JP2008202145A - Substrate supporting/rotating device - Google Patents

Substrate supporting/rotating device Download PDF

Info

Publication number
JP2008202145A
JP2008202145A JP2008059146A JP2008059146A JP2008202145A JP 2008202145 A JP2008202145 A JP 2008202145A JP 2008059146 A JP2008059146 A JP 2008059146A JP 2008059146 A JP2008059146 A JP 2008059146A JP 2008202145 A JP2008202145 A JP 2008202145A
Authority
JP
Japan
Prior art keywords
substrate
end surface
cylindrical member
central axis
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008059146A
Other languages
Japanese (ja)
Inventor
Naoyuki Nozawa
直之 野沢
Terushige Takeyama
輝茂 竹山
Miho Sakai
美保 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2008059146A priority Critical patent/JP2008202145A/en
Publication of JP2008202145A publication Critical patent/JP2008202145A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate supporting/rotating device which receives a substrate without moving a carried substrate holder, and can rotate the substrate on that spot, and to provide a substrate supporting mechanism. <P>SOLUTION: The substrate supporting/rotating mechanism includes: a hollow columnar member; a central axis fitted to the hollow part so as to be energized to either of the axial directions by a first spring, and in which a taper part is formed at one end part; and radial direction moving members as a plurality of moving members provided at one end face of the columnar member and moving to the radial direction, provided with a claw supporting the inner circumferential edge face of a substrate at the outer circumferential side, and energized to the central axis direction by a second spring, wherein the movement in the axial direction of the central axis is transformed into the movement in the radial direction of the radial direction moving members, so as to perform the support and release of the substrate. Furthermore, a mechanism of allowing the substrate supporting mechanism to move to the axial direction and to rotate, and a mechanism of allowing the central axis to move to the axial direction are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は中心部に開口を有する基板の支持機構及び基板支持回転装置に係り、特に、基板に薄膜形成等の処理を行う真空処理装置に好適に用いられる基板支持機構及び基板支持回転装置に関する。   The present invention relates to a substrate support mechanism and a substrate support rotation device having an opening at the center, and more particularly to a substrate support mechanism and a substrate support rotation device that are preferably used in a vacuum processing apparatus that performs processing such as thin film formation on a substrate.

磁気ディスクや光ディスク等に代表される記録媒体は、近年記録密度の増加にめざましいものがあるが、さらなる高記録密度化、信頼性向上を目的とした高性能記録媒体の開発並びにその量産化の検討も盛んに行われている。   Some recording media represented by magnetic disks and optical discs have been remarkably increasing in recent years, but development of high-performance recording media for the purpose of further increasing recording density and reliability and examination of mass production It is also actively performed.

磁気ディスクは、開口を有するアルミニウム又はガラス製の円板状基板の上に、Cr等の下地膜、CoCrTa等の多元系磁性記録膜及びカーボン膜等の保護膜からなる積層構造のものが一般に用いられている。このような積層構造の磁気ディスクは、基板の外周端面をツメ等で支持した基板ホルダーを、加熱室、Cr用スパッタ室、磁性記録膜用スパッタ室及びプラズマCVD室へと順次搬送し各成膜室でそれぞれの薄膜を形成することにより、作製される。   The magnetic disk generally has a laminated structure comprising a base film such as Cr, a multi-element magnetic recording film such as CoCrTa, and a protective film such as a carbon film on an aluminum or glass disk-shaped substrate having an opening. It has been. In such a laminated magnetic disk, a substrate holder that supports the outer peripheral end surface of the substrate with claws or the like is sequentially transferred to a heating chamber, a Cr sputtering chamber, a magnetic recording film sputtering chamber, and a plasma CVD chamber to form each film. It is produced by forming each thin film in a chamber.

各成膜室では、ターゲット又は放電電極に対向する位置に基板ホルダーを設置し、基板を静止した状態で成膜が行われる。また、多元系磁性記録膜の形成には、所定の組成比の合金ターゲットが用いられ、磁気特性の高い薄膜を得る目的で、スパッタ中は、基板にバイアスが印加される。バイアス印加は、保護膜として用いられるダイアモンドライクカーボン膜の場合も不可欠である。   In each film formation chamber, a substrate holder is installed at a position facing the target or the discharge electrode, and film formation is performed with the substrate stationary. For the formation of the multi-element magnetic recording film, an alloy target having a predetermined composition ratio is used, and a bias is applied to the substrate during sputtering for the purpose of obtaining a thin film with high magnetic properties. Bias application is also essential in the case of a diamond-like carbon film used as a protective film.

上に述べたように、記録密度、信頼性のより優れた磁気ディスクを作製するには、磁性記録膜の磁気特性をさらに向上させるとともに、ディスク面内の膜厚、組成均一性を高めて、保持力等の面内均一性を向上させる必要があるが、上記した従来のスパッタ装置では膜厚、組成均一性をさらに向上させるのは困難である。例えば、膜厚均一性を向上させる方法として、ターゲット裏面に配置するマグネットの配置、形状を調整し、ターゲット表面磁界を適正化する方法等が用いられる。しかしながら、この方法では、膜厚均一性は改善されるものの手間やコストがかかるという問題がある。   As described above, in order to produce a magnetic disk with better recording density and reliability, the magnetic characteristics of the magnetic recording film are further improved, and the film thickness and composition uniformity within the disk surface are increased. Although it is necessary to improve the in-plane uniformity such as holding force, it is difficult to further improve the film thickness and the composition uniformity with the above-described conventional sputtering apparatus. For example, as a method of improving the film thickness uniformity, a method of adjusting the arrangement and shape of magnets arranged on the back surface of the target and optimizing the target surface magnetic field is used. However, this method has a problem that although the film thickness uniformity is improved, it takes time and cost.

また、高特性磁性記録膜を得るには、種々の材料及び構成元素の組成比の検討が必要であるが、これらを従来のスパッタ装置で行うのは実際上容易でない。例えば、組成によってはターゲットの合金化が困難な場合があり、また、合金化が可能な場合であっても、スパッタ装置ごとに、種々の材料、組成のターゲットを作製し、それを用いて成膜条件を最適化して所望の特性が得られるターゲットを決定するという手順を経る必要があるため、これに要する時間及び費用は多大なものとなってしまう。また、膜厚方向に組成比を変化させることにより、保持力の長期的な低下率を抑制する磁性記録膜等も提案されているが、膜組成を厚さ方向に変化させることは、以上の装置構成では不可能である。   In addition, in order to obtain a high-performance magnetic recording film, it is necessary to study the composition ratios of various materials and constituent elements, but it is practically not easy to perform these with a conventional sputtering apparatus. For example, depending on the composition, alloying of the target may be difficult, and even if alloying is possible, targets of various materials and compositions are prepared for each sputtering apparatus and used to form a target. Since it is necessary to go through a procedure of optimizing the film conditions and determining a target that obtains desired characteristics, the time and cost required for this process become enormous. In addition, a magnetic recording film or the like that suppresses the long-term decrease rate of the coercive force by changing the composition ratio in the film thickness direction has been proposed, but changing the film composition in the thickness direction This is not possible with the device configuration.

そこで、ディスク基板を円盤状の大型基板ホルダーの同一径上に複数個とりつけ、スパッタ装置側も同一径上にターゲットを配置し、基板ホルダーを回転させて各基板がターゲット上を公転して通過するようにして成膜する方法が検討されている。この構成の装置は、構成元素単体のターゲットを用いることができ、各ターゲットに供給するRF電力を調整することにより種々の組成の薄膜が得られるという利点はあるが、各構成元素の層が積層した構造となるため均質な膜を得るには基板ホルダーを極めて高い回転数で回転しなければならないという問題がある。さらに、Cr下地膜、磁性記録膜、保護膜の一連の成膜を連続して行う場合、同一の基板ホルダーを用いる以上各成膜装置も大型基板ホルダーを回転可能な構造とする必要があるため、ハードディスク製造システム全体としては極めて大型化してしまい、高価格なものとなってしまう。また、基板ホルダーは、付着膜除去のための定期的なブラスト処理を行う必要上、できるだけ簡単な構造で、安価なものが望ましいが、このような構成では構造が複雑、高価な基板ホルダーとなってしまう。   Therefore, a plurality of disk substrates are mounted on the same diameter of a disk-shaped large substrate holder, the target is also arranged on the same diameter on the sputtering apparatus side, and the substrate holder is rotated so that each substrate revolves and passes over the target. Thus, a method of forming a film has been studied. The apparatus of this configuration can use a target of a single constituent element, and has an advantage that thin films having various compositions can be obtained by adjusting the RF power supplied to each target. Therefore, there is a problem that the substrate holder must be rotated at an extremely high rotational speed in order to obtain a homogeneous film. Furthermore, when a series of film formation of a Cr underlayer film, a magnetic recording film, and a protective film is continuously performed, each film forming apparatus needs to have a structure capable of rotating a large substrate holder as long as the same substrate holder is used. As a whole, the hard disk manufacturing system becomes very large and expensive. In addition, the substrate holder needs to be periodically blasted to remove the attached film, so that it is desirable to have a simple structure and an inexpensive one, but such a structure is complicated and an expensive substrate holder. End up.

さらに、磁性記録膜、カーボン膜形成時は、上述のように、バイアス印加が不可欠であるが、ガラス基板の場合、基板を把持するツメとガラス基板の接触抵抗は大きく、たとえCr膜が形成されても、ツメとCr膜とは電気的に分離している場合が多いため、磁性記録膜、カーボン膜成膜時に膜形成面に均一なバイアスが印加されず、高性能膜を再現性よく安定して得ることはできないという問題があった。   In addition, as described above, bias application is indispensable when forming a magnetic recording film or carbon film. However, in the case of a glass substrate, the contact resistance between the nail that holds the substrate and the glass substrate is large, even if a Cr film is formed. However, since the claw and the Cr film are often electrically separated, a uniform bias is not applied to the film formation surface when forming the magnetic recording film and the carbon film, and the high-performance film is stable with good reproducibility. There was a problem that could not be obtained.

本発明者は、以上の従来技術の問題点を解決すべく、成膜装置及び基板ホルダーの構造を検討したところ、例えば、磁性記録膜形成用スパッタ装置の場合、図5に示すように、各構成元素のターゲット55,55’,55”を基板100の周辺に配置し、場合によっては径方向の膜厚分布をさらに改善するための分布修正板をターゲットと基板間に配置し、基板を自転させて成膜することにより、ディスク面内で均一な膜厚及び磁気特性の磁性記録膜が得られることが分かった。また、種々の組成比の磁性薄膜を得ることができ、さらには膜厚方向に組成を変化させた構成の膜を容易に得ることができることが分かった。かかる成膜を行うには、成膜室に搬送された基板ホルダーから基板を受け取り、図5に示すようにターゲットに対向させて基板を回転可能な基板支持回転装置が必須となる。また、成膜装置の大型化を防ぐためには、基板ホルダーから基板支持回転装置への基板の移動のための空間は極力小さくする必要があるため、基板ホルダーを移動させずに基板を移しかえる機構が必要となる。さらには、生産性を高めるため、両面成膜を可能とする支持回転装置が求められる。   The inventor examined the structures of the film forming apparatus and the substrate holder in order to solve the above problems of the prior art. For example, in the case of a sputtering apparatus for forming a magnetic recording film, as shown in FIG. Constituent element targets 55, 55 ′, 55 ″ are arranged around the substrate 100, and in some cases, a distribution correction plate for further improving the radial film thickness distribution is arranged between the target and the substrate to rotate the substrate. It was found that a magnetic recording film having a uniform film thickness and magnetic characteristics within the disk surface can be obtained by forming the film, and magnetic thin films having various composition ratios can be obtained. It was found that a film having a composition whose composition is changed in the direction can be easily obtained.To perform such film formation, a substrate is received from a substrate holder transported to a film formation chamber, and a target as shown in FIG. Facing A substrate support rotating device capable of rotating the substrate is indispensable, and in order to prevent an increase in the size of the film forming apparatus, the space for moving the substrate from the substrate holder to the substrate support rotating device needs to be as small as possible. Therefore, a mechanism for transferring the substrate without moving the substrate holder is required, and further, a support rotation device that enables double-sided film formation is required to increase productivity.

そこで、本発明は、搬送されてきた基板ホルダーを移動させることなく、ディスク基板を受け取り、その状態で基板を回転することが可能な基板支持回転装置を提供することを目的とする。また、金属膜の成膜を含む一連の積層膜の形成において、薄膜形成面全体に均一にバイアスを印加することができ、さらには、基板両面への同時成膜を妨害することなく、膜厚均一性の高い薄膜形成が可能なコンパクトな基板支持回転装置を提供することを目的とする。さらにまた、本発明の目的は、かかる基板支持回転装置を実現する上で、強固かつ安全に基板を支持することができるコンパクトな基板支持機構を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a substrate support rotating device that can receive a disk substrate and rotate the substrate in that state without moving the substrate holder that has been transported. In addition, in the formation of a series of laminated films including the formation of a metal film, it is possible to apply a bias uniformly to the entire thin film formation surface, and further, the film thickness without interfering with simultaneous film formation on both surfaces of the substrate. It is an object of the present invention to provide a compact substrate support rotating device capable of forming a highly uniform thin film. Still another object of the present invention is to provide a compact substrate support mechanism capable of supporting a substrate firmly and safely in realizing such a substrate support rotating device.

本発明の基板支持機構は、中心に開口を有する円板状基板の内周端面を支持する基板支持機構において、中空の円柱状部材と、該円柱状部材の中空部に第1のバネにより軸方向の一方に付勢して取り付けられた軸であって、その一端部には先端側ほど径が増大するテーパー部が形成された中心軸と、前記円柱状部材の前記一端部側の一端面に設けられた径方向に移動する複数の移動部材であって、その外周側には基板の内周端面を支持するツメが設けられ、第2のバネにより前記中心軸方向に付勢された径方向移動部材と、からなり、前記中心軸の軸方向運動を前記径方向移動部材の径方向運動に変換して基板の支持、解放を行うことを特徴とする。このように、所望の強さのバネにより基板の内周端面を外側に押しつけて基板を支持する構成をとっているため、基板を確実に支持することができ、基板を回転する場合にも基板がブレたり、ずれたりすることがない。しかも、中心軸の軸方向運動を径方向に変換して基板の支持、解放を行うため、基板支持機構全体を小型化することが可能となる。   The substrate support mechanism of the present invention is a substrate support mechanism for supporting an inner peripheral end surface of a disk-shaped substrate having an opening at the center, and a hollow columnar member and a hollow portion of the columnar member are pivoted by a first spring. A shaft that is urged and attached to one side of the direction, and has a central axis in which a tapered portion whose diameter increases toward the tip end is formed at one end thereof, and one end surface on the one end side of the columnar member A plurality of moving members that move in the radial direction, provided on the outer peripheral side thereof with a claw that supports the inner peripheral end surface of the substrate, and are urged in the direction of the central axis by a second spring. The substrate is supported and released by converting the axial movement of the central axis into the radial movement of the radial movement member. As described above, since the substrate is supported by pressing the inner peripheral end surface of the substrate outward by a spring having a desired strength, the substrate can be reliably supported, and the substrate can be rotated even when the substrate is rotated. Will not shake or shift. In addition, since the axial movement of the central axis is converted into the radial direction to support and release the substrate, the entire substrate support mechanism can be reduced in size.

本発明の基板支持回転装置は、大気の混入を防止した処理室内で、中心に開口を有する円板状基板の外周端面をツメにより支持する基板ホルダーから基板を受け取り、回転させる基板支持回転装置であって、中空の円柱状部材と、該円柱状部材の中空部に第1のバネにより軸方向の一方に付勢して取り付けられた軸であって、その一端部には先端側ほど径が増大するテーパー部が形成された中心軸と、前記円柱状部材の前記一端部側の一端面に設けられた径方向に移動する複数の移動部材であって、その外周側には基板の内周端面を支持するツメが設けられ、第2のバネにより前記中心軸方向に付勢された径方向移動部材と、からなり、前記中心軸の軸方向運動を前記径方向移動部材の径方向運動に変換して基板の支持、解放を行う基板支持機構部と、前記円柱状部材を軸方向に移動させる機構であって、基板の開口内に前記複数の径方向移動部材を前記ツメが少なくとも基板の位置と略同一の位置となるまで進入させる機構と、前記中心軸を軸方向に移動させる機構と、前記円柱状部材を、前記ツメが基板を支持した状態で回転させる機構と、を有することを特徴とする。   The substrate support rotation device of the present invention is a substrate support rotation device that receives and rotates a substrate from a substrate holder that supports an outer peripheral end surface of a disc-shaped substrate having an opening at the center with a claw in a processing chamber in which air is prevented from being mixed. A hollow cylindrical member, and a shaft attached to the hollow portion of the cylindrical member by being biased in one of the axial directions by a first spring, with one end portion having a diameter closer to the tip side. A plurality of moving members that are provided on a central axis on which an increasing taper portion is formed and one end surface on the one end portion side of the columnar member and that moves in the radial direction; A radial movement member provided with a claw for supporting the end face and biased in the direction of the central axis by a second spring, wherein the axial movement of the central axis is changed to the radial movement of the radial movement member Substrate support that converts and supports and releases the substrate A mechanism for moving the structure part and the cylindrical member in the axial direction, and a mechanism for causing the plurality of radial movement members to enter the openings of the substrate until the claws are at least substantially the same as the position of the substrate. And a mechanism for moving the central axis in the axial direction, and a mechanism for rotating the cylindrical member while the claw supports the substrate.

かかる構成とすることにより、基板ホルダー自体は静止させ、基板のみを回転させるため、回転装置の構造が簡単かつ小型なものとなる。また、基板の開口部に基板支持部を挿入し、基板ホルダーに支持された位置で基板を受け渡し、その位置で基板を回転するため、基板受け渡しに必要なスペースを特に考慮する必要はなく、基板ホルダーやシールド等の処理装置構成物と干渉することがない。この結果、処理装置の小型化も達成することができる。さらに、例えば、基板の表裏側にターゲットを配置する両面同時スパッタ等にも対応することができる。   With this configuration, the substrate holder itself is stationary and only the substrate is rotated, so that the structure of the rotating device is simple and small. Also, since the substrate support is inserted into the opening of the substrate, the substrate is delivered at a position supported by the substrate holder, and the substrate is rotated at that position, there is no need to consider the space necessary for substrate delivery. There is no interference with processing equipment components such as holders and shields. As a result, downsizing of the processing apparatus can also be achieved. Furthermore, for example, it is possible to cope with double-sided simultaneous sputtering in which targets are arranged on the front and back sides of the substrate.

さらに、前記円柱状部材の他端面を第2の中空円柱状部材の一端面に連結して、処理室の壁に設けられた開口内に配置し、前記第2の円柱状部材の外周面に回転シールを設けるとともに、該回転シールと前記壁とを第1のベローズにより連結し、中空部には前記中心軸を軸方向に移動させる駆動軸が第2の円柱状部材の他端面を突出するように配置され、前記第2の円柱状部材の他端面と前記駆動軸の突出した端面とを第2のベローズで連結したことを特徴とする。このように構成することにより、高真空処理装置等であっても、内部の気密を確実に保たちながら基板の支持、回転を行うことができ、種々の高性能薄膜の作製が可能となる。   Further, the other end surface of the columnar member is connected to one end surface of the second hollow columnar member, and is disposed in an opening provided in the wall of the processing chamber, and is disposed on the outer peripheral surface of the second columnar member. A rotary seal is provided, the rotary seal and the wall are connected by a first bellows, and a driving shaft for moving the central axis in the axial direction protrudes from the other end surface of the second cylindrical member in the hollow portion. The other end surface of the second cylindrical member and the projecting end surface of the drive shaft are connected by a second bellows. With such a configuration, even in a high vacuum processing apparatus or the like, the substrate can be supported and rotated while the internal airtightness is reliably maintained, and various high-performance thin films can be manufactured.

また、前記第2の中空円柱状部材と、前記基板支持機構部を軸方向に移動させる機構及び回転させる機構並びに前記回転シールとの間に絶縁体を設け、前記第2の中空円柱状部材を介して、回転中に基板にバイアスを印加できる構成とするのが好ましい。上述したように、基板が処理室に搬入された際に、基板内周端面を支持し直すため、前工程で導電性膜が形成されていると、該導電膜と基板支持部のツメとの導通が確保され、基板の薄膜形成面全体に均一なバイアスを印加することができ、より高性能薄膜を安定して作製することが可能となる。   In addition, an insulator is provided between the second hollow columnar member, a mechanism for moving the substrate support mechanism portion in the axial direction, a mechanism for rotating the substrate support mechanism, and the rotary seal, and the second hollow columnar member is Thus, it is preferable that a bias can be applied to the substrate during rotation. As described above, when the substrate is carried into the processing chamber, the conductive film is formed in the previous step in order to resupport the inner peripheral end surface of the substrate. Conductivity is ensured, a uniform bias can be applied to the entire thin film formation surface of the substrate, and a higher performance thin film can be stably produced.

本発明により、基板を確実に支持し、基板を回転する場合にも基板がブレたり、ずれたりすることがなく、しかも、小型化が可能な基板支持機構を実現することが可能となる。また、基板ホルダー自体は静止し基板のみを回転させる構成とした結果、構造が簡単かつ小型な基板回転装置を提供することが可能となり、両面同時成膜にも対応できる基板回転装置を実現することができる。さらに、基板ホルダー自体も簡単な構造となり、その搬送機構も簡略化できる。本発明は、磁気ディスク、光ディスク等の高性能化と製造システム全体の小型化に、特に、貢献するものである。   According to the present invention, it is possible to realize a substrate support mechanism that reliably supports a substrate and does not shake or shift even when the substrate is rotated, and can be downsized. In addition, as a result of the structure in which the substrate holder itself is stationary and only the substrate is rotated, it is possible to provide a substrate rotating apparatus with a simple structure and a small size, and to realize a substrate rotating apparatus that can support simultaneous film formation on both sides. Can do. Further, the substrate holder itself has a simple structure, and the transport mechanism can be simplified. The present invention particularly contributes to high performance of magnetic disks, optical disks, etc. and downsizing of the entire manufacturing system.

本発明の実施の形態を図面を参照して説明する。図1は、本発明の基板支持回転装置の一構成例であり、真空室の側壁20に基板支持回転装置を取り付けた状態を示す概略断面図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a configuration example of a substrate support rotating apparatus according to the present invention, in which a substrate support rotating apparatus is attached to a side wall 20 of a vacuum chamber.

基板支持回転装置は、基板を支持する基板支持機構1と、回転及び軸方向に移動可能な円柱状部材(第2の中空円柱状部材)2と、基板の支持、解放を行う軸方向に移動可能な駆動軸3と、からなり、真空室内の気密を保ちながら、円柱状部材2及び駆動軸3の軸方向運動を可能とするために第1のベローズ4及び第2のベローズ5が設けられ、円柱状部材2を回転可能とするために磁性流体シール6が設けられている。なお、16はo−リングである。   The substrate support rotating device moves in the axial direction for supporting and releasing the substrate, the substrate supporting mechanism 1 for supporting the substrate, the columnar member (second hollow cylindrical member) 2 that can be rotated and moved in the axial direction, and the substrate. The first bellows 4 and the second bellows 5 are provided in order to allow the cylindrical member 2 and the drive shaft 3 to move in the axial direction while maintaining airtightness in the vacuum chamber. In order to make the cylindrical member 2 rotatable, a magnetic fluid seal 6 is provided. Reference numeral 16 denotes an o-ring.

円柱状部材2の外周には、ギア10が取り付けられており、モータ19の回転がスプライン軸12、ギア11、ギア10を介して、円柱状部材2に伝達される。なお、ギア10には、樹脂製の絶縁材が用いられ、円柱状部材2とモータ19との電気的絶縁が確保されている。また、円柱状部材2は、支持板9に固定されたエアシリンダ17の軸13により軸方向に移動することができる。図の例では、ギア10,11も円柱状部材2に伴って軸方向運動し、円柱状部材2の軸方向運動により、ベローズ4は伸縮する。なお、円柱状部材2と磁性流体シール6の間には、絶縁体(セラミック製)7が配置され、またセラミック製の部材8とともに円柱状部材と磁性流体シール6及びエアシリンダ17との間の絶縁が確保されている。このように絶縁材を配置することにより、円柱状部材2に電圧を印加することができ、これと導通する基板支持機構を介して基板成膜面に均一にバイアスを印加することが可能となる。バイアス電圧は、例えば、RF又は直流電源を用い、ベアリング15を介して印加すればよい。   A gear 10 is attached to the outer periphery of the cylindrical member 2, and the rotation of the motor 19 is transmitted to the cylindrical member 2 through the spline shaft 12, the gear 11, and the gear 10. Note that a resin insulating material is used for the gear 10, and electrical insulation between the cylindrical member 2 and the motor 19 is ensured. Further, the columnar member 2 can be moved in the axial direction by the shaft 13 of the air cylinder 17 fixed to the support plate 9. In the illustrated example, the gears 10 and 11 also move in the axial direction along with the cylindrical member 2, and the bellows 4 expands and contracts by the axial movement of the cylindrical member 2. An insulator (made of ceramic) 7 is arranged between the cylindrical member 2 and the magnetic fluid seal 6, and between the cylindrical member, the magnetic fluid seal 6 and the air cylinder 17 together with the ceramic member 8. Insulation is ensured. By disposing the insulating material in this manner, it is possible to apply a voltage to the cylindrical member 2, and it is possible to apply a bias uniformly to the substrate film formation surface via the substrate support mechanism that is electrically connected thereto. . The bias voltage may be applied via the bearing 15 using, for example, an RF or DC power source.

駆動軸3は、エアシリンダ18の軸14の前進により移動し、後述するように、駆動軸3の軸方向運動により、基板の支持、解放が行われる。駆動軸3とシリンダ軸14は、円柱状部材2の回転時には離間する。また、駆動軸3の軸方向運動に伴い、ベローズ5は伸縮する。以上の各構成部材は、側板21、22に接続された支柱、ガイド等(不図示)によっても支持されている。   The drive shaft 3 is moved by the advance of the shaft 14 of the air cylinder 18, and the substrate is supported and released by the axial movement of the drive shaft 3 as will be described later. The drive shaft 3 and the cylinder shaft 14 are separated when the columnar member 2 rotates. Further, the bellows 5 expands and contracts with the axial movement of the drive shaft 3. Each component described above is also supported by columns, guides and the like (not shown) connected to the side plates 21 and 22.

次に、基板支持機構1を図2を用いて説明する。図2(a)は、基板100を支持している状態を示す概略断面図、(b)はA−A矢視図、(c)は基板支持する前(又は後)の状態を示す断面図である。基板支持機構1は、中空の円柱状部材30と、これを嵌通する中心軸31と、円柱状部材30の一端面に設けられた径方向移動部材34と、からなり、円柱状部材30の他端面が第2の円柱状部材2の一端面にボルト43により固定されている。   Next, the substrate support mechanism 1 will be described with reference to FIG. 2A is a schematic cross-sectional view showing a state where the substrate 100 is supported, FIG. 2B is a view taken along the line AA, and FIG. 2C is a cross-sectional view showing a state before (or after) the substrate is supported. It is. The substrate support mechanism 1 includes a hollow cylindrical member 30, a central shaft 31 that passes through the hollow cylindrical member 30, and a radial movement member 34 provided on one end surface of the cylindrical member 30. The other end surface is fixed to one end surface of the second cylindrical member 2 by a bolt 43.

径方向移動部材34は、上下にくり抜かれた長円柱状空間が形成された直方体状のブロックであり、その一端には基板内周端面を支持するV溝形状のツメ37が設けられている。円柱状部材30に固定されたピン35を上記長円柱状空間部にはめ込み、ブロックを中心軸31方向に付勢するように、バネ36が該空間内に挿入されている。このようにして、複数個(図の例では3個)の径方向移動部材が取り付けられる。また、該部材34の回転を防止し、径方向の往復運動のみを行わせるために、ガイド38が設けられ、ネジ40により円柱状部材30に固定されている。さらに、滑らかな往復運動を確保するために、ガイド38には潤滑性の高い樹脂、部材34には銅が好適に用いられる。   The radial movement member 34 is a rectangular parallelepiped block in which a long cylindrical space hollowed up and down is formed, and a V-groove claw 37 that supports the inner peripheral end surface of the substrate is provided at one end thereof. A spring 36 is inserted into the space so that the pin 35 fixed to the columnar member 30 is fitted into the long columnar space and the block is biased toward the central axis 31. In this way, a plurality of (three in the illustrated example) radial movement members are attached. Further, a guide 38 is provided to prevent the member 34 from rotating and perform only a reciprocating motion in the radial direction, and is fixed to the columnar member 30 with a screw 40. Further, in order to ensure a smooth reciprocating motion, a resin with high lubricity is suitably used for the guide 38 and copper is suitably used for the member 34.

中心軸31の一端部には、先端に向かって断面径が増加するテーパー部33を有するブロック32がネジ39により固定され、全体が圧縮バネ41により円柱状部材2側に付勢されている。ブロック32が押し込まれた状態では、ブロック32のテーパー部33により、径方向移動部材34は外周方向に押し出されており、先端部のV溝ツメ部37が基板内周端面に当接して基板を支持することになる。逆に、基板を解放する場合は、エアシリンダ18を駆動し、駆動軸3を前進させ、圧縮バネ41の力に抗して中心軸31を押しつける。これにより、図2(c)に示すように、ブロック32も移動し、テーパー部33により外周側に押し出されていた径方向移動部材34はバネ36の力により中心軸側に移動して、基板内周端面とツメ37が離間して、基板の支持が解放される。   A block 32 having a tapered portion 33 whose cross-sectional diameter increases toward the tip is fixed to one end of the central shaft 31 by a screw 39, and the whole is biased toward the columnar member 2 by a compression spring 41. In the state where the block 32 is pushed in, the radial moving member 34 is pushed out in the outer peripheral direction by the taper portion 33 of the block 32, and the V groove claw portion 37 at the front end abuts on the inner peripheral end surface of the substrate, thereby I will support it. Conversely, when releasing the substrate, the air cylinder 18 is driven, the drive shaft 3 is advanced, and the center shaft 31 is pressed against the force of the compression spring 41. As a result, as shown in FIG. 2 (c), the block 32 also moves, and the radial moving member 34 pushed to the outer peripheral side by the tapered portion 33 moves to the central axis side by the force of the spring 36, and the substrate The inner peripheral end face and the claw 37 are separated from each other, and the support of the substrate is released.

以上のように構成すると、中心軸31の軸方向運動は、テーパー部の作用により径方向移動部材34の往復運動に変換され、これにより基板の支持、解放が行われることになる。   If comprised as mentioned above, the axial direction motion of the center axis | shaft 31 will be converted into the reciprocating motion of the radial direction movement member 34 by the effect | action of a taper part, and, thereby, a board | substrate will be supported and released.

次に、基板ホルダーから基板を受け取り、基板回転させながら所望の処理を行い、その後再び基板ホルダーに戻す一連の動作を図3を用いて説明する。図3(a)〜(i)の各図において、右側の図は基板ホルダー50と基板100とを示す側面図、左側の図は基板支持機構1と基板との位置関係を示す側面断面図である。基板ホルダー50は、基板を囲む外枠51と、これに取り付けられた2本のアーム52とからなり、アームの先端部には、V溝形状を有する2つのツメ53が取り付けられている。アーム52は例えば板バネ等の弾性部材から構成され、ツメ53が基板外周端面を押さえる方向に力が加えられている。基板ホルダーは基板外周端面をツメ53で支持し、この状態で各処理装置間を搬送される。   Next, a series of operations for receiving a substrate from the substrate holder, performing a desired process while rotating the substrate, and then returning the substrate to the substrate holder will be described with reference to FIG. 3A to 3I, the right side is a side view showing the substrate holder 50 and the substrate 100, and the left side is a side sectional view showing the positional relationship between the substrate support mechanism 1 and the substrate. is there. The substrate holder 50 is composed of an outer frame 51 surrounding the substrate and two arms 52 attached to the outer frame 51, and two claws 53 having a V-groove shape are attached to the tip of the arm. The arm 52 is formed of an elastic member such as a leaf spring, for example, and a force is applied in a direction in which the claw 53 presses the outer peripheral end surface of the substrate. The substrate holder supports the outer peripheral end surface of the substrate with claws 53 and is transported between the processing apparatuses in this state.

図3(a)は、例えば、Cr下地膜が形成された後、磁性記録膜用スパッタ室に基板ホルダーが搬入されてきた状態を示すものであり、図5に示すターゲットと基板支持回転装置との間に設けられた基板ホルダー支持台(不図示)に載置されている。この時点では、基板支持装置は、エアシリンダ18が駆動されて駆動軸3が前進し、中心軸31及びブロック32は左方(図1の矢印A方向)に押しつけられた状態、すなわち、径方向移動部材34が中心軸方向に退避した状態にある。   FIG. 3A shows a state in which, for example, the substrate holder has been carried into the sputtering chamber for the magnetic recording film after the Cr underlayer is formed. The target, the substrate support rotating device shown in FIG. Is placed on a substrate holder support (not shown) provided between the two. At this time, in the substrate support apparatus, the air cylinder 18 is driven and the drive shaft 3 moves forward, and the central shaft 31 and the block 32 are pressed leftward (in the direction of arrow A in FIG. 1), that is, in the radial direction. The moving member 34 is in the retracted state in the central axis direction.

次に、エアシリンダ17を駆動すると、円柱状部材2が前進し、基板支持機構1の先端部が基板の開口部に挿入され、ツメ37のV溝中心部と基板100とが同じ位置となる位置で前進を停止する(b)。続いて、エアシリンダ18の駆動を停止する。駆動軸3は後退し駆動軸3と中心軸31端面とが離間すると、圧縮バネ41の力によりブロック32は後退し、これに伴い径方向移動部材34が外側に押し出され、ディスク内周端面を支持することになる(c)。ここで、ツメ37はCr形成部を把持することになるので、基板面とツメとの導通が確保される。   Next, when the air cylinder 17 is driven, the columnar member 2 moves forward, the tip of the substrate support mechanism 1 is inserted into the opening of the substrate, and the center of the V groove of the claw 37 and the substrate 100 are at the same position. Stop moving forward at position (b). Subsequently, the driving of the air cylinder 18 is stopped. When the drive shaft 3 moves backward and the drive shaft 3 and the end surface of the central shaft 31 are separated from each other, the block 32 is moved backward by the force of the compression spring 41, and the radial moving member 34 is pushed to the outside accordingly. Support (c). Here, since the claw 37 grips the Cr forming portion, conduction between the substrate surface and the claw is ensured.

次に、基板ホルダーの基板支持解放機構54を動作させ、基板ホルダーの2つのアーム52を外側に広げて、ツメ53と基板外周端面とを離間させ、基板ホルダーによる基板支持を解放する(d)。モーター19を駆動し、円柱状部材2を回転させて、所望の回転数で基板を回転させる。この状態で、ガスを導入し、電力を各カソードに供給してプラズマを発生させ、Cr下地膜上に磁性記録膜を形成する。成膜中、同時にベアリング15に直流又はRF電圧を印加し基板にバイアスを印加することにより、基板の薄膜形成面に一様なバイアスを印加することができる(e)。   Next, the substrate support release mechanism 54 of the substrate holder is operated, the two arms 52 of the substrate holder are spread outward, the claw 53 and the substrate outer peripheral end surface are separated, and the substrate support by the substrate holder is released (d). . The motor 19 is driven, the columnar member 2 is rotated, and the substrate is rotated at a desired number of rotations. In this state, gas is introduced and electric power is supplied to each cathode to generate plasma to form a magnetic recording film on the Cr underlayer. During the film formation, a uniform bias can be applied to the thin film forming surface of the substrate by simultaneously applying a direct current or RF voltage to the bearing 15 and applying a bias to the substrate (e).

成膜終了後、カソードへの電力の供給を停止するとともに、モータの駆動を停止し、基板回転を停止する(f)。続いて、基板ホルダーの基板支持解放機構54を後退させて、基板ホルダーのツメ53により再び基板の外周端面を支持する(g)。その後、シリンダ18を駆動し、ブロック32を左方に押しつけて、径方向移動部材34を中心方向に退避させ、ツメ37と基板内周を離間させて基板支持を解放する(h)。さらに、円柱状部材2を後退させ、ブロック32を基板の開口内から退避させる(i)。   After the film formation is completed, the supply of power to the cathode is stopped, the drive of the motor is stopped, and the substrate rotation is stopped (f). Subsequently, the substrate support release mechanism 54 of the substrate holder is retracted, and the outer peripheral end surface of the substrate is again supported by the claw 53 of the substrate holder (g). Thereafter, the cylinder 18 is driven, the block 32 is pressed to the left, the radial moving member 34 is retracted in the center direction, the claw 37 is separated from the inner periphery of the substrate, and the substrate support is released (h). Further, the cylindrical member 2 is retracted, and the block 32 is retracted from the opening of the substrate (i).

以上で、基板支持回転装置にかかる基板支持、解放及び回転の一連の工程を終了し、処理済みの基板を支持する基板ホルダーは次の工程の処理室へ搬出される。一方、未処理基板を支持する基板ホルダーがスパッタ室に搬入され、同様の手順で、処理が行われる。   As described above, a series of steps of substrate support, release, and rotation according to the substrate support rotating apparatus is completed, and the substrate holder that supports the processed substrate is carried out to the processing chamber of the next step. On the other hand, a substrate holder that supports an unprocessed substrate is carried into the sputtering chamber, and processing is performed in the same procedure.

以上は、片面成膜の場合について述べたが、さらにもう一組のターゲットを円柱状部材2を囲むように側壁20に配置し、2つの側壁に取り付けられたカソードのそれぞれに電力を供給して、それぞれプラズマを発生させることにより、表裏両面の同時スパッタも可能である。   In the above, the case of single-sided film formation has been described. However, another set of targets is arranged on the side wall 20 so as to surround the cylindrical member 2, and power is supplied to each of the cathodes attached to the two side walls. By simultaneously generating plasma, both sides of the front and back surfaces can be sputtered simultaneously.

図1の構成の基板支持回転装置は、中心軸31を第2の円柱状部材の方向に付勢するように圧縮バネ41を配置したが、逆方向に付勢するように配置してもよい。この場合は、図4に示すように、基板支持機構側の駆動軸3及びこの軸を軸方向移動させるシリンダ18は、ブロック32の中心軸31とは反対側に配置される。図4(a),(b)に示すように、通常、ブロック32はバネにより外側に押し出され、径方向移動部材34は中心方向に撤退した状態にある。従って、基板を支持するためには、図4(c)に示すように、駆動軸3によりブロック32を押しつければよい。この場合は、基板回転とともに駆動軸3も同時に回転する。なお、駆動軸3は、図5に示す3つのカソードの中心位置から進入させればよい。   In the substrate support rotating device having the configuration shown in FIG. 1, the compression spring 41 is arranged so as to urge the central shaft 31 in the direction of the second columnar member, but may be arranged so as to be urged in the opposite direction. . In this case, as shown in FIG. 4, the drive shaft 3 on the substrate support mechanism side and the cylinder 18 that moves the shaft in the axial direction are arranged on the opposite side of the central axis 31 of the block 32. As shown in FIGS. 4A and 4B, the block 32 is normally pushed outward by a spring, and the radial movement member 34 is in a state of being retracted in the central direction. Therefore, in order to support the substrate, the block 32 may be pressed by the drive shaft 3 as shown in FIG. In this case, the drive shaft 3 rotates simultaneously with the substrate rotation. The drive shaft 3 may be entered from the center position of the three cathodes shown in FIG.

以上は、基板支持回転装置を水平に配置する構成例であるが、垂直に配置してもよいことはいうまでもない。また、主にスパッタ装置に用いられる基板支持回転装置について説明してきたが、本発明はこれらに限定するものではなく、プラズマCVD装置やドライエッチング装置等の成膜装置、処理装置に好適に適用でき、さらに、例えば、加熱、冷却プロセス時の基板回転等にも用いられ、これにより基板面内の温度均一性を改善することができる。   The above is an example of a configuration in which the substrate support rotation device is arranged horizontally, but it goes without saying that it may be arranged vertically. Further, although the substrate support rotating device mainly used in the sputtering apparatus has been described, the present invention is not limited to these, and can be suitably applied to a film forming apparatus and a processing apparatus such as a plasma CVD apparatus and a dry etching apparatus. Further, for example, it is also used for rotating the substrate during the heating and cooling processes, thereby improving the temperature uniformity within the substrate surface.

本発明の基板支持回転装置の一例を示す概略図である。It is the schematic which shows an example of the board | substrate support rotation apparatus of this invention. 本発明の基板支持機構の一例を示す概略図である。It is the schematic which shows an example of the board | substrate support mechanism of this invention. 基板支持回転機装置の動作を説明する概略図である。It is the schematic explaining operation | movement of a board | substrate support rotary machine apparatus. 本発明の基板支持回転装置の他の例を示す概略図である。It is the schematic which shows the other example of the board | substrate support rotation apparatus of this invention. 本発明の基板支持回転装置が好適に適用されるスパッタ装置のターゲット配置例を示す概略図である。It is the schematic which shows the example of target arrangement | positioning of the sputtering device with which the board | substrate support rotation apparatus of this invention is applied suitably.

符号の説明Explanation of symbols

1 基板支持機構、
2 第2の円柱状部材、
3 駆動軸、
4、5 ベローズ、
6 磁性流体シール、
7,8 絶縁体、
10,11 ギア、
12 スプライン軸、
17,18 エアシリンダ、
19 モータ、
30 円柱状部材、
31 中心軸、
32 ブロック、
33 テーパー部、
34 径方向移動部材、
35 ピン、
36 バネ、
37 ツメ、
38 ガイド、
41 圧縮バネ、
50 基板ホルダー、
51 外枠、
52 アーム、
53 ツメ、
54 基板支持解放機構、
55,55’,55” ターゲット、
56 カソード、
100 ディスク基板。
1 substrate support mechanism,
2 second cylindrical member,
3 Drive shaft,
4, 5 bellows,
6 Magnetic fluid seal,
7,8 insulator,
10,11 gear,
12 spline shaft,
17, 18 Air cylinder,
19 motor,
30 cylindrical member,
31 central axis,
32 blocks,
33 taper part,
34 radially moving member,
35 pins,
36 Spring,
37 claw,
38 guides,
41 compression spring,
50 substrate holder,
51 outer frame,
52 arms,
53 claws,
54 substrate support release mechanism,
55, 55 ', 55 "target,
56 cathode,
100 disc substrate.

Claims (2)

大気の混入を防止した処理室内で、中心に開口を有する円板状基板の外周端面をツメにより支持する基板ホルダーから基板を受け取り、回転させる基板支持回転装置であって、
中空の円柱状部材と、該円柱状部材の中空部に第1のバネにより軸方向の一方に付勢して取り付けられた軸であって、その一端部には先端側ほど径が増大するテーパー部が形成された中心軸と、前記円柱状部材の前記一端部側の一端面に設けられた径方向に移動する複数の移動部材であって、その外周側には基板の内周端面を支持するツメが設けられ、第2のバネにより前記中心軸方向に付勢された径方向移動部材と、からなり、前記中心軸の軸方向運動を前記径方向移動部材の径方向運動に変換して基板の支持、解放を行う基板支持機構部と、
前記円柱状部材を軸方向に移動させる機構であって、基板の開口内に前記複数の径方向移動部材を前記ツメが少なくとも基板の位置と略同一の位置となるまで進入させる機構と、
前記中心軸を軸方向に移動させる機構と、
前記円柱状部材を、前記ツメが基板を支持した状態で回転させる機構と、
を有し、
前記円柱状部材の他端面を第2の中空円柱状部材の一端面に連結して、処理室の壁に設けられた開口内に配置し、前記第2の円柱状部材の外周面に回転シールを設けるとともに、該回転シールと前記壁とを第1のベローズにより連結し、中空部には前記中心軸を軸方向に移動させる駆動軸が第2の円柱状部材の他端面を突出するように配置され、前記第2の円柱状部材の他端面と前記駆動軸の突出した端面とを第2のベローズで連結したことを特徴とする基板支持回転装置。
A substrate support rotation device that receives and rotates a substrate from a substrate holder that supports an outer peripheral end surface of a disk-shaped substrate having an opening in the center with a claw in a processing chamber that prevents air contamination,
A hollow cylindrical member, and a shaft attached to a hollow portion of the cylindrical member by being biased in one axial direction by a first spring, a taper whose diameter increases toward the distal end at one end thereof A plurality of moving members that move in the radial direction provided on one end surface on the one end portion side of the columnar member, and support the inner peripheral end surface of the substrate on the outer peripheral side And a radial movement member that is biased in the central axis direction by a second spring, and converts the axial movement of the central axis into the radial movement of the radial movement member. A substrate support mechanism for supporting and releasing the substrate;
A mechanism for moving the cylindrical member in the axial direction, and a mechanism for causing the plurality of radial movement members to enter the openings of the substrate until the claws are at least substantially the same as the position of the substrate;
A mechanism for moving the central axis in the axial direction;
A mechanism for rotating the cylindrical member in a state where the claw supports the substrate;
Have
The other end surface of the columnar member is connected to one end surface of the second hollow columnar member, and is disposed in an opening provided in the wall of the processing chamber, and is rotationally sealed on the outer peripheral surface of the second columnar member. The rotary seal and the wall are connected by a first bellows, and a drive shaft for moving the central axis in the axial direction protrudes from the other end surface of the second cylindrical member in the hollow portion. A substrate supporting and rotating device, wherein the substrate supporting rotating device is arranged and the other end surface of the second columnar member and the projecting end surface of the drive shaft are connected by a second bellows.
前記第2の中空円柱状部材と、前記基板支持機構部を軸方向に移動させる機構及び回転させる機構並びに前記回転シールとの間に絶縁体を設け、前記第2の中空円柱状部材を介して、回転中に基板にバイアスを印加できる構成としたことを特徴とする請求項1に記載の基板支持回転装置。   An insulator is provided between the second hollow cylindrical member, a mechanism for moving the substrate support mechanism portion in the axial direction, a mechanism for rotating the substrate support mechanism, and the rotary seal, and the second hollow cylindrical member is interposed via the second hollow cylindrical member. 2. The substrate supporting and rotating apparatus according to claim 1, wherein a bias can be applied to the substrate during rotation.
JP2008059146A 2008-03-10 2008-03-10 Substrate supporting/rotating device Withdrawn JP2008202145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059146A JP2008202145A (en) 2008-03-10 2008-03-10 Substrate supporting/rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059146A JP2008202145A (en) 2008-03-10 2008-03-10 Substrate supporting/rotating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000022437A Division JP2001216689A (en) 2000-01-31 2000-01-31 Substrate supporting mechanism and substrate supporting /rotating device

Publications (1)

Publication Number Publication Date
JP2008202145A true JP2008202145A (en) 2008-09-04

Family

ID=39779934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059146A Withdrawn JP2008202145A (en) 2008-03-10 2008-03-10 Substrate supporting/rotating device

Country Status (1)

Country Link
JP (1) JP2008202145A (en)

Similar Documents

Publication Publication Date Title
JP2001216689A (en) Substrate supporting mechanism and substrate supporting /rotating device
TWI426144B (en) Sputtering apparatus and sputtering film forming method
JP2004346388A (en) Sputtering source, sputtering apparatus and sputtering method
JP4397655B2 (en) Sputtering apparatus, electronic component manufacturing apparatus, and electronic component manufacturing method
JP5004931B2 (en) Sputtering source, sputtering apparatus, and sputtering method
US11056323B2 (en) Sputtering apparatus and method of forming film
US20110031116A1 (en) Magnetron sputtering target assembly and coating apparatus having same
JP2008202145A (en) Substrate supporting/rotating device
JP3398452B2 (en) Sputtering equipment
US20050150457A1 (en) Plasma-Assisted Sputter Deposition System
JP4957992B2 (en) Magnetron sputtering apparatus and film forming method using the same
JP4413567B2 (en) Film forming apparatus and film forming method
JP2011026652A (en) Apparatus for forming film on both surfaces
JP2023116116A (en) Method and apparatus for treating substrate
JP2746695B2 (en) Sputtering apparatus and sputtering method
JPH03140467A (en) Sputtering device
CN113056572A (en) Vacuum processing apparatus
KR101298768B1 (en) Cylindrical sputtering cathode device
WO2003085158A1 (en) Spattering device, method of forming thin film by spattering, and method of manufacturing disk-like recording medium using the device
JP2756158B2 (en) Sputtering equipment
JP4540830B2 (en) Film forming apparatus and film forming method having shutter with substrate heating mechanism
JP2009299191A (en) Plasma-assisted sputter film-forming apparatus
JP2001226771A (en) Film deposition system
JPS6396268A (en) Sputtering device
JP2005220369A (en) Sputtering system

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Effective date: 20100730

Free format text: JAPANESE INTERMEDIATE CODE: A761