JP2008205275A - Method of manufacturing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, electric double layer capacitor, and activated charcoal for electric double layer capacitor electrode - Google Patents

Method of manufacturing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, electric double layer capacitor, and activated charcoal for electric double layer capacitor electrode Download PDF

Info

Publication number
JP2008205275A
JP2008205275A JP2007040818A JP2007040818A JP2008205275A JP 2008205275 A JP2008205275 A JP 2008205275A JP 2007040818 A JP2007040818 A JP 2007040818A JP 2007040818 A JP2007040818 A JP 2007040818A JP 2008205275 A JP2008205275 A JP 2008205275A
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
electrode
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007040818A
Other languages
Japanese (ja)
Inventor
Yasushi Uehara
康 上原
Kenro Mitsuta
憲朗 光田
Kazuki Kubo
一樹 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007040818A priority Critical patent/JP2008205275A/en
Publication of JP2008205275A publication Critical patent/JP2008205275A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method of manufacturing an electrode material for an electric double layer capacitor, by which a residual of a functional group containing oxygen can be suppressed; an electrode for an electric double layer capacitor using the electrode material for the electric double layer capacitor obtained by the manufacturing method; an electric double layer capacitor with a high capacity and a stable performance using this electrode for the electric double layer capacitor; and an activated charcoal for an electric double layer capacitor electrode, in which an oxygen content is low and a specific surface area is large. <P>SOLUTION: In a hydrogen atmosphere or a hydrogen atmosphere diluted by nitrogen, an electromagnetic wave with a wavelength of 170 nm or less is irradiated to an activated charcoal with a BET specific surface area of 1,000 m<SP>2</SP>/g or more which is measured by a nitrogen absorbing method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電極層と集電体とを備えた電気二重層キャパシタに用いられる電極材料の製造方法、電気二重層キャパシタ用電極、電気二重層キャパシタ、及び電気二重層キャパシタ電極用活性炭に関するものである。   The present invention relates to a method for producing an electrode material used for an electric double layer capacitor having an electrode layer and a current collector, an electrode for an electric double layer capacitor, an electric double layer capacitor, and activated carbon for an electric double layer capacitor electrode. is there.

電気二重層キャパシタは、分極性電極と電解液との界面に形成される電気二重層を利用した電荷蓄積デバイスであり、その電極材料としては、静電容量を高めるために表面積が大きな活性炭が用いられる。電気二重層キャパシタの中でも、エネルギー密度の高い有機系電解液を使用するタイプでは、水分が性能劣化の原因となるが、表面積が大きな活性炭は、水分を吸着しやすい性質があり、活性炭に吸着した水分を除去する必要がある。そこで、活性炭にマイクロ波を照射しながら乾燥空気を流し、活性炭の残存水分量を1000ppm以下に抑える電気二重層キャパシタの製造方法が提案されている。(例えば特許文献1参照。)   An electric double layer capacitor is a charge storage device that uses an electric double layer formed at the interface between a polarizable electrode and an electrolyte, and as the electrode material, activated carbon with a large surface area is used to increase capacitance. It is done. Among types of electric double layer capacitors that use organic electrolytes with high energy density, moisture can cause performance degradation, but activated carbon with a large surface area has the property of easily adsorbing moisture and has been adsorbed by activated carbon. It is necessary to remove moisture. In view of this, there has been proposed a method of manufacturing an electric double layer capacitor in which dry air is allowed to flow while irradiating the activated carbon with microwaves, and the residual moisture content of the activated carbon is suppressed to 1000 ppm or less. (For example, refer to Patent Document 1.)

特開2003−100572号公報、(段落0035、図1)JP 2003-100572 A (paragraph 0035, FIG. 1)

しかしながら、上述したように乾燥処理を行って水分を除去した場合でも、活性炭の表面には、依然として種々の官能基が結合したまま残留している。これらの官能基のうち、水素については、充放電の際に電極から水素ガスとして排出することができるが、水酸基やカルボキシル基といった酸素を含む官能基が残留していると、充放電の際に水が生成して電極内に残留し、上述したようにキャパシタの性能劣化の原因となる。また、活性炭の官能基は800℃から1000℃の高温で真空中熱処理すれば除去できることが知られているが、高温処理をすると表面積が減少してしまい、高容量のキャパシタが得られなくなるという問題があった。   However, even when the moisture is removed by performing a drying treatment as described above, various functional groups still remain on the surface of the activated carbon. Among these functional groups, hydrogen can be discharged as hydrogen gas from the electrode during charging / discharging, but if functional groups containing oxygen such as hydroxyl groups or carboxyl groups remain, charging / discharging Water is generated and remains in the electrode, causing the deterioration of the performance of the capacitor as described above. In addition, it is known that the functional group of activated carbon can be removed by heat treatment in vacuum at a high temperature of 800 ° C. to 1000 ° C. However, the surface area is reduced by high temperature treatment, and a high-capacity capacitor cannot be obtained. was there.

この発明は、上記のような問題点を解決するためになされたものであり、酸素を含む官能基の残留を抑制できる電気二重層キャパシタ用電極材料の製造方法、電気二重層キャパシタ用電極、高容量でしかも性能が安定した電気二重層キャパシタ、及び酸素含有量が低く比表面積の大きな電気二重層キャパシタ電極用活性炭を得ることを目的とする。   The present invention has been made to solve the above-described problems, and provides a method for producing an electrode material for an electric double layer capacitor capable of suppressing the remaining functional groups containing oxygen, an electrode for an electric double layer capacitor, a high An object of the present invention is to obtain an electric double layer capacitor having stable capacity and performance, and an activated carbon for an electric double layer capacitor electrode having a low oxygen content and a large specific surface area.

この発明に係る電気二重層キャパシタ用電極材料の製造方法は、水素雰囲気又は窒素で希釈した水素雰囲気中で、窒素吸着法により測定したBET比表面積が1000m/g以上の活性炭に波長が170nm以下の電磁波を照射するものである。 In the method for producing an electrode material for an electric double layer capacitor according to the present invention, activated carbon having a BET specific surface area of 1000 m 2 / g or more measured by a nitrogen adsorption method in a hydrogen atmosphere or a hydrogen atmosphere diluted with nitrogen has a wavelength of 170 nm or less. The electromagnetic wave is irradiated.

この発明によれば、活性炭の比表面積を減少させることなく酸素含有量の低減が可能となり、高容量で性能が安定した電気二重層キャパシタを製造できる電気二重層キャパシタ用電極材料を得ることができる。   According to this invention, it is possible to reduce the oxygen content without reducing the specific surface area of the activated carbon, and it is possible to obtain an electrode material for an electric double layer capacitor that can produce an electric double layer capacitor having a high capacity and stable performance. .

実施の形態1.
図1、2は本発明を実施するための実施の形態1における電気二重層キャパシタ用電極材料の製造方法を示すもので、図1はその製造方法を示す図、図2はその製造工程を示すフローチャートである。
Embodiment 1 FIG.
1 and 2 show a manufacturing method of an electrode material for an electric double layer capacitor in Embodiment 1 for carrying out the present invention. FIG. 1 shows the manufacturing method and FIG. 2 shows the manufacturing process. It is a flowchart.

図1において、気密性で筒状の反応容器1(筐体の一部を切り抜いた状態で示す)には、水素を供給する水素供給装置2と、窒素を供給する窒素供給装置3と、真空ポンプ4とがバルブ2V、3Vaおよび4Vaを介してそれぞれ接続されている。前記反応容器1の内部には波長4.275nmの軟X線を発生するレーザープラズマ方式の電磁波発生源6が設置されている。また、前記反応容器1の上部には、原料供給装置7がバルブ7Vを介して接続されており、この原料供給装置7から原料となる活性炭が、前記窒素供給装置3からバルブ3Vbを介して供給された窒素ガスとともに前記反応容器1内にノズル7aより噴射される。さらに、前記原料供給装置7はバルブ4Vbを介して前記真空ポンプ4と接続されている。そして、前記反応容器1の内底面には処理済の活性炭を受ける容器8が設置され、その出口8aはバルブ8Vを介して外部と連なっている。   In FIG. 1, an airtight cylindrical reaction vessel 1 (shown in a state where a part of the casing is cut out) includes a hydrogen supply device 2 for supplying hydrogen, a nitrogen supply device 3 for supplying nitrogen, and a vacuum. The pump 4 is connected to each other via valves 2V, 3Va and 4Va. A laser plasma type electromagnetic wave source 6 for generating soft X-rays having a wavelength of 4.275 nm is installed inside the reaction vessel 1. A raw material supply device 7 is connected to the upper part of the reaction vessel 1 via a valve 7V, and activated carbon as a raw material is supplied from the raw material supply device 7 via the valve 3Vb. Along with the nitrogen gas thus produced, it is injected into the reaction vessel 1 from the nozzle 7a. Further, the raw material supply device 7 is connected to the vacuum pump 4 through a valve 4Vb. And the container 8 which receives processed activated carbon is installed in the inner bottom face of the said reaction container 1, The exit 8a is connected with the exterior through the valve | bulb 8V.

本発明で使用する活性炭は、窒素吸着法により測定したBET比表面積が1000m/g以上で、粒子径が数10nm〜数10μmの粉体をなした活性炭であって、原料となる炭素材料(フェノール樹脂、石油コークス、椰子殻等)を炭化し、その後、水蒸気賦活法、溶融アルカリ賦活法などの賦活方法を施すことによって得ることができる。なお、この活性炭は、窒素吸着法により測定したBET比表面積が1000m/g以上であれば市販品でも良い。 The activated carbon used in the present invention is an activated carbon having a BET specific surface area measured by a nitrogen adsorption method of 1000 m 2 / g or more and having a particle diameter of several tens of nanometers to several tens of micrometers, and is a carbon material (raw material) Phenol resin, petroleum coke, coconut shell, etc.) and carbonization, followed by activation methods such as a steam activation method and a molten alkali activation method. In addition, this activated carbon may be a commercially available product as long as the BET specific surface area measured by the nitrogen adsorption method is 1000 m 2 / g or more.

次に製造工程について図2のフローチャートを用いて説明する。
まず、真空ポンプ4(及びバルブ4Va)を動作させ反応容器1内のガスを抜いて減圧する。さらに、窒素供給装置3(及びバルブ3Va)を動作させ、反応容器1内に窒素ガスを導入して、反応容器内に残留している空気を窒素に置換することで反応容器内1内の酸素を除去する(S100)。次に、水素供給装置2から水素を導入し、反応容器1内に水素濃度が4%以下の(希釈)水素雰囲気を形成(S110)する。このとき、反応容器1内は外気に対して負圧状態となっている。また、上記ステップS100、S110においては、装置稼動初期には厳密な酸素除去を行なうために窒素導入と減圧動作を繰り返し行なう必要がある。しかし、活性炭の処理を開始した後では、反応容器1内に酸素が残留することはほとんどなく、既に水素雰囲気が形成されているので、減圧と各ガスの導入を1回行なうことにより圧力と水素濃度の調整を行なうことで足りる。なお、反応容器1内は、図示しない加熱手段によって150℃程度の温度に維持している。
Next, a manufacturing process is demonstrated using the flowchart of FIG.
First, the vacuum pump 4 (and the valve 4Va) is operated to extract gas from the reaction vessel 1 and reduce the pressure. Further, the nitrogen supply device 3 (and valve 3Va) is operated, nitrogen gas is introduced into the reaction vessel 1, and the air remaining in the reaction vessel is replaced with nitrogen, whereby oxygen in the reaction vessel 1 is replaced. Is removed (S100). Next, hydrogen is introduced from the hydrogen supply device 2 to form a (diluted) hydrogen atmosphere having a hydrogen concentration of 4% or less in the reaction vessel 1 (S110). At this time, the inside of the reaction vessel 1 is in a negative pressure state with respect to the outside air. In steps S100 and S110, it is necessary to repeat nitrogen introduction and depressurization operations in order to perform strict oxygen removal at the initial stage of operation of the apparatus. However, after starting the treatment of activated carbon, oxygen hardly remains in the reaction vessel 1 and a hydrogen atmosphere has already been formed. Therefore, pressure and hydrogen are reduced by performing decompression and introduction of each gas once. It is sufficient to adjust the concentration. The reaction vessel 1 is maintained at a temperature of about 150 ° C. by a heating means (not shown).

次に、原料供給装置7から活性炭を反応容器1内に噴射する準備(S120)をする。まず、原料供給装置7に原料となる上述した比表面積1000m/g以上の活性炭を充填する。そして、真空ポンプ4(及びバルブ4Vb)を動作させて、活性炭の入った原料供給装置内7の空気を抜いて減圧した後、窒素供給装置3(及びバルブ3Vb)を動作させて、窒素ガスを導入し、原料供給装置7内の空気を窒素に置換するとともに、加圧する。 Next, preparation for injecting activated carbon into the reaction container 1 from the raw material supply device 7 is made (S120). First, the raw material supply apparatus 7 is filled with activated carbon having a specific surface area of 1000 m 2 / g or more as a raw material. Then, the vacuum pump 4 (and the valve 4Vb) is operated, the air in the raw material supply device 7 containing activated carbon is extracted and decompressed, and then the nitrogen supply device 3 (and the valve 3Vb) is operated to supply nitrogen gas. Then, the air in the raw material supply device 7 is replaced with nitrogen and pressurized.

原料供給装置7の準備が整えば、活性炭を反応容器1内に噴射し、軟X線を照射して酸素を除去する(S130)。まず、電磁波発生源6を起動して軟X線を反応容器1の内部のほぼ全面に照射する。そして、原料供給装置7のバルブ7Vを開けると、充填されていた活性炭は、加圧された窒素に導かれ、ノズル7aから減圧された反応容器1内上部の内壁に向かって水平方向に拡散して噴出する。噴出した活性炭は希釈された水素雰囲気中を沈降していき、沈降中に電磁波発生源6から照射された軟X線を受ける。このとき、活性炭が受けた軟X線は、C=Oの結合エネルギー(285eV)よりも約5eVエネルギーの大きい波長4.275nm(290eV)の電磁波である。そのため、軟X線を受けた活性炭に残留している官能基のC=Oの結合を軟X線によって効率的に切断することができる。しかも、C−O結合やO−H結合は、C=O結合よりも結合エネルギーが低いので、酸素を含む結合を切断し、活性炭に残留している酸素を含む官能基のほとんどを遊離させることができる。そして、反応容器1の内部は(窒素で希釈した)水素雰囲気に保たれているので、官能基が遊離した活性炭には優先的に水素が結合し、酸素が除去され、水素で安定化された活性炭が容器8に堆積する。また、反応容器1内は150℃程度に昇温されているので、遊離した酸素により水が生成されても、活性炭に吸着することはない。   When the raw material supply device 7 is ready, activated carbon is injected into the reaction container 1 and irradiated with soft X-rays to remove oxygen (S130). First, the electromagnetic wave generation source 6 is activated to irradiate almost the entire surface inside the reaction container 1 with soft X-rays. Then, when the valve 7V of the raw material supply device 7 is opened, the charged activated carbon is guided to the pressurized nitrogen and diffuses in the horizontal direction toward the inner wall of the upper part of the reaction vessel 1 decompressed from the nozzle 7a. Erupt. The ejected activated carbon settles in the diluted hydrogen atmosphere and receives soft X-rays irradiated from the electromagnetic wave generation source 6 during the sedimentation. At this time, the soft X-rays received by the activated carbon are electromagnetic waves having a wavelength of 4.275 nm (290 eV), which is about 5 eV energy larger than C = O binding energy (285 eV). Therefore, the C = O bond of the functional group remaining on the activated carbon that has received soft X-rays can be efficiently cut by soft X-rays. Moreover, since the C—O bond and the O—H bond have a lower binding energy than the C═O bond, the oxygen-containing bond is cleaved to release most of the oxygen-containing functional groups remaining on the activated carbon. Can do. And since the inside of the reaction vessel 1 is kept in a hydrogen atmosphere (diluted with nitrogen), hydrogen is preferentially bonded to the activated carbon from which the functional groups are liberated, and oxygen is removed and stabilized with hydrogen. Activated carbon accumulates in the container 8. Further, since the temperature inside the reaction vessel 1 is raised to about 150 ° C., even if water is generated by the liberated oxygen, it is not adsorbed on the activated carbon.

最後に、容器8に堆積した処理済の活性炭、つまり、電気二重層キャパシタ用電極材料である電気二重層キャパシタ電極用活性炭を取り出す(S140)。原料供給装置7からの活性炭の噴射が終わり、噴射した活性炭の容器8への沈降が終了すると、窒素供給装置3(及びバルブ3Va)を動作させ、反応容器1内の圧力が大気圧に対して正圧を維持できる程度に加圧する。そして、バルブ8Vを開けると出口8aから活性炭が流れ落ちてくる。このとき、反応容器1内に外気が混入しないよう、窒素供給装置3からは反応容器1の圧が正圧を維持できる程度に窒素が供給されている。   Finally, the treated activated carbon deposited in the container 8, that is, the activated carbon for the electric double layer capacitor electrode, which is the electrode material for the electric double layer capacitor, is taken out (S140). When the injection of the activated carbon from the raw material supply device 7 is completed and the sedimentation of the injected activated carbon into the container 8 is completed, the nitrogen supply device 3 (and the valve 3Va) is operated, and the pressure in the reaction vessel 1 is reduced to the atmospheric pressure. Pressurize to maintain positive pressure. When the valve 8V is opened, the activated carbon flows down from the outlet 8a. At this time, nitrogen is supplied from the nitrogen supply device 3 to such an extent that the pressure of the reaction vessel 1 can be maintained at a positive pressure so that outside air does not enter the reaction vessel 1.

取り出した電気二重層キャパシタ電極用活性炭を分析すると、比表面積については酸素除去処理の前後においてほとんど変化はなく、1000m/g以上の窒素吸着法によるBET比表面積を保持している。しかも、元素分析により酸素含有量を測定すると、酸素含有量は0.1重量%(対炭素重量)以下に低減されている。 When the extracted activated carbon for electric double layer capacitor electrodes is analyzed, the specific surface area hardly changes before and after the oxygen removal treatment, and the BET specific surface area by the nitrogen adsorption method of 1000 m 2 / g or more is maintained. Moreover, when the oxygen content is measured by elemental analysis, the oxygen content is reduced to 0.1% by weight (vs. carbon weight) or less.

ここで、脱酸素処理の条件について検討を行った。
反応容器1内の水素濃度については、完全に酸素が無い状態を形成できれば、数1000ppm程度まで濃度を下げても効果があることがわかった。一方、処理中に酸素が混入した場合には水素濃度を1%以上に維持することにより、処理後の活性炭の酸素含有量を安定して0.1%以下に低減することができることがわかった。もちろん、水素100%で行なうことも可能であるが、活性炭を噴出させたり、取り出したりする際の利便性を考慮して、水素の燃焼下限濃度である4%以下に水素濃度を保つよう、窒素で希釈することとした。つまり、水素濃度1〜4%の範囲に希釈された水素雰囲気を形成することが望ましいことがわかった。
Here, the conditions for the deoxygenation treatment were examined.
It has been found that the hydrogen concentration in the reaction vessel 1 is effective even if the concentration is lowered to about several thousand ppm as long as a state in which oxygen is completely absent can be formed. On the other hand, when oxygen was mixed during the treatment, it was found that the oxygen content of the activated carbon after treatment could be stably reduced to 0.1% or less by maintaining the hydrogen concentration at 1% or more. . Of course, it is possible to carry out with 100% hydrogen, but in consideration of convenience when jetting out or taking out activated carbon, nitrogen should be maintained so that the hydrogen concentration is kept below 4%, which is the lower combustion limit concentration of hydrogen. It was decided to dilute with. That is, it was found that it is desirable to form a hydrogen atmosphere diluted to a hydrogen concentration range of 1 to 4%.

一方、活性炭に照射する電磁波についても、様々な波長について試験をした。その結果、波長が370nm〜2.5nmの電磁波を照射すると活性炭に残留する酸素含有量を低減する効果が見られ、さらに170nm〜2.5nmの波長範囲の電磁波では、ほとんどの活性炭に対して酸素含有量を0.1%以下に低減できることが確認できた。   On the other hand, the electromagnetic wave irradiated to activated carbon was also tested for various wavelengths. As a result, when an electromagnetic wave having a wavelength of 370 nm to 2.5 nm is irradiated, an effect of reducing the oxygen content remaining in the activated carbon is seen. Further, in an electromagnetic wave having a wavelength range of 170 nm to 2.5 nm, oxygen is almost equal to the activated carbon. It was confirmed that the content could be reduced to 0.1% or less.

波長の上限、つまり電磁波のエネルギーの下限については、官能基中の結合エネルギーの内、外殻電子の結合エネルギーにより規定され、C−O結合の外殻電子に対しては波長370nm以下の電磁波(紫外線)を照射することで結合を切断できることがわかった。例えば、接着硬化等に用いられる紫外線ランプの波長は254nmであり、C−O結合の切断に利用できる。しかし、C=O結合については、外殻電子の結合エネルギー波長は170nmの電磁波(紫外線)に相当し、C=Oを含めて活性炭に残留する酸素を除去するためには、波長170nm以下(エネルギーについては、より高い方)の電磁波が必要であることがわかった。例えば、キセノンエキシマランプの波長は172nm±15nmであり、キセノンエキシマランプを電磁波発生源6に使用することによって、活性炭中の酸素を0.1重量%以下に低減することができる。   The upper limit of the wavelength, that is, the lower limit of the energy of the electromagnetic wave is defined by the binding energy of the outer shell electrons in the binding energy in the functional group, and for the outer shell electrons of the C—O bond, the electromagnetic wave having a wavelength of 370 nm or less ( It was found that the bond can be broken by irradiating with ultraviolet rays. For example, the wavelength of an ultraviolet lamp used for adhesive curing or the like is 254 nm, and can be used for cutting a C—O bond. However, for the C═O bond, the binding energy wavelength of the outer electrons corresponds to an electromagnetic wave (ultraviolet light) of 170 nm, and in order to remove oxygen remaining in the activated carbon including C═O, the wavelength is 170 nm or less (energy It was found that the higher electromagnetic wave was necessary. For example, the wavelength of the xenon excimer lamp is 172 nm ± 15 nm, and by using the xenon excimer lamp as the electromagnetic wave generation source 6, oxygen in the activated carbon can be reduced to 0.1% by weight or less.

一方、上記のような紫外線領域の電磁波の場合、結合を切断する能力はあるが、透過性が小さく、活性炭の内部細孔の官能基に到達することが困難であり、処理時間が長くかかる。そこで、紫外線よりも透過力の高い軟X線領域の電磁波を使うことによって活性炭中の酸素除去を効率的に行なうことができる。例えば、実施の形態1で使用した波長の軟X線の1/e減衰距離は0.1μmとなり、活性炭内部細孔に容易に到達して短い時間で処理を行なうことができる。但し、軟X線源は一般的に紫外線源よりも高価であるので、処理時間のみが問題になる場合は紫外線源を多数使用することで軟X線源の代替とすることもできる。   On the other hand, in the case of electromagnetic waves in the ultraviolet region as described above, there is an ability to break the bond, but the permeability is small, it is difficult to reach the functional groups of the internal pores of the activated carbon, and the processing time is long. Thus, oxygen in the activated carbon can be efficiently removed by using an electromagnetic wave in a soft X-ray region having a higher transmission power than ultraviolet rays. For example, the 1 / e attenuation distance of the soft X-ray having the wavelength used in the first embodiment is 0.1 μm, and can easily reach the inner pores of the activated carbon and can be processed in a short time. However, since the soft X-ray source is generally more expensive than the ultraviolet ray source, if only the processing time becomes a problem, it can be replaced with the soft X-ray source by using a large number of ultraviolet ray sources.

ただし、軟X線は波長が短くなるほど、透過性能が向上するが、透過性能が高すぎると、電磁波のエネルギーが吸収されずに活性炭を素通りしてしまい、逆に結合を切断することができないことがわかった。軟X線の波長が2.5nm(500eV相当)より短いと、活性炭における吸収率が半分以下に低下することがわかり、実質的に2.5nm以上の波長の電磁波を使用することが望ましい。特に、C=Oの結合エネルギー(285eV)よりも5eV〜10eV程度エネルギーの大きい波長の電磁波が透過性も高く、最も効率よく活性炭中の酸素を含む官能基の結合を切断することができる。したがって、中心波長が4.27nmの軟X線源から照射される波長4.1〜4.3nmのである電磁波を使用すると、最も効率よく活性炭中の酸素を除去することができる。   However, the transmission performance of soft X-rays improves as the wavelength becomes shorter. However, if the transmission performance is too high, the energy of electromagnetic waves is not absorbed and passes through activated carbon, and the bond cannot be cut. I understood. When the wavelength of soft X-rays is shorter than 2.5 nm (equivalent to 500 eV), it can be seen that the absorptance of the activated carbon decreases to half or less, and it is desirable to use electromagnetic waves having a wavelength of substantially 2.5 nm or more. In particular, an electromagnetic wave having a wavelength that is about 5 eV to 10 eV higher than the bond energy of C═O (285 eV) has high permeability, and the bond of the functional group containing oxygen in activated carbon can be cut most efficiently. Therefore, when an electromagnetic wave having a wavelength of 4.1 to 4.3 nm irradiated from a soft X-ray source having a center wavelength of 4.27 nm is used, oxygen in the activated carbon can be most efficiently removed.

なお、本実施の形態では、製造方法の原理を示すために単純に活性炭を雰囲気ガス中に噴射して沈降させる装置を用いた例を示したが、これに限定することなく、反応容器1にキルンのように回転する機能を持たせ、内部で活性炭を攪拌させながら電磁波を照射するようにしてもよい。   In this embodiment, in order to show the principle of the manufacturing method, an example in which activated carbon is simply injected into the atmospheric gas and settling is shown. However, the present invention is not limited to this, and the reaction vessel 1 is not limited to this. A function of rotating like a kiln may be provided, and electromagnetic waves may be irradiated while stirring the activated carbon inside.

次に、上述した方法により製造した電気二重層キャパシタ用電極材料である電気二重層キャパシタ電極用活性炭を用いて、図3に示すような電気二重層キャパシタ20の製造方法について説明する。
まず、電気二重層キャパシタ電極用活性炭と導電助剤とバインダ及び集電体23、25を用いて電気二重層キャパシタ用電極21、22を作成する。この電極21、22の作製方法としては、例えば活性炭粉末と導電助剤としてのアセチレンブラックをPVDFのN−メチルピロリドン(NMP)溶液に分散させて、この混合物をドクターブレード法などによってアルミ集電体上に塗布し、乾燥後、プレスして電極とする。電極21は正極、電極22は負極と異なる働きをさせるので、それぞれに適した活性炭、導電助剤、バインダ及び集電体23、25を組合せて構成することができる。また、予め活性炭、導電助剤、バインダのみで分極性電極24、26を形成した後、集電体23、25に貼り合わせてもよい。
Next, the manufacturing method of the electric double layer capacitor 20 as shown in FIG. 3 is demonstrated using the activated carbon for electric double layer capacitor electrodes which is the electrode material for electric double layer capacitors manufactured by the method mentioned above.
First, the electric double layer capacitor electrodes 21 and 22 are prepared using the activated carbon for the electric double layer capacitor electrode, the conductive additive, the binder, and the current collectors 23 and 25. As a method for producing the electrodes 21 and 22, for example, activated carbon powder and acetylene black as a conductive additive are dispersed in an N-methylpyrrolidone (NMP) solution of PVDF, and this mixture is collected by an aluminum current collector by a doctor blade method or the like. It is applied on top, dried, and pressed to form an electrode. Since the electrode 21 functions differently from the positive electrode and the electrode 22 functions differently from the negative electrode, they can be configured by combining activated carbon, a conductive additive, a binder, and current collectors 23 and 25 suitable for each. Alternatively, the polarizable electrodes 24 and 26 may be formed in advance using only activated carbon, a conductive additive, and a binder, and then bonded to the current collectors 23 and 25.

このようにして作成した正極の電極21と負極の電極22とを、短絡防止のための絶縁性のセパレータ27を介して、アルミラミネートフィルム製の外装材29の内部に装填する。正極集電体23のタブ部23a及び負極集電体25のタブ部25aはリードとして外装材29の外部へ導出する。このとき、電解液28が外部に漏洩するのを防ぎ、外部から水や空気が侵入するのを防ぐ目的で、正極タブ部23aおよび負極タブ部25aの封口部には、図示しない封止体として変性ポリプロピレンフィルムをあらかじめ加熱溶着しておいた。セパレータ27には35μmの紙製セパレータを使用した。そして外装部29の1辺を除いた残りの辺を加熱溶着してキャパシタエレメントを作製した。   The positive electrode 21 and the negative electrode 22 thus prepared are loaded into an exterior material 29 made of an aluminum laminate film through an insulating separator 27 for preventing a short circuit. The tab portion 23a of the positive electrode current collector 23 and the tab portion 25a of the negative electrode current collector 25 are led out of the exterior material 29 as leads. At this time, for the purpose of preventing the electrolyte solution 28 from leaking to the outside and preventing water or air from entering from the outside, the sealing portions of the positive electrode tab portion 23a and the negative electrode tab portion 25a are provided as sealing bodies (not shown). The modified polypropylene film was previously heat-welded. The separator 27 was a 35 μm paper separator. Then, the remaining side except for one side of the exterior portion 29 was heat-welded to produce a capacitor element.

次に、作成したキャパシタエレメントに電解液28を注入する。電解液28は、プロピレンカーボネートに電解質としてテトラエチルアンモニウムテトラフルオロボレート(TEABF)を1mol/lの濃度になるように溶解したものを用いた。袋状になった外装部29の開口部より、電解液28を約2ml入れる。その後、電解液28を充填したキャパシタエレメントを真空容器に入れて約4×10Pa以下まで真空引きすることにより、正極の電極21、負極の電極22およびセパレータ27に電解液28を含浸させた。 Next, the electrolytic solution 28 is injected into the capacitor element thus created. As the electrolytic solution 28, a solution obtained by dissolving tetraethylammonium tetrafluoroborate (TEABF 4 ) as an electrolyte in propylene carbonate so as to have a concentration of 1 mol / l was used. About 2 ml of electrolyte solution 28 is put through the opening of the bag-shaped exterior portion 29. Thereafter, the capacitor element filled with the electrolytic solution 28 was put in a vacuum vessel and evacuated to about 4 × 10 3 Pa or less, whereby the positive electrode 21, the negative electrode 22 and the separator 27 were impregnated with the electrolytic solution 28. .

次に、正極の電極21と負極の電極22との間に3.2Vの電圧を30分間印加して充電を行なった後、正極の電極と負極の電極との間に負荷を接続して、電圧が1.5Vになるまで完全に放電すると、この充放電により活性炭に吸着した水素がガスとして発生する。そこで、充放電によって発生した水素ガスを除去するとともに、さらに電解液28を電極21、22の内部まで含浸させるために、再度約4×10Pa以下まで真空引きし、開口している外装材29の1辺を溶着して電気二重層キャパシタ20を構成した。 Next, after charging by applying a voltage of 3.2 V between the positive electrode 21 and the negative electrode 22 for 30 minutes, a load was connected between the positive electrode and the negative electrode, When fully discharged until the voltage reaches 1.5 V, hydrogen adsorbed on the activated carbon is generated as a gas by this charge and discharge. Therefore, in order to remove the hydrogen gas generated by the charge / discharge and further impregnate the electrolyte solution 28 into the electrodes 21 and 22, the outer packaging material is opened again by vacuuming to about 4 × 10 3 Pa or less. The electric double layer capacitor 20 was constructed by welding one side of 29.

上記に示す方法で得た電気二重層キャパシタ20について、充電電圧2.7V、充放電電流30mAで充放電を繰り返し、その放電エネルギーから静電容量を求めたところ、静電容量は40F/g(活性炭重量)、内部抵抗は1.1Ωであった。そして、1000回の充放電を繰り返しても静電容量、内部抵抗に変化は見られなかった。   The electric double layer capacitor 20 obtained by the above method was repeatedly charged and discharged at a charging voltage of 2.7 V and a charging / discharging current of 30 mA, and the capacitance was determined from the discharge energy. The capacitance was 40 F / g ( Activated carbon weight) and internal resistance was 1.1Ω. And even if it repeated 1000 times charging / discharging, a change was not seen by the electrostatic capacitance and internal resistance.

一方、本実施の形態1によらず、酸素含有量が3%の活性炭を使用して同様の電気二重層キャパシタを作成し、充放電試験を行ったところ、初期性能は本実施の形態1における電気二重層キャパシタと同程度であったが、1000回の充放電後には容量が1割程度低下していることがわかった。充放電後の電気二重層キャパシタを分解したところ、本実施の形態1における電気二重層キャパシタでは電解液中からほとんど水分が検出されなかった。一方、3%の酸素を含有する活性炭を使用した電気二重層キャパシタの電解液からは0.1%の水分が検出され、活性炭が含有する酸素が電解液中の水分の原因となっていることが示唆された。   On the other hand, regardless of the first embodiment, a similar electric double layer capacitor was prepared using activated carbon having an oxygen content of 3%, and a charge / discharge test was performed. The initial performance was the same as in the first embodiment. Although it was about the same as the electric double layer capacitor, it was found that the capacity was reduced by about 10% after 1000 charge / discharge cycles. When the electric double layer capacitor after charge / discharge was disassembled, the electric double layer capacitor according to the first embodiment hardly detected any water from the electrolyte. On the other hand, 0.1% moisture is detected from the electrolyte of the electric double layer capacitor using activated carbon containing 3% oxygen, and the oxygen contained in the activated carbon is the cause of moisture in the electrolyte. Was suggested.

また、本実施の形態1による製造方法を用いて、比表面積が1000m/g未満の活性炭を脱酸素処理した場合、1000回の充放電を繰り返しても静電容量、内部抵抗に変化は見られなかった、しかし、初期性能は本実施の形態1における電気二重層キャパシタより低く、高容量の電気二重層キャパシタを得ることが困難であることがわかった。 In addition, when the activated carbon having a specific surface area of less than 1000 m 2 / g is deoxygenated using the manufacturing method according to the first embodiment, changes in capacitance and internal resistance are observed even after 1000 charge / discharge cycles. However, the initial performance was lower than that of the electric double layer capacitor in the first embodiment, and it was found that it was difficult to obtain a high capacity electric double layer capacitor.

つまり、水素雰囲気又は窒素で希釈された水素雰囲気中で活性炭に波長170nm以下の電磁波を照射することにより、活性炭の比表面積を減少させること無く、酸素含有量を低減させ、比表面積が1000m/g以上でかつ酸素含有量0.1%以下の活性炭、つまり電気二重層キャパシタ用電極材料を得ることができた。そして、この製造方法により得られた比表面積が1000m/g以上でかつ酸素含有量0.1%以下の電気二重層キャパシタ用活性炭を用いて電気二重層キャパシタを構成することにより、高容量で性能が安定した電気二重層キャパシタを得ることができた。 That is, by irradiating activated carbon with an electromagnetic wave having a wavelength of 170 nm or less in a hydrogen atmosphere or a hydrogen atmosphere diluted with nitrogen, the oxygen content is reduced without reducing the specific surface area of the activated carbon, and the specific surface area is 1000 m 2 / An activated carbon having an oxygen content of 0.1 g or more and an oxygen content of 0.1% or less, that is, an electric double layer capacitor electrode material was obtained. And by configuring the electric double layer capacitor using activated carbon for electric double layer capacitor having a specific surface area of 1000 m 2 / g or more and an oxygen content of 0.1% or less obtained by this production method, a high capacity can be obtained. An electric double layer capacitor with stable performance could be obtained.

実施の形態2.
上記実施の形態1では、電気二重層キャパシタ用電極材料として、粉体である活性炭の酸素を除去する方法について説明したが、本実施の形態2では、窒素吸着法により測定したBET比表面積が1000m/g以上で、粒子径が数10nm〜数10μmの粉体をなした活性炭、導電助剤、バインダのみで形成され、一定の形態をなした分極性電極40すなわち電気二重層キャパシタ用電極材料中の活性炭の酸素を除去する方法について説明する。図4は、本実施の形態2における電気二重層キャパシタ用電極材料の製造方法を示す図である。図において左右に入口31I、出口31Eを有する気密性の筐体31(筐体の一部を切り抜いた状態で示す)には、水素を供給する水素供給装置2と、窒素を供給する窒素供給装置3がバルブ2V、3Vを介してそれぞれ接続されている。前記筐体31の内部には波長4.275nmの軟X線を発生するレーザープラズマ方式の電磁波発生源36が設置されており、この電磁波発生源36から該筐体の下部に向けて軟X線が照射される。前記筐体31には駆動輪32aによって駆動される搬送装置32が設置され、この搬送装置32によってベルト32bに載せた平板上の分極性電極40が前記筐体31の入口31Iから投入され、出口31Eから排出される。また、前記筐体31の内底面には筐体内を昇温する加熱装置34が設置されている。
Embodiment 2. FIG.
In the first embodiment, the method for removing oxygen from activated carbon, which is powder, is described as the electrode material for the electric double layer capacitor. In the second embodiment, the BET specific surface area measured by the nitrogen adsorption method is 1000 m. 2 / g or more, and a polarizable electrode 40, that is, an electrode material for an electric double layer capacitor, which is formed of only activated carbon, a conductive additive, and a binder having a particle diameter of several tens of nanometers to several tens of micrometers, and having a certain form A method for removing oxygen from the activated carbon therein will be described. FIG. 4 is a diagram showing a method for manufacturing the electrode material for an electric double layer capacitor in the second embodiment. In the figure, an airtight casing 31 having an inlet 31I and an outlet 31E on the left and right (shown in a state where a part of the casing is cut out) includes a hydrogen supply device 2 for supplying hydrogen and a nitrogen supply device for supplying nitrogen. 3 are connected via valves 2V and 3V, respectively. A laser plasma type electromagnetic wave generation source 36 that generates soft X-rays having a wavelength of 4.275 nm is installed inside the casing 31, and the soft X-rays are directed from the electromagnetic wave generation source 36 toward the lower part of the casing. Is irradiated. The casing 31 is provided with a transport device 32 driven by a driving wheel 32a, and a polarizable electrode 40 on a flat plate placed on the belt 32b is introduced from the inlet 31I of the housing 31 by the transport device 32, and the outlet. It is discharged from 31E. A heating device 34 for raising the temperature inside the casing is installed on the inner bottom surface of the casing 31.

次に製造工程について説明する。
まず、筐体31内を窒素供給装置3(及びバルブ3V)と水素供給装置2(及びバルブ2V)を動作させて、水素濃度が4%以下の(希釈)水素雰囲気を形成する。なお、筐体31内は加熱装置34により150℃程度まで昇温している。
Next, the manufacturing process will be described.
First, the nitrogen supply device 3 (and valve 3V) and the hydrogen supply device 2 (and valve 2V) are operated in the housing 31 to form a (diluted) hydrogen atmosphere with a hydrogen concentration of 4% or less. Note that the inside of the housing 31 is heated to about 150 ° C. by the heating device 34.

次に、搬送装置32を駆動させ、入口31Iの手前から成形した分極性電極40を順じ搬送する。入口31I、出口31Eは図示しない2重扉を形成しており、分極性電極40が通過する際に外気の筐体31内への混入を防止し、筐体31内の水素雰囲気を保持することができる。そして、分極性電極40が電磁波発生源36の下を通過する際に、電磁波発生源36から照射された軟X線を受ける。このとき、分極性電極40の厚みはmm単位の厚さがあるが、透過性能が高い軟X線は分極性電極40を構成する活性炭に到達し、実施の形態1と同様に、酸素の結合を切断して活性炭に残留する酸素を含む官能基を遊離させ、水素で安定化されることができる。また、筐体31内は150℃程度に昇温されているので、遊離した酸素により水が生成されても、分極性電極40内の活性炭に吸着することはない。   Next, the transport device 32 is driven, and the polarizable electrode 40 formed in front of the inlet 31I is transported in order. The inlet 31I and the outlet 31E form a double door (not shown) to prevent outside air from being mixed into the casing 31 when the polarizable electrode 40 passes, and to maintain a hydrogen atmosphere in the casing 31. Can do. When the polarizable electrode 40 passes under the electromagnetic wave generation source 36, the soft X-rays irradiated from the electromagnetic wave generation source 36 are received. At this time, the polarizable electrode 40 has a thickness of mm, but soft X-rays having high transmission performance reach the activated carbon constituting the polarizable electrode 40, and, as in the first embodiment, the binding of oxygen To release oxygen-containing functional groups remaining on the activated carbon and be stabilized with hydrogen. Moreover, since the inside of the housing 31 is heated to about 150 ° C., even if water is generated by the liberated oxygen, it is not adsorbed on the activated carbon in the polarizable electrode 40.

出口31Eから出てきた分極性電極40を分解し、その中の活性炭を分離して分析すると、比表面積については酸素除去処理の前後においてほとんど変化はなく、1000m/g以上の窒素吸着法によるBET比表面積を保持していた。しかも、元素分析により酸素含有量を測定すると、酸素含有量が0.1重量%(対炭素重量)以下に低減されていた。 When the polarizable electrode 40 coming out from the outlet 31E is decomposed and the activated carbon in it is separated and analyzed, the specific surface area hardly changes before and after the oxygen removal treatment, and is determined by a nitrogen adsorption method of 1000 m 2 / g or more. The BET specific surface area was maintained. Moreover, when the oxygen content was measured by elemental analysis, the oxygen content was reduced to 0.1% by weight (vs. carbon weight) or less.

なお、本実施の形態2では、処理対象を厚みのある分極性電極または電極としたので、酸素含有量を低減させるには、透過性の高い軟X線の電磁波を照射する必要があった。   In the second embodiment, since the object to be processed is a thick polarizable electrode or electrode, it is necessary to irradiate soft X-ray electromagnetic waves with high permeability in order to reduce the oxygen content.

そして、この方法により酸素を除去した分極性電極40を用いて、電気二重層キャパシタを製造したところ、実施の形態1と同様に、高容量で性能が安定した電気二重層キャパシタを得ることができた。   And when the electric double layer capacitor was manufactured using the polarizable electrode 40 from which oxygen was removed by this method, an electric double layer capacitor having high capacity and stable performance could be obtained as in the first embodiment. It was.

なお、本実施の形態で用いた分極性電極40については、予め200℃程度の乾燥空気中で水分を除去したものを用いたが、電極製造装置内に乾燥用のヒーターを設け、乾燥による水分除去と電磁波による酸素除去を一度に行うようにしてもよい。   Note that the polarizable electrode 40 used in the present embodiment was obtained by removing moisture in advance in dry air at about 200 ° C. However, a heater for drying was provided in the electrode manufacturing apparatus, and moisture caused by drying was used. You may make it perform removal and oxygen removal by electromagnetic waves at once.

また、分極性電極40に図示しない集電板を張り合わせて電極を形成した後でも、集電板部分を下側にして装置内に挿入し、上から軟X線を照射できるようにすることにより、上記実施の形態と同様に電極内の活性炭の酸素を除去することができる。   In addition, even after a current collector plate (not shown) is bonded to the polarizable electrode 40 to form an electrode, the current collector plate portion is placed in the lower side so that it can be irradiated with soft X-rays from above. As in the above embodiment, the oxygen in the activated carbon in the electrode can be removed.

つまり、水素雰囲気又は窒素で希釈された水素雰囲気中で分極性電極又は電極に軟X線を照射することにより、活性炭の比表面積を減少させること無く、酸素含有量を低減させ、比表面積が1000m/g以上でかつ酸素含有量0.1%以下の活性炭を含む分極性電極、つまり電気二重層キャパシタ用電極材料を得ることができた。そして、この製造方法により、比表面積が1000m/g以上でかつ酸素含有量0.1%以下の活性炭を含む分極性電極を用いて電気二重層キャパシタを構成することにより、高容量で性能が安定した電気二重層キャパシタを得ることができた。 That is, by irradiating the polarizable electrode or electrode with soft X-rays in a hydrogen atmosphere or a hydrogen atmosphere diluted with nitrogen, the oxygen content is reduced without reducing the specific surface area of the activated carbon, and the specific surface area is 1000 m. A polarizable electrode containing activated carbon having an oxygen content of 2 / g or more and an oxygen content of 0.1% or less, that is, an electrode material for an electric double layer capacitor could be obtained. And by this manufacturing method, by constituting an electric double layer capacitor using a polarizable electrode containing activated carbon having a specific surface area of 1000 m 2 / g or more and an oxygen content of 0.1% or less, the performance is high and the capacity is high. A stable electric double layer capacitor could be obtained.

この発明の実施の形態1における電気二重層キャパシタ用電極材料の製造方法を示す図である。It is a figure which shows the manufacturing method of the electrode material for electric double layer capacitors in Embodiment 1 of this invention. この発明の実施の形態1における電気二重層キャパシタ電極用電極材料の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the electrode material for electric double layer capacitor electrodes in Embodiment 1 of this invention. この発明の実施の形態1における電気二重層キャパシタの構成を示す断面図である。It is sectional drawing which shows the structure of the electrical double layer capacitor in Embodiment 1 of this invention. この発明の実施の形態2における電気二重層キャパシタ用電極材料の製造方法を示す図である。It is a figure which shows the manufacturing method of the electrode material for electric double layer capacitors in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 反応容器、 2 水素供給装置、 3 窒素供給装置、 4 真空ポンプ、 6,36 電磁波発生源、 7 原料供給装置、 8 容器、 20 電気二重層キャパシタ 21,22 電気二重層キャパシタ用電極 DESCRIPTION OF SYMBOLS 1 Reaction container, 2 Hydrogen supply apparatus, 3 Nitrogen supply apparatus, 4 Vacuum pump, 6,36 Electromagnetic wave generation source, 7 Raw material supply apparatus, 8 Container, 20 Electric double layer capacitor 21, 22 Electrode for electric double layer capacitor

Claims (5)

水素雰囲気又は窒素で希釈した水素雰囲気中で、窒素吸着法により測定したBET比表面積が1000m/g以上の活性炭に波長が170nm以下の電磁波を照射する電気二重層キャパシタ用電極材料の製造方法。 A method for producing an electrode material for an electric double layer capacitor, wherein activated carbon having a BET specific surface area of 1000 m 2 / g or more measured by a nitrogen adsorption method is irradiated with an electromagnetic wave having a wavelength of 170 nm or less in a hydrogen atmosphere or a hydrogen atmosphere diluted with nitrogen. 前記電磁波が4.1〜4.3nmの範囲の波長であることを特徴とする請求項1に記載の電気二重層キャパシタ用電極材料の製造方法。 The method for producing an electrode material for an electric double layer capacitor according to claim 1, wherein the electromagnetic wave has a wavelength in the range of 4.1 to 4.3 nm. 請求項1または請求項2に記載の製造方法により得られた電気二重層キャパシタ用電極材料を用いてなる電気二重層キャパシタ用電極。 The electrode for electric double layer capacitors using the electrode material for electric double layer capacitors obtained by the manufacturing method of Claim 1 or Claim 2. 請求項3に記載の電気二重層キャパシタ用電極を用いてなる電気二重層キャパシタ。 An electric double layer capacitor using the electric double layer capacitor electrode according to claim 3. 窒素吸着法により測定したBET比表面積が1000m/g以上で、かつ酸素含有率が0.1重量%以下である電気二重層キャパシタ電極用活性炭。 An activated carbon for an electric double layer capacitor electrode having a BET specific surface area measured by a nitrogen adsorption method of 1000 m 2 / g or more and an oxygen content of 0.1 wt% or less.
JP2007040818A 2007-02-21 2007-02-21 Method of manufacturing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, electric double layer capacitor, and activated charcoal for electric double layer capacitor electrode Pending JP2008205275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040818A JP2008205275A (en) 2007-02-21 2007-02-21 Method of manufacturing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, electric double layer capacitor, and activated charcoal for electric double layer capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040818A JP2008205275A (en) 2007-02-21 2007-02-21 Method of manufacturing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, electric double layer capacitor, and activated charcoal for electric double layer capacitor electrode

Publications (1)

Publication Number Publication Date
JP2008205275A true JP2008205275A (en) 2008-09-04

Family

ID=39782434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040818A Pending JP2008205275A (en) 2007-02-21 2007-02-21 Method of manufacturing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, electric double layer capacitor, and activated charcoal for electric double layer capacitor electrode

Country Status (1)

Country Link
JP (1) JP2008205275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741959A (en) * 2010-01-22 2012-10-17 康宁股份有限公司 Microporous activated carbon for EDLCS
WO2014132862A1 (en) 2013-02-26 2014-09-04 日本バルカー工業株式会社 Method for producing activated carbon sheet and method for improving impregnation of activated carbon sheet with electrolyte solution
CN104752072A (en) * 2013-12-25 2015-07-01 中国电子科技集团公司第十八研究所 Full-sealing nickel-carbon supercapacitor manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741959A (en) * 2010-01-22 2012-10-17 康宁股份有限公司 Microporous activated carbon for EDLCS
JP2013518413A (en) * 2010-01-22 2013-05-20 コーニング インコーポレイテッド Microporous activated carbon for EDLC
WO2014132862A1 (en) 2013-02-26 2014-09-04 日本バルカー工業株式会社 Method for producing activated carbon sheet and method for improving impregnation of activated carbon sheet with electrolyte solution
KR20150125929A (en) 2013-02-26 2015-11-10 닛폰 바루카 고교 가부시키가이샤 Method for producing activated carbon sheet and method for improving impregnation of activated carbon sheet with electrolyte solution
US9859064B2 (en) 2013-02-26 2018-01-02 Nippon Valqua Industries, Ltd. Method for producing activated carbon sheet and method for improving impregnation of activated carbon sheet with electrolyte solution
CN104752072A (en) * 2013-12-25 2015-07-01 中国电子科技集团公司第十八研究所 Full-sealing nickel-carbon supercapacitor manufacturing method

Similar Documents

Publication Publication Date Title
US11430614B2 (en) Modified activated carbon and method for producing same
KR101958645B1 (en) Manufacturing method of partially crystaline porous active carbon using water vapor activation and manufacturing method of the supercapacitor usig the partially crystaline porous active carbon
US11634330B2 (en) Carbonaceous material and method for producing same
US11551877B2 (en) Carbonaceous material, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor that contain carbonaceous material
CN113096973A (en) Method for preparing porous graphene membrane, porous graphene membrane and electrode
CN116157356A (en) Energy storage device and components and materials thereof and methods therefor
JP2008205275A (en) Method of manufacturing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, electric double layer capacitor, and activated charcoal for electric double layer capacitor electrode
US10984963B2 (en) Carbonaceous material, carbonaceous material-containing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
TW201530583A (en) Ultracapacitor with improved aging performance
JP4178497B2 (en) Electric double layer capacitor manufacturing apparatus and manufacturing method
KR101352089B1 (en) A method of manufacturing graphene, graphene manufactured by the same, and supercapacitor comprising the graphene
JP2007266248A (en) Electric double layer capacitor, carbon material thereof, and electrode thereof
JP6914015B2 (en) Non-aqueous alkali metal type power storage element
JP6509643B2 (en) Method of producing activated carbon
JP7093505B2 (en) A positive electrode for a lithium ion capacitor, a lithium ion capacitor using the positive electrode, and a method for manufacturing them.
WO2021015054A1 (en) Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
JP4515301B2 (en) Electric double layer capacitor manufacturing method and manufacturing apparatus thereof
US20220002161A1 (en) Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
WO2021131910A1 (en) Carbonaceous material, manufacturing method therefor, and electrode material for electrical double layer capacitor
WO2021131907A1 (en) Carbonaceous material, method for producing same, electrode active material for electric double layer capacitors, electrode for electric double layer capacitors, and electric double layer capacitor
JP2010123766A (en) Electrode sheet, and electric double-layer capacitor and lithium ion capacitor using the same
JP2022086445A (en) Non-aqueous alkali metal storage element
JP2000208374A (en) Method for removing impurity from laminated electrode body for electric double layer capacitor and method for impregnating the same with electrolytic solution
JP2007227519A (en) Manufacturing method of electric double layer capacitor
KR20160006365A (en) Surface modification of activated carbon by conduction method, which includes electrodes for electrochemical capacitors and electrochemical capacitors using thereof