JP2008204870A - Atmospheric pressure plasma generator and ignition method - Google Patents

Atmospheric pressure plasma generator and ignition method Download PDF

Info

Publication number
JP2008204870A
JP2008204870A JP2007041351A JP2007041351A JP2008204870A JP 2008204870 A JP2008204870 A JP 2008204870A JP 2007041351 A JP2007041351 A JP 2007041351A JP 2007041351 A JP2007041351 A JP 2007041351A JP 2008204870 A JP2008204870 A JP 2008204870A
Authority
JP
Japan
Prior art keywords
ignition
reaction tube
electrode
atmospheric pressure
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007041351A
Other languages
Japanese (ja)
Other versions
JP4609440B2 (en
Inventor
Masashi Matsumori
正史 松森
Shigeki Nakatsuka
茂樹 中塚
Hiroyuki Tsuji
裕之 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007041351A priority Critical patent/JP4609440B2/en
Publication of JP2008204870A publication Critical patent/JP2008204870A/en
Application granted granted Critical
Publication of JP4609440B2 publication Critical patent/JP4609440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an atmospheric pressure plasma generator which has a simple and compact structure and is capable of igniting plasma stably without damaging a plasma generating circuit such as a matching circuit whether there is a single reaction tube or there are a plurality of them arranged parallel. <P>SOLUTION: The atmospheric pressure plasma generator is provided with a reaction tube 1 whose one end is open as a diffuser 5, an antenna 2 or an electrode disposed around the circumference or in the vicinity of the reaction tube 1, a gas supply means which introduces a gas 7 into the reaction tube 1 from the other end, a high frequency power supply 4 which applies high frequency voltage to the antenna 2 or the electrode. A pair of ignition electrodes 12 and 13 are disposed on one end side and the other end side of the reactor tube 1 with the antenna 2 or the electrode inserted in-between, one of the ignition electrode 12 is electrically grounded, and the other ignition electrode 13 is connected to an ignition device 14 which generates high voltage for predetermined time, so that ignition discharge occurs and vertically penetrates the plasma generating part corresponding to the antenna 2 in the reaction tube 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、大気圧プラズマ発生装置において、簡単な構成で安定して大気圧プラズマを点火することができる大気圧プラズマ発生装置及び点火方法に関するものである。   The present invention relates to an atmospheric pressure plasma generation apparatus and an ignition method capable of stably igniting atmospheric pressure plasma with a simple configuration in an atmospheric pressure plasma generation apparatus.

大気圧プラズマ発生装置は、ガスを反応管の一端から導入し、反応管の周囲又は近傍に配設したアンテナや電極に高周波電圧を印加することで、反応管内でプラズマを発生させ、反応管の他端からプラズマを吹き出すように構成されている。このような大気圧プラズマ装置においては、大気圧プラズマが点火している状態で連続してプラズマを発生させるのに必要な所定の高周波電圧をアンテナや電極に印加し、反応管にガスを導入するだけでは、最初に大気圧プラズマが点火せず、点火するためにはアンテナや電極に高電圧を印加する必要がある。そこで、アンテナや電極に高周波電圧を印加する高周波電源から点火に必要な高電圧を印加することも考えられるが、高出力に耐える整合回路は、耐電圧耐電流が高くなり、使用する部品が大型になり、装置がコンパクトにならない。そこで低出力の高周波電源を用い、反応管内又はその近傍に高電圧を印加してプラズマを点火する点火装置が設けられている。   An atmospheric pressure plasma generator introduces a gas from one end of a reaction tube and applies a high frequency voltage to an antenna or an electrode disposed around or in the vicinity of the reaction tube to generate plasma in the reaction tube. The plasma is blown out from the other end. In such an atmospheric pressure plasma apparatus, a predetermined high-frequency voltage necessary for continuously generating plasma in a state where the atmospheric pressure plasma is ignited is applied to an antenna or an electrode, and gas is introduced into a reaction tube. Alone, the atmospheric pressure plasma is not ignited first, and in order to ignite, it is necessary to apply a high voltage to the antenna and the electrode. Therefore, it is conceivable to apply a high voltage necessary for ignition from a high-frequency power source that applies a high-frequency voltage to the antenna or electrode, but the matching circuit that can withstand high output has a high withstand voltage and current, and the parts used are large. And the device is not compact. Therefore, an ignition device is provided that uses a low-output high-frequency power source and applies a high voltage in or near the reaction tube to ignite plasma.

点火装置を有する大気圧プラズマ発生装置としては、図7に示すように、反応管21の外周に軸芯方向に適当間隔あけて一対のプラズマ生成用電極22、23を配置し、反応管21にガスを供給しつつ、高周波電源24から整合回路25を介してプラズマ生成用電極22、23間に高周波電圧を印加することで、プラズマ生成用電極22、23間のプラズマ発生部26でプラズマを発生させ、吹き出し口27から吹き出すようにした大気圧プラズマ発生装置において、プラズマ点火時に、高電圧パルス発生装置29に接続された点火用電極28を、反応管21の吹き出し口27の下流近傍に位置させ、高電圧のパルス電圧を印加することによって、点火用電極28と接地されたプラズマ生成用電極23との間で放電させて予備電離プラズマを発生させ、この予備電離プラズマにてプラズマ発生部26でのプラズマを点火するようにしたものが知られている(例えば、特許文献1参照)。   As an atmospheric pressure plasma generator having an ignition device, as shown in FIG. 7, a pair of plasma generating electrodes 22, 23 are arranged on the outer periphery of the reaction tube 21 at an appropriate interval in the axial direction. While supplying gas, a high-frequency voltage is applied between the plasma generation electrodes 22 and 23 from the high-frequency power source 24 via the matching circuit 25, thereby generating plasma at the plasma generation unit 26 between the plasma generation electrodes 22 and 23. In the atmospheric pressure plasma generator that is blown out from the outlet 27, the ignition electrode 28 connected to the high-voltage pulse generator 29 is positioned in the vicinity of the outlet 27 of the reaction tube 21 at the downstream of the plasma ignition. By applying a high voltage pulse voltage, discharge between the ignition electrode 28 and the grounded plasma generation electrode 23 causes preionized plasma to be discharged. Raised, that so as to ignite a plasma in the plasma generating section 26 is known in the pre-ionized plasma (for example, see Patent Document 1).

また、図8に示すように、反応管31の外周に軸芯方向に適当間隔あけて一対のプラズマ生成用電極32、33を配置し、これらプラズマ生成用電極32、33間に高周波電源34から整合回路35を介して高周波電圧を印加するようにし、プラズマ生成用電極32、33間をプラズマ発生部36とし、反応管31の他端を発生したプラズマの吹き出し口37とした大気圧プラズマ発生装置において、反応管31の一端の第1ガス導入口38とプラズマ生成用電極32との間にガス導入管39を接続し、かつ第1ガス導入口38とガス導入管39との間の範囲の反応管31の外面に接して一対の予備放電電極40、41を対向配置し、これら予備放電電極40、41の間に予備放電電源42から高電圧を印加し、反応管31内のプラズマ発生部36の上流側に予備放電空間43を設けたものも知られている(例えば、特許文献2参照)。   Further, as shown in FIG. 8, a pair of plasma generating electrodes 32 and 33 are arranged on the outer periphery of the reaction tube 31 at an appropriate interval in the axial direction, and a high frequency power supply 34 is provided between the plasma generating electrodes 32 and 33. A high-frequency voltage is applied via the matching circuit 35, the plasma generating electrodes 32 and 33 are used as a plasma generating unit 36, and the other end of the reaction tube 31 is used as a plasma blowing outlet 37. , A gas introduction pipe 39 is connected between the first gas introduction port 38 at one end of the reaction tube 31 and the plasma generating electrode 32, and a range between the first gas introduction port 38 and the gas introduction pipe 39 is set. A pair of preliminary discharge electrodes 40, 41 are arranged opposite to each other in contact with the outer surface of the reaction tube 31, and a high voltage is applied between the preliminary discharge electrodes 40, 41 from the preliminary discharge power source 42 to generate plasma in the reaction tube 31. Also known as having a pre-discharge space 43 on the upstream side of the 36 (for example, see Patent Document 2).

図8の構成においては、プラズマの点火時には、第1ガス導入口38から反応管31内に電離し易く放電開始電圧の低いガス44を導入し、プラズマ生成用電極32、33間に高周波電圧を印加した状態で、予備放電電極40、41の間に高電圧を印加することで、予備放電空間43に予備放電プラズマ45が発生し、そこで生成された荷電粒子がガス流れにそってプラズマ発生部36に導入されることでプラズマ発生部36でプラズマが点火される。その後、ガス導入管39の第2ガス導入口46から反応管31内に反応性ガスなどのその他のガス47を導入することで、プラズマ発生部36で所要のプラズマが発生し、吹き出し口37から吹き出される。
特開2001−126898号公報 特開2002−008894号公報
In the configuration of FIG. 8, at the time of plasma ignition, a gas 44 that is easily ionized into the reaction tube 31 from the first gas introduction port 38 is introduced, and a high-frequency voltage is applied between the plasma generating electrodes 32 and 33. By applying a high voltage between the preliminary discharge electrodes 40 and 41 in the applied state, a preliminary discharge plasma 45 is generated in the preliminary discharge space 43, and the generated charged particles are generated along the gas flow in the plasma generating section. The plasma is ignited by the plasma generator 36 by being introduced into 36. Thereafter, by introducing another gas 47 such as a reactive gas into the reaction tube 31 from the second gas introduction port 46 of the gas introduction tube 39, a required plasma is generated in the plasma generation unit 36, and is emitted from the blowout port 37. Blown out.
JP 2001-126898 A JP 2002-008894 A

ところが、図7に示した特許文献1の構成では、点火装置をプラズマ点火後に吹き出し口27の近傍から退避させる必要があり、点火装置の移動機構が必要になるため、装置構成が複雑になってコンパクトで安価な構成を実現することができないという問題あり、また吹き出し口27の近傍で高電圧を印加することで点火するものであるため、複数の反応管21を並列配置した大気圧プラズマ発生装置においては、1つの反応管21で先にプラズマが発生すると、隣接する他の反応管21ではその影響を受けて高電圧を適切に印加できず、点火が不可能になるという問題がある。   However, in the configuration of Patent Document 1 shown in FIG. 7, it is necessary to retract the ignition device from the vicinity of the outlet 27 after plasma ignition, and a moving mechanism of the ignition device is required, which makes the device configuration complicated. There is a problem that a compact and inexpensive configuration cannot be realized, and ignition is performed by applying a high voltage in the vicinity of the air outlet 27. Therefore, an atmospheric pressure plasma generator having a plurality of reaction tubes 21 arranged in parallel However, when plasma is generated in one reaction tube 21 first, a high voltage cannot be appropriately applied to other adjacent reaction tubes 21 due to the influence, and ignition is impossible.

また、図8に示した特許文献2の構成では、点火し易いガス44を第1のガス導入口38から導入する必要があり、プラズマ処理には第1ガス導入口38と第2ガス導入口46から異なる種類のガスを別々の供給系統から供給する必要があり、複数のガス供給系統が必要であるため構成が複雑になり、コンパクトで安価な構成を実現することができないという問題があり、またプラズマ発生部36の上流側で予備放電プラズマ45を発生させて点火するものであるため、複数の反応管31が並列配置されている大気圧プラズマ発生装置では、すべての反応管31で安定してプラズマを点火するのが困難であるという問題がある。   Further, in the configuration of Patent Document 2 shown in FIG. 8, it is necessary to introduce a gas 44 that is easily ignited from the first gas inlet 38, and the first gas inlet 38 and the second gas inlet are used for plasma processing. 46, different types of gas need to be supplied from different supply systems, and since a plurality of gas supply systems are required, the configuration is complicated, and a compact and inexpensive configuration cannot be realized. In addition, since the preliminary discharge plasma 45 is generated and ignited on the upstream side of the plasma generator 36, in the atmospheric pressure plasma generator in which the plurality of reaction tubes 31 are arranged in parallel, all the reaction tubes 31 are stable. Therefore, there is a problem that it is difficult to ignite the plasma.

本発明は、上記従来の問題に鑑み、反応管が単一の場合でも複数並列配置されている場合でも、また整合回路などのプラズマ発生用の回路にダメージを与えることなく、簡単かつコンパクトな構成にてプラズマを安定して点火することができる大気圧プラズマ発生装置及び点火方法を提供することを目的とする。   In view of the above-described conventional problems, the present invention has a simple and compact configuration without damaging a plasma generation circuit such as a matching circuit even when a single reaction tube or a plurality of reaction tubes are arranged in parallel. It is an object of the present invention to provide an atmospheric pressure plasma generator and an ignition method capable of stably igniting a plasma.

本発明の大気圧プラズマ発生装置は、一端が吹き出し口として開放された反応管と、反応管の周囲又はその近傍に配置されたアンテナ又は電極と、反応管内に他端からガスを導入するガス供給手段と、アンテナ又は電極に高周波電圧を印加する高周波電源とを備えた大気圧プラズマ発生装置において、アンテナ又は電極を間に挟んで反応管の一端側と他端側に一対の点火用電極を配置し、一方の点火用電極を電気的に接地し、他方の点火用電極を、所定時間高電圧を発生する点火装置に接続したものである。   The atmospheric pressure plasma generator of the present invention includes a reaction tube having one end opened as a blow-out port, an antenna or an electrode disposed around or in the vicinity of the reaction tube, and a gas supply for introducing gas from the other end into the reaction tube In an atmospheric pressure plasma generator comprising a means and a high-frequency power source for applying a high-frequency voltage to the antenna or electrode, a pair of ignition electrodes are arranged on one end side and the other end side of the reaction tube with the antenna or electrode in between Then, one ignition electrode is electrically grounded, and the other ignition electrode is connected to an ignition device that generates a high voltage for a predetermined time.

この構成によれば、アンテナ又は電極を間に挟んでその両側に配置した一対の点火用電極の一方を接地して両点火用電極間に点火装置から高電圧を印加することで、反応管内のアンテナ又は電極に対応したプラズマ発生域を縦貫して点火用の放電が生じるため、反応管外の影響を受けずに確実かつ安定して点火することができ、かつ点火用電極の一方が接地されているので、整合回路などのプラズマ発生用の回路に放電電力が誤って入力してダメージを与える恐れもなく、また反応管に設けた一対の点火用電極に点火用電源を接続した構成であるため、簡単かつコンパクトに構成することができる。   According to this configuration, one of a pair of ignition electrodes arranged on both sides of the antenna or electrode is grounded, and a high voltage is applied between the ignition electrodes from the ignition device, so that the inside of the reaction tube Since a discharge for ignition occurs through the plasma generation area corresponding to the antenna or electrode, it is possible to ignite surely and stably without being affected by the outside of the reaction tube, and one of the ignition electrodes is grounded. Therefore, there is no risk of discharge power being accidentally input to a circuit for generating plasma such as a matching circuit and causing damage, and the power supply for ignition is connected to a pair of ignition electrodes provided in the reaction tube. Therefore, it can be configured simply and compactly.

また、前記一方の点火用電極を反応管の一端側に、前記他方の点火用電極を反応管の他端側に配設すると、反応管の吹き出し口側の点火用電極が接地されているので、高電圧が印加される点火時に、吹き出し口の近傍に配置された各種部材との間で異常放電が生じるのを防止することができて好適である。なお、従来、反応管の吹き出し口近傍を接地電位にすると、吹き出し口から適正にプラズマを吹き出すことができないものと想定されていたが、本発明者の研究過程でプラズマの吹き出しには全く影響を与えないことを見出したことに基づいて本発明は発明されたものである。   If the one ignition electrode is disposed on one end of the reaction tube and the other ignition electrode is disposed on the other end of the reaction tube, the ignition electrode on the outlet side of the reaction tube is grounded. It is preferable that an abnormal discharge can be prevented from occurring between various members arranged in the vicinity of the air outlet at the time of ignition when a high voltage is applied. Conventionally, it has been assumed that if the vicinity of the outlet of the reaction tube is set to the ground potential, the plasma cannot be properly blown out from the outlet, but in the course of the present inventor's research, the plasma blowing is completely affected. The present invention has been invented based on the finding that it is not given.

また、点火装置が、交流又はパルス状の高電圧を発生するものであると、交番電界によって効果的にかつ安定して点火することができて好適である。なお、点火装置が出力する高電圧は、プラズマ発生用の高周波電源の出力電圧の3倍以上、例えば数kV〜30kV位までが好適である。   In addition, it is preferable that the ignition device generates an alternating current or pulsed high voltage because it can be ignited effectively and stably by an alternating electric field. The high voltage output from the ignition device is preferably at least three times the output voltage of the high-frequency power source for generating plasma, for example, about several kV to 30 kV.

また、反応管が複数配置され、各反応管に設けられた前記他方の点火用電極毎に各別に点火装置を設け、各他方の点火用電極とそれに対応する点火装置をそれぞれ接続すると、各反応管に対してそれぞれ独立して上記のように確実にかつ安定して点火することができ、反応管が複数並列配置されていてもすべての反応管に対して確実にかつ安定して点火することができる。   In addition, when a plurality of reaction tubes are arranged, an ignition device is provided for each of the other ignition electrodes provided in each reaction tube, and each other ignition electrode and the corresponding ignition device are connected to each other, Each tube can be ignited reliably and stably as described above, and all reaction tubes can be ignited reliably and stably even when multiple reaction tubes are arranged in parallel. Can do.

また、前記一方の点火用電極を、反応管を覆うとともに電気的に接地された筐体に接続すると、簡単な構成にて前記一方の点火用電極を接地することができて、一層簡単かつコンパクトな構成とすることができる。   In addition, when the one ignition electrode is connected to a case that covers the reaction tube and is electrically grounded, the one ignition electrode can be grounded with a simple configuration, which is simpler and more compact. It can be set as a simple structure.

また、本発明の大気圧プラズマ点火方法は、一端が吹き出し口として開放された反応管の他端側からガスを導入し、反応管の周囲又はその近傍に配置されたアンテナ又は電極に高周波電圧を印加した状態で、アンテナ又は電極を間に挟んで反応管の一端側と他端側に配置された一対の点火用電極の一方の点火用電極を電気的に接地し、他方の点火用電極に所定時間高電圧を印加してプラズマを点火するものである。   Further, the atmospheric pressure plasma ignition method of the present invention introduces a gas from the other end of the reaction tube whose one end is opened as an outlet, and applies a high-frequency voltage to an antenna or an electrode disposed around or in the vicinity of the reaction tube. In an applied state, one ignition electrode of a pair of ignition electrodes disposed on one end side and the other end side of the reaction tube with the antenna or electrode interposed therebetween is electrically grounded, and the other ignition electrode is connected to the other ignition electrode. A high voltage is applied for a predetermined time to ignite plasma.

この構成によると、上記のように反応管内のアンテナ又は電極に対応したプラズマ発生域を縦貫して点火用の放電が生じるため、反応管外の影響を受けずに確実かつ安定して点火することができ、かつ点火用電極の一方が接地されているので、整合回路などのプラズマ発生用の回路に放電電力が誤って入力してダメージを与える恐れもなく、また反応管に設けた一対の点火用電極に所定時間高電圧を印加だけであるため、簡単かつコンパクトに構成することができる。   According to this configuration, as described above, an ignition discharge is generated through the plasma generation region corresponding to the antenna or electrode in the reaction tube, so that the ignition is reliably and stably performed without being affected by the outside of the reaction tube. Since one of the ignition electrodes is grounded, there is no risk of discharge power being accidentally input to a plasma generation circuit such as a matching circuit, causing damage, and a pair of ignitions provided in the reaction tube Since only a high voltage is applied to the electrode for a predetermined time, it can be configured simply and compactly.

また、反応管が複数配置されている場合に、各反応管毎に独立して所定時間高電圧を印加してプラズマを点火すると、上記のように反応管が複数並列配置されていてもすべての反応管に対して確実にかつ安定して点火することができる。   In addition, when a plurality of reaction tubes are arranged, if a plasma is ignited by applying a high voltage for a predetermined time independently for each reaction tube, all the reaction tubes are arranged in parallel as described above. The reaction tube can be reliably and stably ignited.

本発明の大気圧プラズマ発生装置及び点火方法によれば、アンテナ又は電極を間に挟んでその両側に配置した一対の点火用電極の一方を接地して両点火用電極間に点火装置から高電圧を印加することで、反応管内のアンテナ又は電極に対応したプラズマ発生域を縦貫して点火用の放電が生じるため、反応管外の影響を受けずに確実かつ安定して点火することができ、かつ点火用電極の一方が接地されているので、整合回路などのプラズマ発生用の回路に放電電力が誤って入力してダメージを与える恐れもなく、また反応管に設けた一対の点火用電極に点火装置を接続した構成であるため、簡単かつコンパクトに構成することができる。   According to the atmospheric pressure plasma generator and ignition method of the present invention, one of a pair of ignition electrodes arranged on both sides of an antenna or an electrode is grounded, and a high voltage is applied from the ignition device between both ignition electrodes. Is applied to cause a discharge for ignition through the plasma generation region corresponding to the antenna or electrode in the reaction tube, and can be ignited reliably and stably without being affected by the outside of the reaction tube, In addition, since one of the ignition electrodes is grounded, there is no risk of the discharge power being accidentally input to a plasma generation circuit such as a matching circuit to cause damage, and the pair of ignition electrodes provided in the reaction tube Since it is the structure which connected the ignition device, it can comprise simply and compactly.

以下、本発明の大気圧プラズマ発生装置の各実施形態について、図1〜図6を参照しながら説明する。   Hereinafter, each embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIGS.

(第1の実施形態)
まず、本発明の大気圧プラズマ発生装置の第1の実施形態について、図1〜図3を参照して説明する。
(First embodiment)
First, a first embodiment of an atmospheric pressure plasma generator of the present invention will be described with reference to FIGS.

図1において、1は誘電体から成る反応管で、その外周にコイル状のアンテナ2が巻回されて配置されている。アンテナ2の両端は整合回路3を介して高周波電源4に接続されている。高周波電源4としては、周波数帯が13.56MHzに代表されるRF周波数帯や、100MHzに代表されるVHF周波数帯のものが好適に用いられ、その場合反射波を抑えるために整合回路3は必須である。   In FIG. 1, reference numeral 1 denotes a reaction tube made of a dielectric, and a coiled antenna 2 is wound around the outer periphery thereof. Both ends of the antenna 2 are connected to a high frequency power source 4 via a matching circuit 3. As the high-frequency power source 4, an RF frequency band typified by 13.56 MHz or a VHF frequency band typified by 100 MHz is preferably used. In this case, the matching circuit 3 is indispensable for suppressing reflected waves. It is.

反応管1は、その一端開口がプラズマの吹き出し口5であり、他端開口6に対して、図2に示すように、ガス供給部8から流量制御手段9を介してガス7を供給するように構成されている。なお、図2における大気圧プラズマ発生部10は、反応管1とコイル2と整合回路3をシールド用の筐体(図示せず)内に収容してユニット化したものである。   One end opening of the reaction tube 1 is a plasma outlet 5, and a gas 7 is supplied to the other end opening 6 from a gas supply unit 8 through a flow rate control unit 9 as shown in FIG. 2. It is configured. The atmospheric pressure plasma generator 10 in FIG. 2 is a unit in which the reaction tube 1, the coil 2, and the matching circuit 3 are housed in a shielding housing (not shown).

ガス7は、不活性ガスと反応性ガスの混合ガスであり、ガス供給部8から供給されるガスを流量制御手段9にて組成及び流量が精度良く同一になるように制御して反応管1に供給するように構成されている。不活性ガスは、アルゴン、ネオン、キセノン、ヘリウム、窒素から選択された単独ガス又は複数の混合ガスが適用される。また、反応性ガスは、プラズマ処理の種類に応じて、酸素、空気、CO2 、N2 Oなどの酸化性ガス、水素、アンモニアなどの還元性ガス、CF4 などのフロン系ガスなどが適用される。   The gas 7 is a mixed gas of an inert gas and a reactive gas, and the gas supplied from the gas supply unit 8 is controlled by the flow rate control means 9 so that the composition and flow rate are accurately the same, and the reaction tube 1 It is comprised so that it may supply. As the inert gas, a single gas or a mixed gas selected from argon, neon, xenon, helium, and nitrogen is applied. As the reactive gas, oxygen, air, an oxidizing gas such as CO 2 or N 2 O, a reducing gas such as hydrogen or ammonia, a chlorofluorocarbon gas such as CF 4, or the like is applied depending on the type of plasma treatment.

反応管1の外面には、アンテナ2を間に挟んで一端側と他端側に点火用電極12、13が配設されている。反応管1の吹き出し口5近傍の一端側の点火用電極12は電気的に接地され、他端側の点火用電極13は、所定時間高電圧を発生する点火装置14に接続されている。点火用電極13は先細で先端が尖突状になるように形成し、点火装置14から供給された電荷が先端に集中して放電が起こり易いようにするのが好適である。点火装置14は、数kV〜30kVの交流又はパルス状の高電圧を発生するものであれば良い。また、点火用電極12の接地のとり方としては、反応管1やコイル2を覆うシールド用の筐体(図示せず)に接続し、点火装置14の出力電圧の基準側端子(0Vと図示)もこの筐体に接続するのが好適であり、その筐体を接地するとさらに好適である。   On the outer surface of the reaction tube 1, ignition electrodes 12 and 13 are disposed on one end side and the other end side with the antenna 2 interposed therebetween. The ignition electrode 12 at one end near the outlet 5 of the reaction tube 1 is electrically grounded, and the ignition electrode 13 at the other end is connected to an ignition device 14 that generates a high voltage for a predetermined time. It is preferable that the ignition electrode 13 is formed to be tapered and have a pointed tip so that the electric charge supplied from the ignition device 14 is concentrated on the tip and discharge is likely to occur. The ignition device 14 only needs to generate an alternating current or pulsed high voltage of several kV to 30 kV. In addition, the ignition electrode 12 is grounded by connecting it to a shielding housing (not shown) that covers the reaction tube 1 and the coil 2, and a reference side terminal (0 V shown) of the output voltage of the ignition device 14. Also, it is preferable to connect to the casing, and it is more preferable to ground the casing.

上記高周波電源4と流量制御手段9、及び点火装置14は、図2に示すように、制御部15にて以下の動作を行うように制御される。   As shown in FIG. 2, the high-frequency power source 4, the flow rate control unit 9, and the ignition device 14 are controlled by the control unit 15 to perform the following operations.

以上の構成によれば、反応管1内にその他端開口6からガス7を供給しつつ、アンテナ2に整合回路3を介して高周波電源4にて高周波電圧を印加した状態で、点火装置14を動作させて、所定時間だけ交流又はパルス状の高電圧を点火用電極13に印加すると、図3に示すように、点火用電極13と接地された点火用電極12との間で、反応管1内を縦貫して放電16が生じ、アンテナ2から誘導電界が印加されているプラズマ発生域のガス7が一気に励起されてプラズマ11が点火する。一旦プラズマ11が点火すると、アンテナ2からの誘導電界で継続してプラズマ11が発生し、発生したプラズマ11が反応管1の一端の吹き出し口5から大気中の開放空間に吹き出す。このプラズマ11を対象物の表面に照射することでプラズマ処理することができる。   According to the above configuration, the ignition device 14 is operated in a state where a high frequency voltage is applied to the antenna 2 via the matching circuit 3 while supplying the gas 7 from the other end opening 6 into the reaction tube 1. When operated and an AC or pulsed high voltage is applied to the ignition electrode 13 for a predetermined time, the reaction tube 1 is connected between the ignition electrode 13 and the grounded ignition electrode 12 as shown in FIG. A discharge 16 is generated through the inside, and the gas 7 in the plasma generation region to which the induction electric field is applied from the antenna 2 is excited at once, and the plasma 11 is ignited. Once the plasma 11 is ignited, the plasma 11 is continuously generated by the induction electric field from the antenna 2, and the generated plasma 11 blows out from the outlet 5 at one end of the reaction tube 1 to an open space in the atmosphere. Plasma treatment can be performed by irradiating the surface of the object with the plasma 11.

その際に、点火用電極12、13がアンテナ2の両側に配置されていても、高電圧が印加される点火用電極13と対の点火用電極12が接地されているので、点火用電極12、13間で確実に放電16を生じ、放電電力が整合回路3に入力する恐れがないため、放電16を反応管1内のプラズマ発生域を縦貫させて発生させながら、整合回路3などのプラズマ発生用の回路にダメージを与える恐れがない。また、反応管1の吹き出し口5の近傍の点火用電極12が接地されているので、高電圧を印加する点火時に、吹き出し口5の近傍に高電圧が印加され、その近傍に配置された各種部材との間で異常放電が生じるというようなこともない。   At this time, even if the ignition electrodes 12 and 13 are arranged on both sides of the antenna 2, the ignition electrode 12 to which a high voltage is applied and the pair of ignition electrodes 12 are grounded. , 13, the discharge 16 is surely generated, and there is no fear that the discharge power is input to the matching circuit 3. Therefore, the discharge 16 is generated through the plasma generation region in the reaction tube 1, and the plasma of the matching circuit 3 or the like is generated. There is no risk of damaging the generating circuit. In addition, since the ignition electrode 12 in the vicinity of the outlet 5 of the reaction tube 1 is grounded, a high voltage is applied in the vicinity of the outlet 5 at the time of ignition to apply a high voltage, and various kinds of electrodes arranged in the vicinity thereof. Abnormal discharge does not occur between the members.

なお、点火装置14による点火用電極13に対する高電圧の印加時間は、必ずしも一定の所定時間にする必要はなく、吹き出し口5から吹き出したプラズマ11をその近傍に配置したセンサ(図示せず)にて検出し、その検出信号に基づいて制御部15にて点火装置14の動作を停止させるようにしても良い。   Note that the application time of the high voltage to the ignition electrode 13 by the ignition device 14 does not necessarily have to be a predetermined time, and is applied to a sensor (not shown) in which the plasma 11 blown out from the blowout port 5 is arranged in the vicinity thereof. The controller 15 may stop the operation of the ignition device 14 based on the detection signal.

(第2の実施形態)
次に、本発明の大気圧プラズマ発生装置の第2の実施形態について、図4、5を参照して説明する。なお、以下の実施形態の説明では、先行する実施形態と同一の構成要素については、同じ参照符号を付して説明を省略し、主として相違点についてのみ説明する。
(Second Embodiment)
Next, a second embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIGS. In the following description of the embodiment, the same components as those in the preceding embodiment are denoted by the same reference numerals, description thereof is omitted, and only differences will be mainly described.

上記第1の実施形態では、大気圧プラズマ発生部10に単一の反応管1が設けられている例を示したが、本実施形態では、広い範囲を一度にプラズマ処理できるように、大気圧プラズマ発生部10に一対の反応管1a、1bが並列して配設され、それぞれにアンテナ2a、2bが巻回して配設されている。これらアンテナ2a、2bは、巻き方向を互いに逆向きに構成して、両反応管1a、1bの間で、反応管1a、1bから吹き出したプラズマ11に発生する高周波ノイズが相互に打ち消し合って外部に漏れる高周波ノイズが低減されるようになされている。図示例では、アンテナ2aと2bを並列接続して整合回路3に接続した例を示したが、直列接続して整合回路3に接続しても良い。   In the first embodiment, the example in which the single reaction tube 1 is provided in the atmospheric pressure plasma generation unit 10 has been described. However, in this embodiment, the atmospheric pressure is set so that a wide range can be subjected to plasma processing at a time. A pair of reaction tubes 1a and 1b are arranged in parallel in the plasma generation unit 10, and antennas 2a and 2b are wound around the plasma generation unit 10, respectively. These antennas 2a and 2b are configured so that the winding directions are opposite to each other, and high-frequency noise generated in the plasma 11 blown out from the reaction tubes 1a and 1b cancels each other between the reaction tubes 1a and 1b. The high-frequency noise leaking to the screen is reduced. In the illustrated example, the antennas 2a and 2b are connected in parallel and connected to the matching circuit 3. However, the antennas 2a and 2b may be connected in series and connected to the matching circuit 3.

反応管1a、1bの一端側に設けられた点火用電極12a、12bは相互に接続されて接地され、他端側に設けられた点火用電極13a、13bは、それぞれ各別に設けられた点火装置14a、14bに接続され、それぞれに独立して高電圧を印加するように構成されている。   The ignition electrodes 12a and 12b provided on one end side of the reaction tubes 1a and 1b are connected to each other and grounded, and the ignition electrodes 13a and 13b provided on the other end side are individually provided ignition devices. 14a and 14b, and is configured to apply a high voltage independently to each other.

また、反応管1a、1b、アンテナ2a、2b、及び整合回路3は、発生した高周波ノイズが外部に漏れ出すのを防止するため、シールド用の筐体17内に収容配置されている。反応管1a、1bの一端の吹き出し口5は筐体17に設けられた開口を通して外部に開放されており、吹き出し口5から吹き出したプラズマ11が外部の開放空間に吹き出し、対象物の表面に照射してプラズマ処理するように構成されている。   The reaction tubes 1a and 1b, the antennas 2a and 2b, and the matching circuit 3 are accommodated and disposed in a shielding casing 17 in order to prevent the generated high-frequency noise from leaking outside. The blow-out port 5 at one end of the reaction tubes 1a and 1b is opened to the outside through an opening provided in the housing 17, and the plasma 11 blown out from the blow-out port 5 is blown into an external open space to irradiate the surface of the object. And it is comprised so that plasma processing may be carried out.

本実施形態によれば、複数の反応管1a、1bを並列配置しているので、各反応管1a、1bから吹き出したプラズマ11にて広い領域を一度にプラズマ処理することができる。しかも、従来は複数の反応管を並列配置した場合、1つの反応管が点火すると、他の反応管で点火出来なかったり、点火が不安定になるのに対して、本発明では上記のように点火時に外部の影響を受けずに反応管1内のプラズマ発生域を縦貫する放電16が発生して確実に点火することができ、かつ本実施形態では各反応管1a、1bの点火用電極13a、13bに対してそれぞれ各別に点火装置14a、14bを設けて各反応管1a、1bに対してそれぞれ独立して点火するようにしているので、反応管1a、1bが複数並列配置されていても両反応管1a、1bに対して確実にかつ安定して点火することができる。   According to the present embodiment, since the plurality of reaction tubes 1a and 1b are arranged in parallel, a wide region can be plasma-treated at once with the plasma 11 blown out from the reaction tubes 1a and 1b. Moreover, conventionally, when a plurality of reaction tubes are arranged in parallel, if one reaction tube ignites, the other reaction tubes cannot be ignited or the ignition becomes unstable. In the present invention, as described above, During the ignition, a discharge 16 penetrating the plasma generation region in the reaction tube 1 can be generated without being influenced by the outside, and ignition can be performed reliably. In this embodiment, the ignition electrodes 13a of the reaction tubes 1a and 1b are provided. , 13b are provided with igniters 14a, 14b, respectively, so that each reaction tube 1a, 1b is ignited independently. Therefore, even if a plurality of reaction tubes 1a, 1b are arranged in parallel, It is possible to reliably and stably ignite both reaction tubes 1a and 1b.

図5を参照して説明すると、アンテナ2a、2bに高周波電源4から高周波電圧を印加し、反応管1a、1bにガス7を供給した状態で、点火装置14a、14bを動作させて点火用電極12a、12bと点火用電極13a、13b間にパルス状の高電圧を印加すると、点火装置14a、14bの動作時間内に、反応管1a、1bでそれぞれ独立してプラズマが点火し、高周波電圧の印加とガス7の供給を継続している間、両反応管1a、1bからプラズマ11が連続して吹き出される。   Referring to FIG. 5, the ignition electrodes 14a and 14b are operated by applying a high-frequency voltage from the high-frequency power source 4 to the antennas 2a and 2b and supplying the gas 7 to the reaction tubes 1a and 1b. When a pulsed high voltage is applied between the electrodes 12a and 12b and the ignition electrodes 13a and 13b, the plasma is ignited independently in the reaction tubes 1a and 1b within the operation time of the ignition devices 14a and 14b, respectively. While the application and the supply of the gas 7 are continued, the plasma 11 is continuously blown out from both reaction tubes 1a and 1b.

(第3の実施形態)
次に、本発明の大気圧プラズマ発生装置の第3の実施形態について、図6を参照して説明する。
(Third embodiment)
Next, a third embodiment of the atmospheric pressure plasma generator of the present invention will be described with reference to FIG.

上記実施形態では、一対の反応管1a、1bを並列配置した構成例を示したが、本実施形態では、4本の反応管1a〜1dを並列配置し、それぞれの外周にアンテナ2a〜2dが巻回されて配置されている。アンテナ2a〜2dは、隣り合うもの同士の巻き方向が互いに逆になるように構成されるとともに、順次直列接続されてその一端は整合回路3及び高周波電源4の一方の端子に接続され、直列接続されたアンテナ2a〜2dの他端、及び整合回路3及び高周波電源4の他方の端子は筐体17に接続されている。筐体17は表面に銅板を配置して抵抗を小さくして接地に接続されている。また、反応管1a〜1dの一端側に配設された点火用電極12a〜12dは筐体17に接続され、反応管1a〜1dの他端側に配設された点火用電極13a〜13dはそれぞれ各別に設けられた点火装置14a〜14dに接続されている。なお、本実施形態では、反応管1a〜1dとアンテナ2a〜2dを筐体17にて覆い、整合回路3は筐体17外に配設している。   In the above embodiment, a configuration example in which a pair of reaction tubes 1a and 1b are arranged in parallel is shown. However, in this embodiment, four reaction tubes 1a to 1d are arranged in parallel, and antennas 2a to 2d are arranged on the outer circumferences. It is wound and arranged. The antennas 2a to 2d are configured so that the winding directions of adjacent ones are opposite to each other, are sequentially connected in series, and one end thereof is connected to one terminal of the matching circuit 3 and the high-frequency power source 4, and is connected in series. The other ends of the antennas 2 a to 2 d and the other terminals of the matching circuit 3 and the high-frequency power source 4 are connected to the housing 17. The casing 17 is connected to the ground by arranging a copper plate on the surface to reduce resistance. The ignition electrodes 12a to 12d disposed on one end side of the reaction tubes 1a to 1d are connected to the casing 17, and the ignition electrodes 13a to 13d disposed on the other end side of the reaction tubes 1a to 1d are Each is connected to an ignition device 14a-14d provided separately. In the present embodiment, the reaction tubes 1 a to 1 d and the antennas 2 a to 2 d are covered with the casing 17, and the matching circuit 3 is disposed outside the casing 17.

本実施形態のように4本の反応管1a〜1dを並列配置し、もしくはそれ以上の複数本の反応管を並列配置した場合でも、上記実施形態と同様にすべての反応管1a〜1dに対して確実に安定して点火することができ、大きな領域に対するプラズマ処理を効率的に行うことができる。また、直列接続されたアンテナ2a〜2dの他端、及び接地側の点火用電極12a〜12dを接地した筐体17に接続しているので、接地に対する接続構成が簡単になり、一層簡単かつコンパクトな構成とすることができる。   Even when four reaction tubes 1a to 1d are arranged in parallel as in the present embodiment or a plurality of reaction tubes of more than one are arranged in parallel, the reaction tubes 1a to 1d are all arranged in the same manner as in the above embodiment. Thus, stable ignition can be performed reliably, and plasma processing for a large area can be performed efficiently. Further, since the other ends of the antennas 2a to 2d connected in series and the ignition electrodes 12a to 12d on the ground side are connected to the grounded casing 17, the connection configuration with respect to the ground becomes simple, and the simpler and more compact. It can be set as a simple structure.

なお、反応管1a〜1dでの点火タイミングが多少ずれても良い場合には、点火用電極13a〜13dを切り替え装置を介して単一の点火装置14に接続して順次点火するようにしても良い。   If the ignition timings in the reaction tubes 1a to 1d may be slightly shifted, the ignition electrodes 13a to 13d are connected to a single ignition device 14 via a switching device so that the ignition is performed sequentially. good.

以上の実施形態では、反応管1(1a〜1d)の外周にコイル状のアンテナ2(2a〜2d)を巻回配置した例を示したが、反応管1(1a〜1d)の外周近傍に波形状のアンテナを配置した構成でも、さらに種々の形態の電極を配置した構成でも、本発明の点火用電極12(12a〜12d)、13(13a〜13d)及び点火装置14(14a〜14d)を適用することで同様の効果を奏することができる。   In the above embodiment, the example in which the coiled antenna 2 (2a to 2d) is wound around the outer periphery of the reaction tube 1 (1a to 1d) has been shown, but in the vicinity of the outer periphery of the reaction tube 1 (1a to 1d). Whether it is a configuration in which a wave-shaped antenna is arranged or a configuration in which various types of electrodes are arranged, the ignition electrodes 12 (12a to 12d) and 13 (13a to 13d) and the ignition device 14 (14a to 14d) of the present invention are used. The same effect can be achieved by applying.

本発明の大気圧プラズマ発生装置及び点火方法によれば、反応管内のアンテナ又は電極に対応したプラズマ発生域を縦貫させて点火用の放電を生じさせることができて、反応管外の影響を受けずに確実かつ安定して点火することができ、かつ整合回路などのプラズマ発生用の回路に放電電力が誤って入力してダメージを与える恐れもなく、また簡単かつコンパクトに構成することができるので、大気圧プラズマ処理装置に効果的に利用することができる。   According to the atmospheric pressure plasma generation apparatus and the ignition method of the present invention, it is possible to generate a discharge for ignition through the plasma generation region corresponding to the antenna or the electrode in the reaction tube, and to be affected by the influence outside the reaction tube. Therefore, it can be ignited reliably and stably, and there is no risk of damage caused by accidental input of discharge power to a plasma generation circuit such as a matching circuit, and it can be configured simply and compactly. It can be effectively used in an atmospheric pressure plasma processing apparatus.

本発明の第1の実施形態の大気圧プラズマ発生装置の構成図。The block diagram of the atmospheric pressure plasma generator of the 1st Embodiment of this invention. 同実施形態の制御構成を示すブロック図。The block diagram which shows the control structure of the embodiment. 同実施形態における点火作用を示す断面図。Sectional drawing which shows the ignition effect | action in the same embodiment. 本発明の第2の実施形態の大気圧プラズマ発生装置の構成図。The block diagram of the atmospheric pressure plasma generator of the 2nd Embodiment of this invention. 同実施形態の動作タイミング図。The operation | movement timing diagram of the embodiment. 本発明の第3の実施形態の大気圧プラズマ発生装置の構成図。The block diagram of the atmospheric pressure plasma generator of the 3rd Embodiment of this invention. 従来例の大気圧プラズマ発生装置の構成図。The block diagram of the atmospheric pressure plasma generator of a prior art example. 他の従来例の大気圧プラズマ発生装置の構成を示す断面図。Sectional drawing which shows the structure of the atmospheric pressure plasma generator of another prior art example.

符号の説明Explanation of symbols

1、1a、1b、1a〜1d 反応管
2、2a、2b、2a〜2d アンテナ
4 高周波電源
5 吹き出し口
6 他端開口
7 ガス
8 ガス供給部
11 プラズマ
12、12a、12b、12a〜12d 一方の点火用電極
13、13a、13b、13a〜13d 他方の点火用電極
14、14a、14b、14a〜14d 点火装置
17 筐体
DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1a-1d Reaction tube 2, 2a, 2b, 2a-2d Antenna 4 High frequency power supply 5 Outlet 6 Other end opening 7 Gas 8 Gas supply part 11 Plasma 12, 12a, 12b, 12a-12d Ignition electrode 13, 13a, 13b, 13a-13d The other ignition electrode 14, 14a, 14b, 14a-14d Ignition device 17 Housing

Claims (7)

一端が吹き出し口として開放された反応管と、反応管の周囲又はその近傍に配置されたアンテナ又は電極と、反応管内に他端からガスを導入するガス供給手段と、アンテナ又は電極に高周波電圧を印加する高周波電源とを備えた大気圧プラズマ発生装置において、アンテナ又は電極を間に挟んで反応管の一端側と他端側に一対の点火用電極を配置し、一方の点火用電極を電気的に接地し、他方の点火用電極を、所定時間高電圧を発生する点火装置に接続したことを特徴とする大気圧プラズマ発生装置。   A reaction tube having one end opened as an outlet, an antenna or electrode arranged around or in the vicinity of the reaction tube, a gas supply means for introducing gas from the other end into the reaction tube, and a high-frequency voltage applied to the antenna or electrode In an atmospheric pressure plasma generator having a high-frequency power source to be applied, a pair of ignition electrodes are arranged on one end side and the other end side of a reaction tube with an antenna or an electrode interposed therebetween, and one of the ignition electrodes is electrically connected An atmospheric pressure plasma generator characterized in that the other ignition electrode is connected to an ignition device that generates a high voltage for a predetermined time. 前記一方の点火用電極を反応管の一端側に、前記他方の点火用電極を反応管の他端側に配設したことを特徴とする請求項1記載の大気圧プラズマ発生装置。   2. The atmospheric pressure plasma generator according to claim 1, wherein the one ignition electrode is disposed on one end side of the reaction tube, and the other ignition electrode is disposed on the other end side of the reaction tube. 点火装置は、交流又はパルス状の高電圧を発生することを特徴とする請求項1又は2記載の大気圧プラズマ発生装置。   The atmospheric pressure plasma generator according to claim 1 or 2, wherein the ignition device generates an alternating current or a pulsed high voltage. 反応管が複数配置され、各反応管に設けられた前記他方の点火用電極毎に各別に点火装置を設け、各他方の点火用電極とそれに対応する点火装置をそれぞれ接続したことを特徴とする請求項1〜3の何れかに記載の大気圧プラズマ発生装置。   A plurality of reaction tubes are arranged, an ignition device is provided for each of the other ignition electrodes provided in each reaction tube, and each of the other ignition electrodes is connected to the corresponding ignition device. The atmospheric pressure plasma generator in any one of Claims 1-3. 前記一方の点火用電極を、反応管を覆うとともに電気的に接地された筐体に接続したことを特徴とする請求項1〜4の何れかに記載の大気圧プラズマ発生装置。   5. The atmospheric pressure plasma generator according to claim 1, wherein the one ignition electrode is connected to a casing that covers the reaction tube and is electrically grounded. 一端が吹き出し口として開放された反応管の他端側からガスを導入し、反応管の周囲又はその近傍に配置されたアンテナ又は電極に高周波電圧を印加した状態で、アンテナ又は電極を間に挟んで反応管の一端側と他端側に配置された一対の点火用電極の一方の点火用電極を電気的に接地し、他方の点火用電極に所定時間高電圧を印加してプラズマを点火することを特徴とする大気圧プラズマ点火方法。   Gas is introduced from the other end of the reaction tube, one end of which is opened as a blowout port, and the antenna or electrode is sandwiched between the antenna or electrode disposed around or near the reaction tube. Then, one ignition electrode of a pair of ignition electrodes disposed on one end side and the other end side of the reaction tube is electrically grounded, and a high voltage is applied to the other ignition electrode for a predetermined time to ignite plasma. An atmospheric pressure plasma ignition method. 反応管が複数配置されている場合に、各反応管毎に独立して所定時間高電圧を印加してプラズマを点火することを特徴とする請求項6記載の大気圧プラズマ点火方法。   7. The atmospheric pressure plasma ignition method according to claim 6, wherein when a plurality of reaction tubes are arranged, the plasma is ignited by applying a high voltage for a predetermined time independently for each reaction tube.
JP2007041351A 2007-02-21 2007-02-21 Atmospheric pressure plasma generator and ignition method Active JP4609440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041351A JP4609440B2 (en) 2007-02-21 2007-02-21 Atmospheric pressure plasma generator and ignition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041351A JP4609440B2 (en) 2007-02-21 2007-02-21 Atmospheric pressure plasma generator and ignition method

Publications (2)

Publication Number Publication Date
JP2008204870A true JP2008204870A (en) 2008-09-04
JP4609440B2 JP4609440B2 (en) 2011-01-12

Family

ID=39782132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041351A Active JP4609440B2 (en) 2007-02-21 2007-02-21 Atmospheric pressure plasma generator and ignition method

Country Status (1)

Country Link
JP (1) JP4609440B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054333A (en) * 2010-08-31 2012-03-15 Shinkawa Ltd Surface cleaning device
JPWO2014002493A1 (en) * 2012-06-28 2016-05-30 国立大学法人金沢大学 Plasma generator and plasma generation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290896A (en) * 1993-03-31 1994-10-18 Hitachi Ltd High frequency plasma heater and its operating method
JPH07245192A (en) * 1993-05-14 1995-09-19 Seiko Epson Corp Method and device for surface processing, method and device for manufacture of semiconductor device, and manufacture of liquid crystal display
JPH0969397A (en) * 1995-08-31 1997-03-11 Hitachi Ltd Inductively coupled plasma generating device
JPH09232293A (en) * 1995-12-19 1997-09-05 Seiko Epson Corp Surface treatment method and device, manufacture of piezoelectric element, manufacture of print head for ink jet, manufacture of liquid crystal panel and micro-sampling method
JP2001183297A (en) * 1999-12-28 2001-07-06 Hitachi Ltd Inductively coupled plasma generator
JP2004172044A (en) * 2002-11-22 2004-06-17 Aet Japan:Kk Microwave plasma generating device
JP2004311582A (en) * 2003-04-03 2004-11-04 Seiko Epson Corp Apparatus and method for surface treatment
JP2006156100A (en) * 2004-11-29 2006-06-15 Aet Inc Large area plasma generator at atmospheric pressure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290896A (en) * 1993-03-31 1994-10-18 Hitachi Ltd High frequency plasma heater and its operating method
JPH07245192A (en) * 1993-05-14 1995-09-19 Seiko Epson Corp Method and device for surface processing, method and device for manufacture of semiconductor device, and manufacture of liquid crystal display
JPH0969397A (en) * 1995-08-31 1997-03-11 Hitachi Ltd Inductively coupled plasma generating device
JPH09232293A (en) * 1995-12-19 1997-09-05 Seiko Epson Corp Surface treatment method and device, manufacture of piezoelectric element, manufacture of print head for ink jet, manufacture of liquid crystal panel and micro-sampling method
JP2001183297A (en) * 1999-12-28 2001-07-06 Hitachi Ltd Inductively coupled plasma generator
JP2004172044A (en) * 2002-11-22 2004-06-17 Aet Japan:Kk Microwave plasma generating device
JP2004311582A (en) * 2003-04-03 2004-11-04 Seiko Epson Corp Apparatus and method for surface treatment
JP2006156100A (en) * 2004-11-29 2006-06-15 Aet Inc Large area plasma generator at atmospheric pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054333A (en) * 2010-08-31 2012-03-15 Shinkawa Ltd Surface cleaning device
JPWO2014002493A1 (en) * 2012-06-28 2016-05-30 国立大学法人金沢大学 Plasma generator and plasma generation method

Also Published As

Publication number Publication date
JP4609440B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4817407B2 (en) Plasma generating apparatus and plasma generating method
US6204605B1 (en) Electrodeless discharge at atmospheric pressure
US6062163A (en) Plasma initiating assembly
CN104735894B (en) Plasma ignition apparatus, plasma ignition method and plasma producing apparatus
US7091441B1 (en) Portable arc-seeded microwave plasma torch
JP2011500369A5 (en)
WO2008040154A1 (en) Diffusive plasma treatment and material procession
JP2008270207A (en) Ablation plasma gun
JP7144780B2 (en) Atmospheric pressure plasma generator
EP1618767B1 (en) Apparatus and method for forming a plasma
US4105952A (en) High repetition rate pulsed laser discharge system
WO2005102583A3 (en) Welding torch with plasma assist
JP4609440B2 (en) Atmospheric pressure plasma generator and ignition method
JP3662621B2 (en) Induction plasma generation method and apparatus
JP3237450U (en) Combined plasma source
WO2013002315A1 (en) Plasma generation device
JP2004221019A (en) Method and device for igniting microwave plasma under atmospheric pressure
KR100489508B1 (en) Method and apparatus for generating of temperature plasma
JP4935368B2 (en) Atmospheric pressure plasma generation method and apparatus
US20070063654A1 (en) Method and apparatus for ionization treatment of gases
JP2010232109A (en) Method and device for generation of line feed plasma jet
KR100572848B1 (en) Atmospheric plasma generator with ignitor
JPH06290896A (en) High frequency plasma heater and its operating method
Gallego et al. Operation of a three-electrode reactor with different electrode bias potential configurations
JPH0969397A (en) Inductively coupled plasma generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090403

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4609440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250