JP2008205055A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008205055A
JP2008205055A JP2007037229A JP2007037229A JP2008205055A JP 2008205055 A JP2008205055 A JP 2008205055A JP 2007037229 A JP2007037229 A JP 2007037229A JP 2007037229 A JP2007037229 A JP 2007037229A JP 2008205055 A JP2008205055 A JP 2008205055A
Authority
JP
Japan
Prior art keywords
region
well
power supply
supply voltage
voltage circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007037229A
Other languages
Japanese (ja)
Other versions
JP4950692B2 (en
Inventor
Hiroaki Takasu
博昭 鷹巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007037229A priority Critical patent/JP4950692B2/en
Publication of JP2008205055A publication Critical patent/JP2008205055A/en
Application granted granted Critical
Publication of JP4950692B2 publication Critical patent/JP4950692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a semiconductor device having a high degree of element integration while using the same trench isolation as that of a high power supply voltage circuit section even in a low power supply voltage circuit section, and imparting sufficient latchup resistance to the high power supply voltage circuit section without increasing the process. <P>SOLUTION: In the semiconductor device with a trench isolation structure, at least one well region and an MOS transistor are formed in the high power supply voltage circuit section, majority carrier capturing regions 401, 402 and minority carrier capturing regions 403, 404 for preventing latchup are provided in the vicinity of the end of the well region, and the potentials are set, respectively, at a level suitable for carrier suction. The carrier capturing region is made deeper than the trench isolation region, and the minority carrier capturing region, the majority carrier capturing region, and the MOS transistor are arranged sequentially from the well end. The majority carrier capturing region and the minority carrier capturing region are formed of the same diffusion layer as that in the source or drain region of the MOS transistor formed in the high power supply voltage circuit section. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、素子分離構造にトレンチ分離を使用した多電源電圧を持つCMOSデバイス等のトレンチ分離構造を有する半導体装置に関する。   The present invention relates to a semiconductor device having a trench isolation structure such as a CMOS device having multiple power supply voltages using trench isolation as an element isolation structure.

多電源電圧を使用するCMOSデバイスを有する半導体装置では、ロジック回路などの内部回路を構成する低電源電圧部の集積度を向上させることとともに、入出力回路などに用いられる高電源電圧部のラッチアップ耐性を確保することが重要である。素子分離にはLOCOS法に比べて高集積化に適しているトレンチ分離方法が採用される場合が多いが、トレンチ分離で素子分離した半導体装置においては、高電源電圧回路部に十分なラッチアップ耐性を持たせるためにはウエルの深さを深くして寄生バイポーラ動作を抑える必要があり、またNMOSトランジスタとPMOSトランジスタ間のリーク電流を抑え、耐圧特性を確保するために、トレンチ分離部の分離幅を大きくとる必要があった。このため低電源電圧回路部においても高電源電圧回路部と同じトレンチ分離を使用すると高い集積度が要求される低電源電圧部の素子の集積度が低下するという問題点を有していた。   In a semiconductor device having a CMOS device that uses multiple power supply voltages, the integration of the low power supply voltage part constituting the internal circuit such as a logic circuit is improved, and the high power supply voltage part used in the input / output circuit is latched up. It is important to ensure resistance. For element isolation, a trench isolation method suitable for higher integration than the LOCOS method is often adopted. However, in a semiconductor device in which element isolation is performed by trench isolation, sufficient latch-up resistance is provided for a high power supply voltage circuit section. In order to increase the well depth, it is necessary to suppress the parasitic bipolar operation by increasing the depth of the well, and to suppress the leakage current between the NMOS transistor and the PMOS transistor and to ensure the breakdown voltage characteristics, the isolation width of the trench isolation portion It was necessary to take big. For this reason, even in the low power supply voltage circuit section, when the same trench isolation as that of the high power supply voltage circuit section is used, there is a problem that the degree of integration of elements in the low power supply voltage section that requires high integration is lowered.

その改善策として、高電源電圧回路部のウエルの深さを低電源電圧回路部のウエルの深さよりも深くしたり、高電源電圧回路部のトレンチ分離部の分離幅を低電源電圧回路部のトレンチ分離幅に比べて広くしたりする例も提案されている。(例えば、特許文献1参照。)
特開2000−58673号公報
As an improvement measure, the well depth of the high power supply voltage circuit section is made deeper than the well depth of the low power supply voltage circuit section, or the isolation width of the trench isolation section of the high power supply voltage circuit section is reduced. An example of making it wider than the trench isolation width has also been proposed. (For example, refer to Patent Document 1.)
JP 2000-58673 A

しかしながら、上述のようにトレンチ分離で素子分離した多電源電圧を使用する半導体装置においては、高電源電圧回路部に十分なラッチアップ耐性を持たせるためにはウエルの深さを深くして寄生バイポーラ動作を抑える必要があり、またNMOSトランジスタとPMOSトランジスタ間のリーク電流を抑え、耐圧特性を確保するために、トレンチ分離部の分離幅を大きくとる必要があった。このため低電源電圧回路部においても高電源電圧回路部と同じトレンチ分離を使用すると高い集積度が要求される低電源電圧回路部の素子の集積度が低下するという問題点を有していた。   However, in the semiconductor device using the multiple power supply voltage separated by trench isolation as described above, the well bipolar circuit is formed by increasing the well depth in order to give the high power supply voltage circuit portion sufficient latch-up resistance. It is necessary to suppress the operation, and it is necessary to increase the isolation width of the trench isolation portion in order to suppress the leakage current between the NMOS transistor and the PMOS transistor and to ensure the breakdown voltage characteristics. For this reason, in the low power supply voltage circuit section, if the same trench isolation as that of the high power supply voltage circuit section is used, the integration of elements in the low power supply voltage circuit section requiring high integration is reduced.

また、高電源電圧回路部のウエルの深さを低電源電圧回路部のウエルの深さよりも深くしたり、高電源電圧回路部のトレンチ分離部の分離幅を低電源電圧回路部に比べて広くした例も提案されているが製造工程が増加したり、分離幅が増大したりしてコストアップに繋がるなどの問題点があった。   Also, the well depth of the high power supply voltage circuit section is made deeper than the well depth of the low power supply voltage circuit section, and the isolation width of the trench isolation section of the high power supply voltage circuit section is wider than that of the low power supply voltage circuit section. However, there are problems such as an increase in manufacturing steps and an increase in separation width, leading to an increase in cost.

上記問題点を解決するために、本発明は半導体装置を以下のように構成した。   In order to solve the above problems, the present invention is configured as follows.

高電源電圧回路部と低電源電圧回路部とを有し、前記高電源電圧回路部および前記低電源電圧回路部における各素子をトレンチ分離領域により素子分離したトレンチ分離構造を有し、前記高電源電圧回路部には少なくとも一つのウエル領域とMOS型トランジスタが形成されている半導体装置において、ウエル領域の端部近傍にラッチアップを防止するための多数キャリア捕獲領域と少数キャリア捕獲領域とを有し、多数キャリア捕獲領域の電位は多数キャリア捕獲領域が配置されたウエルあるいは半導体基板の電位と同一とし、少数キャリア捕獲領域の電位は、少数キャリア捕獲領域が配置されたウエルあるいは半導体基板と逆導電型のウエル領域あるいは半導体基板の電位と同一とした。また、少数キャリア領域は前記多数キャリア捕獲領域に比べて、ウエル領域の端部により近い位置に配置し、多数キャリア捕獲領域および少数キャリア捕獲領域の深さは、トレンチ分離領域の深さよりも深く形成した。   A high power supply voltage circuit portion and a low power supply voltage circuit portion, and a trench isolation structure in which each element in the high power supply voltage circuit portion and the low power supply voltage circuit portion is isolated by a trench isolation region, In a semiconductor device in which at least one well region and a MOS transistor are formed in the voltage circuit section, the voltage circuit portion has a majority carrier capture region and a minority carrier capture region for preventing latch-up near the end of the well region. The potential of the majority carrier trapping region is the same as the potential of the well or semiconductor substrate in which the majority carrier trapping region is disposed, and the potential of the minority carrier trapping region is opposite to that of the well or semiconductor substrate in which the minority carrier trapping region is disposed. The potential of the well region or the semiconductor substrate was the same. The minority carrier region is disposed closer to the end of the well region than the majority carrier capture region, and the majority carrier capture region and the minority carrier capture region are formed deeper than the trench isolation region. did.

また、高電源電圧回路部内に形成されたキャリア捕獲領域は、高電源電圧回路部に形成されたMOS型トランジスタのソースあるいはドレイン領域と同一の拡散層にて形成した。   In addition, the carrier trapping region formed in the high power supply voltage circuit unit is formed by the same diffusion layer as the source or drain region of the MOS transistor formed in the high power supply voltage circuit unit.

以上説明したように、これらの手段によって、工程の増加もなく高電源電圧回路部に十分なラッチアップ耐性を持たせつつ、低電源電圧回路部においても高電源電圧回路部と同じトレンチ分離を使用しながら高い素子集積度を持った半導体装置を得ることができる。   As explained above, the same trench isolation is used in the low power supply voltage circuit section as in the high power supply voltage circuit section while providing sufficient latch-up resistance to the high power supply voltage circuit section without increasing the number of processes. A semiconductor device having a high degree of element integration can be obtained.

図1は、本発明に係る半導体装置の高電源電圧回路部における第1の実施例を示す模式的断面図である。   FIG. 1 is a schematic cross-sectional view showing a first embodiment in a high power supply voltage circuit section of a semiconductor device according to the present invention.

第1導電型半導体基板としてのP型のシリコン基板101上には、第1ウエルとしてP型の低濃度不純物領域からなるPウエル領域201および第2ウエルとしてN型の低濃度不純物領域からなるNウエル領域202が隣接して形成されており、Pウエル領域201の表面には、例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501が、またNウエル領域202の表面には、例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502が形成されており、それらの素子分離用のトレンチ分離領域301が形成されている。   On a P-type silicon substrate 101 as a first conductivity type semiconductor substrate, a P-well region 201 composed of a P-type low-concentration impurity region as a first well and an N-type low-concentration impurity region as a second well. A well region 202 is formed adjacently. An N-type high-concentration impurity region 501 that is a source or drain region of an N-type MOS transistor, for example, is formed on the surface of the P-well region 201, and an N-well region 202 is also formed. A P-type high-concentration impurity region 502 which is a source or drain region of a P-type MOS transistor, for example, is formed on the surface, and a trench isolation region 301 for isolating those elements is formed.

Pウエル領域201とNウエル領域202との接合部付近におけるPウエル領域201内の、N型の高濃度不純物領域501よりもPウエル領域201とNウエル領域202との接合部に近い位置には、トレンチ分離領域301の一部が除去されてトレンチ分離領域301より深い深さを有するP型の高濃度不純物領域からなる多数キャリア捕獲領域401が形成されておりその電位はPウエル領域201と同一になるように固定されている。さらにPウエル領域201内のP型の高濃度不純物領域からなる多数キャリア捕獲領域401よりもPウエル領域201とNウエル領域202との接合部に近い位置には、トレンチ分離領域301より深い深さを有するN型の高濃度不純物領域からなる少数キャリア捕獲領域403が形成されており、その電位はNウエル領域202と同一になるように固定されている。   In the P well region 201 near the junction between the P well region 201 and the N well region 202, a position closer to the junction between the P well region 201 and the N well region 202 than the N-type high concentration impurity region 501 is located. A part of the trench isolation region 301 is removed to form a majority carrier trap region 401 composed of a P-type high-concentration impurity region having a deeper depth than the trench isolation region 301, and the potential thereof is the same as that of the P well region 201. It is fixed to be. Further, at a position closer to the junction between the P well region 201 and the N well region 202 than the majority carrier trap region 401 made of a P-type high concentration impurity region in the P well region 201, a depth deeper than that of the trench isolation region 301. A minority carrier trap region 403 made of an N-type high-concentration impurity region is formed, and its potential is fixed to be the same as that of the N-well region 202.

一方、Pウエル領域201とNウエル領域202との接合部付近におけるNウエル領域202内の、P型の高濃度不純物領域502よりもPウエル領域201とNウエル領域202との接合部に近い位置には、トレンチ分離領域301の一部が除去されてトレンチ分離領域301より深い深さを有するN型の高濃度不純物領域からなる多数キャリア捕獲領域402が形成されており、その電位はNウエル領域202と同一になるように固定されている。さらにNウエル領域202内のN型の高濃度不純物領域からなる多数キャリア捕獲領域402よりもPウエル領域201とNウエル領域202との接合部に近い位置には、トレンチ分離領域301より深い深さを有するP型の高濃度不純物領域からなる少数キャリア捕獲領域404が形成されており、その電位はPウエル領域201と同一になるように固定されている。   On the other hand, the position in the N well region 202 near the junction between the P well region 201 and the N well region 202 is closer to the junction between the P well region 201 and the N well region 202 than the P type high concentration impurity region 502. A part of the trench isolation region 301 is removed to form a majority carrier trap region 402 made of an N-type high concentration impurity region having a depth deeper than that of the trench isolation region 301, and the potential is the N well region. 202 is fixed to be the same. Further, the depth closer to the junction between the P well region 201 and the N well region 202 than the majority carrier trap region 402 made of an N-type high concentration impurity region in the N well region 202 is deeper than the trench isolation region 301. A minority carrier trap region 404 formed of a P-type high-concentration impurity region having, is formed, and the potential thereof is fixed to be the same as that of the P well region 201.

Pウエル領域201とNウエル領域202との接合部付近におけるPウエル領域201内には、Pウエル領域201とNウエル領域202との接合部に近い側から、N型の高濃度不純物領域からなる少数キャリア捕獲領域403、P型の高濃度不純物領域からなる多数キャリア捕獲領域401、そして例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501が配置されている。また対照的に、Pウエル領域201とNウエル領域202との接合部付近におけるNウエル領域202内には、Pウエル領域201とNウエル領域202との接合部に近い側から、P型の高濃度不純物領域からなる少数キャリア捕獲領域404、N型の高濃度不純物領域からなる多数キャリア捕獲領域402、そして例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502が配置されている。   The P well region 201 in the vicinity of the junction between the P well region 201 and the N well region 202 is composed of an N-type high concentration impurity region from the side close to the junction between the P well region 201 and the N well region 202. A minority carrier trap region 403, a majority carrier trap region 401 composed of a P-type high-concentration impurity region, and an N-type high-concentration impurity region 501 that is a source or drain region of an N-type MOS transistor, for example, are arranged. In contrast, the N-type well region 202 in the vicinity of the junction between the P-well region 201 and the N-well region 202 has a P-type high height from the side close to the junction between the P-well region 201 and the N-well region 202. A minority carrier trap region 404 formed of a concentration impurity region, a majority carrier trap region 402 formed of an N type high concentration impurity region, and a P type high concentration impurity region 502 which is a source or drain region of a P type MOS transistor, for example. Has been placed.

そして、Pウエル領域201内のN型の高濃度不純物領域からなる少数キャリア捕獲領域403とP型の高濃度不純物領域からなる多数キャリア捕獲領域401、およびNウエル領域202内のP型の高濃度不純物領域からなる少数キャリア捕獲領域404とN型の高濃度不純物領域からなる多数キャリア捕獲領域402、はそれぞれ、トレンチ分離領域301よりも深い深さを有する。   Then, a minority carrier trap region 403 made of an N-type high concentration impurity region in the P well region 201, a majority carrier trap region 401 made of a P type high concentration impurity region, and a P type high concentration in the N well region 202. The minority carrier trap region 404 made of an impurity region and the majority carrier trap region 402 made of an N-type high concentration impurity region each have a deeper depth than the trench isolation region 301.

上述のような形態で、多数キャリアおよび少数キャリアの捕獲領域を設置することによって、Pウエル領域201とNウエル領域202、ならびにPウエル領域201に形成された、例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501、およびNウエル領域202に形成された、例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502との間で、外部からのサージや内部回路動作による電位の変動などのトリガーによって引き起こされる電位変動などに起因して多数キャリアならびに少数キャリアが流出した際にも、それらを効果的に捕獲して拡散を防止することができ、ラッチアップ現象を効果的に防止することができる。   The source of, for example, an N-type MOS transistor formed in the P-well region 201, the N-well region 202, and the P-well region 201 by providing the majority carrier and minority carrier capture regions in the above-described form. And an N-type high-concentration impurity region 501 that is a drain region and a P-type high-concentration impurity region 502 that is a source or drain region of a P-type MOS transistor formed in the N-well region 202, for example. Even when majority carriers or minority carriers flow out due to potential fluctuations caused by triggers such as external surges or potential fluctuations due to internal circuit operation, they are effectively captured to prevent diffusion Therefore, the latch-up phenomenon can be effectively prevented.

ここで、ラッチアップ動作とその防止の観点から、特に多数キャリア捕獲領域および少数キャリア捕獲領域とMOS型トランジスタのソースやドレイン領域との配置、位置関係について説明を加える。   Here, from the viewpoint of the latch-up operation and its prevention, the arrangement and positional relationship between the majority carrier capture region and the minority carrier capture region and the source and drain regions of the MOS transistor will be particularly described.

ラッチアップ動作対象となりえるMOS型トランジスタのソースやドレイン領域は、バイポーラ動作におけるベース幅を大きくするために相対するウエルの端部から離して配置することが大切である。例えば、Pウエル領域内のN型のMOS型トランジスタは、Nウエル領域からできるだけ離すことである。   It is important to dispose the source and drain regions of the MOS transistor that can be a latch-up operation target from the opposite well ends in order to increase the base width in the bipolar operation. For example, the N-type MOS transistor in the P-well region is as far away as possible from the N-well region.

そしてMOS型トランジスタのソースやドレイン領域近辺のウエル領域の電位変動を防止するために、ウエルと同じ導電型の高濃度不純物領域を近くに設けて電位を固定することが良い。これが多数キャリア捕獲領域となり、仮に相対するウエル領域からキャリア(多数キャリアとなる)が流入してきた際にMOS型トランジスタに到達する前に、この領域にて吸い取ることができる。また万一ウエル電位が変動してMOS型トランジスタのソースやドレイン領域からキャリア(少数キャリアとなる)の流出が起きてしまった際には、相対するウエル領域に到達する前に、MOS型トランジスタが設置されている同一のウエル領域の中で捕獲してしまうことが良い。そのために少数キャリア領域を設置し、その電位は少数キャリアを吸い込みやすいように相対するウエルと同一の電位に固定すると良い。これらのことからウエル端(ウエルの接合部)に近い側から、少数キャリア捕獲領域、多数キャリア捕獲領域、そしてMOS型トランジスタのソースやドレイン領域となるように配置することが重要である。   In order to prevent potential fluctuation in the well region in the vicinity of the source and drain regions of the MOS transistor, it is preferable to fix the potential by providing a high concentration impurity region having the same conductivity type as the well nearby. This becomes a majority carrier capture region, and when carriers (becomes majority carriers) flow in from the opposing well regions, they can be absorbed in this region before reaching the MOS transistor. Also, in the unlikely event that the well potential fluctuates and carriers (which become minority carriers) flow out from the source and drain regions of the MOS transistor, before the MOS transistor reaches the opposite well region, It is preferable to capture in the same well region that is installed. For this purpose, a minority carrier region is provided, and the potential is preferably fixed to the same potential as the opposing well so that minority carriers can be sucked easily. For these reasons, it is important to dispose the minority carrier trap region, the majority carrier trap region, and the source and drain regions of the MOS transistor from the side close to the well end (well junction).

図1に示した第1の実施例では、例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501や、例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502は、トレンチ分離領域301よりも比較的浅い深さを有するように図示しているが、これは一例であって、これに限るものではない。高耐圧構造を達成するためなどの目的によって、深い拡散層を必要とする場合があり、その際にはPウエル領域201内のN型の高濃度不純物領域からなる少数キャリア捕獲領域403とP型の高濃度不純物領域からなる多数キャリア捕獲領域401、およびNウエル領域202内のP型の高濃度不純物領域からなる少数キャリア捕獲領域404とN型の高濃度不純物領域からなる多数キャリア捕獲領域402は、Pウエル領域201内におけるP型の高濃度拡散領域あるいはN型のMOS型トランジスタのソースもしくはドレイン領域、または、Nウエル領域202内におけるN型の高濃度拡散領域あるいはP型のMOS型トランジスタのソースもしくはドレイン領域と同一の不純物拡散層によって形成することが可能である、これによって、特別な工程の増加無く、簡単にラッチアップ防止用の多数キャリアおよび少数キャリア捕獲領域を形成することができる。   In the first embodiment shown in FIG. 1, for example, an N-type high concentration impurity region 501 which is a source or drain region of an N-type MOS transistor, or a source or drain region of a P-type MOS transistor, for example. Although the P-type high-concentration impurity region 502 is illustrated as having a relatively shallower depth than the trench isolation region 301, this is an example, and the present invention is not limited to this. A deep diffusion layer may be required depending on the purpose such as to achieve a high breakdown voltage structure. In that case, a minority carrier trap region 403 composed of an N-type high-concentration impurity region in the P-well region 201 and a P-type A majority carrier trap region 401 composed of a high concentration impurity region, a minority carrier trap region 404 composed of a P type high concentration impurity region and a majority carrier capture region 402 composed of an N type high concentration impurity region in the N well region 202. The P-type high concentration diffusion region or the source or drain region of the N-type MOS transistor in the P well region 201, or the N-type high concentration diffusion region or the P-type MOS transistor in the N well region 202. It can be formed by the same impurity diffusion layer as the source or drain region. , It is possible to form a special increase step without majority carriers and minority carrier capture region for easy latch-up prevention.

図1の例では、第1導電型半導体基板としてP型のシリコン基板、第1ウエルとしてPウエル、第2ウエルとしてNウエルからなる例を示したが、第1導電型半導体基板としてN型のシリコン基板、第1ウエルとしてNウエル、第2ウエルとしてPウエルとしても構わない。   In the example of FIG. 1, an example is shown in which a P-type silicon substrate is used as the first conductive semiconductor substrate, a P-well is used as the first well, and an N-well is used as the second well, but an N-type is used as the first conductive semiconductor substrate. The silicon substrate may be an N well as the first well and a P well as the second well.

なお、図示は省略するが、本発明における半導体装置の低電源電圧回路部においては、動作電圧が低いため、寄生バイポーラ動作やラッチアップは発生しにくい。そのため上記の説明のようなトレンチ分離領域より深い深さを有するキャリア捕獲領域は必要ないので高集積化が可能となる。   Although illustration is omitted, in the low power supply voltage circuit portion of the semiconductor device according to the present invention, since the operating voltage is low, parasitic bipolar operation and latch-up hardly occur. Therefore, since a carrier trap region having a depth deeper than that of the trench isolation region as described above is not necessary, high integration can be achieved.

以上の説明のとおり、本発明によって、工程の増加もなく高電源電圧回路部に十分なラッチアップ耐性を持たせつつ、低電源電圧回路部においても高電源電圧回路部と同じトレンチ分離を使用しながら高い素子集積度を持った半導体装置を得ることができる。   As described above, the present invention uses the same trench isolation in the low power supply voltage circuit section as in the high power supply voltage circuit section while providing sufficient latch-up resistance to the high power supply voltage circuit section without increasing the number of processes. However, a semiconductor device having a high degree of element integration can be obtained.

図2は、本発明に係る半導体装置の高電源電圧回路部における第2の実施例を示す模式的断面図である。   FIG. 2 is a schematic cross-sectional view showing a second embodiment of the high power supply voltage circuit portion of the semiconductor device according to the present invention.

第1導電型半導体基板としてのP型のシリコン基板101上には、第2ウエルとしてN型の低濃度不純物領域からなるNウエル領域202が形成されており、P型のシリコン基板101の表面には、例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501が、またNウエル領域202の表面には、例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502が形成されており、それらの素子分離用のトレンチ分離領域301が形成されている。   On a P-type silicon substrate 101 as a first conductivity type semiconductor substrate, an N-well region 202 made of an N-type low-concentration impurity region is formed as a second well, and the surface of the P-type silicon substrate 101 is formed. The N-type high-concentration impurity region 501 that is a source and drain region of an N-type MOS transistor, for example, is a source and drain region of a P-type MOS transistor on the surface of the N-well region 202, for example. A P-type high concentration impurity region 502 is formed, and a trench isolation region 301 for isolating those elements is formed.

P型のシリコン基板101とNウエル領域202との接合部付近におけるP型のシリコン基板101内の、N型の高濃度不純物領域501よりもP型のシリコン基板101とNウエル領域202との接合部に近い位置には、トレンチ分離領域301の一部が除去されてトレンチ分離領域301より深い深さを有するP型の高濃度不純物領域からなる多数キャリア捕獲領域401が形成されており、その電位はP型のシリコン基板101と同一の電位に固定されている。さらにP型のシリコン基板101内におけるP型の高濃度不純物領域からなる多数キャリア捕獲領域401よりもP型のシリコン基板101とNウエル領域202との接合部に近い位置には、トレンチ分離領域301より深い深さを有するN型の高濃度不純物領域からなる少数キャリア捕獲領域403が形成されており、その電位はNウエル領域202と同一の電位に固定されている。   The junction between the P-type silicon substrate 101 and the N-well region 202 in the P-type silicon substrate 101 in the vicinity of the junction between the P-type silicon substrate 101 and the N-well region 202 rather than the N-type high concentration impurity region 501. A majority carrier trap region 401 composed of a P-type high-concentration impurity region having a depth deeper than that of the trench isolation region 301 is formed by removing a part of the trench isolation region 301 at a position close to the portion, and its potential is Is fixed at the same potential as the P-type silicon substrate 101. Further, in the P-type silicon substrate 101, the trench isolation region 301 is located closer to the junction between the P-type silicon substrate 101 and the N-well region 202 than the majority carrier trap region 401 composed of the P-type high concentration impurity region. A minority carrier trap region 403 made of an N-type high concentration impurity region having a deeper depth is formed, and the potential thereof is fixed to the same potential as that of the N well region 202.

一方、P型のシリコン基板101とNウエル領域202との接合部付近におけるNウエル領域202内の、P型の高濃度不純物領域502よりもPウエル領域201とNウエル領域202との接合部に近い位置には、トレンチ分離領域301の一部が除去されてトレンチ分離領域301より深い深さを有するN型の高濃度不純物領域からなる多数キャリア捕獲領域402が形成されており、その電位はNウエル領域202と同一の電位に固定されている。さらにNウエル領域202内のN型の高濃度不純物領域からなる多数キャリア捕獲領域402よりもP型のシリコン基板101とNウエル領域202との接合部に近い位置には、トレンチ分離領域301より深い深さを有するP型の高濃度不純物領域からなる少数キャリア捕獲領域404が形成されており、その電位はP型のシリコン基板101と同一の電位に固定されている。   On the other hand, in the N-well region 202 in the vicinity of the junction between the P-type silicon substrate 101 and the N-well region 202, the junction between the P-well region 201 and the N-well region 202 is located more than the P-type high-concentration impurity region 502. Near the position, a majority carrier trap region 402 made of an N-type high concentration impurity region having a depth deeper than that of the trench isolation region 301 is formed by removing a part of the trench isolation region 301, and the potential is N It is fixed at the same potential as the well region 202. Further, in a position closer to the junction between the P-type silicon substrate 101 and the N-well region 202 than the majority carrier trap region 402 made of an N-type high-concentration impurity region in the N-well region 202, it is deeper than the trench isolation region 301. A minority carrier trap region 404 made of a P-type high-concentration impurity region having a depth is formed, and its potential is fixed to the same potential as that of the P-type silicon substrate 101.

P型のシリコン基板101とNウエル領域202との接合部付近におけるP型のシリコン基板101内には、P型のシリコン基板101とNウエル領域202との接合部に近い側から、N型の高濃度不純物領域からなる少数キャリア捕獲領域403、P型の高濃度不純物領域からなる多数キャリア捕獲領域401、そして例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501が配置されている。また対照的に、P型のシリコン基板101とNウエル領域202との接合部付近におけるNウエル領域202内には、P型のシリコン基板101とNウエル領域202との接合部に近い側から、P型の高濃度不純物領域からなる少数キャリア捕獲領域404、N型の高濃度不純物領域からなる多数キャリア捕獲領域402、そして例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502が配置されている。   In the P-type silicon substrate 101 in the vicinity of the junction between the P-type silicon substrate 101 and the N-well region 202, an N-type is formed from the side close to the junction between the P-type silicon substrate 101 and the N-well region 202. Minority carrier trap region 403 made of a high concentration impurity region, majority carrier trap region 401 made of a P type high concentration impurity region, and an N type high concentration impurity region 501 that is a source or drain region of an N type MOS transistor, for example. Is arranged. In contrast, in the N-well region 202 in the vicinity of the junction between the P-type silicon substrate 101 and the N-well region 202, from the side close to the junction between the P-type silicon substrate 101 and the N-well region 202, Minority carrier trap region 404 composed of a P-type high-concentration impurity region, majority carrier trap region 402 composed of an N-type high-concentration impurity region, and P-type high-concentration that is a source or drain region of, for example, a P-type MOS transistor Impurity region 502 is arranged.

そして、P型のシリコン基板101内のN型の高濃度不純物領域からなる少数キャリア捕獲領域403とP型の高濃度不純物領域からなる多数キャリア捕獲領域401、およびNウエル領域202内のP型の高濃度不純物領域からなる少数キャリア捕獲領域404とN型の高濃度不純物領域からなる多数キャリア捕獲領域402、はそれぞれ、トレンチ分離領域301よりも深い深さを有する。   Then, a minority carrier trap region 403 made of an N-type high concentration impurity region and a majority carrier trap region 401 made of a P-type high concentration impurity region in the P-type silicon substrate 101, and a P-type in the N-well region 202. The minority carrier trap region 404 made of a high concentration impurity region and the majority carrier trap region 402 made of an N-type high concentration impurity region each have a deeper depth than the trench isolation region 301.

上述のような形態で、多数キャリアおよび少数キャリアの捕獲領域を設置することによって、P型のシリコン基板101とNウエル領域202、ならびにP型のシリコン基板101に形成された、例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501、およびNウエル領域202に形成された、例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502との間で、外部からのサージや内部回路動作による電位の変動などのトリガーによって引き起こされる電位変動などに起因して多数キャリアならびに少数キャリアが流出した際にも、それらを効果的に捕獲して拡散を防止することができ、ラッチアップ現象を効果的に防止することができる。   In the above-described form, for example, an N-type MOS formed in the P-type silicon substrate 101 and the N-well region 202 and the P-type silicon substrate 101 by installing the majority carrier and minority carrier capture regions. For example, a P-type high-concentration impurity region 502 that is a source or drain region of a P-type MOS transistor formed in an N-type high-concentration impurity region 501 that is a source or drain region of a p-type transistor and an N-well region 202. When majority carriers and minority carriers flow out due to potential fluctuations caused by triggers such as external surges and potential fluctuations caused by internal circuit operations, they are effectively captured. Diffusion can be prevented and a latch-up phenomenon can be effectively prevented.

ラッチアップに対する補足の説明やおよび本発明の効果については、第1の実施例と同様であるので省略する。   Since a supplementary explanation for latch-up and the effect of the present invention are the same as those in the first embodiment, a description thereof is omitted.

図2に示した第2の実施例では、例えばN型のMOS型トランジスタのソースやドレイン領域であるN型の高濃度不純物領域501や、例えばP型のMOS型トランジスタのソースやドレイン領域であるP型の高濃度不純物領域502は、トレンチ分離領域301よりも比較的浅い深さを有するように図示しているが、これは一例であって、これに限るものではない。高耐圧構造を達成するためなどの目的によって、深い拡散層を必要とする場合があり、その際にはP型のシリコン基板101内におけるN型の高濃度不純物領域からなる少数キャリア捕獲領域403とP型の高濃度不純物領域からなる多数キャリア捕獲領域401、およびNウエル領域202内のP型の高濃度不純物領域からなる少数キャリア捕獲領域404とN型の高濃度不純物領域からなる多数キャリア捕獲領域402、は、P型のシリコン基板101内におけるP型の高濃度拡散領域あるいはN型のMOS型トランジスタのソースもしくはドレイン領域、または、Nウエル領域202内におけるN型の高濃度拡散領域あるいはP型のMOS型トランジスタのソースもしくはドレイン領域と同一の不純物拡散層によって形成することが可能である、これによって、特別な工程の増加無く、簡単にラッチアップ防止用の多数キャリアおよび少数キャリア捕獲領域を形成することができる。   In the second embodiment shown in FIG. 2, for example, an N-type high concentration impurity region 501 which is a source or drain region of an N-type MOS transistor, or a source or drain region of a P-type MOS transistor, for example. Although the P-type high-concentration impurity region 502 is illustrated as having a relatively shallower depth than the trench isolation region 301, this is an example, and the present invention is not limited to this. Depending on the purpose such as achieving a high breakdown voltage structure, a deep diffusion layer may be required. In this case, a minority carrier trap region 403 made of an N-type high concentration impurity region in the P-type silicon substrate 101 and A majority carrier trap region 401 composed of a P-type high concentration impurity region, a minority carrier trap region 404 composed of a P type high concentration impurity region in the N well region 202, and a majority carrier trap region composed of an N type high concentration impurity region. Reference numeral 402 denotes a P-type high concentration diffusion region in the P-type silicon substrate 101 or a source or drain region of an N-type MOS transistor, or an N-type high concentration diffusion region or P-type in the N well region 202. It can be formed by the same impurity diffusion layer as the source or drain region of a MOS transistor In it, which makes it possible to form a special increase step without majority carriers and minority carrier capture region for easy latch-up prevention.

図2の例では、第1導電型半導体基板としてP型のシリコン基板、第2ウエルとしてNウエルからなる例を示したが、第1導電型半導体基板としてN型のシリコン基板、第2ウエルとしてPウエルとしても構わない。   In the example of FIG. 2, an example in which a P-type silicon substrate is used as the first conductive semiconductor substrate and an N-well is used as the second well is shown. However, an N-type silicon substrate is used as the first conductive semiconductor substrate, and the second well is used. A P-well may be used.

その他の説明や効果については、図1と同一の符号を付記して説明に充てる。   For other explanations and effects, the same reference numerals as those in FIG.

以上の説明のとおり、本発明によって工程の増加もなく高電源電圧回路部に十分なラッチアップ耐性を持たせつつ、低電源電圧回路部においても高電源電圧回路部と同じトレンチ分離を使用しながら高い素子集積度を持った半導体装置を得ることができる。   As described above, the present invention provides sufficient latch-up resistance to the high power supply voltage circuit without increasing the number of processes, and also uses the same trench isolation as the high power supply voltage circuit in the low power supply voltage circuit. A semiconductor device having a high degree of element integration can be obtained.

本発明の半導体装置の第1の実施例示す模式的断面図である。1 is a schematic cross-sectional view showing a first embodiment of a semiconductor device of the present invention. 本発明の半導体装置の第2の実施例示す模式的断面図である。It is typical sectional drawing which shows the 2nd Example of the semiconductor device of this invention.

符号の説明Explanation of symbols

101 P型のシリコン基板
201 Pウエル領域
202 Nウエル領域
301 トレンチ分離領域
401 P型の高濃度不純物領域からなる多数キャリア捕獲領域
402 N型の高濃度不純物領域からなる多数キャリア捕獲領域
403 N型の高濃度不純物領域からなる少数キャリア捕獲領域
404 P型の高濃度不純物領域からなる少数キャリア捕獲領域
501 N型の高濃度不純物領域
502 P型の高濃度不純物領域
101 P-type silicon substrate 201 P-well region 202 N-well region 301 Trench isolation region 401 Majority carrier trap region 402 made of P-type high-concentration impurity region Majority carrier trap region 403 made of N-type high-concentration impurity region Minority carrier trap region 404 composed of a high concentration impurity region 404 Minority carrier trap region 501 composed of a P type high concentration impurity region N type high concentration impurity region 502 P type high concentration impurity region

Claims (5)

高電源電圧回路部と低電源電圧回路部とを同一の半導体基板上に有し、前記高電源電圧回路部および前記低電源電圧回路部における各素子をトレンチ分離領域により素子分離したトレンチ分離構造を有し、前記高電源電圧回路部は、第1導電型の半導体基板上に設けられ、前記第1導電型の半導体基板内に配置された第1のMOS型トランジスタと、第2導電型のウエル領域と前記ウエル領域内に配置された第2のMOS型トランジスタとを有する半導体装置であり、前記第1導電型の半導体基板と前記ウエル領域の接合部付近において、前記第1のMOS型トランジスタよりも前記半導体基板の端部に近い位置および前記第2のMOS型トランジスタよりも前記ウエル領域の端部に近い位置に、ラッチアップを防止するための多数キャリア捕獲領域および前記少数キャリア捕獲領域をそれぞれ有し、前記少数キャリア領域は前記多数キャリア捕獲領域に比べて、前記半導体基板および第2のウエル領域においてより前記接合部に近い位置に配置されており、前記多数キャリア捕獲領域および前記少数キャリア捕獲領域の深さは、前記トレンチ分離領域の深さよりも深く形成されていることを特徴とする半導体装置。   A trench isolation structure having a high power supply voltage circuit section and a low power supply voltage circuit section on the same semiconductor substrate, wherein each element in the high power supply voltage circuit section and the low power supply voltage circuit section is separated by a trench isolation region And the high power supply voltage circuit section is provided on a first conductive type semiconductor substrate, and includes a first MOS type transistor disposed in the first conductive type semiconductor substrate, and a second conductive type well. And a second MOS type transistor disposed in the well region, in the vicinity of the junction between the first conductive type semiconductor substrate and the well region, the first MOS type transistor. A majority carrier for preventing latch-up at a position closer to the end of the semiconductor substrate and closer to the end of the well region than the second MOS transistor. Each having a catch region and the minority carrier capture region, the minority carrier region being disposed closer to the junction in the semiconductor substrate and the second well region than the majority carrier capture region; The depth of the majority carrier capture region and the minority carrier capture region is formed deeper than the depth of the trench isolation region. 前記半導体基板内に配置された前記多数キャリア捕獲領域の電位は前記半導体基板と同一の電位に固定されており、前記半導体基板内に配置された前記少数キャリア捕獲領域の電位は前記ウエルと同一の電位に固定されており、前記ウエル内に配置された前記多数キャリア捕獲領域の電位は前記ウエルと同一の電位に固定されており、前記ウエル内に配置された前記少数キャリア捕獲領域の電位は前記半導体基板と同一の電位に固定されていることを特徴とする請求項1記載の半導体装置。   The potential of the majority carrier trap region disposed in the semiconductor substrate is fixed to the same potential as the semiconductor substrate, and the potential of the minority carrier trap region disposed in the semiconductor substrate is the same as that of the well. The potential of the majority carrier capture region disposed in the well is fixed at the same potential as the well, and the potential of the minority carrier capture region disposed in the well is 2. The semiconductor device according to claim 1, wherein the semiconductor device is fixed at the same potential as that of the semiconductor substrate. 高電源電圧回路部と低電源電圧回路部とを同一の半導体基板上に有し、前記高電源電圧回路部および前記低電源電圧回路部における各素子をトレンチ分離領域により素子分離したトレンチ分離構造を有し、前記高電源電圧回路部は、第1導電型の半導体基板上に設けられ、第1導電型の第1ウエル領域と前記第1ウエル領域内に配置された第1のMOS型トランジスタと、第2導電型の第2ウエル領域と前記第2ウエル領域内に配置された第2のMOS型トランジスタとを有する半導体装置であり、前記第1ウエル領域と前記第2ウエル領域の接合部付近において、前記第1のMOS型トランジスタよりも前記第1ウエル領域の端部に近い位置および前記第2のMOS型トランジスタよりも前記第2ウエル領域の端部に近い位置に、ラッチアップを防止するための多数キャリア捕獲領域および前記少数キャリア捕獲領域をそれぞれ有し、前記少数キャリア領域は前記多数キャリア捕獲領域に比べて、より前記第1あるいは第2のウエル領域の端部に近い位置に配置されており、前記多数キャリア捕獲領域および前記少数キャリア捕獲領域の深さは、前記トレンチ分離領域の深さよりも深く形成されていることを特徴とする半導体装置。   A trench isolation structure having a high power supply voltage circuit section and a low power supply voltage circuit section on the same semiconductor substrate, wherein each element in the high power supply voltage circuit section and the low power supply voltage circuit section is separated by a trench isolation region And the high power supply voltage circuit section is provided on a first conductivity type semiconductor substrate, and includes a first conductivity type first well region and a first MOS type transistor disposed in the first well region. , A semiconductor device having a second conductivity type second well region and a second MOS transistor disposed in the second well region, and in the vicinity of a junction between the first well region and the second well region The latch circuit is positioned closer to the end of the first well region than the first MOS type transistor and closer to the end of the second well region than the second MOS type transistor. A minority carrier capture region and a minority carrier capture region for preventing the trapping, and the minority carrier region is closer to the end of the first or second well region than the majority carrier capture region. The semiconductor device is disposed at a position, and the depth of the majority carrier capture region and the minority carrier capture region is formed deeper than the depth of the trench isolation region. 前記第1ウエル内に配置された前記多数キャリア捕獲領域の電位は前記第1ウエルと同一の電位に固定されており、前記第1ウエル内に配置された前記少数キャリア捕獲領域の電位は前記第2ウエルと同一の電位に固定されており、前記第2ウエル内に配置された前記多数キャリア捕獲領域の電位は前記第2ウエルと同一の電位に固定されており、前記第2ウエル内に配置された前記少数キャリア捕獲領域の電位は前記第1ウエルと同一の電位に固定されていることを特徴とする請求項3記載の半導体装置。   The potential of the majority carrier capture region disposed in the first well is fixed to the same potential as the first well, and the potential of the minority carrier capture region disposed in the first well is the first potential. The potential of the majority carrier capturing region disposed in the second well is fixed at the same potential as that of the second well, and is fixed in the second well. 4. The semiconductor device according to claim 3, wherein the potential of the minority carrier trapping region is fixed to the same potential as that of the first well. 前記高電源電圧回路部内に形成された前記多数キャリア捕獲領域および前記少数キャリア捕獲領域は、前記高電源電圧回路部に配置された前記第1のMOS型トランジスタのソースもしくはドレイン領域および前記第2のMOS型トランジスタのソースもしくはドレイン領域と同一の拡散層にて形成されていることを特徴とする請求項1ないし4のいずれか1項に記載の半導体装置。   The majority carrier trapping region and the minority carrier trapping region formed in the high power supply voltage circuit unit are the source or drain region of the first MOS transistor and the second region arranged in the high power supply voltage circuit unit. 5. The semiconductor device according to claim 1, wherein the semiconductor device is formed of the same diffusion layer as the source or drain region of the MOS transistor.
JP2007037229A 2007-02-17 2007-02-17 Semiconductor device Expired - Fee Related JP4950692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037229A JP4950692B2 (en) 2007-02-17 2007-02-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037229A JP4950692B2 (en) 2007-02-17 2007-02-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2008205055A true JP2008205055A (en) 2008-09-04
JP4950692B2 JP4950692B2 (en) 2012-06-13

Family

ID=39782277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037229A Expired - Fee Related JP4950692B2 (en) 2007-02-17 2007-02-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4950692B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116153934A (en) * 2023-04-20 2023-05-23 长鑫存储技术有限公司 Semiconductor structure and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273760A (en) * 1985-09-27 1987-04-04 Toshiba Corp Semiconductor device
JPS6428940A (en) * 1987-07-24 1989-01-31 Nec Corp Semiconductor integrated circuit device
JPH04312968A (en) * 1991-03-19 1992-11-04 Mitsubishi Electric Corp Cmos semiconductor integrated circuit device
JP2000299440A (en) * 1999-04-15 2000-10-24 Hitachi Ltd Field effect transistor and integrated voltage generating circuit using the same
JP2002057284A (en) * 2000-08-03 2002-02-22 Motorola Inc Semiconductor device and guard ring layout method to optimize latch-up preventing effect
JP2003197866A (en) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273760A (en) * 1985-09-27 1987-04-04 Toshiba Corp Semiconductor device
JPS6428940A (en) * 1987-07-24 1989-01-31 Nec Corp Semiconductor integrated circuit device
JPH04312968A (en) * 1991-03-19 1992-11-04 Mitsubishi Electric Corp Cmos semiconductor integrated circuit device
JP2000299440A (en) * 1999-04-15 2000-10-24 Hitachi Ltd Field effect transistor and integrated voltage generating circuit using the same
JP2002057284A (en) * 2000-08-03 2002-02-22 Motorola Inc Semiconductor device and guard ring layout method to optimize latch-up preventing effect
JP2003197866A (en) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116153934A (en) * 2023-04-20 2023-05-23 长鑫存储技术有限公司 Semiconductor structure and preparation method thereof
CN116153934B (en) * 2023-04-20 2023-06-27 长鑫存储技术有限公司 Semiconductor structure and preparation method thereof

Also Published As

Publication number Publication date
JP4950692B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
US8026549B2 (en) LDMOS with N-type isolation ring and method of fabricating the same
US9373682B2 (en) Compact guard ring structure for CMOS integrated circuits
JP2010157636A (en) Semiconductor device and method of manufacturing the same
KR20140011289A (en) A low threshold voltage metal oxide semiconductor
JP2007287985A (en) Semiconductor device
US8890281B2 (en) Semiconductor device
KR20060106667A (en) High breakdown voltage semiconductor device and fabrication method of the same
JP2011159828A (en) Semiconductor device and method of manufacturing the same
JP6688653B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2009267211A (en) Semiconductor device and method for manufacturing teh same
JP2009158621A (en) Semiconductor device
JP2009038130A (en) Lateral mos transistor, and semiconductor device using same
JP4950692B2 (en) Semiconductor device
KR101442252B1 (en) Semiconductor device
US8546880B2 (en) Anti punch-through leakage current metal-oxide-semiconductor transistor and manufacturing method thereof
US10438943B2 (en) Field-effect transistor and semiconductor device
JP2016058485A (en) Semiconductor device
JP5463698B2 (en) Semiconductor element, semiconductor device, and method of manufacturing semiconductor element
JP2011103408A (en) Semiconductor device
JP2008198777A (en) Semiconductor device
US8742498B2 (en) High voltage semiconductor device and fabricating method thereof
JP2010206163A (en) Semiconductor device
JP5147319B2 (en) Semiconductor device
JP2011071326A (en) Semiconductor device
TWI446534B (en) Semiconductor device and ic chip

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees