JP2008203123A - Water surface and ground surface observation device for aircraft - Google Patents

Water surface and ground surface observation device for aircraft Download PDF

Info

Publication number
JP2008203123A
JP2008203123A JP2007040397A JP2007040397A JP2008203123A JP 2008203123 A JP2008203123 A JP 2008203123A JP 2007040397 A JP2007040397 A JP 2007040397A JP 2007040397 A JP2007040397 A JP 2007040397A JP 2008203123 A JP2008203123 A JP 2008203123A
Authority
JP
Japan
Prior art keywords
aircraft
water surface
laser beam
velocity
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007040397A
Other languages
Japanese (ja)
Other versions
JP5093451B2 (en
Inventor
Hamaki Inokuchi
浜木 井之口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2007040397A priority Critical patent/JP5093451B2/en
Publication of JP2008203123A publication Critical patent/JP2008203123A/en
Application granted granted Critical
Publication of JP5093451B2 publication Critical patent/JP5093451B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device capable of observing a water surface wave or a ground surface state in a wide and necessary area, and a flow velocity of a water surface, and an on-water alighting or landing support device for an aircraft using the device. <P>SOLUTION: The water surface or ground surface observation device for the aircraft is mounted with a laser beam transceiver on the aircraft, the laser beam transceiver includes a means equipped with a mechanism capable of setting a transceiving direction to a downward direction, a front-downward direction and a lateral-downward direction, with respect to an airframe, and for accumulating angle information thereof and data of the transceived laser beams, and a means for processing the data. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、上空を飛行中の航空機から水面の波の状態及び流速又は地面の起伏を観測する方式、並びにその方式を利用した水上航空機の着水支援装置又は陸上航空機の着陸及び緊急着水支援装置に関するものである。航空機とは、一般的に飛行機、回転翼機、飛行船、熱気球を示すが、本発明は人工衛星や落下傘など、あらゆる飛行物体に適用することが原理的に可能である。水上航空機とは、水上機、飛行艇、着水可能な回転翼機や水陸両用機などである。水面とは、湖面、海面、川面などを含む。   The present invention relates to a method for observing the state of water surface waves and flow velocity or ground undulation from an aircraft flying in the sky, and a landing support device for a surface aircraft or landing and emergency landing support for a land aircraft using the method. It relates to the device. An aircraft generally indicates an airplane, a rotorcraft, an airship, or a hot air balloon, but the present invention can be applied in principle to any flying object such as an artificial satellite or a parachute. The surface aircraft is a surface aircraft, a flying boat, a rotorcraft capable of landing, an amphibious aircraft, and the like. The water surface includes a lake surface, a sea surface, a river surface, and the like.

通常、災害防止などのための水位、波高観測は、沿岸か海中に設置した波高計や水面に浮遊するブイの上下運動又は波の目視により実施されている。したがって、波高計やブイの設置場所又は目視可能範囲のみの観測情報が得られる。なお、波高計には超音波式、電波式、レーザ式などがあるが、いずれも有効レンジは数十メートル以下である。水面の流速についても、浮遊物の移動などの目視により観測されているため、浮遊物の有無や光線状態によっては観測不能な場合もある。   Usually, water level and wave height observation for disaster prevention etc. are carried out by wave height meter installed on the coast or in the sea, up and down movement of buoy floating on the water surface or visual observation of waves. Therefore, observation information of only the installation location or visible range of the wave height meter or buoy can be obtained. There are ultrasonic wave type, radio wave type, laser type, etc., all of which have an effective range of several tens of meters or less. Since the flow velocity on the water surface is also observed visually, such as the movement of suspended matter, it may not be observable depending on the presence or absence of suspended matter and the state of light.

水上航空機又は緊急時の陸上航空機が着水する場合の水面の波の状態は、操縦士が目視により確認している。したがって、光線状態が悪い場合や波高が制限値付近の場合は判断が難しい。事前予報あるいは無線連絡による気象情報の場合、範囲や時刻を詳細に指定することができないため、精度や信頼性が低い。我が国で開発された飛行艇の新明和式US−1型には、世界で唯一の航空機搭載用波高計が備えられているが、電波高度計の応用であり、波高・波長解析の機能を備えるが波の伝搬速度や流速を観測する機能はない。これらの情報検出用に他の装置を搭載することは設備投資の増大化を招き、好ましくない。波の状態及び流速又は地面の起伏を観測できる他の装置による置き換え又は多重化による冗長性増大は、コスト削減又は信頼性向上のために有効である。   The state of the waves on the surface of the water when a surface aircraft or a land aircraft in an emergency lands is visually confirmed by the pilot. Therefore, it is difficult to judge when the light beam state is bad or when the wave height is near the limit value. In the case of weather information by advance forecast or wireless communication, the range and time cannot be specified in detail, so accuracy and reliability are low. The Shin-Maywa US-1 type flying boat developed in Japan is equipped with the world's only wave height meter for airborne applications, but it is an application of a radio altimeter and has functions for wave height and wavelength analysis. There is no function to observe the wave propagation velocity or flow velocity. It is not preferable to install other devices for detecting these information because it increases capital investment. Increased redundancy by replacing or multiplexing with other devices capable of observing wave conditions and flow velocities or ground undulations is effective for cost reduction or increased reliability.

陸上航空機が舗装された滑走路以外に着陸する場合は、地上の観測者からの無線通報により地面の状態を把握する。しかし、緊急時等で地上に観測者がいない場合には、操縦者が目視により観測しており、充分な確認ができないことがある。例えばドルニエ式228型機の場合、1インチ以下の砂利で構成された河原等には、安全に着陸できるとされているが、操縦者が飛行中にそれを確認するのは、極めて困難である。   When a land aircraft lands other than a paved runway, the state of the ground is grasped by radio notification from a ground observer. However, when there is no observer on the ground in an emergency, etc., the pilot is observing visually, and there are cases where sufficient confirmation cannot be made. For example, in the case of the Dornier 228 aircraft, it is said that it can safely land on a riverbank composed of gravel less than 1 inch, but it is extremely difficult for the operator to check it during flight. .

飛行高度の計測については、高度に応じて、気圧高度計及び電波高度計が使い分けられており、これらについては特に問題なく使用されているが、他の装置による置き換え又は多重化による冗長性増大は、コスト削減又は信頼性向上のために有効である。特許文献1にはレーザ式高度計が提示されている。この発明は地表に図根点を置くことなく地形的情報の収集が柔軟かつ速やかに行える航空測量ができる装置を提供することを目的としたもので、飛行体を用いる地理的データの収集と処理を行う航空測量装置において、GPSは、測量装置の位置を、地表に図根点を置くことなく計測し、レーザ高度計コントローラは、レーザ光線照射器からレーザ光線が照射されてから目標物に反射され戻ってくるまでの時間から、目標物までの距離を計測する。これらの計測結果から、目標物の地形的情報が中央コンピュータにより計算される一方、レーザ光線を反射する鏡は、一定の軸を中心に回転するようになっている。この種のレーザ高度計は既に実用化されているが、高度計測の単機能しかなく、水面や地面の状態を観測する機能はない。なお、電波高度計の測定精度は数十センチであるため、航空機が着陸可能であるか否か地面の状態を判定するには精度が不足している。
特開平10−89958号公報 「航空測量装置」 平成10年4月10日公開
Regarding the measurement of flight altitude, the barometric altimeter and the radio altimeter are used properly according to the altitude, and these are used without any problem. However, the increase in redundancy due to replacement or multiplexing by other devices is costly. Effective for reducing or improving reliability. Patent Document 1 presents a laser altimeter. SUMMARY OF THE INVENTION An object of the present invention is to provide a device capable of aeronautical surveying that can flexibly and quickly collect topographic information without placing a map root on the ground surface. The GPS measures the position of the surveying device without placing the figure root on the ground surface, and the laser altimeter controller reflects the laser beam from the laser beam irradiator and then reflects it on the target. Measure the distance to the target from the time it takes to return. From these measurement results, the topographical information of the target is calculated by the central computer, while the mirror that reflects the laser beam rotates about a certain axis. This type of laser altimeter has already been put into practical use, but it has only a single function for altitude measurement and no function for observing the state of the water surface or ground. Since the measurement accuracy of the radio altimeter is several tens of centimeters, the accuracy is insufficient to determine whether or not the aircraft can land on the ground.
Japanese Patent Laid-Open No. 10-89958 “Aeronautical Surveying Device” released on April 10, 1998

本発明の目的課題は、上記の問題点を解決するもの、すなわち広範囲で且つ必要な領域の水面の波又は地面の状態及び水面の流速を観測できる装置、並びにその装置を利用した航空機の着水又は着陸支援装置を提供することにある。   An object of the present invention is to solve the above-mentioned problems, that is, a device capable of observing water surface waves or ground conditions in a wide area and a necessary region and a water surface velocity, and landing of an aircraft using the device. Another object is to provide a landing support device.

本発明の航空機用水面及び地面観測装置は、レーザ光送信機及び受信機を航空機に搭載し、前記レーザ光送受信機は機体に対し送受信方向を少なくとも下方向、下前方向、下側方向に設定可能な機構を備えると共に、その角度情報と送受信レーザ光のデータを蓄積する手段と、データ処理する手段とを備えたものとした。
本発明の航空機用水面及び地面観測装置の1つの使用方法は、測距機能を備えたレーザ光送信機及び受信機を航空機の下部に取り付け、飛行中にレーザ光を下方向にレーザを所定時間送受波し、該送受波信号に基づいて検出した距離データの平均値から飛行高度又は水位を、変化量から水面の波高値、若しくは地面の起伏を観測するものである。
本発明の航空機用水面及び地面観測装置の他の使用方法は、飛行中にレーザ光を既知の時間間隔でパルスを斜め下前方向、斜め下側方向に送信し、受信パルスの間隔の変化量に基づき、飛行中に水面の波の伝搬速度及び伝搬方位を観測するものである。また、送受信信号のデータ処理の一手法はドップラー効果に基づいて水面の流速を観測するものである。
本発明の航空機用水面及び地面観測装置の使用一形態は、上記の方法によって得られた観測データを航空機の着水又は着陸支援に用いるものである。
The aircraft water surface and ground observation apparatus of the present invention includes a laser beam transmitter and a receiver mounted on an aircraft, and the laser beam transmitter / receiver sets a transmission / reception direction to the aircraft at least in a downward direction, a downward front direction, and a downward direction. A mechanism capable of storing the angle information and transmission / reception laser beam data and a data processing unit are provided.
One method of using the aircraft water surface and ground observation apparatus of the present invention is to attach a laser beam transmitter and receiver having a distance measuring function to the lower part of the aircraft, and to direct the laser beam downward for a predetermined time during flight. Transmitting and receiving waves, and observing the flight altitude or water level from the average value of the distance data detected based on the transmitted and received signal, and observing the wave height value of the water surface or the undulation of the ground from the amount of change.
Another method of using the aircraft water surface and ground observation apparatus of the present invention is to transmit a laser beam at a known time interval during flight in a diagonally downward front direction and a diagonally downward direction, and a change amount of a reception pulse interval. Based on the above, the propagation speed and propagation direction of waves on the water surface are observed during flight. Also, one method of data processing of transmission / reception signals is to observe the flow velocity on the water surface based on the Doppler effect.
One mode of use of the aircraft water surface and ground observation apparatus of the present invention is to use observation data obtained by the above method for landing or landing support of an aircraft.

本発明の効果は、レーザ測距器を航空機に搭載することにより、その航空機が飛行中に下方の水面の波高や地面の起伏及び飛行高度を観測したり、飛行中に水面の波の伝搬速度や伝搬方位及び流速を観測する装置を提供するものである。本発明による観測装置は、航空機に搭載して津波や地形等の観測に利用できる。また、海面の波の伝搬速度や伝搬方向及び流速の観測により、海難事故時の漂流者や流木の移動予測に活用できる。さらに、本装置を水上航空機に搭載した場合、操縦士が着水予定の水面の状態を実時間で知ることができるため、着水可否の判断が容易になり、安全性が向上する。陸上航空機の着陸又は緊急着水の場合も、同様に安全性が向上する。また、本装置を電波高度計の代わりに使用した場合には、電波高度計の調達コスト及び無線局の維持コストを削減することができる。電波高度計に加えて使用した場合には、多重系が構成されるために高度計測の信頼性が向上する。   The effect of the present invention is that by mounting a laser range finder on an aircraft, the aircraft observes the wave height of the lower water surface, the undulation of the ground and the flight altitude during the flight, And an apparatus for observing the propagation direction and flow velocity. The observation apparatus according to the present invention can be mounted on an aircraft and used for observation of tsunamis, topography, and the like. In addition, it can be used to predict the movement of drifters and driftwood at the time of a maritime accident by observing the propagation velocity, propagation direction and flow velocity of waves on the sea surface. Furthermore, when this apparatus is mounted on a surface aircraft, the pilot can know the state of the water surface that is scheduled to land in real time, so it is easy to determine whether or not to land, and safety is improved. In the case of landing of a land aircraft or emergency landing, safety is similarly improved. Further, when this apparatus is used instead of a radio altimeter, the procurement cost of the radio altimeter and the maintenance cost of the radio station can be reduced. When used in addition to a radio altimeter, the reliability of altitude measurement is improved because a multiplex system is configured.

図1は、航空機1に搭載したレーザ式測距器2を利用して、飛行高度の計測及び上空から水面の波高を観測する原理を模式的に示した図である。
レーザ式測距器2を機体軸下向きに取り付けて、航空機1が水平飛行中に水面までの距離を計測すると、式[1]に示すように、レーザ式測距器2の距離計測値(d)にcosθを乗じた値(D)のt秒間の移動平均値が航空機1の平均飛行高度(H)を表し、Dのt秒間での変化量が最大波高(h)を表すものとなる。航空機1が移動した場合でも、航空機1が空中に停止して波が移動した場合でも同様に波高を観測することができる。なお、航空機1の姿勢角(θ)は航空機1に搭載されている一般的な航法装置から得ることができる。GPS等を利用した地球固定座標上の高度と前記平均飛行高度Hとを比較することにより、水位を算出することもできる。また、陸地上空で利用した場合には、平均飛行高度の計測及び陸地の起伏を同様に観測することができる。測距を実施する方式には、送信したレーザ光が受信されるまでの時間を計る方法や、送信光と受信光との位相差による「うなり」を利用する方法(ヘテロダイン法)などがあるが、それらはいずれも公知の技術である。

Figure 2008203123
ただし、
D:航空機と水面との鉛直方向の距離
d:レーザ式測距器の距離計測値
θ:航空機の姿勢角
H:航空機の平均飛行高度
h:最大波高
t:計測単位時間(数秒間) FIG. 1 is a diagram schematically showing the principle of measuring the flight altitude and observing the wave height of the water surface from above using a laser range finder 2 mounted on the aircraft 1.
When the laser range finder 2 is mounted face down and the distance to the water surface is measured while the aircraft 1 is flying horizontally, the distance measurement value (d) of the laser range finder 2 as shown in Equation [1]. ) Multiplied by cos θ, the moving average value for t seconds (D) represents the average flight altitude (H) of the aircraft 1, and the amount of change in D for t seconds represents the maximum wave height (h). Even when the aircraft 1 moves, the wave height can be observed similarly even when the aircraft 1 stops in the air and the waves move. The attitude angle (θ) of the aircraft 1 can be obtained from a general navigation device mounted on the aircraft 1. The water level can also be calculated by comparing the altitude on the earth fixed coordinates using GPS or the like with the average flight altitude H. In addition, when used over land, it is possible to measure the average flight height and observe land undulations in the same way. As a method for performing distance measurement, there are a method of measuring the time until the transmitted laser beam is received, and a method of using “beat” based on the phase difference between the transmitted beam and the received beam (heterodyne method). These are all known techniques.
Figure 2008203123
However,
D: Vertical distance between aircraft and water surface d: Distance measurement value of laser range finder θ: Attitude angle of aircraft H: Average flight altitude of aircraft h: Maximum wave height t: Measurement unit time (several seconds)

図2は、本発明により波の伝搬速度を観測する基本原理を模式的に示した図である。波の伝搬速度観測のためには、水平方向慣性速度Vで水平飛行またはホバリング中の航空機1に搭載された送信機3からレーザ光を斜め下向き(α角)に放射し、水面の波表面で乱反射されたレーザ光を航空機に搭載された受信機4で受信する。レーザ軸方向の波と航空機1との相対速度をUとすると、水面の波の伝搬速度のレーザ光放射方位水平成分(W)は次式[2]により求めることができる。なお、水面の上下運動は長時間の観測により相殺されるため無視できる。
W=U/sin(α+θ)−V ‥‥ [2]
ただし、
α:機体の下向きとレーザ光の放射方向とのなす角
θ:航空機の姿勢角
U:レーザ軸方向の波と航空機との相対速度
V:航空機の水平方向慣性速度
W:水面の波の伝搬速度のレーザ光放射方位水平成分
FIG. 2 is a diagram schematically showing the basic principle of observing the wave propagation speed according to the present invention. In order to observe the propagation velocity of the wave, a laser beam is emitted obliquely downward (α angle) from the transmitter 3 mounted on the aircraft 1 that is flying horizontally or hovering at a horizontal inertia velocity V, and the wave surface on the water surface The irregularly reflected laser light is received by the receiver 4 mounted on the aircraft. When the relative velocity between the wave in the laser axis direction and the aircraft 1 is U, the horizontal component (W) of the laser beam radiation azimuth of the wave propagation velocity on the water surface can be obtained by the following equation [2]. The vertical movement of the water surface can be ignored because it is offset by long-term observation.
W = U / sin (α + θ) −V [2]
However,
α: Angle between the aircraft's downward direction and the laser beam radiation direction θ: Aircraft attitude angle U: Relative velocity between the laser axis direction wave and the aircraft V: Aircraft horizontal inertia velocity W: Water surface wave propagation velocity Horizontal component of laser beam radiation

図3はレーザ軸方向の波と航空機1との相対速度(U)を求める方式を示す図である。機上の送信機3から等間隔の時間(τ)で送信されるパルス状のレーザ光は、水面で乱反射され、散乱光は送信機3と同じ場所に搭載された受信機4で受信される。光の伝搬速度をCとし、i番目のパルスが水面で反射する位置と航空機1との距離をdで表せば、最初に送信されるパルス光が以上のように往復する時間を2d/C、時間(τ)後に送信されるパルス光が往復する時間を2d/Cとすると、d−dが時間(τ)における、波と航空機1との間隔の変化量δとなり、受信されたパルス光のパルス間隔は、δをレーザ光が往復する時間だけ短くなる。続くパルス光についても同様に考えると、受信光のパルス間隔は次式[3]のτで表せる。
τ=τ−2δ/C ‥‥ [3]
ただし、
τ:送信光のパルス間隔
τ:受信光のパルス間隔
δ: 時間τでの波と航空機との間隔変化量
C: 光の伝搬速度
FIG. 3 is a diagram showing a method for obtaining the relative velocity (U) between the wave in the laser axis direction and the aircraft 1. The pulsed laser light transmitted from the transmitter 3 on the machine at equal intervals (τ T ) is irregularly reflected on the water surface, and the scattered light is received by the receiver 4 mounted at the same location as the transmitter 3. The If the propagation speed of light is C and the distance between the position where the i-th pulse is reflected on the water surface and the aircraft 1 is represented by d i , the time for the first transmitted pulsed light to reciprocate as described above is 2d 1 / C, where the time for which the pulsed light transmitted after time (τ T ) travels back and forth is 2d 2 / C, d 1 -d 2 is the amount of change δ between the wave and the aircraft 1 at time (τ T ). The pulse interval of the received pulsed light is shortened by δ when the laser light reciprocates. Considering the following pulse light in the same way, the pulse interval of the received light can be expressed by τ R in the following equation [3].
τ R = τ T -2δ / C [3]
However,
τ T : Transmitted light pulse interval τ R : Received light pulse interval δ: Change in distance between wave and aircraft at time τ T C: Light propagation speed

τの時間変化をグラフ化した例が図4(ア)である。実際のパルスレートは1kHzから100kHz程度が想定されるため、このような連続的な信号を得ることができる。なお、高レートで放射するほどδの絶対値が小さくなるため、1パルスあたりの測定精度は低くなるが、単位時間あたりに積分できるサンプル数が多くなるため、実際には高レートになるほど測定精度は高くなる。また、レーザ光が照射される波が隣接する波に移行する際に、瞬間的に波と航空機1との問隔が増加するために、τは図に示すように脈動することになる。この脈動部分は計測の誤差要因となるため、ローパスフィルターで除去することも可能であるが、より完全な除去のために、本発明では以下に示す手法を用いる。 example graph of the time variation of tau T is 4 (A). Since the actual pulse rate is assumed to be about 1 kHz to 100 kHz, such a continuous signal can be obtained. Note that the absolute value of δ decreases as the radiation rate increases, so the measurement accuracy per pulse decreases. However, the number of samples that can be integrated per unit time increases. Becomes higher. Further, when a wave irradiated with laser light shifts to an adjacent wave, the distance between the wave and the aircraft 1 instantaneously increases, so that τ R pulsates as shown in the figure. Since this pulsation part becomes a measurement error factor, it can be removed by a low-pass filter. However, for the more complete removal, the following method is used in the present invention.

まず、△=τ−τとして、求めた△の時間変化をグラフ化したものが図4(イ)である。次に、△を整流回路などにより整流して、脈動の大半を除去したものが、図4(ウ)の△である。さらに、平滑回路などにより包絡線を求めると、図4(エ)の△が得られる。これにより、△は△の最大値、つまりレーザ光が波の表面に対して直角に照射される条件での計測信号を得ることができる。なお、原理的には(ウ)の整流を省略することも可能であるが、平滑化を効率的に行うためには有効な手段である。 First, FIG. 4 (a) is a graph showing the time variation of Δ obtained as Δ = τ T −τ R. Then rectified by including rectifying circuit △, obtained by removing most of the pulsation, a △ R of FIG. 4 (c). Furthermore, when obtaining the envelope due smoothing circuit, the △ E of FIG. 4 (d) is obtained. Thus, △ E is the maximum value of △, i.e. it can be a laser beam to obtain a measurement signal of the condition to be irradiated at right angles to the surface of the waves. In principle, the rectification of (c) can be omitted, but it is an effective means for performing smoothing efficiently.

前項で求めた△は、δの距離をレーザ光が往復する時間を意味する。時間(τ)でレーザ軸方向の波と航空機1との距離がδ(時間τでの波と航空機1との間隔変化量)だけ変化することから、レーザ軸方向の波と航空機1との相対速度Uは式[4]により求めることができる。
U=C×△/2τ ‥‥ [4]
ただし、
U: レーザ軸方向の波と航空機との相対速度
τ:送信光のパルス間隔
:δの距離をレーザ光が往復する時間
C: 光の伝搬速度
Obtained in the previous section △ E means a time which the laser beam reciprocates distance [delta]. Since the distance between the wave in the laser axis direction and the aircraft 1 changes by time (τ T ) by δ (the amount of change in the distance between the wave and the aircraft 1 at time τ T) , the wave in the laser axis direction and the aircraft 1 Relative velocity U can be obtained by equation [4].
U = C × △ E / 2τ T ‥‥ [4]
However,
U: Relative speed between wave in laser axis direction and aircraft τ T : Transmitted light pulse interval Δ E : Time for laser light to reciprocate at δ distance C: Light propagation speed

以上の手法により、レーザ光が波の表面に対して直角に照射される条件での計測信号を得ることができるが、波の形状が極めて特異などの理由により、照射角が±30度の範囲で変化した場合、レーザ軸方向の波と航空機1との相対速度Uの計測誤差は最大で±33%となる。しかしながら、波の形状は一般に多種多様であり、時間的にも変化があることから、この誤差は平均化されて遥かに小さくなるのである。   By the above method, a measurement signal can be obtained under the condition that the laser beam is irradiated at right angles to the wave surface. However, the irradiation angle is in the range of ± 30 degrees because the wave shape is extremely unique. In this case, the maximum measurement error of the relative velocity U between the wave in the laser axis direction and the aircraft 1 is ± 33%. However, since the wave shapes are generally diverse and change over time, this error is averaged and much smaller.

次に式[4]により得られたU(レーザ軸方向の波と航空機との相対速度)を式[2]に代入することにより、W(水面の波の伝搬速度のレーザ光放射方位水平成分)を式[5]のように求めることができる。ここで、θ及びVは航空機1に搭載されている一般的な航法装置から得ることができ、αは装置取り付け時の固定値である。
W=C×△/{2τ×sin(α+θ)}−V ‥‥ [5]
ただし、
α: 機体の下向きとレーザ光の放射方向とのなす角
θ: 航空機の姿勢角
V: 航空機の水平方向慣性速度
W: 水面の波の伝搬速度のレーザ光放射方位水平成分
τ:送信光のパルス間隔
:δの距離をレーザ光が往復する時間
C: 光の伝搬速度
Next, by substituting U (relative velocity between the wave in the laser axis direction and the aircraft) obtained by Equation [4] into Equation [2], W (Laser Light Radiation Direction Horizontal Component of Wave Surface Propagation Speed) ) Can be obtained as shown in Equation [5]. Here, θ and V can be obtained from a general navigation device mounted on the aircraft 1, and α is a fixed value when the device is attached.
W = C × △ E / { 2τ T × sin (α + θ)} - V ‥‥ [5]
However,
α: Angle between the downward direction of the aircraft and the laser beam radiation direction θ: Aircraft attitude angle V: Aircraft horizontal inertia velocity W: Laser wave radiation velocity horizontal component of water surface wave propagation velocity τ T : Transmission light Pulse interval Δ E : Time required for the laser beam to reciprocate at a distance of δ C: Light propagation speed

レーザ光の放射方位を、航空機1の機首方位斜め下方及び水平面内でそれに直角方位の斜め下方の少なくとも2方位に変化させることにより、水面の波の伝搬速度のレーザ光放射方位水平成分を少なくとも2方位得ることが出来る。
図5は航空機1を上から見た平面図である。地球表面上の北方位をN、西方位をEで表すと、航空機1はψの方位に機首を向けて飛行している。波の伝搬速度の機首方位成分をWx、水平面内でそれに直角な方位の成分をWyとすると、水面の波の伝搬速度(Wt)及び航空機1との相対的な伝搬方位(ψw)は、式[6]により求めることができる。

Figure 2008203123
ただし、
Wt:水面の波の伝搬速度
Wx:波の伝搬速度の機首方位成分
Wy:波の伝搬速度の水平面内でWxに直角な方位の成分
ψw:航空機1との相対的な波の伝搬方位 By changing the radiation direction of the laser light to at least two directions of the aircraft head 1 obliquely below the heading direction and obliquely below the horizontal direction in the horizontal plane, at least the horizontal component of the laser light radiation direction of the wave propagation velocity on the water surface is changed. Two directions can be obtained.
FIG. 5 is a plan view of the aircraft 1 as viewed from above. When the north direction on the surface of the earth is represented by N and the west direction is represented by E, the aircraft 1 is flying with the nose directed in the direction of ψ. When the heading component of the wave propagation velocity is Wx and the component of the direction perpendicular to the horizontal plane is Wy, the wave propagation velocity (Wt) on the water surface and the relative propagation direction (ψw) with the aircraft 1 are It can be obtained from equation [6].
Figure 2008203123
However,
Wt: Wave propagation velocity on the water surface Wx: Heading component of wave propagation velocity Wy: Wave propagation velocity component perpendicular to Wx in the horizontal plane ψw: Wave propagation direction relative to aircraft 1

波の伝搬方位を地球表面上の方位で表す場合には、航空機に搭載された一般的な航法機器から得られる機体の方位角(ψ)を、前記観測方位(ψw)に重畳して、ψ+ψwとすればよい。
以上の原理により、水面の上空を水平飛行またはホバリング中の航空機から、水面の波の伝搬速度及び伝搬方位を観測することができる。
When the wave propagation azimuth is represented by the azimuth on the earth's surface, the azimuth angle (ψ) of the aircraft obtained from general navigation equipment mounted on the aircraft is superimposed on the observation azimuth (ψw), and ψ + ψw
Based on the above principle, it is possible to observe the propagation velocity and propagation direction of waves on the water surface from an aircraft flying horizontally or hovering over the water surface.

次に、水面の流速を観測する手法について説明する。水面の流速と波の伝搬速度とは、基本的に独立である。つまり、水面が流れていない状態であっても波が存在することはあるし、逆に水面が流れていても波が存在しないこともある。
図6に示すように、水平飛行またはホバリング中の航空機1に搭載された送信機3からレーザ光を斜め下方に照射し、水面で乱反射されたレーザ光を航空機1に搭載された受信機4で受信する。受信したレーザ光は水面の流速に応じてドップラー効果により振動数が変化するため、その変化量を送信光との差分として計測することにより、レーザ光放射軸方向の流速成分と航空機との相対速度(Sd)を算出することができる。ドップラー効果による振動数の変化は、特殊相対性理論を考慮した式[7]に示す式が知られている。

Figure 2008203123
ただし、
Sd: レーザ光放射軸方向の流速成分と航空機との相対速度
ν:送信光の振動数
ν:受信光の振動数
C: 光の伝搬速度
θd: Sdに対する測定点の移動方向の角度 Next, a method for observing the flow velocity on the water surface will be described. The water surface velocity and the wave propagation velocity are basically independent. That is, waves may exist even when the water surface is not flowing, and conversely, waves may not exist even when the water surface is flowing.
As shown in FIG. 6, laser light is irradiated obliquely downward from a transmitter 3 mounted on an aircraft 1 that is flying horizontally or hovering, and laser light irregularly reflected on the water surface is received by a receiver 4 mounted on the aircraft 1. Receive. The frequency of the received laser light changes due to the Doppler effect according to the flow velocity of the water surface, so the amount of change is measured as the difference from the transmitted light, so that the relative velocity between the velocity component in the laser beam radiation axis direction and the aircraft (Sd) can be calculated. As the change in the frequency due to the Doppler effect, an equation shown in Equation [7] in consideration of the special relativity theory is known.
Figure 2008203123
However,
Sd: Relative velocity between the velocity component in the laser beam emission axis direction and the aircraft ν T : Frequency of transmitted light ν R : Frequency of received light C: Light propagation velocity θd: Angle of measurement point moving direction with respect to Sd

式[7]において、(Sd/C)は1に対して極めて小さい値となるために、ここでは無視する。すると、Sdは式[7]を変形して式[8]により求めることができる。
Sd =C(ν−ν)/νcos(θd) ‥‥ [8]
ただし、
Sd: レーザ光放射軸方向の流速成分と航空機1との相対速度
ν:送信光の振動数
ν:受信光の振動数
C: 光の伝搬速度
θd: Sdに対する測定点の移動方向の角度
In Expression [7], (Sd / C) 2 is extremely small with respect to 1, and is ignored here. Then, Sd can be obtained from equation [8] by modifying equation [7].
Sd = C (ν R −ν T ) / ν R cos (θd) [8]
However,
Sd: Relative velocity between the velocity component in the laser beam emission axis direction and the aircraft 1 ν T : Frequency of transmitted light ν R : Frequency of received light C: Speed of light propagation θd: Angle of moving direction of measurement point with respect to Sd

航空機1に相対的な水面に沿う方向の流速成分(Ss)は、図7に示した幾何解析図から分かるように式[9]で求めることができ、水平方向の流速成分(Sh)は、式[10]で求めることができる。
Ss=Sd/cos(θd) ‥‥ [9]
ただし、
Sd:レーザ光放射軸方向の流速成分と航空機との相対速度
Ss:航空機に相対的な水面に沿う方向の流速成分
θd:Sdに対する測定点の移動方向の角度
Sh=Ss×cos(θw)−V ‥‥ [10]
ただし、
Sh:水平方向の流速成分
Ss:航空機に相対的な水面に沿う方向の流速成分
θw:水面の傾斜角
V: 航空機の水平方向憤性速度
The flow velocity component (Ss) in the direction along the water surface relative to the aircraft 1 can be obtained by the equation [9] as can be seen from the geometric analysis diagram shown in FIG. 7, and the horizontal flow velocity component (Sh) is It can obtain | require by Formula [10].
Ss = Sd / cos (θd) [9]
However,
Sd: Flow velocity component in the direction of the laser beam emission axis and the relative velocity between the aircraft Ss: Flow velocity component in the direction along the water surface relative to the aircraft θd: Angle of movement direction of the measurement point with respect to Sd Sh = Ss × cos (θw) − V [10]
However,
Sh: horizontal velocity component Ss: velocity component along the water surface relative to the aircraft θw: inclination angle of the water surface V: horizontal inertia velocity of the aircraft

図7で分かるとおり、θd=θw+90°−α−θの関係にあり、式[8][9][10]から、Sh(水平方向の流速成分)は式[11]で表すことができる。

Figure 2008203123
ただし、
Sd: レーザ光放射軸方向の流速成分と航空機との相対速度
ν:送信光の振動数
ν:受信光の振動数
C: 光の伝搬速度
θd: Sdに対する測定点の移動方向の角度
V: 航空機の水平方向慣性速度
Ss: 航空機に相対的な水面に沿う方向の流速成分
Sh: 水平方向の流速成分
θw: 水面の傾斜角
α: 機体の下向きとレーザ光の放射方向とのなす角
θ: 航空機の姿勢角 As can be seen from FIG. 7, there is a relationship of θd = θw + 90 ° −α−θ, and Sh (horizontal flow velocity component) can be expressed by equation [11] from equations [8], [9], and [10].
Figure 2008203123
However,
Sd: Relative velocity between the flow velocity component in the laser beam emission axis direction and the aircraft ν T : Frequency of transmitted light ν R : Frequency of received light C: Light propagation velocity θd: Angle of movement of measurement point relative to Sd V : Horizontal inertial velocity of the aircraft Ss: Flow velocity component along the water surface relative to the aircraft Sh: Horizontal flow velocity component θw: Angle of inclination of the water surface α: Angle between the downward direction of the aircraft and the radiation direction of the laser beam θ : Aircraft attitude angle

なお、水面の流速は短時間で変化するものではなく、且つ利用する際に必要なのは、数分間程度以上の長時間の平均値である。長時間の平均をとれば、波による傾斜角(θw)は相殺されて0になる。したがって、式[11]は式[12]のように簡略化される。
Sh=C(ν−ν)/νsin(α+θ)−V ‥‥ [12]
ただし、
Sh: 航空機に相対的な水平方向の流速成分
V: 航空機の水平方向慣性速度
ν:送信光の振動数
ν:受信光の振動数
C: 光の伝搬速度
α: 機体の下向きとレーザ光の放射方向とのなす角
θ: 航空機の姿勢角
In addition, the flow velocity on the water surface does not change in a short time, and what is required for use is an average value for a long time of about several minutes or more. If the average for a long time is taken, the tilt angle (θw) due to the wave is canceled out to zero. Therefore, Expression [11] is simplified as Expression [12].
Sh = C (ν R −ν T ) / ν R sin 2 (α + θ) −V [12]
However,
Sh: Horizontal flow velocity component relative to the aircraft V: Horizontal inertia velocity of the aircraft ν T : Frequency of transmitted light ν R : Frequency of received light C: Light propagation speed α: Aircraft downward and laser light The angle formed by the direction of radiation θ: Aircraft attitude angle

また、上記説明では水面の上下運動について言及していないが、これについても長時間の平均をとれば、相殺されて0となるために無視しても良い。
レーザ光の放射方位を、航空機1の機首方位斜め下方及び水平面内でそれに直角方位の斜め下方の少なくとも2方位に変化させることにより、水面の流速のレーザ光放射方位水平成分が少なくとも2方位得られる。
In the above description, the vertical movement of the water surface is not mentioned, but if this is also taken for an average over a long period of time, it can be neglected because it is offset to zero.
By changing the radiation direction of the laser beam to at least two directions, that is, the heading direction of the aircraft 1 obliquely below and the direction perpendicular to the right angle within the horizontal plane, the horizontal component of the laser beam radiation direction horizontal direction at least two directions can be obtained. It is done.

図8は航空機1を上から見た平面図である。地球表面上の北方位をN、西方位をEで表すと、航空機1はψの方位に機首を向けて飛行している。水面の流速の機首方位成分をShx、水平面内でそれに直角な方位の成分をShyとすると、水面の流速(Sht)及び航空機1との相対的な水流方位(ψs)は、式[13]により求めることができる。

Figure 2008203123
ただし、
Sht:水面の流速
Shx:水面の流速の機首方位成分
Shy:水面の流速の水平面内でShxに直角な方位の成分
ψs: 航空機との相対的な水流方位 FIG. 8 is a plan view of the aircraft 1 as viewed from above. When the north direction on the surface of the earth is represented by N and the west direction is represented by E, the aircraft 1 is flying with the nose directed in the direction of ψ. Assuming that the heading direction component of the water surface velocity is Shx and the component in the direction perpendicular to the horizontal surface is Shy, the water surface velocity (Sht) and the relative water flow direction (ψs) with the aircraft 1 are expressed by the equation [13]. It can ask for.
Figure 2008203123
However,
Sht: Flow velocity on the surface of the water Shx: Nose direction component of the velocity of the surface of the water Shhy: Component of the direction of the flow velocity of the water surface in the direction perpendicular to the Shx ψs: Flow direction relative to the aircraft

水流方位を地球表面上方位で表す場合には、航空機1に搭載された一般的な航法機器から得られる機体の方位角(ψ)を、前記観測方位(ψs)に重畳して、ψ+ψsとすればよい。
以上の原理により、水面の上空を水平飛行またはホバリング中の航空機から、水面の流速及び水流方位を観測することができる。
In the case where the water current direction is expressed in the direction on the earth's surface, the azimuth angle (ψ) of the airframe obtained from a general navigation device mounted on the aircraft 1 is superimposed on the observation direction (ψs) and is expressed as ψ + ψs. That's fine.
Based on the above principle, the velocity and direction of the water surface can be observed from an aircraft flying horizontally or hovering over the water surface.

以下では、本発明による装置を飛行艇に搭載した例を図9に示し、本実施例について記述する。信号処理回路が含まれたレーザ送受信機2(3)び表示器4を機内に搭載して、操縦士が観測情報を監視できるようにする。飛行艇の場合は胴体から着水するので、外部に露出する光学部5は破損を避けるために主翼の下面に取り付ける。このとき、通常の飛行状態ではθの変化が10度以下であるため、予め鉛直線と光学部中心線との差の平均値が最少になるように着水時の諸元を考慮して光学部を取り付けておけば、cosθは1としても問題ない。航空機の水平方向慣性速度と波の伝搬速度との差を100m/sとし、レーザ光のパルス周期を10kHzとすると、水平1cmの分解能で波高を観測することができる。海面の水位については、GPSを利用した高度情報との比較により算出する。なお、信号の平均値及び変化量を求める具体的な手段としては、電子回路によるローパスフィルタ及びローカットフィルタの使用が簡便である。   Hereinafter, an example in which the apparatus according to the present invention is mounted on a flying boat is shown in FIG. 9, and this embodiment will be described. A laser transceiver 2 (3) and a display 4 including a signal processing circuit are installed in the aircraft so that the pilot can monitor observation information. In the case of a flying boat, water lands from the fuselage, so the optical unit 5 exposed to the outside is attached to the lower surface of the main wing to avoid damage. At this time, since the change of θ is 10 degrees or less in a normal flight state, the optical characteristics are taken into consideration in consideration of specifications at the time of landing so that the average value of the difference between the vertical line and the optical center line is minimized in advance. If the part is attached, there is no problem even if cos θ is 1. If the difference between the horizontal inertia velocity of the aircraft and the wave propagation velocity is 100 m / s and the pulse period of the laser light is 10 kHz, the wave height can be observed with a resolution of 1 cm horizontally. The sea level is calculated by comparison with altitude information using GPS. As specific means for obtaining the average value and change amount of the signal, it is easy to use a low-pass filter and a low-cut filter by an electronic circuit.

図10は水面の波の伝搬方位、伝搬速度及び水面の流速を観測する場合の概念図を示す。Aは航空機の進行方向斜め下方向及びBは横方向斜め下方向にレーザ光を照射することにより観測を行う。航空機進行方向の波の伝搬速度及び水面の流速、並びに横方向の波の伝搬速度及び水面の流速を観測することができる。このとき、横方向観測時の姿勢角としてはバンク角を使用する。波の伝搬方位及び水流の方位を地球表面上の東西南北で表す場合には、航空機に搭載した航法用のジャイロの機首方位データを観測方位に重畳すればよい。   FIG. 10 is a conceptual diagram in the case of observing the propagation direction, propagation speed, and flow velocity on the water surface. A is observed by irradiating the laser beam obliquely downward in the traveling direction of the aircraft and B is obliquely inclined downward in the lateral direction. It is possible to observe the wave propagation speed and water surface velocity in the aircraft traveling direction, and the wave propagation speed and water surface velocity in the transverse direction. At this time, the bank angle is used as the posture angle during lateral observation. When the wave propagation direction and the water current direction are expressed in the east, west, north, and south directions on the earth's surface, the heading data of the navigation gyro mounted on the aircraft may be superimposed on the observation direction.

図11は単一の装置で飛行高度及び水面の波高並びに波の伝搬方位、伝搬速度及び水面の流速を観測するための搭載例を示す。本装置はレーザ送受信機2(3)と光学部5とが光ファイバ6で接続されており、光学部5の搭載性の自由度は高い。前記光学部の前面にはレーザ光の偏向用回転プリズム7を取り付け、サーボモータを内蔵したプリズム回転機8でプリズムを回転させることにより、プリズム回転軸から角βの振れ角で円錐状にレーザ光を走査させることができる。角βを39.23度とし、図12のように、装置の取り付け角を機体の下向きに対して前から見ても横から見ても30度とした場合、レーザ光は航空機の直下、60度前方、60度横方向を照射することができ、光軸をそれぞれの方向に停止させた状態で、各観測を実施する。なお、図中に示すレーザ光走査面は、水平面との交わりを描いたものではなく、プリズム回転軸と垂直な面との交わりを表したものであるため、0度から30度と、30度から60度とが等間隔となっている。   FIG. 11 shows a mounting example for observing the flight altitude, the wave height of the water surface, the wave propagation direction, the propagation velocity, and the water surface flow velocity with a single device. In this apparatus, the laser transmitter / receiver 2 (3) and the optical unit 5 are connected by an optical fiber 6, and the degree of freedom of mounting of the optical unit 5 is high. A rotating prism 7 for deflecting laser light is attached to the front surface of the optical unit, and the prism is rotated by a prism rotator 8 having a built-in servo motor. Can be scanned. When the angle β is 39.23 degrees, and the mounting angle of the apparatus is 30 degrees when viewed from the front and the side with respect to the downward direction of the aircraft as shown in FIG. Each observation can be performed with the optical axis being stopped in the respective directions. Note that the laser beam scanning plane shown in the figure does not depict the intersection with the horizontal plane, but represents the intersection with the plane perpendicular to the prism rotation axis. From 60 degrees are equally spaced.

前項の如く装置を搭載すれば、レーザ光が航空機の直下を照射した際に、飛行高度及び水面の波高を観測し、レーザ光が航空機の60度前方、60度横方向を照射した際に、波の伝搬方位、伝搬速度及び水面の流速を観測することができる。
レーザ光を利用して距離を測る方式は公知の技術として、パルス光の往復時間を測る方法や、送信光と受信光との位相差による「うなり」を利用する方法などがあるが、いずれも本発明による装置に組み込み可能な技術である。
航空機の水平方向慣性速度、姿勢角、バンク角、方位角については、航空機に通常搭載されている慣性航法装置等からの信号を利用する。
If the device is installed as in the previous section, when the laser beam irradiates directly under the aircraft, the flight altitude and the wave height of the water surface are observed, and when the laser beam irradiates 60 degrees forward and 60 degrees laterally of the aircraft, Wave propagation direction, propagation velocity and water surface velocity can be observed.
There are known methods for measuring the distance using laser light, such as a method of measuring the round-trip time of pulsed light and a method of using “beat” based on the phase difference between transmitted light and received light. This is a technique that can be incorporated into the apparatus according to the present invention.
As for the horizontal inertia velocity, attitude angle, bank angle, and azimuth angle of an aircraft, signals from an inertial navigation device or the like normally mounted on the aircraft are used.

人体に対するレーザ光の安全性については、測量用の測距器と同程度であるが、遠距離化のために高出力レーザを使用した場合でも、機体の運動やレーザ光の走査により1点を指向することがなく、極めて安全性が高いといえる。特に1.5μm帯のレーザ光は、アイセイフティ・レーザと呼ばれ、光通信で利用されているために実用性が高い。   The safety of laser light for the human body is similar to that of surveying rangefinders. However, even when a high-power laser is used to increase the distance, one point is determined by the movement of the aircraft and scanning of the laser light. It is not oriented and can be said to be extremely safe. In particular, a 1.5 μm band laser beam is called an eye safety laser and is highly practical because it is used in optical communications.

本発明による飛行高度の計測及び波高の観測をする原理説明図である。It is principle explanatory drawing which measures the flight height by this invention, and observes a wave height. 本発明による波の伝搬速度を観測する原理説明図である。It is principle explanatory drawing which observes the propagation velocity of the wave by this invention. 本発明によるレーザ軸方向の波と航空機1との相対速度(U)を求める方式を示す図である。It is a figure which shows the system which calculates | requires the relative velocity (U) of the wave of the laser axis direction and the aircraft 1 by this invention. 本発明による波の伝搬速度を求める方式を示す図である。It is a figure which shows the system which calculates | requires the propagation velocity of the wave by this invention. 本発明による波の伝搬速度及び伝搬方位を求める方式を説明する図である。It is a figure explaining the system which calculates | requires the propagation speed and propagation direction of the wave by this invention. 本発明による水面の流速を観測する原理説明図である。It is principle explanatory drawing which observes the flow velocity of the water surface by this invention. 本発明による水面の流速を求める方式を示す図である。It is a figure which shows the system which calculates | requires the flow velocity of the water surface by this invention. 本発明によ水面の流速及び水流方位を求める方式を説明する図である。It is a figure explaining the system which calculates | requires the flow velocity and water flow direction of a water surface by this invention. 本発明による水面及び地面観測装置を飛行艇に搭載した例を示す図である。It is a figure which shows the example which mounted the water surface and ground observation apparatus by this invention in the flying boat. 本発明による水面及び地面観測装置を航空機に搭載した場合の観測方式例を示す概念図である。It is a conceptual diagram which shows the example of an observation system at the time of mounting the water surface and ground observation apparatus by this invention on an aircraft. 本発明による水面及び地面観測装置を単一の装置として航空機に搭載した場合の例を示す図である。It is a figure which shows the example at the time of mounting the water surface and ground observation apparatus by this invention on an aircraft as a single apparatus. 本発明による水面及び地面観測装置を航空機に搭載した場合の光学部の搭載方向例を示す図である。It is a figure which shows the example of the mounting direction of the optical part at the time of mounting the water surface and ground observation apparatus by this invention on an aircraft.

符号の説明Explanation of symbols

1 航空機 2 レーザ送信機
3 レーザ受信機 4 表示器
5 光学部 6 光ファイバ
7 偏向プリズム 8 プリズム回転機
α 機体の下向きとレーザ光の放射方向とのなす角
β レーザ光の偏向角 δ 時間τでの波と航空機との間隔変化量
θ 航空機の姿勢角 θd Sdに対する測定点の移動方向の角度
θw 水面の傾斜角 τ 送信光のパルス間隔
τ 受信光のパルス間隔 τRn n番目のτ
ψ 航空機の機首方位 ψs 航空機との相対的な水流方位
ψw 航空機との相対的な波の伝搬方位
△ τ−τ
△を整流したもの △ δの距離をレーザ光が往復する時間
C 光の伝搬速度 D 航空機と水面との鉛直方向の距離
H 航空機の平均飛行高度 U レーザ軸方向の波と航空機1との相対速度
V 航空機の水平方向慣性速度
Sh 水平方向の流速成玲
Ss 航空機に相対的な水面に沿う方向の流速成分
W 水面の波の伝搬速度のレーザ光放射方位水平成分
d レーザ式測距器の距離計測値 h 最大波高
t 計測単位時間(数秒間) Wt 波の伝搬速度
Wx 波の伝搬速度の機首方位成分
Wy 波の伝搬速度の水平面内でWxに直角な方位の成分
Sht 水面の流速 Shx 水面の流速の機首方位成分
Shy 水面の流速の水平面内でShxに直角な方位の成分
DESCRIPTION OF SYMBOLS 1 Aircraft 2 Laser transmitter 3 Laser receiver 4 Indicator 5 Optical part 6 Optical fiber 7 Deflection prism 8 Prism rotator α Angle formed by the downward direction of the machine and the radiation direction of the laser beam β Deflection angle of the laser beam δ Time τ T Amount of change in distance between wave and aircraft at θ θ Attitude angle of aircraft θd Angle of movement direction of measurement point with respect to Sd θw Tilt angle of water surface τ T Pulse interval of transmitted light τ R Pulse interval of received light τ Rn nth τ R
ψ Aircraft heading ψs Water flow direction relative to aircraft ψw Wave propagation direction relative to aircraft △ τ T −τ R
R rectified △ E δ Time for laser light to reciprocate at δ C Light propagation speed D Distance in vertical direction between aircraft and water surface H Average flight altitude of aircraft U Waves in laser axis direction and aircraft 1 Relative velocity of aircraft V Inertial velocity of aircraft in the horizontal direction Sh Flow velocity in the horizontal direction Ss Flow velocity component in the direction along the water surface relative to the aircraft W Laser wave radiation direction horizontal component of wave propagation velocity on the water surface d Laser range finder Distance measurement value h Maximum wave height t Measurement unit time (several seconds) Wt Wave propagation velocity Wx Wave propagation velocity heading component Wy Wave propagation velocity component in a direction perpendicular to Wx in the horizontal plane Sht Water surface velocity Shx Nose direction component of the water surface velocity Shy Component of the azimuth direction perpendicular to Shx within the horizontal surface velocity of the water surface

Claims (5)

レーザ光送信機及び受信機を航空機に搭載し、前記レーザ光送受信機は機体に対し送受信方向を少なくとも下方向、下前方向、下側方向に設定可能な機構を備えると共に、その角度情報と送受信レーザ光のデータを記憶蓄積する手段と、データ処理する手段とを備えたものである航空機用水面及び地面観測装置。   A laser beam transmitter and receiver are mounted on an aircraft, and the laser beam transmitter / receiver has a mechanism capable of setting a transmission / reception direction at least in a downward direction, a downward front direction, and a downward direction with respect to the aircraft, and transmits and receives angle information thereof An aircraft water surface and ground observation apparatus comprising means for storing and storing laser light data and means for processing data. 測距機能を備えたレーザ光送信機及び受信機を航空機の下部に取り付け、飛行中にレーザ光を下方向にレーザを所定時間送受波し、該送受波信号に基づいて検出した距離データの平均値から飛行高度を、変化量から水面の波高値、若しくは地面の起伏を観測するものである請求項1に記載の航空機用水面及び地面観測装置の使用方法。   A laser beam transmitter and receiver equipped with a distance measuring function are attached to the lower part of the aircraft, the laser beam is transmitted and received for a predetermined time during flight, and the average of the distance data detected based on the transmitted and received signal The method of using an aircraft water surface and ground observation device according to claim 1, wherein the flight altitude is observed from the value, the crest value of the water surface from the amount of change, or the undulation of the ground. 飛行中にレーザ光を既知の時間間隔でパルスを下前方向、下横方向に送信し、受信パルスの間隔の変化量に基づき、飛行中に水面の波の伝搬速度及び伝搬方位を観測するものである請求項1に記載の航空機用水面及び地面観測装置の使用方法。   A laser beam is transmitted in a forward and downward direction at known time intervals during flight, and the propagation velocity and propagation direction of waves on the water surface are observed during flight based on the amount of change in the interval between received pulses. The method of using the aircraft water surface and ground observation device according to claim 1. データ処理はドップラー効果に基づいて水面の流速を観測するものである請求項3に記載の航空機用水面観測装置の使用方法。   4. The method of using an aircraft water surface observation apparatus according to claim 3, wherein the data processing is to observe the flow velocity of the water surface based on the Doppler effect. 請求項2乃至4のいずれかに記載の方法によって得られた観測データを航空機の着水又は着陸支援に用いるものである請求項1に記載の航空機用水面及び地面観測装置の使用方法。   The method for using the aircraft water surface and ground observation device according to claim 1, wherein the observation data obtained by the method according to any one of claims 2 to 4 is used for landing or landing support of an aircraft.
JP2007040397A 2007-02-21 2007-02-21 Aircraft surface and ground observation equipment Expired - Fee Related JP5093451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040397A JP5093451B2 (en) 2007-02-21 2007-02-21 Aircraft surface and ground observation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040397A JP5093451B2 (en) 2007-02-21 2007-02-21 Aircraft surface and ground observation equipment

Publications (2)

Publication Number Publication Date
JP2008203123A true JP2008203123A (en) 2008-09-04
JP5093451B2 JP5093451B2 (en) 2012-12-12

Family

ID=39780793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040397A Expired - Fee Related JP5093451B2 (en) 2007-02-21 2007-02-21 Aircraft surface and ground observation equipment

Country Status (1)

Country Link
JP (1) JP5093451B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011113516A1 (en) * 2010-03-19 2011-09-22 Airbus Operations Gmbh Method and system for controlling an aircraft component during a water landing
RU2492121C2 (en) * 2011-12-02 2013-09-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" Method of amphibian takeoff/landing signaling
JP2016085169A (en) * 2014-10-28 2016-05-19 三菱電機株式会社 Support device for taking off and landing on water
CN106199562A (en) * 2016-07-06 2016-12-07 山东省科学院海洋仪器仪表研究所 The sea error calibration method of sea-floor relief is measured based on airborne laser radar
US9586694B2 (en) 2014-02-11 2017-03-07 Suokas Avionics Oy Safety arrangement for aircraft and method for determining type of the landing surface for an aircraft
WO2017110538A1 (en) * 2015-12-22 2017-06-29 株式会社プロドローン Water level measurement system and water level control system, as well as water level measurement method and water level control method that use same
JP2017530043A (en) * 2015-07-02 2017-10-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Drone, control system and method thereof, and drone landing control method
JPWO2021229719A1 (en) * 2020-05-13 2021-11-18
WO2021241534A1 (en) * 2020-05-29 2021-12-02 富士フイルム株式会社 Aerial photography system and method
JP2022066942A (en) * 2020-10-19 2022-05-02 ヤマハ発動機株式会社 Measuring system and measuring method
EP3517998B1 (en) * 2018-01-24 2023-12-06 Leica Geosystems AG Airborne lidar pulse rate modulation
DE102022129525A1 (en) 2022-11-08 2024-05-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for determining the height of water waves

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138885A (en) * 1974-04-23 1975-11-06
JPH0587823A (en) * 1991-03-29 1993-04-06 Raytheon Co Device and method of detecting direction of wind
JPH08278129A (en) * 1995-04-06 1996-10-22 Japan Radio Co Ltd Wave period detection device
JPH09126860A (en) * 1995-10-30 1997-05-16 Koden Electron Co Ltd Laser type liquid level gauge
JPH1089958A (en) * 1996-09-13 1998-04-10 Airborne Remote Mapping Inc Aerial surveying apparatus
JPH10318743A (en) * 1997-05-19 1998-12-04 Nakanihon Koku Kk Method and apparatus for surveying by using flying object
JPH11202047A (en) * 1998-01-08 1999-07-30 Toshiba Corp Speed-measuring device
JP2000310678A (en) * 1999-04-28 2000-11-07 Oki Electric Ind Co Ltd Wave observation system with radar
JP2000321353A (en) * 1999-05-13 2000-11-24 Mitsubishi Electric Corp Radar device
JP2004219179A (en) * 2003-01-10 2004-08-05 Public Works Research Institute Open channel flow rate observation method using noncontact type current meter, and its device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138885A (en) * 1974-04-23 1975-11-06
JPH0587823A (en) * 1991-03-29 1993-04-06 Raytheon Co Device and method of detecting direction of wind
JPH08278129A (en) * 1995-04-06 1996-10-22 Japan Radio Co Ltd Wave period detection device
JPH09126860A (en) * 1995-10-30 1997-05-16 Koden Electron Co Ltd Laser type liquid level gauge
JPH1089958A (en) * 1996-09-13 1998-04-10 Airborne Remote Mapping Inc Aerial surveying apparatus
JPH10318743A (en) * 1997-05-19 1998-12-04 Nakanihon Koku Kk Method and apparatus for surveying by using flying object
JPH11202047A (en) * 1998-01-08 1999-07-30 Toshiba Corp Speed-measuring device
JP2000310678A (en) * 1999-04-28 2000-11-07 Oki Electric Ind Co Ltd Wave observation system with radar
JP2000321353A (en) * 1999-05-13 2000-11-24 Mitsubishi Electric Corp Radar device
JP2004219179A (en) * 2003-01-10 2004-08-05 Public Works Research Institute Open channel flow rate observation method using noncontact type current meter, and its device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011113516A1 (en) * 2010-03-19 2011-09-22 Airbus Operations Gmbh Method and system for controlling an aircraft component during a water landing
RU2492121C2 (en) * 2011-12-02 2013-09-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" Method of amphibian takeoff/landing signaling
US9586694B2 (en) 2014-02-11 2017-03-07 Suokas Avionics Oy Safety arrangement for aircraft and method for determining type of the landing surface for an aircraft
JP2016085169A (en) * 2014-10-28 2016-05-19 三菱電機株式会社 Support device for taking off and landing on water
US10669024B2 (en) 2015-07-02 2020-06-02 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle, control system and method thereof, and unmanned aerial vehicle landing control method
JP2017530043A (en) * 2015-07-02 2017-10-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Drone, control system and method thereof, and drone landing control method
US10408617B2 (en) 2015-12-22 2019-09-10 Prodrone Co., Ltd. Water level measurement system and water level control system, and water level measurement method and water level control method using such systems
WO2017110538A1 (en) * 2015-12-22 2017-06-29 株式会社プロドローン Water level measurement system and water level control system, as well as water level measurement method and water level control method that use same
CN106199562A (en) * 2016-07-06 2016-12-07 山东省科学院海洋仪器仪表研究所 The sea error calibration method of sea-floor relief is measured based on airborne laser radar
EP3517998B1 (en) * 2018-01-24 2023-12-06 Leica Geosystems AG Airborne lidar pulse rate modulation
JP7170941B2 (en) 2020-05-13 2022-11-14 三菱電機株式会社 Position estimation device, position estimation method, and radar system
JPWO2021229719A1 (en) * 2020-05-13 2021-11-18
WO2021229719A1 (en) * 2020-05-13 2021-11-18 三菱電機株式会社 Position estimation device, position estimation method, and radar system
WO2021241534A1 (en) * 2020-05-29 2021-12-02 富士フイルム株式会社 Aerial photography system and method
JP7436657B2 (en) 2020-05-29 2024-02-21 富士フイルム株式会社 Flight photography system and method
JP7200191B2 (en) 2020-10-19 2023-01-06 ヤマハ発動機株式会社 Measuring system and measuring method
JP2022066942A (en) * 2020-10-19 2022-05-02 ヤマハ発動機株式会社 Measuring system and measuring method
DE102022129525A1 (en) 2022-11-08 2024-05-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for determining the height of water waves

Also Published As

Publication number Publication date
JP5093451B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5093451B2 (en) Aircraft surface and ground observation equipment
US7561067B2 (en) Airspeed / wind speed measurement device for aircraft, and display device for same
US8354951B2 (en) Short baseline helicopter positioning radar for low visibility
US9257050B2 (en) Airplane position assurance monitor
JP5414540B2 (en) Optical system for determining and displaying aircraft position and status during aircraft landing and takeoff
JP5376459B2 (en) Optical air data sensor
EP2366130B1 (en) Measuring of a landing platform of a ship
US20220365224A1 (en) Radar altimeter augmented receiver autonomous integrity monitoring in aircraft
EP3301457B1 (en) Laser air data sensor mounting and operation for eye safety
JP2003014845A (en) Wind disturbance prediction system
JP2019182075A (en) Gust response reduction system of aircraft, air turbulence detection system, shake estimation system, doppler lidar, and gust response reduction method for aircraft
US20110130898A1 (en) Method and System for Assisting in the Landing or the Decking of a Light Aircraft
RU2561496C1 (en) Radar station for facilitating safe helicopter landing in conditions without or with limited visibility
JP7454848B2 (en) Aircraft landing guidance support system and aircraft landing integrated support system including the same
EP3640592B1 (en) A navigation system
RU2386176C2 (en) Aircraft landing system
US20200049625A1 (en) Apparatus and method for laser particle sensor eye safety
JP3413777B2 (en) Landing support sensor device and landing support sensor device
KR102185898B1 (en) System and method for measuring wave height of ocean
US11358735B2 (en) Ground proximity warning system for an aircraft, associated avionics and method
RU2214943C1 (en) Method of landing flying vehicle
RU2650415C1 (en) Method and device for aerometric measurements of wind parameters on the board of the aircraft
RU2758526C1 (en) Method for preventing an aircraft from getting into a vortex track of a vortex generator aircraft
Matayoshi et al. Flight test evaluation of a helicopter airborne lidar
JP2004264212A (en) Vessel monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees