JP2008203149A - Method and device for inspecting wave-like cord - Google Patents

Method and device for inspecting wave-like cord Download PDF

Info

Publication number
JP2008203149A
JP2008203149A JP2007041203A JP2007041203A JP2008203149A JP 2008203149 A JP2008203149 A JP 2008203149A JP 2007041203 A JP2007041203 A JP 2007041203A JP 2007041203 A JP2007041203 A JP 2007041203A JP 2008203149 A JP2008203149 A JP 2008203149A
Authority
JP
Japan
Prior art keywords
wavy
cord
rubber
unit
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007041203A
Other languages
Japanese (ja)
Other versions
JP4915798B2 (en
Inventor
Toshiaki Matsushima
稔昌 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007041203A priority Critical patent/JP4915798B2/en
Publication of JP2008203149A publication Critical patent/JP2008203149A/en
Application granted granted Critical
Publication of JP4915798B2 publication Critical patent/JP4915798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve inspection efficiency and accurateness by automatically inspecting the wavelength of a wave-like cord in a rubber covering material formed to cover the wave-like cord with rubber. <P>SOLUTION: Light and shade in response to projections and recesses is formed, by irradiating the surface of the rubber covering material 70 with light from a light source 10 and irradiating each projection of the projections and recesses corresponding to the wave-like cord of the surface. Imaging images are analyzed by a control analyzer 30, by imaging the light and shade with an imaging means 20 and acquiring the images of the surface of the rubber covering material 70. First, in image analysis, bright parts are extracted from the imaging images; average density of pixels is successively calculated at each prescribed unit region that is overlapped mutually by a part from the images, and the difference in the average density among a plurality of the unit regions overlapped mutually a part is calculated over the entirety. The number of exceeding the threshold from the calculated values of the difference is counted to compare the counted number with a set value, corresponding to wave regulation of the wave-like cord so as to determine whether the wavelength of the wave-like cord is within the regulation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、波状コードをゴムで被覆して形成されたゴム被覆部材内の波状コードの波長を検査する波状コードの検査方法及び検査装置に関し、特に波状コードの波長の自動検査を可能にした検査方法及び検査装置に関する。   The present invention relates to a wavy cord inspection method and inspection apparatus for inspecting the wavelength of a wavy cord in a rubber-coated member formed by coating a wavy cord with rubber, and in particular, an inspection capable of automatically inspecting the wavelength of a wavy cord. The present invention relates to a method and an inspection apparatus.

空気入りタイヤは、一般に、一対のビードコア間に亘って延びるカーカス層と、タイヤ転動時に路面と接するトレッドゴムとの間に、それぞれスチールや有機繊維等のコードが配置された複数層のベルト層を備えている。このベルト層の1つとして、従来、略タイヤ周方向に波状に屈曲又は湾曲等しつつ延びる波状コードが配置された波状ベルト層(WAVYベルト層)が広く採用されている(特許文献1、2参照)。   In general, a pneumatic tire has a plurality of belt layers in which cords such as steel and organic fibers are arranged between a carcass layer extending between a pair of bead cores and a tread rubber that is in contact with a road surface when the tire rolls. It has. As one of the belt layers, a corrugated belt layer (WAVY belt layer) in which a corrugated cord extending while being bent or curved substantially in the tire circumferential direction has been widely used (Patent Documents 1 and 2). reference).

この波状ベルト層は、所定径の波状コードを1本又は複数本配列させてゴムで被覆したゴム被覆部材からなり、グリーンタイヤ(生タイヤ)の成型時に、ゴム被覆部材を下層のベルト層等の他のタイヤ構成部材の外周に1周又は複数周巻き付ける等して形成される。また、ゴム被覆部材内の各波状コードは、所定の波長及び振幅で規則的に屈曲等するように形成されて、例えば互いに略同一位相で並設される等、所定のパターンでゴム被覆部材内に埋設される。   This corrugated belt layer is composed of a rubber-coated member in which one or a plurality of corrugated cords having a predetermined diameter are arranged and covered with rubber. When a green tire (raw tire) is molded, the rubber-coated member is used as a lower belt layer or the like. It is formed by winding one or more rounds on the outer periphery of another tire constituent member. Further, each wavy cord in the rubber covering member is formed to be regularly bent at a predetermined wavelength and amplitude, and is arranged in the rubber covering member in a predetermined pattern, for example, arranged in parallel at substantially the same phase. Buried in

ところで、このようなゴム被覆部材では、タイヤに使用されたときに、目的とする機能を発揮させてタイヤに所望の性能等を付与するためには、その波状コードの波長を予め定められた波長(波長範囲)にする等、波状コードを所定の規格(基準)に適合させる必要がある。そのため、ゴム被覆部材は、例えば、その製造時に、波状コードの波長が所定の波長範囲内に形成されて生タイヤの成型工程に供給され、かつ波状コードの波長が所定の規格を満たすように生タイヤに巻き付けられる等、波状コードの波長に関して、通常、各段階(工程)のそれぞれで規格が定められている。   By the way, in such a rubber-coated member, when used in a tire, in order to exert a desired function and impart desired performance to the tire, the wavelength of the wavy cord is a predetermined wavelength. It is necessary to adapt the wavy code to a predetermined standard (standard) such as (wavelength range). For this reason, for example, when the rubber-coated member is manufactured, the wavelength of the wavy cord is formed in a predetermined wavelength range and supplied to the green tire molding process, and the wavelength of the wavy cord satisfies a predetermined standard. Regarding the wavelength of the wavy cord, such as being wound around a tire, a standard is usually defined at each stage (process).

具体的には、例えばAPRタイヤ(航空機用ラジアルタイヤ)で使用されるゴム被覆部材では、その波状コードの4波長の長さが、生タイヤの成型工程への供給前は106±4mmであり、かつ生タイヤへ巻き付けられて引き伸ばされた後にも112mm以下であることが規格で定められており、各工程で波状コードの波長を測定して、この規格内であるか否かを検査している。   Specifically, for example, in a rubber-coated member used in an APR tire (aircraft radial tire), the length of the four wavelengths of the wavy cord is 106 ± 4 mm before being supplied to the green tire molding process, In addition, the standard stipulates that it is 112 mm or less even after being wound around a raw tire and stretched, and the wavelength of the wavy cord is measured at each step to check whether it is within this standard. .

ところが、従来、この波状コードの波長の測定は、作業者や成型者が、ゴム被覆部材の表面に形成された波状コードに対応する凹凸をメジャーや各種の計測治具を使用して実測する等、人手を介してその都度実施されることが多く、多大な手間や時間、及び工数等を要している。そのため、従来は、ゴム被覆部材(波状コード)の検査の効率が低く、これに伴い、ゴム被覆部材の製造や生タイヤの成型等の生産性が低くなるという問題が生じている。また、人手による測定であるため、波長の測定ミスが起こる可能性もあり、規格外の波状コードを有するゴム被覆部材や生タイヤ等の不良品を誤って次工程に送ってしまう恐れもある等、各工程での品質管理に関しても問題がある。   However, conventionally, the wavelength of the wavy cord is measured by an operator or a molder using a measure or various measuring jigs to measure the irregularities corresponding to the wavy cord formed on the surface of the rubber-coated member. In many cases, it is carried out manually, requiring a lot of labor, time, and man-hours. For this reason, conventionally, the efficiency of the inspection of the rubber-coated member (corrugated cord) is low, and accordingly, there is a problem in that the productivity of manufacturing the rubber-coated member and molding of the raw tire is lowered. Also, because it is a manual measurement, there is a possibility that a wavelength measurement error may occur, and there is a possibility that a defective product such as a rubber-coated member or a raw tire having a non-standard wavy cord may be sent to the next process by mistake. There are also problems with quality control in each process.

特に、上記したAPRタイヤの例では、例えば生タイヤの成型工程に、波状コードの4波長の長さが規格の最大波長である110mmのものが供給されることがあり、この場合には、成型時(巻き付け時)に僅か2mmの伸びしか許容されないため、巻き付け前後(特に巻き付け後)の波長測定に対して、より正確性が要求される。その結果、波状コードの波長を慎重かつ丁寧に測定して検査する必要があり、上記した検査効率や生産性が更に低下するとともに、その品質管理も一層重要となる。   In particular, in the example of the APR tire described above, for example, in the green tire molding process, the length of four wavelengths of the wavy cord may be 110 mm, which is the standard maximum wavelength. In this case, molding is performed. Since only 2 mm of elongation is allowed at the time (at the time of winding), more accuracy is required for wavelength measurement before and after winding (particularly after winding). As a result, it is necessary to carefully and carefully measure the wavelength of the wavy cord, and the above-described inspection efficiency and productivity are further lowered, and quality control is further important.

特開2000−52711号公報JP 2000-52711 A 特開2006−159691号公報JP 2006-159691 A

本発明は、前記従来の問題に鑑みなされたものであって、その目的は、波状コードをゴムで被覆して形成されたゴム被覆部材内の波状コードの波長を自動で検査できるようにし、その品質管理を適切に行いつつ、検査の効率や正確性を向上させることである。   The present invention has been made in view of the above-described conventional problems, and an object thereof is to automatically inspect the wavelength of a wavy cord in a rubber-coated member formed by coating a wavy cord with rubber. It is to improve the efficiency and accuracy of inspections while appropriately performing quality control.

請求項1の発明は、長手方向に沿って波状に延びる波状コードをゴムで被覆し、表面に前記波状コードに対応する凹凸が形成されたゴム被覆部材内の前記波状コードの波長を検査する波状コードの検査方法であって、前記ゴム被覆部材の表面に光を照射して該ゴム被覆部材表面に前記凹凸に応じた明暗を形成する工程と、前記明暗が形成されたゴム被覆部材表面の画像を取得する工程と、該取得した画像から濃度情報を取得する工程と、該濃度情報に基づいて、前記波状コードの波長が所定の規格内であるか否かを判定する工程と、を有することを特徴とする。
請求項2の発明は、請求項1に記載された波状コードの検査方法において、前記画像を取得する工程は、前記明暗が形成されたゴム被覆部材表面を撮像する工程と、該撮像した画像から前記明暗の明部を抽出する工程と、からなることを特徴とする。
請求項3の発明は、請求項1又は2に記載された波状コードの検査方法において、前記濃度情報を取得する工程は、前記画像から該画像の互いに一部重複又は隣接する所定の単位領域毎に、該単位領域に含まれる画素の平均濃度を順次算出する工程と、互いに一部重複又は隣接する複数の前記単位領域内における前記画素の平均濃度の最大値と最小値の差分を前記画像又は所定の検査範囲の全体に亘って順次算出する工程と、該差分の各算出値と予め設定された該差分のしきい値とを比較して、該しきい値を超える前記差分の算出値の数をカウントする工程と、からなり、前記判定する工程は、前記カウント数の実測値と前記所定の規格に対応して予め設定された前記カウント数の最小値及び/又は最大値とを比較し、該比較結果に基づいて前記判定を行うことを特徴とする。
請求項4の発明は、請求項3に記載された波状コードの検査方法において、前記画素の平均濃度を順次算出する工程は、前記画像内で、前記単位領域を前記波状コードの長手方向に沿って所定の画素数ずつ移動させつつ前記平均濃度を算出し、前記差分を算出する工程は、前記単位領域の移動方向に互いに一部重複又は隣接する複数の前記単位領域内における前記差分を算出することを特徴とする。
請求項5の発明は、長手方向に沿って波状に延びる波状コードをゴムで被覆し、表面に前記波状コードに対応する凹凸が形成されたゴム被覆部材内の前記波状コードの波長を検査する波状コードの検査装置であって、前記ゴム被覆部材の表面に光を照射して該ゴム被覆部材表面に前記凹凸に応じた明暗を形成する光源と、前記明暗が形成されたゴム被覆部材表面を撮像する撮像手段と、該撮像した画像から濃度情報を取得し、該濃度情報に基づいて、前記波状コードの波長が所定の規格内であるか否かを判定する解析手段と、を備えたことを特徴とする。
請求項6の発明は、請求項5に記載された波状コードの検査装置において、前記撮像手段及び前記光源を移動させて、撮像する前記ゴム被覆部材表面との間の距離を所定距離に維持する移動手段を備えたことを特徴とする。
請求項7の発明は、請求項5又は6に記載された波状コードの検査装置において、前記解析手段は、前記撮像した画像から前記明暗の明部を抽出する抽出手段を有し、前記濃度情報は前記明部を抽出した画像に基づく濃度情報であることを特徴とする。
請求項8の発明は、請求項5ないし7のいずれかに記載された波状コードの検査装置において、前記解析手段は、前記画像から該画像の互いに一部重複又は隣接する所定の単位領域毎に、該単位領域に含まれる画素の平均濃度を順次算出する平均濃度算出手段と、互いに一部重複又は隣接する複数の前記単位領域内における前記画素の平均濃度の最大値と最小値の差分を前記画像又は所定の検査範囲の全体に亘って順次算出する差分算出手段と、該差分の各算出値と予め設定された該差分のしきい値とを比較して、前記しきい値を超える前記差分の算出値の数をカウントするカウント手段と、該カウント手段によるカウント数の実測値と前記所定の規格に対応して予め設定された前記カウント数の最小値及び/又は最大値とを比較し、該比較結果に基づいて前記判定を行う判定手段と、を有することを特徴とする。
請求項9の発明は、請求項8に記載された波状コードの検査装置において、前記平均濃度算出手段は、前記画像内で、前記単位領域を前記波状コードの長手方向に沿って所定の画素数ずつ移動させつつ前記平均濃度を算出し、前記差分算出手段は、前記単位領域の移動方向に互いに一部重複又は隣接する複数の前記単位領域内における前記差分を算出することを特徴とする。
According to the first aspect of the present invention, a corrugated cord that extends in a corrugated shape along the longitudinal direction is coated with rubber, and the wavelength of the corrugated cord in a rubber-coated member in which irregularities corresponding to the corrugated cord are formed on the surface is checked. A method for inspecting a cord, the step of irradiating the surface of the rubber-coated member with light to form light and dark according to the irregularities on the surface of the rubber-coated member, and an image of the surface of the rubber-coated member on which the light and dark are formed A step of acquiring density information from the acquired image, and a step of determining whether or not the wavelength of the wavy code is within a predetermined standard based on the density information. It is characterized by.
According to a second aspect of the present invention, in the method for inspecting a wavy cord according to the first aspect, the step of acquiring the image includes a step of imaging the surface of the rubber covering member on which the light and darkness is formed, and the captured image. And a step of extracting the bright and dark light portions.
According to a third aspect of the present invention, in the method for inspecting a wavy code according to the first or second aspect, the step of obtaining the density information is performed for each predetermined unit region that partially overlaps or is adjacent to the image from the image. A step of sequentially calculating an average density of pixels included in the unit area, and a difference between a maximum value and a minimum value of the average density of the pixels in the plurality of unit areas partially overlapping or adjacent to each other. A step of sequentially calculating over the entire predetermined inspection range, and comparing each calculated value of the difference with a preset threshold value of the difference, and calculating the difference value exceeding the threshold value And the step of determining compares the measured value of the count number with a minimum value and / or maximum value of the count number set in advance corresponding to the predetermined standard. Based on the comparison result And performing serial determination.
According to a fourth aspect of the present invention, in the wavy code inspection method according to the third aspect, in the step of sequentially calculating the average density of the pixels, the unit area is arranged along the longitudinal direction of the wavy code in the image. The step of calculating the average density while moving by a predetermined number of pixels and calculating the difference calculates the difference in the plurality of unit regions partially overlapping or adjacent to each other in the moving direction of the unit region. It is characterized by that.
According to the invention of claim 5, a wavy cord that extends in a wavy shape along the longitudinal direction is coated with rubber, and the wavelength of the wavy cord in a rubber-coated member in which irregularities corresponding to the wavy cord are formed on the surface is checked. A code inspection apparatus, which irradiates light on the surface of the rubber-coated member to form light and dark according to the unevenness on the surface of the rubber-coated member, and images the surface of the rubber-coated member on which the light and darkness is formed Imaging means for acquiring, density information from the captured image, and analysis means for determining whether or not the wavelength of the wavy code is within a predetermined standard based on the density information. Features.
According to a sixth aspect of the present invention, in the wavy cord inspection apparatus according to the fifth aspect, the imaging means and the light source are moved to maintain a predetermined distance from the surface of the rubber covering member to be imaged. A moving means is provided.
A seventh aspect of the present invention is the inspection apparatus for a wavy code according to the fifth or sixth aspect, wherein the analysis unit includes an extraction unit that extracts the bright and dark bright parts from the captured image. Is density information based on an image obtained by extracting the bright part.
According to an eighth aspect of the present invention, in the wavy code inspection apparatus according to any one of the fifth to seventh aspects, the analysis unit is configured to detect, from the image, a predetermined unit region that partially overlaps or is adjacent to the image. Average density calculation means for sequentially calculating the average density of the pixels included in the unit area, and the difference between the maximum value and the minimum value of the average density of the pixels in the plurality of unit areas partially overlapping or adjacent to each other. The difference calculation means for calculating sequentially over the entire image or a predetermined inspection range, the difference between the calculated value of the difference and a preset threshold value of the difference, and the difference exceeding the threshold value A counting means for counting the number of calculated values, and an actual value of the counting number by the counting means and a minimum value and / or a maximum value of the counting number set in advance corresponding to the predetermined standard, The comparison It characterized by having a a determination means makes the determination based on the result.
According to a ninth aspect of the present invention, in the wavy code inspection apparatus according to the eighth aspect, the average density calculating means includes a predetermined number of pixels along the longitudinal direction of the wavy code in the unit area in the image. The average density is calculated while being moved one by one, and the difference calculating means calculates the difference in the plurality of unit areas that partially overlap or are adjacent to each other in the moving direction of the unit area.

本発明によれば、波状コードをゴムで被覆して形成されたゴム被覆部材内の波状コードの波長を自動で検査でき、その品質管理を適切に行えるとともに、検査の効率や正確性を向上させることができる。   According to the present invention, the wavelength of a wavy cord in a rubber-coated member formed by coating a wavy cord with rubber can be automatically inspected, and quality control can be performed appropriately, and the efficiency and accuracy of inspection are improved. be able to.

以下、本発明の一実施形態について、図面を参照して説明する。
本実施形態の波状コードの検査装置は、例えば上記したタイヤの波状ベルト層等に使用される、1本又は複数本の波状コードを配列させてゴムで被覆したゴム被覆部材を検査する装置であり、その内部に埋設された波状コードの波長が所定の規格内であるか否か等を検査する。また、この検査装置は、例えばゴム被覆部材の搬送経路や生タイヤの成型装置等に隣接して設置され、搬送中の又は生タイヤに巻き付け等されたゴム被覆部材を自動で検査する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The corrugated cord inspection apparatus of the present embodiment is an apparatus for inspecting a rubber-coated member in which one or a plurality of corrugated cords are arranged and covered with rubber, which is used, for example, in the corrugated belt layer of the tire described above. Then, it is inspected whether or not the wavelength of the wavy cord embedded therein is within a predetermined standard. Further, this inspection device is installed, for example, adjacent to a rubber covering member conveyance path, a raw tire molding device, or the like, and automatically inspects a rubber covering member being conveyed or wound around the raw tire.

なお、検査対象のゴム被覆部材の表面には、波状コードにより、相対的に肉厚な部分(凸部)と、その間等の相対的に薄肉な部分(凹部)が、波状コード及びゴム被覆部材の長手方向(長さ方向)に沿って形成される等、波状コードに対応する凹凸が形成されており、本実施形態の検査装置は、この表面の凹凸等を利用して波状コードの波長を検査する。また、本実施形態では、長手方向に沿って略正弦波状に湾曲しつつ延びる波状コードを、略同一位相で複数配列させてゴムで被覆したゴム被覆部材を例に採り説明する。   The surface of the rubber covering member to be inspected has a relatively thick portion (convex portion) and a relatively thin portion (concave portion) between the corrugated cord and the rubber covering member. The corrugation corresponding to the corrugated cord is formed, for example, along the longitudinal direction (length direction), and the inspection apparatus of this embodiment uses the corrugation on the surface to adjust the wavelength of the corrugated cord. inspect. Further, in the present embodiment, a rubber coated member in which a plurality of wavy cords extending while being curved in a substantially sine wave shape along the longitudinal direction are arranged at substantially the same phase and covered with rubber will be described as an example.

図1は、本実施形態の波状コードの検査装置1の概略構成を、ゴム被覆部材70と共に模式的に示す要部構成図であり、図では、ゴム被覆部材70を含む一部を斜視図で示している。また、図の矢印Nは、ゴム被覆部材70及びその内部の各波状コードの長手方向であり、それと直交する矢印Hは、ゴム被覆部材70の幅方向である。従って、各波状コードは、図の矢印N方向に沿って波状に延びるとともに、図の矢印H方向に複数配列されている。   FIG. 1 is a main part configuration diagram schematically showing a schematic configuration of a corrugated cord inspection apparatus 1 of the present embodiment together with a rubber coating member 70, and in the drawing, a part including the rubber coating member 70 is a perspective view. Show. In addition, an arrow N in the figure is the longitudinal direction of the rubber covering member 70 and each corrugated cord therein, and an arrow H orthogonal thereto is the width direction of the rubber covering member 70. Accordingly, each wavy cord extends in a wavy shape along the arrow N direction in the figure, and a plurality of wavy cords are arranged in the arrow H direction in the figure.

この検査装置1は、図示のように、ゴム被覆部材70の一方側(図では上側)に配置された光源10及び撮像手段20と、それらを含む装置各部に接続されて検査装置1全体の制御や画像解析等を行う制御解析装置30と、を備えている。   As shown in the figure, the inspection apparatus 1 is connected to the light source 10 and the imaging means 20 disposed on one side (upper side in the drawing) of the rubber covering member 70 and to each part of the apparatus including them, and controls the entire inspection apparatus 1. And a control analysis device 30 that performs image analysis and the like.

光源10は、ゴム被覆部材70表面の所定位置に光を照射して、その表面に波状コードによる凹凸に応じた明暗を形成するためのものであり、例えば、棒状ランプや蛍光灯等の各種の電灯、又は発光ダイオード(LED)等を利用した照明(投光)装置である。この光源10は、撮像手段20に対して、ゴム被覆部材70の幅方向Hにずれた位置に設けられるとともに、その発光面11を、撮像手段20による撮像範囲Kに向けて配置され、撮像範囲Kに向かって斜め上方から光を照射(図の矢印S)してその全体を照明する。これにより、光源10は、ゴム被覆部材70の表面の凹凸に、波状コードの長手方向と略直交する方向(振幅方向)(図の矢印H)の斜め上方から光をあてて、その表面の凸部を主に照らして凹部に影を作り、それらに対応した明暗を撮像範囲Kの全体に亘って形成して表面の凹凸を強調させる。   The light source 10 is for irradiating a predetermined position on the surface of the rubber covering member 70 to form light and dark according to the unevenness by the wavy cord on the surface. For example, various light sources such as a rod-shaped lamp and a fluorescent lamp are used. It is an illumination (light projection) device using an electric lamp or a light emitting diode (LED). The light source 10 is provided at a position shifted in the width direction H of the rubber covering member 70 with respect to the imaging unit 20, and the light emitting surface 11 is disposed toward the imaging range K by the imaging unit 20. The whole is illuminated by irradiating light from the upper side (arrow S in the figure) toward K. As a result, the light source 10 irradiates light on the irregularities on the surface of the rubber covering member 70 from obliquely above the direction (amplitude direction) (arrow H in the figure) substantially orthogonal to the longitudinal direction of the wavy cord, The portion is mainly illuminated to make a shadow in the concave portion, and the corresponding light and darkness is formed over the entire imaging range K to emphasize the unevenness of the surface.

ここで、光源10の位置や光の照射角度等は、ゴム被覆部材70の表面に凹凸に応じた明暗が生じ易いように、凹凸の程度等の各状況に応じて設定される。同様に、光源10には、ゴム被覆部材70の表面の色等の表面性状や各特性等に応じて、凹凸に対応した明暗が鮮明になるものが使用され、例えば蛍光灯による白色光や、各色の光を発生する発光ダイオード、又は赤外線や紫外線ランプ等、種々のものから適宜選択される。本実施形態では、検査対象のゴム被覆部材70がタイヤに用いられるゴムで被覆されており、その表面が黒光沢を有するため、光源10として青色光を発生する青色発光ダイオードを使用している。   Here, the position of the light source 10, the light irradiation angle, and the like are set according to each situation such as the degree of unevenness so that light and darkness corresponding to the unevenness is likely to occur on the surface of the rubber covering member 70. Similarly, the light source 10 is used in which the brightness and darkness corresponding to the unevenness becomes clear according to the surface properties such as the color of the surface of the rubber covering member 70 and each characteristic, for example, white light by a fluorescent lamp, A light emitting diode that generates light of each color, an infrared ray, an ultraviolet lamp, or the like is appropriately selected. In this embodiment, the rubber covering member 70 to be inspected is covered with the rubber used for the tire, and the surface thereof has a black luster, so that a blue light emitting diode that generates blue light is used as the light source 10.

図2は、このゴム被覆部材70の表面を2種類の光源10により照らした状態を示す例であり、図2Aは光源10として蛍光灯を使用したものを、図2Bは光源10として青色発光ダイオードを使用したものを、それぞれ示している。
図示のように、両光源10共に、ゴム被覆部材70の表面に、波状コードによる凹凸に応じた波状の明暗(明部71と暗部72)を形成できるものの、蛍光灯による白色光(図2A参照)では、明部71と暗部72の差が不明瞭であり、凹凸に応じた明暗が不鮮明になっている。これに対し、本実施形態の青色発光ダイオードによる青色光(図2B参照)では、明部71と暗部72の差が明瞭であり、凹凸に応じた明暗がより鮮明に識別できる。
FIG. 2 is an example showing a state in which the surface of the rubber covering member 70 is illuminated by two types of light sources 10, FIG. 2A shows a case where a fluorescent lamp is used as the light source 10, and FIG. The ones using are shown respectively.
As shown in the drawing, both light sources 10 can form wavy light and darkness (bright portion 71 and dark portion 72) corresponding to the unevenness by the wavy cord on the surface of the rubber covering member 70, but white light from a fluorescent lamp (see FIG. 2A). ), The difference between the bright portion 71 and the dark portion 72 is unclear, and the light and dark according to the unevenness is unclear. On the other hand, in the blue light (refer FIG. 2B) by the blue light emitting diode of this embodiment, the difference between the bright part 71 and the dark part 72 is clear, and the light and dark according to the unevenness | corrugation can be identified more clearly.

撮像手段20(図1参照)は、この明暗が形成されたゴム被覆部材70表面の撮像範囲K(検査範囲)を撮像し、その画像を制御解析装置30に出力する。撮像手段20は、例えばCCD(Charge Coupled Device)カメラやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを使用したCMOSカメラ等であり、本実施形態では、撮像手段20として所定の画素数(例えば200万画素)の白黒CCDカメラを使用している。また、そのゴム被覆部材70側の先端(図では下端)には、レンズや接写リング等が取り付けられており、撮像範囲Kの画像を連続的に、又は所定時間毎に撮像して、その画像を電気信号に変換し、画素毎の明暗の濃度(輝度)等の画像データを制御解析装置30に出力する。   The imaging means 20 (see FIG. 1) images the imaging range K (inspection range) on the surface of the rubber covering member 70 on which the light and darkness is formed, and outputs the image to the control analysis device 30. The imaging means 20 is, for example, a CCD (Charge Coupled Device) camera or a CMOS camera using a CMOS (Complementary Metal Oxide Semiconductor) image sensor. In this embodiment, the imaging means 20 has a predetermined number of pixels (for example, 2 million pixels). ) Black and white CCD camera. Further, a lens, a close-up ring, or the like is attached to the tip (bottom end in the figure) on the rubber covering member 70 side, and images of the imaging range K are taken continuously or every predetermined time. Is converted into an electrical signal, and image data such as light and dark density (luminance) for each pixel is output to the control analyzer 30.

制御解析装置30は、検査装置1全体の制御を行うとともに、ゴム被覆部材70内の波状コードの波長を検査するものであり、例えば各種のデータ処理や解析、演算処理等を行う中央演算処理装置(CPU)、各種プログラムを格納したROMや処理のための一時的なデータの保存等を行うRAM、ハードディスクドライブ等の記憶手段、及びモニタ等を備えたパーソナルコンピュータ等である。また、制御解析装置30は、インターフェース等を介して光源10や撮像手段20等の装置各部と接続され、それらとの間で検査に必要な各種データ等を送受信して、所定の画像解析や検査処理等を実行する。即ち、制御解析装置30は、撮像手段20が撮像した撮像範囲K(検査範囲)の画像を取得して解析し、ゴム被覆部材70内の波状コードの波長が所定の規格内であるか否かを判定する解析手段でもあり、以下、この制御解析装置30の行う各処理等について説明する。   The control analysis device 30 controls the entire inspection device 1 and inspects the wavelength of the wavy cord in the rubber covering member 70. For example, the central processing unit performs various data processing, analysis, arithmetic processing, and the like. (CPU), a ROM that stores various programs, a RAM that stores temporary data for processing, a storage unit such as a hard disk drive, and a personal computer that includes a monitor. The control analysis device 30 is connected to each part of the device such as the light source 10 and the imaging means 20 via an interface, etc., and transmits / receives various data necessary for inspection to / from them to perform predetermined image analysis and inspection. Execute processing etc. That is, the control analysis device 30 acquires and analyzes an image of the imaging range K (inspection range) imaged by the imaging unit 20 and determines whether or not the wavelength of the wavy cord in the rubber covering member 70 is within a predetermined standard. In the following, each process performed by the control analysis device 30 will be described.

図3は、この制御解析装置30の機能ブロック図であり、検査装置1の他の構成もブロックで示している。
制御解析装置30は、図示のように、外部機器が接続される入出力部31、表示部32、記憶部33、制御部34、及び画像解析部35から構成され、これら各部(手段)31〜35を互いにバス36を介して接続している。
FIG. 3 is a functional block diagram of the control analysis device 30, and other configurations of the inspection device 1 are also shown in blocks.
The control analysis device 30 includes an input / output unit 31, a display unit 32, a storage unit 33, a control unit 34, and an image analysis unit 35 to which external devices are connected. 35 are connected to each other via a bus 36.

入出力部31は、光源10及び撮像手段20が、例えば、それぞれを制御する制御手段であるコントローラやシーケンサ等を介して接続され、それらとの間で各種データや制御信号等を変換して送受信するインターフェース等からなる。表示部32は、各種の情報を表示するモニタ等の表示手段であり、ゴム被覆部材70表面の撮像した画像や検査結果等を表示する。   The input / output unit 31 is connected to the light source 10 and the imaging unit 20 via, for example, a controller or a sequencer that is a control unit for controlling each of them, and converts various data, control signals, and the like between them and transmits and receives them. Interface. The display unit 32 is a display unit such as a monitor that displays various types of information, and displays an image captured on the surface of the rubber covering member 70, an inspection result, and the like.

記憶部33は、検査装置1の制御処理や判定・検査処理等に必要な各種プログラムやデータ等を記憶する。また、記憶部33は、撮像手段20による撮像画像等の測定データ33Aや、後述する画像解析部35により解析及び演算される検査結果等に関する各データ(検査データ33B)、及び検査対象のゴム被覆部材70に対して予め設定された波状コードの波長(ここでは4波長の長さ)の良否等に関する所定の規格(基準)(規格データ33C)を記憶する。この規格データ33Cには、例えば良否の境界となる波状コードの波長の最大値や最小値、又は、それらに対応した各所定値(設定値)等のデータテーブル等、予め設定された各種の規格データが、検査するゴム被覆部材70の種類等毎に記憶されている。   The storage unit 33 stores various programs and data necessary for control processing, determination / inspection processing, and the like of the inspection apparatus 1. The storage unit 33 also includes measurement data 33A such as a captured image obtained by the imaging unit 20, each data (inspection data 33B) relating to an inspection result analyzed and calculated by an image analysis unit 35 described later, and a rubber coating to be inspected. A predetermined standard (standard) (standard data 33C) relating to the quality of the wavelength of the wavy cord (here, the length of four wavelengths) preset for the member 70 is stored. The standard data 33C includes various preset standards such as a data table such as a maximum value or minimum value of the wavelength of the wavy code serving as a boundary between good and bad, or respective predetermined values (set values) corresponding thereto. Data is stored for each type of rubber covering member 70 to be inspected.

制御部34は、検査装置1全体の制御に関するデータ処理や演算処理等を行い、検査装置1全体を制御して、例えば、光源10による光の照射や撮像手段20による撮像、及び撮像した画像等の各種データの記憶部33への記憶処理等を実行させる。また、制御部34は、ゴム被覆部材70の波状コードの検査結果に応じて、入出力部31を介して警報手段(図示せず)に警報指令を出力し、警報手段を制御して音や光等による警報出力処理を実行させる。   The control unit 34 performs data processing, arithmetic processing, and the like related to control of the entire inspection apparatus 1 and controls the entire inspection apparatus 1, for example, irradiation of light by the light source 10, imaging by the imaging unit 20, captured images, and the like. The storage processing of the various data in the storage unit 33 is executed. Further, the control unit 34 outputs an alarm command to an alarm unit (not shown) via the input / output unit 31 in accordance with the inspection result of the wavy cord of the rubber covering member 70, and controls the alarm unit to control sound and A warning output process using light or the like is executed.

画像解析部35は、ゴム被覆部材70の画像を解析し、その内部の波状コードの波長の良否を判定する等、波状コードの検査に関する各演算・解析処理を行うための解析手段であり、抽出部35A、平均濃度算出部35B、差分算出部35C、カウント部35D、及び判定部35Eからなる。画像解析部35は、入出力部31を介して撮像装置20から取得したゴム被覆部材70表面の凹凸(明暗)に関する画像から濃度情報を取得し、この情報に基づいて、各部(手段)35A〜35Eにより所定の画像解析及び演算処理を実行して上記した判定等を行い、その結果を記憶部33の検査データ33Bに記憶させる。   The image analysis unit 35 is an analysis means for performing each calculation / analysis process relating to the inspection of the wavy code, such as analyzing the image of the rubber covering member 70 and determining the quality of the wavelength of the wavy code therein. A unit 35A, an average density calculation unit 35B, a difference calculation unit 35C, a count unit 35D, and a determination unit 35E. The image analysis unit 35 acquires density information from an image relating to the unevenness (brightness and darkness) of the surface of the rubber covering member 70 acquired from the imaging device 20 via the input / output unit 31, and based on this information, each unit (means) 35A to 35A to 35A. Predetermined image analysis and calculation processing is performed by 35E, the above-described determination is performed, and the result is stored in the inspection data 33B of the storage unit 33.

抽出部35Aは、撮像手段20が撮像した画像から、例えば所定の濃度(輝度)以上の画素を抽出する等、ゴム被覆部材70表面の画像にフィルタ処理を施して、その凹凸に応じた明暗から明部を抽出処理する。   The extraction unit 35A filters the image on the surface of the rubber covering member 70 by, for example, extracting pixels having a predetermined density (brightness) or more from the image captured by the image capturing unit 20, and performs the light and dark according to the unevenness. The bright part is extracted.

図4は、この抽出部35Aにより明部を抽出する前後の画像例を示す図であり、波状コードの波長が異なる4つの画像の表示部32への表示例である。また、図4A〜図4Dの順に、それぞれ4波長の長さが108mm、110mm、112mm、114mmの波状コードを有するゴム被覆部材70の画像を示している。
撮像手段20によるゴム被覆部材70の撮像画像80には、図示のように、各波状コードの形状及び波長に対応した明部71及び暗部72が撮像される。この撮像画像80に対し、抽出部35Aにより抽出処理を施した所定の検査範囲の明部抽出画像81(各図内の下段に示す矩形状の画像)では、明部71の所定の濃度以上の部分(画素)が抽出され、画面全体が、線状等をなす抽出明部82(図の白色部)と、その他の部分(図の黒色部)と、により表示される。
FIG. 4 is a diagram showing an example of images before and after extracting the bright part by the extraction unit 35A, and is an example of display on the display unit 32 of four images having different wavelengths of the wavy code. 4A to 4D show images of the rubber covering member 70 having wavy cords having lengths of four wavelengths of 108 mm, 110 mm, 112 mm, and 114 mm, respectively.
As shown in the figure, a bright portion 71 and a dark portion 72 corresponding to the shape and wavelength of each wavy cord are imaged in the captured image 80 of the rubber covering member 70 by the imaging means 20. In the bright portion extraction image 81 (rectangular image shown in the lower part of each figure) in a predetermined inspection range obtained by performing extraction processing on the captured image 80 by the extraction unit 35A, the density is equal to or higher than the predetermined density of the bright portion 71. A portion (pixel) is extracted, and the entire screen is displayed by an extracted bright portion 82 (white portion in the figure) having a linear shape or the like and another portion (black portion in the drawing).

この抽出明部82は、各明部抽出画像81内で波状コード(ゴム被覆部材70表面の凸部)の形状や位置、及び波長、振幅等に対応した形態で現れる。即ち、各抽出明部82は、全体として、それぞれ略波状に近い形態をなすが、図4Aから図4Dまでの各明部抽出画像81を順に見て明らかなように、波状コードの波長が長くなり振幅が小さくなる程、各抽出明部82の波状の程度が小さくなる。その結果、各抽出明部82は、波状コードが引き伸ばされて波長が長くかつ振幅が小さくなるのに応じて徐々に直線状に近くなり、最終的に波状コードが直線状に引き伸ばされると、同様に直線状に配列する。   This extracted bright portion 82 appears in a form corresponding to the shape and position of the wavy code (the convex portion on the surface of the rubber covering member 70), the wavelength, the amplitude, and the like in each bright portion extracted image 81. That is, each of the extracted light portions 82 has a substantially wave-like form as a whole, but the wavelength of the wavy code is long as is apparent from the respective bright portion extracted images 81 in FIGS. 4A to 4D. The smaller the amplitude, the smaller the wavy degree of each extracted bright part 82. As a result, each of the extracted light portions 82 gradually becomes closer to a straight line as the wave-like code is stretched to increase the wavelength and the amplitude becomes smaller, and finally the wave-like code is stretched linearly. Are arranged in a straight line.

本実施形態の画像解析部35(図3参照)は、この明部71を抽出した画像(明部抽出画像81)に基づき前記濃度情報を取得する、即ち、この画像により以降の解析を行い、まず、平均濃度算出部35Bにより、隣接する複数画素を1つの単位として、その領域の画素の平均濃度の算出処理を実行する。   The image analysis unit 35 (see FIG. 3) of the present embodiment acquires the density information based on the image obtained by extracting the bright part 71 (bright part extraction image 81), that is, performs subsequent analysis using this image, First, the average density calculation unit 35B executes a process for calculating the average density of pixels in the area, with a plurality of adjacent pixels as one unit.

具体的には、平均濃度算出部35Bは、取得した画像に対して所定数の画素からなる単位領域(セグメント)を設定して、そこに含まれる各画素の濃度から単位領域内における画素の平均濃度を算出した後、単位領域を、互いに一部が重複又は隣接するように所定方向に移動させて、各単位領域の平均濃度を順次算出する。このように、平均濃度算出部35Bは、取得した画像から、その互いに重複又は隣接する所定の単位領域毎に、各単位領域に含まれる画素の平均濃度を画像(又は所定の検査範囲)の全体に亘って順次算出する。   Specifically, the average density calculation unit 35B sets a unit area (segment) composed of a predetermined number of pixels for the acquired image, and calculates the average of the pixels in the unit area from the density of each pixel included therein. After the density is calculated, the unit areas are moved in a predetermined direction so as to partially overlap or adjoin each other, and the average density of each unit area is sequentially calculated. As described above, the average density calculation unit 35B calculates the average density of the pixels included in each unit area from the acquired image for each predetermined unit area that overlaps or is adjacent to the entire image (or the predetermined inspection range). Are calculated sequentially over the period.

なお、単位領域は、この画像(画素)に対して、縦横それぞれ所定数の複数画素を含むように区画して設定される、例えば矩形状等の仮想的な小領域であり、その大きさ(画素数)は、画像の状態や必要な検査精度等に応じて予め設定される。また、この平均濃度算出部35Bでは、ゴム被覆部材70の画像内(図4参照)で、設定した単位領域を、波状コードの長手方向(図4では左右方向)に沿って、一端側から他端側に向かって所定の画素数ずつ互いに一部重複又は隣接(ここでは一部を重複)させて移動させつつ各単位領域の平均濃度を算出し、前記他端側で波状コードの振幅方向(図4では上下方向)に所定の画素数だけ移動させる。平均濃度算出35Bは、以下同様に単位領域を波状コードの長手方向及び振幅方向に順次移動させて、単位領域毎の平均濃度を順次算出する。   The unit area is a virtual small area, such as a rectangular shape, which is set by dividing the image (pixel) so as to include a predetermined number of pixels in each of the vertical and horizontal directions. The number of pixels) is set in advance according to the state of the image, the required inspection accuracy, and the like. Further, in this average density calculation unit 35B, the set unit region is moved from one end side to the other along the longitudinal direction of the wavy cord (left and right in FIG. 4) in the image of the rubber covering member 70 (see FIG. 4). The average density of each unit region is calculated while moving by overlapping a certain number of pixels toward the end side, or partially overlapping (here, partially overlapping), and the amplitude direction of the wavy code on the other end side ( A predetermined number of pixels are moved in the vertical direction in FIG. Similarly, the average density calculation 35B sequentially moves the unit areas in the longitudinal direction and the amplitude direction of the wavy code, and sequentially calculates the average density for each unit area.

差分算出部35C(図3参照)は、この算出した各平均濃度に基づき、波状コードの長手方向や振幅方向等に互いに一部重複又は隣接する複数の単位領域内における各画素の平均濃度の最大値と最小値の差分(平均濃度の最大差)を算出する。差分算出部35Cは、この差分を算出する複数の単位領域を、波状コードの長手方向や振幅方向等の所定方向に沿って、例えば単位領域を1つ又は複数ずつ移動させる等、各単位領域を単位として互いにその一部を重複又は隣接させて移動させ、画像全体に亘って、又は所定の検査範囲の全体に亘って各差分を順次算出する。   The difference calculating unit 35C (see FIG. 3), based on each calculated average density, maximizes the average density of each pixel in a plurality of unit areas that partially overlap or are adjacent to each other in the longitudinal direction or the amplitude direction of the wavy code. The difference between the value and the minimum value (maximum difference in average density) is calculated. The difference calculating unit 35C moves each unit region by moving one or more unit regions, for example, one by one or more along a predetermined direction such as the longitudinal direction or the amplitude direction of the wavy code. As a unit, a part thereof is moved overlapping or adjacent to each other, and each difference is sequentially calculated over the entire image or over the entire predetermined inspection range.

このように、差分算出部35Cは、上記した平均濃度算出部35Bによる平均濃度の全算出処理の終了後、又は各算出処理に同期して算出処理中に、平均濃度を算出済みの所定数(範囲)の単位領域に対して平均濃度の差分(最大差)の算出処理を実行する。また、ここでは、差分算出部35Cは、平均濃度算出部35Bによる平均濃度の算出方向、即ち、その平均濃度の算出時における単位領域の移動方向に互いに一部重複又は隣接する複数の単位領域内における差分を算出する。   In this way, the difference calculation unit 35C has a predetermined number (for which the average density has already been calculated) after the above-described average density calculation unit 35B completes the entire average density calculation process or during the calculation process in synchronization with each calculation process. The average density difference (maximum difference) calculation process is executed for the unit area of (range). Further, here, the difference calculation unit 35C includes a plurality of unit regions that partially overlap or are adjacent to each other in the direction of calculation of the average density by the average density calculation unit 35B, that is, the direction of movement of the unit regions when the average density is calculated. The difference in is calculated.

図5は、以上の平均濃度算出部35B及び差分算出部35Cによる各算出手順について具体的に説明するための模式図である。
本実施形態の平均濃度算出部35Bは、図示のように、予め設定された大きさの所定数の画素からなる単位領域Tを、予め設定された移動量(ここでは単位領域Tの1/3に相当する画素数)ずつ、波状コードの長手方向(図では左右方向)に沿って一方側(図の矢印)にずらせながら各単位領域Tの画素の平均濃度を算出する。このようにして、順次、単位領域T1(平均濃度95)(図5A参照)、単位領域T2(平均濃度80)(図5B参照)、単位領域T3(平均濃度100)(図5C参照)、単位領域T4(平均濃度120)(図5D参照)、と4つの単位領域T1〜T4の平均濃度を算出する。
FIG. 5 is a schematic diagram for specifically explaining each calculation procedure by the above average density calculation unit 35B and difference calculation unit 35C.
As shown in the figure, the average density calculation unit 35B of the present embodiment converts a unit region T composed of a predetermined number of pixels having a predetermined size into a predetermined movement amount (here, 1/3 of the unit region T). The average density of the pixels in each unit region T is calculated while shifting each side of the wavy code along the longitudinal direction (left and right direction in the figure) to one side (arrow in the figure). In this way, the unit region T1 (average density 95) (see FIG. 5A), unit region T2 (average density 80) (see FIG. 5B), unit region T3 (average density 100) (see FIG. 5C), unit The area T4 (average density 120) (see FIG. 5D) and the average density of the four unit areas T1 to T4 are calculated.

差分算出部35Cは、この各算出結果から、上記した移動方向内で互いに一部が重複する4つの単位領域T1〜T4内における平均濃度の最大値(ここでは図5Dに示す単位領域T4の120)と最小値(ここでは図5Bに示す単位領域T2の80)の差分(ここでは40)を算出する。このように、各算出部35B、35Cは、単位領域Tを移動させて平均濃度を算出するとともに、算出済みの互いに一部が重複する4つの単位領域Tの前記差分を順次算出する。   Based on the calculation results, the difference calculation unit 35C determines the maximum value of the average density in the four unit regions T1 to T4 partially overlapping each other in the moving direction (120 in the unit region T4 shown in FIG. 5D here). ) And the minimum value (here, 80 of the unit region T2 shown in FIG. 5B) (here, 40). In this manner, each of the calculation units 35B and 35C calculates the average density by moving the unit region T, and sequentially calculates the differences of the four unit regions T that have already been partially overlapped.

カウント部35D(図3参照)は、この差分の各算出値と所定の差分のしきい値とを比較し、しきい値を超える差分の算出値の数をカウントする。この差分のしきい値は、有効な濃度差であると認められる予め設定された最小値であり、例えば検査するゴム被覆部材70毎に実験的に決定したり、或いは、上記した明部抽出画像81(図4参照)の各抽出明部82の濃度や大きさの程度等の態様や、単位領域の大きさ及び移動量等の検査条件等に応じて決定され、記憶部33(図3参照)の規格データ33Cに記憶される。カウント部35Dは、このしきい値を規格データ33Cから読み出し、上記したカウントを差分算出部35Cによる各差分の算出毎に、又は、全ての差分の算出後に行い、しきい値を超える差分の算出値の数を加算してその総数(カウント数)を求める。   The counting unit 35D (see FIG. 3) compares each calculated value of the difference with a threshold value of a predetermined difference, and counts the number of calculated values of the difference exceeding the threshold value. The threshold value of the difference is a preset minimum value that is recognized as an effective density difference. For example, the difference threshold value is experimentally determined for each rubber covering member 70 to be inspected, or the above-described bright portion extraction image. 81 (see FIG. 4) is determined in accordance with aspects such as the density and size of each of the extracted bright portions 82, the inspection conditions such as the size and movement amount of the unit area, and the storage unit 33 (see FIG. 3). ) Standard data 33C. The count unit 35D reads this threshold value from the standard data 33C, and performs the above-described count every time each difference is calculated by the difference calculation unit 35C or after all the differences are calculated, and calculates the difference exceeding the threshold value. Add the number of values to find the total number (count).

ここで、本実施形態では、複数の単位領域の平均濃度の差分を波状コードの長手方向(図4参照)に沿って算出するが、これら長手方向内の各単位領域間の平均濃度の差は、波状コードの長手方向に対して傾斜する各部の傾斜角度(波状の程度)が大きくなるほど大きくなる。従って、差分算出部35Cによる差分の算出値は、波状の程度が大きく波長が短い波状コードほど大きく、ゴム被覆部材70及び波状コードが引き伸ばされてその波長が長くなり、直線状に近くなるにつれて徐々に小さくなる。このように、差分の算出値は、波状コードの波長の変化に応じて変化して、最終的に直線状の波状コードでは、理論的には長手方向の平均濃度差がなくなりゼロに近い値になる。その結果、しきい値を超える差分の算出値の総数、即ち、カウント部35Dによるカウント数も波状コードの波長に応じて変化し、差分の算出値と同様に、波状コードの波長が短いほど多く、長いほど少なくなる。   Here, in this embodiment, the difference in the average density of the plurality of unit regions is calculated along the longitudinal direction of the wavy cord (see FIG. 4). The difference in the average density between the unit regions in the longitudinal direction is The larger the angle of inclination (degree of undulation) of each part that is inclined with respect to the longitudinal direction of the undulating cord, the larger the value. Therefore, the difference calculation value by the difference calculation unit 35C is larger as the wavy cord has a larger wave shape and a shorter wavelength, and the rubber covering member 70 and the wavy cord are stretched to increase the wavelength and gradually become closer to a straight line. Becomes smaller. Thus, the calculated value of the difference changes according to the change in the wavelength of the wavy cord, and finally, in the linear wavy cord, the average density difference in the longitudinal direction disappears theoretically to a value close to zero. Become. As a result, the total number of difference calculated values exceeding the threshold value, that is, the count number by the counting unit 35D also changes according to the wavelength of the wavy code. , The longer it is, the less it is.

図6は、このカウント数の実測値と波状コードの波長(ここでは4波長の長さ)の関係を示す線図(グラフ)であり、図4A〜図4Dに示す波状コードの波長が異なる4つの画像を上記したように解析し、解析結果の各数値をグラフ化した例を示す。また、図の横軸は波状コードの4波長長さ(mm)を、縦軸はカウント数の実測値を、それぞれ示している。   FIG. 6 is a diagram (graph) showing the relationship between the actually measured value of the count number and the wavelength of the wavy code (here, the length of four wavelengths), and the wavelengths of the wavy codes shown in FIGS. 4A to 4D are different. An example in which two images are analyzed as described above and each numerical value of the analysis result is graphed is shown. In addition, the horizontal axis of the figure represents the four-wavelength length (mm) of the wavy code, and the vertical axis represents the actual count value.

カウント数の各実測値は、図示のように、負の傾き(図では右下がり)の略同一直線上に位置し、4波長長さに比例してその長さが長くなるほど小さくなる。このように、カウント数と4波長長さとの間には相関があり、本実施形態の検査装置1では、これを利用してゴム被覆部材70内の波状コードの波長が、定められた波長範囲内にあるか否かや、許容される波長の最大値以下、又は最小値以上であるか否か等、所定の規格を満たして適合するか否かを判定部35E(図3参照)により判定して検査する。   As shown in the figure, the actually measured values of the count numbers are located on substantially the same straight line with a negative slope (lower right in the figure), and become smaller in proportion to the length of four wavelengths. Thus, there is a correlation between the number of counts and the length of four wavelengths, and in the inspection apparatus 1 of this embodiment, the wavelength of the wavy cord in the rubber covering member 70 is determined by using this. It is determined by the determination unit 35E (see FIG. 3) whether or not it satisfies a predetermined standard, such as whether it is within the specified range, whether it is less than the maximum allowable wavelength, or whether it is greater than or equal to the minimum value. And inspect.

即ち、判定部35Eは、カウント部35Dによるカウント数(総数)の実測値と、波状コードの所定の規格に対応して予め設定されたカウント数の最小値及び/又は最大値とを比較し、その比較結果に基づいて波状コードの波長が所定の規格内であるか否かを判定する。具体的には、図6に示すグラフの例で、例えば波状コードの4波長長さが112mm以下であることが定められている場合には、それに対応するカウント数の最小値(下限値)は2000であり、判定部35Eは、カウント数の実測値が2000よりも大きいときには、4波長長さが112mm以下で規格内であると判定し、2000以下であるときには、波長が112mmよりも長く規格外であると判定する。同様に、判定部35Eは、例えば4波長長さの規格が108mm以上である場合には、対応するカウント数の最大値(上限値)である3000とカウント数の実測値とを比較して判定を行う。また、判定部35Eは、4波長長さの規格に関して所定の範囲が定められている場合には、その上下限値に対応するカウント数の最小値及び最大値とカウント数の実測値とを比較し、実測値が最小値と最大値の間にあるか否かにより、波状コードの波長が規格内か否かを判定する。   That is, the determination unit 35E compares the actually measured value of the count number (total number) by the count unit 35D with the minimum value and / or maximum value of the count number set in advance corresponding to a predetermined standard of the wavy code, Based on the comparison result, it is determined whether or not the wavelength of the wavy code is within a predetermined standard. Specifically, in the example of the graph shown in FIG. 6, for example, when it is determined that the four-wavelength length of the wavy code is 112 mm or less, the minimum value (lower limit value) of the corresponding count number is When the actual count value is greater than 2000, the determination unit 35E determines that the 4-wavelength length is 112 mm or less and within the standard, and when 2000 or less, the wavelength is longer than 112 mm. It is determined that it is outside. Similarly, the determination unit 35E determines, for example, that the maximum value (upper limit value) 3000 of the corresponding count number is compared with the actually measured value of the count number when the standard of the four wavelength length is 108 mm or more. I do. Further, the determination unit 35E compares the minimum value and the maximum value of the count number corresponding to the upper and lower limit values with the actually measured value of the count number when a predetermined range is defined with respect to the four-wavelength length standard. Whether or not the wavelength of the wavy code is within the standard is determined based on whether or not the actually measured value is between the minimum value and the maximum value.

なお、これらカウント数の最小値や最大値は、例えば上記したように波長の異なる複数の波状コードを有するゴム被覆部材70に対してカウント数を実測し、それらの関係(図6参照)から各波長の規格に対応する値を求め、或いは、波長の規格値(上限値や下限値)と同じ波長の波状コードを有するゴム被覆部材70のカウント数を実測する等、実験的に求められて設定される。また、設定された最小値や最大値は、予め記憶部33(図3参照)の規格データ33Cに記憶され、検査時に、画像解析部35の判定部35Eにより読み出されて使用される。   Note that the minimum value and the maximum value of these count numbers are actually measured with respect to the rubber covering member 70 having a plurality of wavy cords having different wavelengths as described above, and the respective count values (see FIG. 6) are measured. Obtain a value corresponding to the wavelength standard, or experimentally obtain and set, for example, by actually measuring the number of counts of the rubber covering member 70 having the wavy cord having the same wavelength as the wavelength standard value (upper limit value or lower limit value). Is done. The set minimum and maximum values are stored in advance in the standard data 33C of the storage unit 33 (see FIG. 3), and read and used by the determination unit 35E of the image analysis unit 35 at the time of inspection.

次に、以上説明した検査装置1によりゴム被覆部材70内の波状コードの波長を検査する手順や動作等について説明するが、以下の各手順等は、制御解析装置30により制御されて、所定のプログラムや予め設定された条件等に基づいて、装置各部を所定のタイミングで作動させる等、連動して作動させて実行される。   Next, procedures and operations for inspecting the wavelength of the wavy cord in the rubber covering member 70 using the inspection apparatus 1 described above will be described. The following procedures and the like are controlled by the control analysis apparatus 30 to be performed in a predetermined manner. Based on a program, preset conditions, and the like, each part of the apparatus is operated at a predetermined timing and is operated in conjunction with each other.

検査時には、まず光源10(図1参照)により、ゴム被覆部材70表面の所定の検査位置(撮像範囲K)に光を照射してゴム被覆部材70表面に、波状コードによる凹凸に応じた明暗を形成し、この明暗が形成されたゴム被覆部材70表面の撮像範囲Kを撮像手段20により撮像して画像を取得する。続いて、取得した画像を、制御解析装置30の画像解析部35により上記したように画像解析し、その画像から所定の濃度情報を取得する。検査装置1は、この濃度情報に基づいて、波状コードの波長が所定の規格内であるか否かを判定して検査する。   At the time of inspection, first, light is irradiated to a predetermined inspection position (imaging range K) on the surface of the rubber covering member 70 by the light source 10 (see FIG. 1), and light and darkness corresponding to the unevenness by the wavy cord is applied to the surface of the rubber covering member 70 The imaging range K of the surface of the rubber covering member 70 formed and imaged is captured by the imaging means 20 to obtain an image. Subsequently, the acquired image is subjected to image analysis as described above by the image analysis unit 35 of the control analysis device 30, and predetermined density information is acquired from the image. The inspection apparatus 1 determines whether or not the wavelength of the wavy code is within a predetermined standard based on the concentration information.

具体的には、まず、画像解析部35の抽出部35Aにより、ゴム被覆部材70表面の撮像した画像80(図4参照)からその明暗の明部71を抽出する。次に、平均濃度算出部35Bにより、この画像(明部抽出画像81)から、画像内の互いに一部重複又は隣接(ここでは重複)する所定の単位領域T(図5参照)毎に、各単位領域Tに含まれる全ての画素の平均濃度を順次算出する。また、差分算出部35Cにより、互いに一部重複又は隣接する複数の単位領域T内における画素の平均濃度の最大値と最小値の差分を、画像(又は所定の検査範囲)の全体に亘って順次算出する。これら各算出時に、この検査装置1では、単位領域Tを波状コードの長手方向に沿って所定の画素数ずつ移動させつつ平均濃度を算出し、かつ、この単位領域Tの移動方向に互いに一部重複する複数の単位領域T(図5に示す例では4つの単位領域T1〜T4)内における差分を算出する。   Specifically, first, the light-and-bright bright part 71 is extracted from the image 80 (see FIG. 4) captured on the surface of the rubber covering member 70 by the extraction part 35A of the image analysis part 35. Next, the average density calculation unit 35B performs, for each predetermined unit region T (see FIG. 5) that partially overlaps or adjoins (here, overlaps) in the image, for each predetermined unit region T (see FIG. 5). The average density of all the pixels included in the unit region T is sequentially calculated. Further, the difference calculation unit 35C sequentially calculates the difference between the maximum value and the minimum value of the average density of the pixels in the plurality of unit regions T partially overlapping or adjacent to each other over the entire image (or a predetermined inspection range). calculate. At the time of each of these calculations, the inspection apparatus 1 calculates the average density while moving the unit region T by a predetermined number of pixels along the longitudinal direction of the wavy code, and partially in the moving direction of the unit region T. Differences in a plurality of overlapping unit regions T (four unit regions T1 to T4 in the example shown in FIG. 5) are calculated.

次に、カウント部35Dにより、平均濃度の差分の各算出値と予め設定された差分のしきい値とを比較して、しきい値を超える差分の算出値の数をカウントする。その後、判定部35Eにより、カウント数(総数)の実測値と上記した所定の規格に対応して予め設定されたカウント数の最小値及び/又は最大値とを比較し、この比較結果に基づいて、波状コードの波長が規格内であり、規格に適合するか否かを判定する。   Next, the count unit 35D compares each calculated value of the average density difference with a preset difference threshold value, and counts the number of calculated difference values exceeding the threshold value. Thereafter, the determination unit 35E compares the actual value of the count number (total number) with the minimum value and / or maximum value of the count number set in advance corresponding to the predetermined standard, and based on the comparison result. It is determined whether the wavelength of the wavy code is within the standard and conforms to the standard.

検査装置1は、この波状コードの検査を、例えば搬送中の又は生タイヤに巻き付けられたゴム被覆部材等に対して、連続的に又は予め設定された所定時間毎や所定のタイミングで繰り返し自動で実行する。また、検査装置1は、画像解析部35(図3参照)による各解析や算出の結果、又は判定結果や検査結果等の検査に関する各データを、検査したゴム被覆部材70に対応付けて記憶部33の検査データ33Bに記憶させる。   The inspection apparatus 1 automatically and repeatedly repeats the inspection of the wavy cord continuously or at predetermined time intervals or at predetermined timings with respect to a rubber covering member or the like being conveyed or wound around a raw tire. Execute. Further, the inspection device 1 stores each data related to the inspection such as the results of each analysis and calculation by the image analysis unit 35 (see FIG. 3) or the determination results and the inspection results in association with the inspected rubber covering member 70. 33 inspection data 33B.

以上説明したように、本実施形態によれば、ゴム被覆部材70内の波状コードの波長が規格内であるか否かを、人手を介することなく自動で検査できるため、波長の測定や検査に要する手間や時間、及び工数等を大幅に削減することができる。その結果、波長検査の効率が向上して、ゴム被覆部材70の製造や生タイヤの成型等の生産性を高めることができ、かつ、波状コードの波長の測定や検査にミスが生じるのを抑制できるため、検査の正確性を向上させることができる。同時に、規格外の波状コードを有するゴム被覆部材や生タイヤ等の不良品が誤って次工程に送られるのを防止できるとともに、検査履歴や検査結果等を画像や数値データとして保存して管理できるため、それらの品質管理や、不良品が発生したときの対策等を容易かつ適切に行うこともできる。   As described above, according to the present embodiment, whether or not the wavelength of the wavy cord in the rubber covering member 70 is within the standard can be automatically inspected without human intervention. The labor and time required, and the number of man-hours can be greatly reduced. As a result, the efficiency of the wavelength inspection is improved, the productivity of manufacturing the rubber-coated member 70 and the molding of the raw tire can be improved, and the occurrence of errors in the measurement and inspection of the wavy cord wavelength is suppressed. Therefore, the accuracy of the inspection can be improved. At the same time, it is possible to prevent defective products such as rubber-coated members and raw tires with non-standard wavy cords from being sent to the next process by mistake, and to store and manage inspection history and inspection results as images and numerical data. Therefore, it is possible to easily and appropriately perform quality control and countermeasures when defective products occur.

ここで、本実施形態では、明部71を抽出した画像(明部抽出画像81)(図4参照)に基づいて画像解析を行ったが、この画像解析は、明部71を抽出しない元の撮像画像80に基づいて行ってもよい。ただし、この検査装置1のように明部抽出画像81を画像解析する場合には、画像の明暗が明確に識別可能になり、以降の各解析処理や検査をより的確かつ正確に行うことができ、より望ましい。また、画像解析する画像は、撮像手段20による撮像画像の全範囲であってもよく、そこから所定の領域(検査範囲)を抜き出した画像であってもよい。   Here, in this embodiment, the image analysis is performed based on the image (the bright part extracted image 81) (see FIG. 4) from which the bright part 71 is extracted. You may perform based on the captured image 80. FIG. However, when the bright portion extraction image 81 is image-analyzed as in the inspection apparatus 1, the brightness and darkness of the image can be clearly identified, and the subsequent analysis processing and inspection can be performed more accurately and accurately. More desirable. In addition, the image to be analyzed may be the entire range of the image captured by the imaging unit 20, or may be an image obtained by extracting a predetermined region (inspection range) therefrom.

一方、平均濃度算出部35Bによる単位領域の移動方向や差分算出部35Cによる差分の算出方向も、波状コードの長手方向に対してある程度の角度で傾斜させる等、その長手方向に略沿うように移動及び算出してもよく、従って、波状コードの長手方向以外の他の方向であってもよい。また、これら各算出の手順も、単位領域を移動させつつ平均濃度を算出し、同時に移動方向の差分を算出してもよく、算出対象の画像の所定範囲の又は全ての単位領域の平均濃度を算出してから各差分を算出等してもよい。このように、これら各算出の手順は、対象となる画像や単位領域の大きさ(画素数)、単位領域の移動量、及び算出等に要する全体の演算量等、それぞれの検査態様等に応じて適宜設定される。   On the other hand, the moving direction of the unit area by the average density calculating unit 35B and the calculating direction of the difference by the difference calculating unit 35C are also moved substantially along the longitudinal direction, for example, inclined at a certain angle with respect to the longitudinal direction of the wavy cord. Therefore, the direction may be other than the longitudinal direction of the wavy cord. In each of these calculation procedures, the average density may be calculated while moving the unit area, and the difference in the moving direction may be calculated at the same time. The average density of the predetermined range or all the unit areas of the calculation target image may be calculated. Each difference may be calculated after the calculation. As described above, each calculation procedure depends on each inspection mode, such as the target image, the size (number of pixels) of the unit area, the amount of movement of the unit area, and the total calculation amount required for the calculation. Is set as appropriate.

更に、差分算出部35Cによる差分の算出は、単位領域の移動方向(1次元方向)の所定数の単位領域以外、例えば移動方向と直行する方向を加えた2次元方向の所定数の単位領域に対して行う等、予め設定された他の所定範囲の複数の単位領域に対して行うようにしてもよい。また、ここでは、判定部35Eにより、カウント部35Dによるカウント数の実測値と各設定値とを比較したが、カウント数の実測値と波長の関係式等を基に、カウント数の実測値から波状コードの波長を算出し、この算出値を波長の規格と比較して、規格を満たすか否かを判定するようにしてもよい。   Further, the difference calculation by the difference calculation unit 35C is performed on a predetermined number of unit areas in a two-dimensional direction including a direction orthogonal to the moving direction, for example, other than a predetermined number of unit areas in the moving direction (one-dimensional direction) of the unit area. For example, it may be performed for a plurality of unit areas in another predetermined range set in advance. In addition, here, the determination unit 35E compares the actual count value of the count unit 35D with each set value. However, based on the actual count value and the relational expression of the wavelength, etc., The wavelength of the wavy code may be calculated, and the calculated value may be compared with the wavelength standard to determine whether the standard is satisfied.

なお、本実施形態によれば、ゴム被覆部材70として、上記した波状ベルト層以外に、例えばタイヤサイド部やビード部等に配置される補強層等、波状コードが配置された他のゴム被覆部材70も検査することができる。また、本実施形態では、略正弦波状の波状コードを例に採り説明したが、波状コードは、例えば正弦波状と同様に種々の曲率や形状で湾曲して延びる波状に、又は矩形波状、台形波状、三角波状(ジグザグ状)等の屈曲しつつ延びる波状に、或いは、それらを任意に組み合わせた波状等、長手方向に沿って波状に延びる他の形態のものであってもよい。従って、本発明の波状コードには、このように規則的に振幅しつつ長手方向に沿って種々の形態で波状に延びる各種の波状コードを含む。   In addition, according to the present embodiment, as the rubber covering member 70, in addition to the above-described corrugated belt layer, other rubber covering members in which corrugated cords are disposed, for example, a reinforcing layer disposed in a tire side portion, a bead portion, or the like. 70 can also be inspected. Further, in the present embodiment, the description has been given by taking a substantially sinusoidal wavy cord as an example. Other shapes extending in a wave shape along the longitudinal direction, such as a wave shape extending while being bent such as a triangular wave shape (zigzag shape), or a wave shape obtained by arbitrarily combining them may be used. Therefore, the wavy cord of the present invention includes various wavy cords that are regularly oscillated in this manner and extend in a wavy shape in various forms along the longitudinal direction.

更に、ゴム被覆部材70内の波状コードは、スチール等の金属からなるコードや、ケブラー繊維等の有機繊維からなるコード等、その材質や種類等を問わず、波状をなしてゴム被覆部材70の表面に凹凸を形成する部材であればよい。   Further, the corrugated cord in the rubber covering member 70 is corrugated regardless of the material or type, such as a cord made of metal such as steel or a cord made of organic fiber such as Kevlar fiber. Any member that forms irregularities on the surface may be used.

次に、以上説明した検査装置1をオンライン(製造ライン上)に組み込んで各種工程に適用した具体例について説明する。
図7は、本実施形態の検査装置1を生タイヤの成型工程に適用した例を模式的に示す側面図であり、図8は、図7に示す検査装置1付近を抜き出して示す模式図である。
Next, specific examples in which the inspection apparatus 1 described above is incorporated on-line (on the production line) and applied to various processes will be described.
FIG. 7 is a side view schematically showing an example in which the inspection apparatus 1 of the present embodiment is applied to a green tire molding process, and FIG. 8 is a schematic diagram showing the vicinity of the inspection apparatus 1 shown in FIG. is there.

生タイヤの成型工程では、図7に示すように、軸線周りに回転可能な略円筒状等の成型ドラム40を、モータ等の駆動手段(図示せず)により回転させ、その外面に所定寸法のインナーライナやカーカス、ゴム被覆部材70等の各タイヤ構成部材を巻き付けて生タイヤ41を成型する。検査装置1は、この成型ドラム40及び成型途中の生タイヤ41の径方向外側に設置され、その撮像手段20及び光源10が、成型ドラム40側を向くように、かつ、その外面に対向させて配置される。その位置から、検査装置1は、下層のタイヤ構成部材の外面に巻き付けられたゴム被覆部材70の所定位置に向かって光を照射し、その表面の画像を所定のタイミングで撮像して上記したように画像解析等を行い、ゴム被覆部材70内の波状コードの波長をオンラインで検査する。また、検査装置1は、この波長検査を、ゴム被覆部材70の巻き付け後に1回、又は成型ドラム40を回転させてゴム被覆部材70の周方向の複数箇所で行う等、新たな生タイヤ41の成型毎に実行する。   In the green tire molding process, as shown in FIG. 7, a substantially cylindrical molding drum 40 rotatable around an axis is rotated by a driving means (not shown) such as a motor, and the outer surface has a predetermined dimension. Each tire constituent member such as an inner liner, a carcass, and a rubber covering member 70 is wound to form the raw tire 41. The inspection device 1 is installed on the outside in the radial direction of the molding drum 40 and the green tire 41 in the middle of molding, and the imaging means 20 and the light source 10 face the molding drum 40 side and face the outer surface thereof. Be placed. From that position, the inspection apparatus 1 irradiates light toward a predetermined position of the rubber covering member 70 wound around the outer surface of the lower tire constituent member, and takes an image of the surface at a predetermined timing as described above. Image analysis or the like is performed, and the wavelength of the wavy cord in the rubber covering member 70 is inspected online. In addition, the inspection apparatus 1 performs the wavelength inspection once after the rubber covering member 70 is wound, or at a plurality of locations in the circumferential direction of the rubber covering member 70 by rotating the molding drum 40. Execute every molding.

ここで、検査毎の検査結果に変動が生じるのを防止し、適切な検査を連続して行うためには、撮像手段20及び光源10と撮像するゴム被覆部材70の表面との間の距離を、生タイヤ41の外径が変化しても、適切な撮像及び検査が可能な所定距離に維持する必要がある。そのため、この検査装置1は、図8に示すように、撮像手段20及び光源10を成型ドラム40(ゴム被覆部材70)に接近及び離間する方向に移動させる移動手段42、45を備えている。検査装置1は、この移動手段42、45により、撮像手段20及び光源10を一体に移動させて撮像するゴム被覆部材70表面との間の距離を所定距離に維持し、撮像及び検査条件を一定条件に維持するようになっている。   Here, in order to prevent fluctuations in the inspection results for each inspection and to perform appropriate inspection continuously, the distance between the imaging means 20 and the light source 10 and the surface of the rubber covering member 70 to be imaged is set. Even if the outer diameter of the raw tire 41 changes, it is necessary to maintain a predetermined distance that allows appropriate imaging and inspection. Therefore, as shown in FIG. 8, the inspection apparatus 1 includes moving means 42 and 45 that move the imaging means 20 and the light source 10 toward and away from the molding drum 40 (rubber covering member 70). The inspection apparatus 1 uses the moving means 42 and 45 to move the imaging means 20 and the light source 10 together to maintain the distance between the surface of the rubber covering member 70 to be imaged and keep the imaging and inspection conditions constant. It is designed to maintain the conditions.

なお、移動手段42、45としては、例えば空気圧式や油圧式のピストン・シリンダ機構やラック、ピニオン、及びステッピングモータ等からなる直線移動機構、又はボールネジやボールスプライン等からなるネジ作用を利用して移動させる直線移動機構等の周知の手段を使用することができる。   As the moving means 42 and 45, for example, a pneumatic or hydraulic piston / cylinder mechanism, a linear movement mechanism including a rack, pinion, and a stepping motor, or a screw action including a ball screw or a ball spline is used. Well-known means such as a linear movement mechanism for movement can be used.

移動手段42(図8A参照)としてピストン・シリンダ機構を使用する場合には、ピストンロッド43Pに撮像手段20及び光源10を取り付けるとともに、その先端に回転自在な略円筒状のロール44を取り付け、ピストンロッド43Pをシリンダ43S内から出し入れして、撮像手段20及び光源10をゴム被覆部材70に接近及び離間させる。また、ここでは、シリンダ43Sに所定の圧力を作用させて、ロール44の外面をゴム被覆部材70の表面に接触させ、ロール44をゴム被覆部材70に向かって所定圧力で付勢して、ゴム被覆部材70の外径の変動に連動させてロール44及びピストンロッド43Pを変位させる。これにより、移動手段42は、撮像手段20及び光源10とゴム被覆部材70の表面との間を所定距離に維持する。   When a piston / cylinder mechanism is used as the moving means 42 (see FIG. 8A), the imaging means 20 and the light source 10 are attached to the piston rod 43P, and a rotatable substantially cylindrical roll 44 is attached to the tip thereof. The rod 43P is taken in and out of the cylinder 43S, and the imaging means 20 and the light source 10 are moved closer to and away from the rubber covering member 70. Further, here, a predetermined pressure is applied to the cylinder 43S so that the outer surface of the roll 44 is brought into contact with the surface of the rubber covering member 70, and the roll 44 is urged toward the rubber covering member 70 with a predetermined pressure. The roll 44 and the piston rod 43P are displaced in conjunction with the change in the outer diameter of the covering member 70. Accordingly, the moving unit 42 maintains a predetermined distance between the imaging unit 20 and the light source 10 and the surface of the rubber covering member 70.

一方、移動手段45(図8B参照)として上記した直線移動機構を使用する場合には、撮像手段20及び光源10を、そのゴム被覆部材70に向かって直線状に延びるラックやボールスプライン等の移動部材45Aのゴム被覆部材70側に取り付ける。この移動手段45では、距離センサ(図示せず)によりゴム被覆部材70の表面との間の距離を検知し、その検知結果に基づいて移動部材45Aを移動させて、撮像手段20及び光源10とゴム被覆部材70の表面との間を所定距離に維持する。   On the other hand, when the above-described linear moving mechanism is used as the moving unit 45 (see FIG. 8B), the imaging unit 20 and the light source 10 are moved by a rack, a ball spline, or the like that extends linearly toward the rubber covering member 70. The member 45A is attached to the rubber covering member 70 side. In the moving means 45, a distance sensor (not shown) detects the distance to the surface of the rubber covering member 70, and moves the moving member 45A based on the detection result, thereby the imaging means 20 and the light source 10 A predetermined distance from the surface of the rubber covering member 70 is maintained.

以上、検査装置1を生タイヤ41(新品タイヤ)の成型工程に適用した例について説明したが、この検査装置1は、更正タイヤの成型工程で使用することもできる。即ち、更正タイヤの成型工程では、使用済みタイヤのトレッドゴムや各ベルト層を取り除いた後、新たにゴム被覆部材70(波状ベルト層)の巻き付け等を行う必要がある。その際に、検査装置1によりゴム被覆部材70内の波状コードの波長を同様に検査してもよい。   The example in which the inspection device 1 is applied to the molding process of the raw tire 41 (new tire) has been described above. However, the inspection device 1 can also be used in the molding process of the corrected tire. That is, in the molding process of the corrected tire, after removing the tread rubber and each belt layer of the used tire, it is necessary to newly wind the rubber covering member 70 (the corrugated belt layer). At that time, the wavelength of the wavy cord in the rubber covering member 70 may be similarly inspected by the inspection device 1.

また、この検査装置1は、ゴム被覆部材70の製造工程等に適用することもできる。
図9は、検査装置1をゴム被覆部材70の搬送経路中に設置した例を示す模式図である。
The inspection apparatus 1 can also be applied to the manufacturing process of the rubber covering member 70 and the like.
FIG. 9 is a schematic diagram illustrating an example in which the inspection apparatus 1 is installed in the conveyance path of the rubber covering member 70.

ここでは、図示のように、ゴム被覆部材70は、製造等された後、コンベヤ等の搬送手段50上に載せられて巻取ロールや次工程等に向かって搬送(図の矢印N)される。検査装置1は、この搬送手段50の上方に所定の距離を隔てて設置され、その撮像手段20及び光源10をゴム被覆部材70に向けて配置される。その位置から、検査装置1は、ゴム被覆部材70表面の所定位置に向かって光を照射し、その表面の画像を連続して又は所定の時間毎に撮像して、上記と同様にゴム被覆部材70内の波状コードの波長をオンラインで検査する。   Here, as shown in the figure, after the rubber covering member 70 is manufactured, it is placed on the conveying means 50 such as a conveyor and conveyed toward the take-up roll, the next process, etc. (arrow N in the figure). . The inspection device 1 is installed above the conveying unit 50 at a predetermined distance, and the imaging unit 20 and the light source 10 are arranged facing the rubber covering member 70. From that position, the inspection apparatus 1 irradiates light toward a predetermined position on the surface of the rubber covering member 70, and images the surface continuously or every predetermined time. The wavelength of the wavy cord in 70 is inspected online.

なお、この場合には、撮像手段20及び光源10とゴム被覆部材70の表面との間の距離は一定であるため、上記した生タイヤ41の成型工程のように移動手段42、45を設けなくても、撮像及び検査条件は一定に維持される。   In this case, since the distance between the imaging means 20 and the light source 10 and the surface of the rubber covering member 70 is constant, the moving means 42 and 45 are not provided as in the molding process of the raw tire 41 described above. However, the imaging and inspection conditions are kept constant.

(波長検査試験)
本発明の効果を確認するため、以上説明した検査装置1によりゴム被覆部材70内の波状コードの波長検査を行い、正しく検査が行えるか否かを試験した。試験では、複数の波状コードが配列されたゴム被覆部材70を検査し、その波状コードの4波長長さの規格を112mm以下として良否を判定した。即ち、カウント部35Dよるカウント数の実測値が2000(図6参照)よりも大きいものは規格内であり、2000以下のものは規格外であると判定した。
(Wavelength inspection test)
In order to confirm the effect of the present invention, the inspection apparatus 1 described above performs a wavelength inspection of the wavy cord in the rubber covering member 70 to test whether the inspection can be performed correctly. In the test, the rubber-coated member 70 in which a plurality of wavy cords were arranged was inspected, and the quality of the four-wavelength length of the wavy cords was determined to be 112 mm or less to determine pass / fail. That is, it was determined that the actual value of the count number by the counting unit 35D is larger than 2000 (see FIG. 6) is within the standard, and the actual value of 2000 or less is out of the standard.

その結果、既に説明した図4の各画像例の左上及び右上に示すように、波状コードの4波長長さが112mm以下のもの(図4Aの108mm、図4Bの110mm、図4Cの112mm)は、カウント数の実測値が2000よりも大きく(それぞれ3101、2807、2180)、規格内(OK)であると判定された。一方、4波長長さが112mmよりも長いもの(図4Dの114mm)は、カウント数の実測値が2000以下の1262であり、規格外(NG)であると判定された。これより、この検査装置1により、ゴム被覆部材70内の波状コードの波長を正しく検査できることが分かった。   As a result, as shown in the upper left and upper right of each image example of FIG. 4 already described, the four-wavelength length of the wavy code is 112 mm or less (108 mm in FIG. 4A, 110 mm in FIG. 4B, 112 mm in FIG. 4C). The measured value of the count number was larger than 2000 (3101, 2807, 2180, respectively), and determined to be within the standard (OK). On the other hand, when the length of the four wavelengths is longer than 112 mm (114 mm in FIG. 4D), the measured value of the count number is 1262 of 2000 or less, and it was determined to be nonstandard (NG). From this, it was found that the wavelength of the wavy cord in the rubber covering member 70 can be correctly inspected by the inspection device 1.

以上の結果から、本発明により、波状コードをゴムで被覆して形成されたゴム被覆部材70内の波状コードの波長を自動で検査でき、その品質管理を適切に行えるとともに、検査の効率や正確性を向上できることが証明された。   From the above results, according to the present invention, the wavelength of the wavy cord in the rubber covering member 70 formed by covering the wavy cord with rubber can be automatically inspected, and the quality control can be appropriately performed, and the efficiency and accuracy of the inspection can be improved. Proven to improve

本実施形態の波状コードの検査装置の概略構成を、ゴム被覆部材と共に模式的に示す要部構成図である。It is a principal part block diagram which shows typically schematic structure of the inspection apparatus of the wavy cord of this embodiment with a rubber coating | coated member. 本実施形態のゴム被覆部材の表面を2種類の光源により照らした状態を示す例(写真)である。It is an example (photograph) which shows the state which illuminated the surface of the rubber coating member of this embodiment with two types of light sources. 本実施形態の制御解析装置の機能ブロック図である。It is a functional block diagram of the control analysis apparatus of this embodiment. 撮像画像から明部を抽出する前後の画像例を示す図である。It is a figure which shows the example of an image before and after extracting a bright part from a captured image. 平均濃度算出部及び差分算出部による各算出手順について具体的に説明するための模式図である。It is a schematic diagram for demonstrating concretely about each calculation procedure by an average density | concentration calculation part and a difference calculation part. カウント数の実測値と波状コードの波長(4波長の長さ)の関係を示す線図である。It is a diagram which shows the relationship between the measured value of a count number, and the wavelength (length of 4 wavelengths) of a wavy code. 本実施形態の検査装置を生タイヤの成型工程に適用した例を模式的に示す側面図である。It is a side view which shows typically the example which applied the inspection device of this embodiment to the fabrication process of a green tire. 図7に示す検査装置付近を抜き出して示す模式図である。It is a schematic diagram which extracts and shows the vicinity of the inspection apparatus shown in FIG. 本実施形態の検査装置をゴム被覆部材の搬送経路中に設置した例を示す模式図である。It is a schematic diagram which shows the example which installed the inspection apparatus of this embodiment in the conveyance path | route of a rubber coating member.

符号の説明Explanation of symbols

1・・・波状コードの検査装置、10・・・光源、11・・・発光面、20・・・撮像手段、30・・・制御解析装置、31・・・入出力部、32・・・表示部、33・・・記憶部、33A・・・測定データ、33B・・・検査データ、33C・・・規格データ、34・・・制御部、35・・・画像解析部、35A・・・抽出部、35B・・・平均濃度算出部、35C・・・差分算出部、35D・・・カウント部、35E・・・判定部、36・・・バス、40・・・成型ドラム、41・・・生タイヤ、42・・・移動手段、43P・・・ピストンロッド、43S・・・シリンダ、44・・・ロール、45・・・移動手段、45A・・・移動部材、50・・・搬送手段、70・・・ゴム被覆部材、71・・・明部、72・・・暗部、80・・・撮像画像、81・・・明部抽出画像、82・・・抽出明部。   DESCRIPTION OF SYMBOLS 1 ... Wavy code inspection apparatus, 10 ... Light source, 11 ... Light emission surface, 20 ... Imaging means, 30 ... Control analysis apparatus, 31 ... Input / output part, 32 ... Display unit 33 ... Storage unit 33A ... Measurement data 33B ... Inspection data 33C ... Standard data 34 ... Control unit 35 ... Image analysis unit 35A ... Extraction unit, 35B ... average density calculation unit, 35C ... difference calculation unit, 35D ... count unit, 35E ... determination unit, 36 ... bus, 40 ... molding drum, 41 ... · Raw tire, 42 ... moving means, 43P ... piston rod, 43S ... cylinder, 44 ... roll, 45 ... moving means, 45A ... moving member, 50 ... conveying means 70 ... rubber covering member, 71 ... bright part, 72 ... dark part, 80 ... Image image, 81 ... light portion extracted image, 82 ... extraction bright part.

Claims (9)

長手方向に沿って波状に延びる波状コードをゴムで被覆し、表面に前記波状コードに対応する凹凸が形成されたゴム被覆部材内の前記波状コードの波長を検査する波状コードの検査方法であって、
前記ゴム被覆部材の表面に光を照射して該ゴム被覆部材表面に前記凹凸に応じた明暗を形成する工程と、
前記明暗が形成されたゴム被覆部材表面の画像を取得する工程と、
該取得した画像から濃度情報を取得する工程と、
該濃度情報に基づいて、前記波状コードの波長が所定の規格内であるか否かを判定する工程と、
を有することを特徴とする波状コードの検査方法。
A wavy cord inspection method for inspecting the wavelength of a wavy cord in a rubber-coated member in which a wavy cord extending in a wavy shape along a longitudinal direction is covered with rubber, and a surface corresponding to the corrugated cord is formed on the surface. ,
Irradiating the surface of the rubber-coated member with light to form light and dark according to the irregularities on the surface of the rubber-coated member;
Obtaining an image of the surface of the rubber-coated member on which the brightness is formed; and
Acquiring density information from the acquired image;
Determining whether the wavelength of the wavy code is within a predetermined standard based on the concentration information;
A method for inspecting a wavy cord, comprising:
請求項1に記載された波状コードの検査方法において、
前記画像を取得する工程は、前記明暗が形成されたゴム被覆部材表面を撮像する工程と、該撮像した画像から前記明暗の明部を抽出する工程と、からなることを特徴とする波状コードの検査方法。
In the inspection method of a wavy cord according to claim 1,
The step of acquiring the image includes a step of imaging the surface of the rubber-coated member on which the light and darkness is formed, and a step of extracting the light and dark bright portions from the captured image. Inspection method.
請求項1又は2に記載された波状コードの検査方法において、
前記濃度情報を取得する工程は、前記画像から該画像の互いに一部重複又は隣接する所定の単位領域毎に、該単位領域に含まれる画素の平均濃度を順次算出する工程と、互いに一部重複又は隣接する複数の前記単位領域内における前記画素の平均濃度の最大値と最小値の差分を前記画像又は所定の検査範囲の全体に亘って順次算出する工程と、該差分の各算出値と予め設定された該差分のしきい値とを比較して、該しきい値を超える前記差分の算出値の数をカウントする工程と、からなり、
前記判定する工程は、前記カウント数の実測値と前記所定の規格に対応して予め設定された前記カウント数の最小値及び/又は最大値とを比較し、該比較結果に基づいて前記判定を行うことを特徴とする波状コードの検査方法。
The method for inspecting a wavy cord according to claim 1 or 2,
The step of acquiring the density information includes a step of sequentially calculating an average density of pixels included in the unit region for each predetermined unit region that partially overlaps or is adjacent to the image from the image, and a portion that overlaps each other. Alternatively, a step of sequentially calculating a difference between the maximum value and the minimum value of the average density of the pixels in a plurality of adjacent unit regions over the entire image or a predetermined inspection range, and each calculated value of the difference in advance Comparing the set threshold value of the difference and counting the number of calculated values of the difference exceeding the threshold value, and
The determining step compares the measured value of the count number with a minimum value and / or maximum value of the count number set in advance corresponding to the predetermined standard, and performs the determination based on the comparison result. A method for inspecting a wavy cord, characterized in that:
請求項3に記載された波状コードの検査方法において、
前記画素の平均濃度を順次算出する工程は、前記画像内で、前記単位領域を前記波状コードの長手方向に沿って所定の画素数ずつ移動させつつ前記平均濃度を算出し、
前記差分を算出する工程は、前記単位領域の移動方向に互いに一部重複又は隣接する複数の前記単位領域内における前記差分を算出することを特徴とする波状コードの検査方法。
The method for inspecting a wavy cord according to claim 3,
The step of sequentially calculating the average density of the pixels calculates the average density while moving the unit area by a predetermined number of pixels along the longitudinal direction of the wavy code in the image,
The step of calculating the difference calculates the difference in the plurality of unit regions that partially overlap or are adjacent to each other in the moving direction of the unit region.
長手方向に沿って波状に延びる波状コードをゴムで被覆し、表面に前記波状コードに対応する凹凸が形成されたゴム被覆部材内の前記波状コードの波長を検査する波状コードの検査装置であって、
前記ゴム被覆部材の表面に光を照射して該ゴム被覆部材表面に前記凹凸に応じた明暗を形成する光源と、
前記明暗が形成されたゴム被覆部材表面を撮像する撮像手段と、
該撮像した画像から濃度情報を取得し、該濃度情報に基づいて、前記波状コードの波長が所定の規格内であるか否かを判定する解析手段と、
を備えたことを特徴とする波状コードの検査装置。
An apparatus for inspecting a wavy cord, in which a wavy cord extending in a wavy shape along a longitudinal direction is coated with rubber, and the wavelength of the wavy cord in a rubber-coated member in which irregularities corresponding to the wavy cord are formed on a surface thereof ,
A light source that irradiates light on the surface of the rubber-coated member to form light and dark according to the irregularities on the surface of the rubber-coated member;
Imaging means for imaging the surface of the rubber-coated member on which the brightness is formed;
Analyzing means for acquiring density information from the captured image and determining whether the wavelength of the wavy code is within a predetermined standard based on the density information;
An inspection apparatus for wavy cords, comprising:
請求項5に記載された波状コードの検査装置において、
前記撮像手段及び前記光源を移動させて、撮像する前記ゴム被覆部材表面との間の距離を所定距離に維持する移動手段を備えたことを特徴とする波状コードの検査装置。
In the inspection apparatus of the wavy cord according to claim 5,
An apparatus for inspecting a wavy cord, comprising: moving means for moving the imaging means and the light source to maintain a distance from the surface of the rubber covering member to be imaged at a predetermined distance.
請求項5又は6に記載された波状コードの検査装置において、
前記解析手段は、前記撮像した画像から前記明暗の明部を抽出する抽出手段を有し、前記濃度情報は前記明部を抽出した画像に基づく濃度情報であることを特徴とする波状コードの検査装置。
In the inspection apparatus of the wavy cord according to claim 5 or 6,
The analysis means includes extraction means for extracting the bright and dark bright portions from the captured image, and the density information is density information based on the image from which the bright portions are extracted. apparatus.
請求項5ないし7のいずれかに記載された波状コードの検査装置において、
前記解析手段は、前記画像から該画像の互いに一部重複又は隣接する所定の単位領域毎に、該単位領域に含まれる画素の平均濃度を順次算出する平均濃度算出手段と、互いに一部重複又は隣接する複数の前記単位領域内における前記画素の平均濃度の最大値と最小値の差分を前記画像又は所定の検査範囲の全体に亘って順次算出する差分算出手段と、該差分の各算出値と予め設定された該差分のしきい値とを比較して、前記しきい値を超える前記差分の算出値の数をカウントするカウント手段と、該カウント手段によるカウント数の実測値と前記所定の規格に対応して予め設定された前記カウント数の最小値及び/又は最大値とを比較し、該比較結果に基づいて前記判定を行う判定手段と、を有することを特徴とする波状コードの検査装置。
In the inspection apparatus of the wavy cord according to any one of claims 5 to 7,
The analysis means includes an average density calculation means for sequentially calculating an average density of pixels included in the unit region for each predetermined unit region that is partially overlapped or adjacent to each other from the image, Difference calculating means for sequentially calculating the difference between the maximum value and the minimum value of the average density of the pixels in a plurality of adjacent unit regions over the entire image or a predetermined inspection range, and each calculated value of the difference Counting means for comparing the threshold value of the difference set in advance and counting the number of calculated values of the difference exceeding the threshold value, an actual value of the count number by the counting means, and the predetermined standard And a determination unit that compares the minimum value and / or the maximum value of the count number set in advance and performs the determination based on the comparison result. .
請求項8に記載された波状コードの検査装置において、
前記平均濃度算出手段は、前記画像内で、前記単位領域を前記波状コードの長手方向に沿って所定の画素数ずつ移動させつつ前記平均濃度を算出し、
前記差分算出手段は、前記単位領域の移動方向に互いに一部重複又は隣接する複数の前記単位領域内における前記差分を算出することを特徴とする波状コードの検査装置。
The inspection apparatus for wavy cords according to claim 8,
The average density calculation means calculates the average density while moving the unit area by a predetermined number of pixels along the longitudinal direction of the wavy code in the image,
The wavy code inspection apparatus according to claim 1, wherein the difference calculation means calculates the difference in a plurality of the unit areas that partially overlap or are adjacent to each other in the moving direction of the unit area.
JP2007041203A 2007-02-21 2007-02-21 Wavy cord inspection method and inspection apparatus Expired - Fee Related JP4915798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041203A JP4915798B2 (en) 2007-02-21 2007-02-21 Wavy cord inspection method and inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041203A JP4915798B2 (en) 2007-02-21 2007-02-21 Wavy cord inspection method and inspection apparatus

Publications (2)

Publication Number Publication Date
JP2008203149A true JP2008203149A (en) 2008-09-04
JP4915798B2 JP4915798B2 (en) 2012-04-11

Family

ID=39780815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041203A Expired - Fee Related JP4915798B2 (en) 2007-02-21 2007-02-21 Wavy cord inspection method and inspection apparatus

Country Status (1)

Country Link
JP (1) JP4915798B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031211A (en) * 2007-07-30 2009-02-12 Bridgestone Corp Device and method for measuring waveform of waved belt
CN102549412A (en) * 2009-10-06 2012-07-04 米其林技术公司 Method and device for the automatic inspection of a cable spool
WO2012153718A1 (en) * 2011-05-12 2012-11-15 コニカミノルタホールディングス株式会社 Method for testing end face of glass sheet and device for testing end face of glass sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296146A (en) * 1988-05-25 1989-11-29 Bridgestone Corp Method of detecting substance with small x ray absorption and x ray sensor used therefor
JPH04169808A (en) * 1990-11-01 1992-06-17 Sumitomo Rubber Ind Ltd Method and apparatus for inspecting external appearance of belt
JPH07167797A (en) * 1993-12-15 1995-07-04 Sumitomo Rubber Ind Ltd Method and device for inspecting rubberized cord cloth
JPH10267620A (en) * 1997-03-21 1998-10-09 Kawasaki Steel Corp Method and apparatus for detection of ripples on hot-dip metal bath face
JPH1111113A (en) * 1997-06-20 1999-01-19 Bridgestone Corp Pneumatic tire and drum for molding this pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296146A (en) * 1988-05-25 1989-11-29 Bridgestone Corp Method of detecting substance with small x ray absorption and x ray sensor used therefor
JPH04169808A (en) * 1990-11-01 1992-06-17 Sumitomo Rubber Ind Ltd Method and apparatus for inspecting external appearance of belt
JPH07167797A (en) * 1993-12-15 1995-07-04 Sumitomo Rubber Ind Ltd Method and device for inspecting rubberized cord cloth
JPH10267620A (en) * 1997-03-21 1998-10-09 Kawasaki Steel Corp Method and apparatus for detection of ripples on hot-dip metal bath face
JPH1111113A (en) * 1997-06-20 1999-01-19 Bridgestone Corp Pneumatic tire and drum for molding this pneumatic tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031211A (en) * 2007-07-30 2009-02-12 Bridgestone Corp Device and method for measuring waveform of waved belt
CN102549412A (en) * 2009-10-06 2012-07-04 米其林技术公司 Method and device for the automatic inspection of a cable spool
JP2013506854A (en) * 2009-10-06 2013-02-28 コンパニー ゼネラール デ エタブリッスマン ミシュラン Method and apparatus for automatic inspection of cable spools
US9194813B2 (en) 2009-10-06 2015-11-24 Compagnie Generale Des Etablissements Michelin Method and device for the automatic inspection of a cable spool
WO2012153718A1 (en) * 2011-05-12 2012-11-15 コニカミノルタホールディングス株式会社 Method for testing end face of glass sheet and device for testing end face of glass sheet

Also Published As

Publication number Publication date
JP4915798B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
EP2880415B1 (en) Method for segmenting the surface of a tyre and apparatus operating according to said method
JP6789292B2 (en) How and equipment to inspect tires
EP1995553B1 (en) System and method for identifying a feature of a workpiece
JP5031691B2 (en) Surface flaw inspection device
US10006836B2 (en) Method and apparatus for detecting defects on tyres in a tyre production process
JP5689969B2 (en) Bead filler inspection apparatus, bead filler inspection program, and bead filler inspection method
US10861179B2 (en) Image inspecting apparatus, image inspecting method and image inspecting program
RU2737564C2 (en) Method and apparatus for monitoring tires for vehicle wheels
US9606070B2 (en) Multispectral imaging system and method for detecting foreign object debris
JP5616100B2 (en) Manufacturing method of long article
JP4915798B2 (en) Wavy cord inspection method and inspection apparatus
JP5881002B2 (en) Surface defect inspection apparatus and method
JP2018505385A (en) Method and apparatus for checking tires on a production line
JP5387319B2 (en) Inspection method for sheet-like continuum
JP7087533B2 (en) Surface condition inspection device and surface condition inspection method
JP6750303B2 (en) Tire defect detection method
JP6072550B2 (en) Cylindrical member inspection apparatus and inspection method
JP2008304958A (en) Method for inspecting work defect by image processing
JP4761443B2 (en) Measuring device for the number of cords
JP2008111705A (en) Method and program for detecting defect and inspection apparatus
JP6848284B2 (en) Spew identification method, bead part inspection method, and bead part inspection device
KR102473365B1 (en) A system and method of checking tires using machine learning
JP7165564B2 (en) Image inspection device
JP7189666B2 (en) Topping sheet inspection method
JP6891429B2 (en) Linear stripe pattern removal method, tire inner surface inspection method, and tire inner surface inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees