング素子は第2のトランジスタであり、前記第2のトランジスタの制御端子は、前記分流制御回路である第1のコンパレータの出力と接続され、前記第1のコンパレータの一方の入力には、前記負荷の他端が接続され、前記第1のコンパレータの他方の入力には、分流電流設定用電源が接続されたことを特徴とする請求項13記載の負荷駆動装置。 The switching element is a second transistor, and a control terminal of the second transistor is connected to an output of a first comparator that is the shunt control circuit, and one input of the first comparator has the input 14. The load driving device according to claim 13, wherein the other end of the load is connected, and a shunt current setting power source is connected to the other input of the first comparator. 前記スイッチング素子は第2のトランジスタであり、前記第2のトランジスタの制御端子は、前記分流制御回路である第1のコンパレータの出力と接続され、前記第1のコンパレータの一方の入力には、前記電流設定用素子の他端が接続され、前記第1のコンパレータの他方の入力には、前記電流設定用電源の電位より高い電位を有する第3の電源が接続されたことを特徴とする請求項13記載の負荷駆動装置。 The switching element is a second transistor, and a control terminal of the second transistor is connected to an output of a first comparator that is the shunt control circuit, and one input of the first comparator has the input The other end of the current setting element is connected, and the other input of the first comparator is connected to a third power source having a potential higher than that of the current setting power source. 13. The load driving device according to 13. 前記第1のコンパレータの出力を前記第1のオペアンプに入力し、前記第1のトランジスタのオン・オフを制御可能としたことを特徴とする請求項14または15のいずれかに記載の負荷駆動装置。 The load driving device according to claim 14, wherein an output of the first comparator is input to the first operational amplifier so that on / off of the first transistor can be controlled. . 前記スイッチング素子は第2のトランジスタであり、前記第2のトランジスタの制御端子は、前記分流制御回路である第2のオペアンプの出力と接続され、前記第2のオペアンプの一方の入力には、前記電流設定用素子の他端が接続され、前記第2のオペアンプの他方の入力には、前記電流設定用電源の電位より高い電位を有する第3の電源が接続されたことを特徴とする請求項13記載の負荷駆動装置。 The switching element is a second transistor, and a control terminal of the second transistor is connected to an output of a second operational amplifier serving as the shunt control circuit, and one input of the second operational amplifier includes the input The other end of the current setting element is connected, and the other input of the second operational amplifier is connected to a third power source having a potential higher than that of the current setting power source. 13. The load driving device according to 13. 一方の入力が前記負荷の他端に接続され、他方の入力が前記負荷の他端の電位検知のため比較される電位検知用電源が接続された第2のコンパレータを備え、
前記第2のコンパレータの出力を前記第1のオペアンプおよび前記第2のオペアンプに入力し、前記第1のトランジスタおよび前記第2のトランジスタのオン・オフを制御可能としたことを特徴とする請求項17記載の負荷駆動装置。
A second comparator to which one input is connected to the other end of the load and the other input is connected to a potential detection power source to be compared for potential detection at the other end of the load;
The output of the second comparator is input to the first operational amplifier and the second operational amplifier so that on / off of the first transistor and the second transistor can be controlled. 17. The load driving device according to 17.
直列接続された複数の発光素子を含む発光素子群を複数含む発光装置と、
前記発光素子群のそれぞれの一端に接続された複数の定電流駆動装置と、
前記定電流駆動装置のそれぞれの一端に接続された、前記発光素子群それぞれに流す電流の電流値を設定する複数の電流設定用素子とを備え、
前記定電流駆動装置のそれぞれは、前記発光素子群の一端と前記電流設定用素子の一端の間に接続された第1の電流駆動回路と、前記定電流駆動装置は、前記発光素子群の一端と前記電流設定用素子の一端の間に、分流電流設定用素子と直列接続され、前記第1の電流駆動回路と並列に接続された第2の電流駆動回路とからなり、
前記発光素子群のそれぞれに流れる電流を前記定電流駆動装置のそれぞれの前記第1の電流駆動回路と前記第2の電流駆動回路に分流して流すことを特徴とする負荷駆動装置。
A light emitting device including a plurality of light emitting element groups including a plurality of light emitting elements connected in series;
A plurality of constant current driving devices connected to one end of each of the light emitting element groups;
A plurality of current setting elements that are connected to one end of each of the constant current drive devices and set a current value of a current that flows to each of the light emitting element groups;
Each of the constant current driving devices includes a first current driving circuit connected between one end of the light emitting element group and one end of the current setting element, and the constant current driving device includes one end of the light emitting element group. And a second current drive circuit connected in series with the shunt current setting element and in parallel with the first current drive circuit, between one end of the current setting element and
A load driving device characterized in that a current flowing through each of the light emitting element groups is divided and supplied to the first current driving circuit and the second current driving circuit of each of the constant current driving devices.
JP2011216342A 2011-09-30 2011-09-30 Constant current drive device and load drive device using the same Expired - Fee Related JP4985870B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011216342A JP4985870B1 (en) 2011-09-30 2011-09-30 Constant current drive device and load drive device using the same
PCT/JP2011/007322 WO2013046285A1 (en) 2011-09-30 2011-12-27 Constant current driver apparatus and load driver apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216342A JP4985870B1 (en) 2011-09-30 2011-09-30 Constant current drive device and load drive device using the same

Publications (2)

Publication Number Publication Date
JP4985870B1 true JP4985870B1 (en) 2012-07-25
JP2014082226A JP2014082226A (en) 2014-05-08

Family

ID=46678959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216342A Expired - Fee Related JP4985870B1 (en) 2011-09-30 2011-09-30 Constant current drive device and load drive device using the same

Country Status (2)

Country Link
JP (1) JP4985870B1 (en)
WO (1) WO2013046285A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257662B (en) * 2012-03-14 2014-12-24 美芯晟科技(北京)有限公司 Linear constant-current modulation circuit
CN109496017A (en) * 2018-12-26 2019-03-19 矽力杰半导体技术(杭州)有限公司 LED load driving circuit and its driving method
CH715767A1 (en) 2019-01-22 2020-07-31 Meridian Ag Driver electronics and methods for laser control.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267833A (en) * 2009-05-15 2010-11-25 Renesas Electronics Corp Semiconductor device, led driving circuit, and image display apparatus
JP2011114131A (en) * 2009-11-26 2011-06-09 Harison Toshiba Lighting Corp Led driver circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267833A (en) * 2009-05-15 2010-11-25 Renesas Electronics Corp Semiconductor device, led driving circuit, and image display apparatus
JP2011114131A (en) * 2009-11-26 2011-06-09 Harison Toshiba Lighting Corp Led driver circuit

Also Published As

Publication number Publication date
WO2013046285A1 (en) 2013-04-04
JP2014082226A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP6181730B2 (en) Semiconductor chip and light emitting device and display device using the same
CN102201202B (en) Driving power supply control circuit and driving power supply control method of light emitting diode
WO2010143338A1 (en) Light-emitting element driving device
US20100177127A1 (en) Led driving circuit, semiconductor element and image display device
CN101436386B (en) Drive device for backlight module unit
JP2017503309A (en) Overcurrent protection circuit, LED backlight driving circuit, and liquid crystal display device
US20100060177A1 (en) Load driving apparatus
CN102548114B (en) Light emitting diode driving device
US20110221790A1 (en) Liquid crystal display device
KR20110120623A (en) Driver ic for electrical road and driving method thereof
JP2013225568A (en) Semiconductor circuit and semiconductor device
US8884545B2 (en) LED driving system and driving method thereof
JP4985870B1 (en) Constant current drive device and load drive device using the same
JP2010056305A (en) Device for driving light emitting element
US9232598B2 (en) Operating circuit applied to backlight and associated method
KR101243144B1 (en) driving circuit of LED driver for LCD panel
JP2003187988A (en) Driving device of white light-emitting diode
US9635746B2 (en) Detecting circuit for open of LED array and LED driver apparatus using the same
JP2011119387A (en) Light-emitting element circuit and liquid crystal display device
CN110139419B (en) Light emitting module and light emitting device
JP2008192730A (en) Led drive circuit
JP2011181378A (en) Light emitting element driving circuit, light emitting device using the same, and display device
JP5054236B1 (en) LED lighting device
JP2010283740A (en) Photo mos relay drive circuit, and semiconductor test device using the same
CN112351551A (en) Light modulation circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees