JP2008201908A - Coated substrate having coating film comprising hollow silicone particulate and fluorine resin - Google Patents

Coated substrate having coating film comprising hollow silicone particulate and fluorine resin Download PDF

Info

Publication number
JP2008201908A
JP2008201908A JP2007039813A JP2007039813A JP2008201908A JP 2008201908 A JP2008201908 A JP 2008201908A JP 2007039813 A JP2007039813 A JP 2007039813A JP 2007039813 A JP2007039813 A JP 2007039813A JP 2008201908 A JP2008201908 A JP 2008201908A
Authority
JP
Japan
Prior art keywords
group
particles
film
units
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007039813A
Other languages
Japanese (ja)
Inventor
Ryutaro Mukai
竜太郎 向井
Akira Takagi
彰 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007039813A priority Critical patent/JP2008201908A/en
Publication of JP2008201908A publication Critical patent/JP2008201908A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent coated substrate exerting a low reflectance and a high film strength by providing a coated film comprising a hollow silicone particulate and a fluorine resin for forming the coating film, provided that the hollow silicone particulate has a high porosity and a low reflectance, shows a high productivity, is hardly breakable and has a narrow particle size distribution and a particle size of ≤1 μm, and the fluorine resin for forming the coating film has a low reflectance. <P>SOLUTION: The transparent substrate having a low reflectance and a high film strength is obtained by providing the coating film comprising the hollow silicone particulate and the fluorine resin for forming the coating film. Here, the hollow silicone particulate is obtained by removing an organic polymer particle and/or an organic solvent from a core-shell particle, provided that the core-shell particle is obtained by coating a particle comprising the organic polymer particle and/or the organic solvent with a particular silicone compound. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機高分子粒子等からなるコア粒子をシリコーンで被覆したコアシェル粒子のコア成分を除去した中空シリコーン系微粒子と被膜形成用フッ素系樹脂とからなる被膜が表面に形成された被膜付基材に関するものである。   The present invention relates to a coated substrate in which a film comprising hollow silicone fine particles obtained by removing core components of core-shell particles obtained by coating core particles made of organic polymer particles or the like with silicone and a fluorine-based resin for film formation is formed on the surface. It relates to materials.

透明基材の最外層に基材より低屈折率の物質からなる低屈折率層(減反射層)を可視光波長の1/4の膜厚み(約100nm)で形成すると表面反射率が低減することが知られている。この原理を応用したフィルムやガラスの反射防止透明基材は電気製品、光学製品、建材等の分野で広く使用されている。   When a low refractive index layer (decreasing reflection layer) made of a material having a lower refractive index than the base material is formed on the outermost layer of the transparent base material with a film thickness (about 100 nm) that is 1/4 of the visible light wavelength, the surface reflectance is reduced. It is known. Films and glass antireflection transparent substrates applying this principle are widely used in the fields of electrical products, optical products, building materials and the like.

減反射層の形成方法としては、フッ化マグネシウム等を蒸着またはスパッタリングするドライコーティング法と低屈折率材料の溶液を基材に塗布するウエットコーティング法が知られている。近年、適用できる基材の制約が少なく、連続生産性やコスト面でも優位なウエットコーティング法が注目されている。   As a method for forming the antireflection layer, a dry coating method in which magnesium fluoride or the like is deposited or sputtered and a wet coating method in which a solution of a low refractive index material is applied to a substrate are known. In recent years, wet coating methods that have few restrictions on applicable base materials and are superior in terms of continuous productivity and cost have attracted attention.

ウエットコーティング法の低屈折率材料としては、まずフッ素系樹脂が知られている(特許文献1および2参照)。これらは比較的優れた反射防止性能を示すが、膜強度が低いという問題を残している。   As a low refractive index material for the wet coating method, firstly, a fluororesin is known (see Patent Documents 1 and 2). These exhibit relatively good antireflection performance, but leave the problem of low film strength.

ウエットコーティング法の低屈折率材料としては、多孔質あるいは中空シリカと被膜形成用マトリックスとからなる材料も知られている(特許文献3参照)。   As a low refractive index material of the wet coating method, a material composed of porous or hollow silica and a film forming matrix is also known (see Patent Document 3).

粒子径が0.1〜300μm程度の中空シリカとその製造法はすでに公知である(特許文献4および5参照)。特許文献4に開示された技術では、先ず珪酸塩等の無機物に有機溶剤を添加混合して水中油滴型(O/W型)乳化液を作り、これに親油性界面活性剤を含む有機溶剤を添加混合して油中水中油滴型(O/W/O型)乳濁液を作り、最後に無機酸や無機酸のアンモニウム塩等により無機化合物を水不溶性沈殿物に変え無機中空微粒子を得ている。その後も中空シリカ粒子の様々な製造法が開示されている(特許文献6乃至8参照)。特許文献6では、アルカリ金属等の珪酸塩等とアルカリ可溶な無機化合物をpH10以上のアルカリ水溶液でコロイド粒子にし、この粒子の珪素と酸素以外の元素の一部を除去した後、この粒子を加水分解性有機珪素化合物等で被覆する方法が開示されている。特許文献7では、水を可溶化したテトラアルコキシシランを界面活性剤で有機溶剤中にエマルジョン化すると、加水分解・縮合反応が起こり、含水率が高い場合にはミクロンサイズの中空シリカ粒子が合成できることが開示されている。また、特許文献8では、珪酸アルカリ金属から活性シリカをシリカ以外の材料のコア上に沈殿させ、コアを除去することにより中空シリカを得る製法が開示されている。   Hollow silica having a particle size of about 0.1 to 300 μm and a method for producing the same are already known (see Patent Documents 4 and 5). In the technique disclosed in Patent Document 4, first, an organic solvent is added to and mixed with an inorganic substance such as silicate to form an oil-in-water type (O / W type) emulsion, and an organic solvent containing a lipophilic surfactant therein. To make an oil-in-water oil-in-water (O / W / O type) emulsion, and finally transform the inorganic compound into a water-insoluble precipitate with an inorganic acid or an ammonium salt of the inorganic acid. It has gained. Thereafter, various methods for producing hollow silica particles have been disclosed (see Patent Documents 6 to 8). In Patent Document 6, silicates such as alkali metals and alkali-soluble inorganic compounds are made into colloidal particles with an alkaline aqueous solution having a pH of 10 or more, and after removing some of the elements other than silicon and oxygen in the particles, A method of coating with a hydrolyzable organosilicon compound or the like is disclosed. According to Patent Document 7, when tetraalkoxysilane solubilized in water is emulsified in an organic solvent with a surfactant, hydrolysis / condensation reaction occurs, and when the water content is high, micron-sized hollow silica particles can be synthesized. Is disclosed. Patent Document 8 discloses a process for obtaining hollow silica by precipitating active silica from an alkali metal silicate on a core of a material other than silica and removing the core.

しかしながら、これらの技術では、シリカ層中の多数の細孔や薄いシリカ層の厚みのために加工時に壊れ易いとか空洞内に核粒子のかなりの部分が残り空隙率が上がらないという課題、粒子径分布の広いミクロンサイズのものしか製造できないため用途が限定されるという課題、あるいは反応時間が長く工程が多いため生産性が悪いという課題など、多くの問題を残している。
特開平4−355401号公報 特開平9−203801号公報 特開2001−233611号公報 特開昭63−258642号公報 特開平6−330606号公報 特開平7−133105号公報 特開平11−29318号公報 特表2000−500113号公報
However, with these technologies, there are problems such as a large number of pores in the silica layer and the thickness of the thin silica layer, which are easily broken during processing, or that a considerable part of the core particles remain in the cavity and the porosity does not increase. Many problems remain, such as the problem that only micron-sized products with a wide distribution can be produced, and the application is limited, or the problem is that productivity is poor because of a long reaction time and many processes.
JP-A-4-355401 JP-A-9-203801 JP 2001-233611 A JP-A 63-258642 JP-A-6-330606 JP 7-133105 A Japanese Patent Laid-Open No. 11-29318 Special Table 2000-500113

本発明は、高い空隙率を持ち低い屈折率を示し、生産性も良く、壊れ難く、しかも粒子径分布の狭い1μm以下の粒子径を有する中空シリコーン系微粒子と屈折率の低い被膜形成用フッ素系樹脂とからなる被膜によって、反射率が低く膜強度の高い透明な被膜付基材を提供することを目的とする。   The present invention has a high void ratio, a low refractive index, good productivity, is not easily broken, and has a narrow particle diameter distribution and a hollow silicone fine particle having a particle diameter of 1 μm or less, and a low refractive index fluorine-based film forming film. An object of the present invention is to provide a transparent coated substrate having a low reflectivity and a high film strength by a coating composed of a resin.

本発明者らは、上記課題に鑑み、鋭意検討を重ねた結果、有機高分子粒子および/または有機溶剤からなる粒子を、特定のシリコーン系化合物で被覆したコアシェル粒子中の有機高分子粒子および/または有機溶剤を除去することを特徴とした中空シリコーン系微粒子と被膜形成用フッ素系樹脂とからなる被膜により、目的の低反射率で高い膜強度をもつ透明な基材が得られることを見出し、本発明を完成させるに至った。   In view of the above problems, the present inventors have made extensive studies, and as a result, organic polymer particles and / or organic polymer particles in core-shell particles obtained by coating organic polymer particles and / or particles made of an organic solvent with a specific silicone compound and / or Alternatively, it has been found that a transparent base material having a desired low reflectance and a high film strength can be obtained by a film comprising hollow silicone fine particles and a fluorine resin for film formation characterized by removing an organic solvent, The present invention has been completed.

すなわち本発明は、下記工程(a)〜工程(c)からなる被膜付基材の製造方法に関する。
(a)有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を、SiO4/2単位、RSiO3/2単位(式中、Rは、炭素数1乃至4のアルキル基、炭素数6乃至24の芳香族基、ビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基の少なくとも1種を示す)およびR2SiO2/2単位(式中、Rは、炭素数1乃至4のアルキル基、炭素数6乃至24の芳香族基、ビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基の少なくとも1種を示す)からなる群より選ばれる1単位又は2単位以上からなり、R2SiO2/2単位の割合が20モル%以下、RSiO3/2単位の割合が50モル%以上であるシリコーン系化合物(C)により被覆して、コアシェル粒子(D)を製造する工程
(b)コアシェル粒子(D)中の有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去して体積平均粒子径0.001〜1μmの中空シリコーン系微粒子(E)を製造する工程
(c)中空シリコーン系微粒子(E)と被膜形成用フッ素系樹脂(F)を含む被膜(G)を単独または他の被膜とともに基材表面上に形成する工程。
That is, this invention relates to the manufacturing method of the base material with a film which consists of following process (a)-process (c).
(A) Particles composed of organic polymer particles (A) and / or organic solvent (B) are converted into SiO 4/2 units, RSiO 3/2 units (wherein R is an alkyl group having 1 to 4 carbon atoms, An aromatic group having 6 to 24 carbon atoms, a vinyl group, a γ- (meth) acryloxypropyl group, or an organic group having an SH group) and an R 2 SiO 2/2 unit (wherein R is Or an organic group having 1 to 4 carbon atoms, an aromatic group having 6 to 24 carbon atoms, a vinyl group, a γ- (meth) acryloxypropyl group, or an SH group). Covered with a silicone compound (C) consisting of one unit or two or more units selected, wherein the proportion of R 2 SiO 2/2 units is 20 mol% or less and the proportion of RSiO 3/2 units is 50 mol% or more. And (b) core-shell process for producing core-shell particles (D) A step of producing hollow silicone fine particles (E) having a volume average particle diameter of 0.001 to 1 μm by removing particles comprising organic polymer particles (A) and / or organic solvent (B) in the child (D) ( c) A step of forming a coating (G) containing hollow silicone-based fine particles (E) and a coating-forming fluororesin (F) alone or together with other coatings on the substrate surface.

好ましい実施態様は、前記有機高分子粒子(A)および/または有機溶剤(B)との合計量と、シリコーン系化合物(C)との重量比率が2/98〜95/5であることを特徴とする、前記の被膜付基材の製造方法に関する。   In a preferred embodiment, the weight ratio of the total amount of the organic polymer particles (A) and / or the organic solvent (B) to the silicone compound (C) is 2/98 to 95/5. It is related with the manufacturing method of the said base material with a film.

好ましい実施態様は、有機溶剤を用いて前記コアシェル粒子(D)中の有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去することを特徴とする、前記の被膜付基材の製造方法に関する。   In a preferred embodiment, the film-coated base is characterized in that the organic polymer particles (A) and / or the organic solvent (B) in the core-shell particles (D) are removed using an organic solvent. The present invention relates to a method for manufacturing a material.

さらに、本発明は、外周部がSiO4/2単位、RSiO3/2単位(式中、Rは、炭素数1乃至4のアルキル基、炭素数6乃至24の芳香族基、ビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基の少なくとも1種を示す)およびR2SiO2/2単位(式中、Rは、炭素数1乃至4のアルキル基、炭素数6乃至24の芳香族基、ビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基の少なくとも1種を示す)からなる群より選ばれる1単位又は2単位以上からなり、R2SiO2/2単位の割合が20モル%以下、RSiO3/2単位の割合が50モル%以上であるシリコーン系化合物(C)からなる体積平均粒子径0.001〜1μmの中空シリコーン系微粒子(E)と被膜形成用フッ素系樹脂(F)を含む被膜(G)を単独または他の被膜とともに基材表面上に有する被膜付基材に関する。 Further, in the present invention, the outer peripheral portion has SiO 4/2 units and RSiO 3/2 units (wherein R is an alkyl group having 1 to 4 carbon atoms, an aromatic group having 6 to 24 carbon atoms, a vinyl group, γ -Represents at least one organic group having (meth) acryloxypropyl group or SH group) and R 2 SiO 2/2 unit (wherein R is an alkyl group having 1 to 4 carbon atoms, 6 to 6 carbon atoms) 1 unit selected from the group consisting of 24 aromatic groups, vinyl group, γ- (meth) acryloxypropyl group, or an organic group having SH group), or R 2 SiO Hollow silicone fine particles (E) having a volume average particle diameter of 0.001 to 1 μm comprising a silicone compound (C) having a ratio of 2/2 units of 20 mol% or less and a ratio of RSiO 3/2 units of 50 mol% or more. ) And a fluororesin (F) for film formation The G) alone or with other coating related film-coated substrate having on the substrate surface.

好ましい実施態様は、前記中空シリコーン系微粒子(E)が、有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を前記シリコーン系化合物(C)により被覆したコアシェル粒子(D)中から有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去して得られる中空シリコーン系微粒子であることを特徴とする、前記の被膜付基材に関する。   In a preferred embodiment, the hollow silicone fine particles (E) are in the core-shell particles (D) in which the particles composed of the organic polymer particles (A) and / or the organic solvent (B) are coated with the silicone compound (C). It is related with the said coating-coated base material characterized by the hollow silicone type microparticles | fine-particles obtained by removing the particle | grains which consist of organic polymer particle (A) and / or organic solvent (B) from.

本発明の中空シリコーン系微粒子は、高い空隙率を持ち低い屈折率を示し、生産性も良く、壊れ難く、しかも粒子径分布の狭い1μm以下の粒子径を有するため、その微粒子と屈折率の低い被膜形成用フッ素系樹脂とからなる被膜を基材の表面に形成することにより、安定的に反射率が非常に低く膜強度の高い透明な被膜付基材を提供することができる。   The hollow silicone fine particles of the present invention have a high porosity, a low refractive index, good productivity, are not easily broken, and have a particle size of 1 μm or less with a narrow particle size distribution. By forming a coating comprising a fluororesin for forming a coating on the surface of the substrate, a transparent coated substrate with a very low reflectance and high film strength can be provided.

本発明は、下記工程(a)〜工程(c)
(a)有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を、SiO4/2単位、RSiO3/2単位およびR2SiO2/2単位からなる群より選ばれる1単位又は2単位以上からなり、R2SiO2/2単位の割合が20モル%以下、RSiO3/2単位の割合が50モル%以上であるシリコーン系化合物(C)により被覆して、コアシェル粒子(D)を製造する工程
(b)コアシェル粒子(D)中の有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去して体積平均粒子径0.001〜1μmの中空シリコーン系微粒子(E)を製造する工程
(c)中空シリコーン系微粒子(E)と被膜形成用フッ素系樹脂(F)を含む被膜(G)を単独または他の被膜とともに基材表面上に形成する工程
からなる被膜付基材の製造方法を提供するものである。
The present invention includes the following steps (a) to (c).
(A) 1 unit selected from the group consisting of SiO 4/2 units, RSiO 3/2 units and R 2 SiO 2/2 units, wherein the particles comprising organic polymer particles (A) and / or organic solvent (B) Alternatively, it is coated with a silicone compound (C) consisting of 2 units or more, wherein the proportion of R 2 SiO 2/2 units is 20 mol% or less and the proportion of RSiO 3/2 units is 50 mol% or more. Step (b) for producing D) Hollow silicone having a volume average particle size of 0.001 to 1 μm by removing particles comprising organic polymer particles (A) and / or organic solvent (B) in core-shell particles (D) (C) A step of forming a coating (G) containing hollow silicone fine particles (E) and a fluororesin (F) for forming a film on the surface of a substrate alone or together with other coatings Method for producing a coated substrate comprising Is to provide.

また、本発明は、外周部がSiO4/2単位、RSiO3/2単位およびR2SiO2/2単位からなる群より選ばれる1単位又は2単位以上からなり、R2SiO2/2単位の割合が20モル%以下、RSiO3/2単位の割合が50モル%以上であるシリコーン系化合物(C)からなる体積平均粒子径0.001〜1μmの中空シリコーン系微粒子(E)と被膜形成用フッ素系樹脂(F)を含む被膜(G)を単独または他の被膜とともに基材表面上に有する被膜付基材を提供するものである。 In the present invention, the outer peripheral portion is composed of one unit or two or more units selected from the group consisting of SiO 4/2 units, RSiO 3/2 units and R 2 SiO 2/2 units, and R 2 SiO 2/2 units. Formation of a film with hollow silicone fine particles (E) having a volume average particle diameter of 0.001 to 1 μm comprising a silicone compound (C) having a ratio of 20 mol% or less and an RSiO 3/2 unit ratio of 50 mol% or more The base material with a film which has the film (G) containing the fluororesin (F) for use on a base material surface alone or with another film is provided.

本発明の有機高分子粒子(A)の組成については限定されるものではなく、例えば、ポリアクリル酸ブチル、ポリブタジエン、アクリル酸ブチル−ブタジエン共重合体等に代表される軟質重合体でもよく、アクリル酸ブチル−スチレン共重合体、アクリル酸ブチル−アクリロニトリル共重合体、アクリル酸ブチル−スチレン−アクリロニトリル共重合体、スチレン−アクリロニトリル共重合体等の硬質重合体でも問題なく使用できる。後の凝固工程での除去性という点から、これらのうち軟質重合体が好ましく、ポリアクリル酸ブチルがより好ましい。   The composition of the organic polymer particles (A) of the present invention is not limited. For example, a soft polymer represented by polybutyl acrylate, polybutadiene, butyl acrylate-butadiene copolymer, etc. may be used. Even hard polymers such as butyl acrylate-styrene copolymer, butyl acrylate-acrylonitrile copolymer, butyl acrylate-styrene-acrylonitrile copolymer, and styrene-acrylonitrile copolymer can be used without any problem. Among these, a soft polymer is preferable and polybutyl acrylate is more preferable from the viewpoint of removability in the subsequent coagulation step.

本発明の有機高分子粒子(A)の製造法は、特に限定されず、乳化重合法、マイクロサスペンジョン重合法、ミニエマルション重合法、水系分散重合法など公知の方法が使用できる。なかでも、粒子径の制御が容易であり、工業生産にも適する点から、乳化重合法により製造することが特に好ましい。   The production method of the organic polymer particles (A) of the present invention is not particularly limited, and known methods such as an emulsion polymerization method, a microsuspension polymerization method, a miniemulsion polymerization method, and an aqueous dispersion polymerization method can be used. Among these, it is particularly preferable to produce the emulsion by an emulsion polymerization method from the viewpoint of easy control of the particle diameter and suitability for industrial production.

前記有機高分子粒子(A)の重合にはラジカル重合開始剤が用いられうる。ラジカル重合開始剤の具体例としては、例えば、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイドなどの有機過酸化物、過硫酸カリウム、過硫酸アンモニウムなどの無機過酸化物、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリルなどのアゾ化合物などが挙げられる。上記重合を、例えば、硫酸第一鉄−ホルムアルデヒドスルフォキシル酸ソーダ−エチレンジアミンテトラアセティックアシッド・2Na塩、硫酸第一鉄−グルコース−ピロリン酸ナトリウム、硫酸第一鉄−ピロリン酸ナトリウム−リン酸ナトリウムなどのレドックス系で行うと、低い重合温度でも効率的に重合を完了することができる。   A radical polymerization initiator may be used for the polymerization of the organic polymer particles (A). Specific examples of the radical polymerization initiator include organic peroxides such as cumene hydroperoxide, t-butyl hydroperoxide, benzoyl peroxide, t-butyl peroxyisopropyl carbonate, paramentane hydroperoxide, and persulfuric acid. Examples thereof include inorganic peroxides such as potassium and ammonium persulfate, and azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis-2,4-dimethylvaleronitrile. For example, ferrous sulfate-sodium formaldehydesulfoxylate-ethylenediaminetetraacetic acid 2Na salt, ferrous sulfate-glucose-sodium pyrophosphate, ferrous sulfate-sodium pyrophosphate-sodium phosphate When the redox system is used, the polymerization can be completed efficiently even at a low polymerization temperature.

本発明の有機高分子粒子(A)は、後の段階で行なわれる有機高分子の除去を有機溶媒により行う場合を考慮すると非架橋高分子であることが好ましく、有機高分子粒子(A)の分子量は低い方が好ましい。具体的には、重量平均分子量が30000未満であることが好ましく、さらには10000未満であることがより好ましい。有機高分子粒子(A)の重量平均分子量を低くするためには、例えば、連鎖移動剤の使用、高い重合温度に設定、多量の開始剤を使用するなど種々の手段を適宜組み合わせて選択することができる。有機高分子粒子(A)の重量平均分子量の下限値は特に制限されるものではないが、合成の難易度の点から、概ね2000程度である。なお、重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)による分析(ポリスチレン換算)によって測定できる。   The organic polymer particle (A) of the present invention is preferably a non-crosslinked polymer in consideration of the removal of the organic polymer performed in a later stage with an organic solvent. A lower molecular weight is preferred. Specifically, the weight average molecular weight is preferably less than 30000, and more preferably less than 10,000. In order to reduce the weight average molecular weight of the organic polymer particles (A), for example, use a suitable combination of various means such as use of a chain transfer agent, setting to a high polymerization temperature, and use of a large amount of initiator. Can do. The lower limit of the weight average molecular weight of the organic polymer particles (A) is not particularly limited, but is about 2000 from the viewpoint of the difficulty of synthesis. In addition, a weight average molecular weight can be measured by the analysis (polystyrene conversion) by gel permeation chromatography (GPC), for example.

本発明においては、有機高分子粒子(A)の粒子径分布を狭くするためにシード重合法を利用することもできる。中空シリコーン系粒子が均一な屈折率を有するという点からは、有機高分子粒子(A)の粒子径分布は狭い方が好ましい。なお、ラテックス状態の有機高分子粒子(A)やコアシェル粒子(D)の体積平均粒子径は、光散乱法または電子顕微鏡観察から求められうる。体積平均粒子径および粒子径分布は、例えば、リード&ノースラップインスツルメント(LEED&NORTHRUP INSTRUMENTS)社製のMICROTRAC UPAを用いることにより測定することができる。   In the present invention, a seed polymerization method can be used to narrow the particle size distribution of the organic polymer particles (A). From the viewpoint that the hollow silicone-based particles have a uniform refractive index, it is preferable that the particle size distribution of the organic polymer particles (A) is narrow. In addition, the volume average particle diameter of the organic polymer particles (A) and the core-shell particles (D) in a latex state can be obtained from a light scattering method or observation with an electron microscope. The volume average particle size and the particle size distribution can be measured, for example, by using MICROTRAC UPA manufactured by LEED & NORTHRU INSTRUMENTS.

本発明における有機溶剤(B)は、水に溶けず、乳化剤により微粒子を形成できるものであればよく、具体例としては、トルエン、ベンゼン、キシレン、n−ヘキサン等が挙げられるがこれらに限定されるものではない。   The organic solvent (B) in the present invention may be any one that does not dissolve in water and can form fine particles with an emulsifier, and specific examples include toluene, benzene, xylene, n-hexane and the like, but are not limited thereto. It is not something.

本発明においては、有機高分子粒子(A)および/または有機溶剤(B)からなる粒子がコアシェル粒子(D)の製造におけるコアとして用いられうる。本発明では最終的に有機高分子(A)および/または有機溶剤(B)を除去するので、除去が容易となるように有機高分子粒子(A)に対し有機溶剤(B)を併用するのが好ましいが、各々の単独使用でも良い。前記粒子において、有機高分子粒子(A)および有機溶剤(B)を併用する場合の使用割合については、重量比で有機高分子粒子(A)/有機溶剤(B)が100/0〜1/99の範囲が好ましい。   In the present invention, particles composed of organic polymer particles (A) and / or organic solvent (B) can be used as a core in the production of core-shell particles (D). In the present invention, since the organic polymer (A) and / or the organic solvent (B) is finally removed, the organic solvent (B) is used in combination with the organic polymer particles (A) so that the removal is easy. However, each of them may be used alone. In the particles, when the organic polymer particles (A) and the organic solvent (B) are used in combination, the weight ratio of the organic polymer particles (A) / the organic solvent (B) is 100/0 to 1 / A range of 99 is preferred.

本発明のコアシェル粒子(D)において被覆部となるシリコーン系化合物(C)は、SiO4/2単位、RSiO3/2単位およびR2SiO2/2単位からなる群より選ばれる1単位又は2単位以上からなり、R2SiO2/2単位の割合が20モル%以下、RSiO3/2単位の割合が50モル%以上である。 In the core-shell particles (D) of the present invention, the silicone compound (C) serving as the coating part is one unit selected from the group consisting of SiO 4/2 units, RSiO 3/2 units and R 2 SiO 2/2 units, or 2 units. The ratio of R 2 SiO 2/2 units is 20 mol% or less, and the ratio of RSiO 3/2 units is 50 mol% or more.

前記SiO4/2単位の原料としては、例えば、四塩化ケイ素、テトラアルコキシシラン、水ガラスおよび金属ケイ酸塩からなる群より選択される1種または2種以上が挙げられる。テトラアルコキシシランの具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、およびそれらの縮合物などが挙げられる。 Examples of the raw material of the SiO 4/2 unit include one or more selected from the group consisting of silicon tetrachloride, tetraalkoxysilane, water glass, and metal silicate. Specific examples of the tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and condensates thereof.

前記RSiO3/2単位中のRは、炭素数1乃至4のアルキル基、炭素数6乃至24の芳香族基、ビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基から少なくとも1種が選択される。基材によっては、Rに少量のビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基と、多量のアルキル基または芳香族基を選択する場合もありうる。RSiO3/2単位の原料としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等などを挙げることができ、これらは1種または2種以上を組み合わせて適宜使用できる。 R in the RSiO 3/2 unit is an organic group having an alkyl group having 1 to 4 carbon atoms, an aromatic group having 6 to 24 carbon atoms, a vinyl group, a γ- (meth) acryloxypropyl group, or an SH group. At least one is selected. Depending on the substrate, an organic group having a small amount of vinyl group, γ- (meth) acryloxypropyl group or SH group for R, and a large amount of alkyl group or aromatic group may be selected. Examples of raw materials for RSiO 3/2 units include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, phenyltrimethoxysilane, and phenyltriethoxy. Examples thereof include silane, phenyltripropoxysilane, γ-mercaptopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, and the like, and these can be used singly or in combination of two or more. .

本発明のR2SiO2/2単位(Rは、RSiO3/2単位中のRと同様の群から選択されうる)の原料としては、例えば、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジエトキシシラン、ジエチルジメトキシシラン、エチルフェニルジメトキシシラン、ジエチルジエトキシシラン、エチルフェニルジエトキシシランなど、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)、トリメチルトリフェニルシクロトリシロキサンなどの環状化合物のほかに、直鎖状あるいは分岐状のオルガノシロキサンや、γ−メルカプトプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、ビニルメチルジメトキシシラン等があげられる。 Examples of the raw material of the R 2 SiO 2/2 unit (R may be selected from the same group as R in the RSiO 3/2 unit) of the present invention include, for example, dimethyldimethoxysilane, diphenyldimethoxysilane, and methylphenyldimethoxysilane. , Dimethyldiethoxysilane, diphenyldiethoxysilane, methylphenyldiethoxysilane, diethyldimethoxysilane, ethylphenyldimethoxysilane, diethyldiethoxysilane, ethylphenyldiethoxysilane, hexamethylcyclotrisiloxane (D3), octamethylcyclo In addition to cyclic compounds such as tetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), trimethyltriphenylcyclotrisiloxane, etc., linear or branched organs Siloxanes and, .gamma.-mercaptopropyl methyl dimethoxy silane, .gamma.-methacryloxypropyl methyl dimethoxy silane, vinyl methyl dimethoxy silane and the like.

本発明では、中空シリコーン系微粒子に柔軟性を持たせたい場合等にR2SiO2/2単位を少量混入することができる。コアシェル粒子(D)におけるシリコーン系化合物(C)中のR2SiO2/2単位の割合は20モル%以下である。さらには10モル%以下であることがより好ましい。R2SiO2/2単位の割合が20モル%を越えると最終の中空シリコーン系微粒子が柔軟になり過ぎて形状保持性に問題が起こる場合がある。なお、シリコーン系化合物(C)中のR2SiO2/2単位の割合の下限値は0モル%である。 In the present invention, a small amount of R 2 SiO 2/2 unit can be mixed when the hollow silicone fine particles are desired to have flexibility. The ratio of R 2 SiO 2/2 units in the silicone compound (C) in the core-shell particles (D) is 20 mol% or less. Furthermore, it is more preferable that it is 10 mol% or less. If the proportion of R 2 SiO 2/2 units exceeds 20 mol%, the final hollow silicone fine particles may become too soft and a problem may arise in shape retention. The lower limit of the ratio of R 2 SiO 2/2 units in the silicone compound (C) is 0 mol%.

本発明において、シリコーン系化合物(C)中のSiO4/2単位の割合は、中空シリコーン微粒子の形状保持性と相溶性とのバランスの観点から、0〜50モル%である。0〜25モル%であることが好ましく、更には0〜10モル%であることがより好ましい。SiO4/2単位の割合が50モル%を越えると被膜形成用マトリックスとの相溶性が低下して被膜中で微粒子が凝集し、被膜つき基材の透明性が大きく低下する。 In the present invention, the proportion of SiO 4/2 units in the silicone compound (C) is 0 to 50 mol% from the viewpoint of the balance between the shape retention and compatibility of the hollow silicone fine particles. It is preferably 0 to 25 mol%, and more preferably 0 to 10 mol%. When the proportion of SiO 4/2 units exceeds 50 mol%, the compatibility with the film-forming matrix is lowered, and the fine particles are aggregated in the film, so that the transparency of the coated substrate is greatly lowered.

したがって、本発明のシリコーン系化合物(C)中のRSiO3/2単位の割合は、コアシェル粒子の粒子径分布の安定性の観点から、50〜100モル%である。75〜100モル%であることが好ましく、更には90〜100モル%であることがより好ましい。 Therefore, the ratio of RSiO 3/2 units in the silicone compound (C) of the present invention is 50 to 100 mol% from the viewpoint of the stability of the particle size distribution of the core-shell particles. It is preferably 75 to 100 mol%, more preferably 90 to 100 mol%.

本発明では、有機高分子粒子(A)および/または有機溶剤(B)との合計量と、シリコーン系化合物(C)との重量比率は必ずしも制限されるものではないが、2/98〜95/5であることが好ましく、さらには10/90〜50/50がより好ましい。当該比率が2/98より小さいと最終の中空シリコーン系微粒子の空隙率が低くなり過ぎる場合がある。また、逆に比率が95/5より大きいと中空シリコーン系微粒子の強度が不足して加工中に壊れる場合がある。   In the present invention, the weight ratio between the total amount of the organic polymer particles (A) and / or the organic solvent (B) and the silicone compound (C) is not necessarily limited, but is 2/98 to 95. / 5 is preferable, and 10/90 to 50/50 is more preferable. If the ratio is less than 2/98, the porosity of the final hollow silicone fine particles may be too low. On the other hand, if the ratio is greater than 95/5, the strength of the hollow silicone fine particles may be insufficient and may break during processing.

本発明のコアシェル粒子(D)の体積平均粒子径は0.001〜1μmの範囲であることが好ましく、更には0.002〜0.5μmの範囲であることがより好ましい。0.001μmより小さい粒子や1μmより大きな粒子を合成することは可能であるが、安定的に合成することは難しい傾向がある。   The volume average particle diameter of the core-shell particles (D) of the present invention is preferably in the range of 0.001 to 1 μm, and more preferably in the range of 0.002 to 0.5 μm. Although it is possible to synthesize particles smaller than 0.001 μm or larger than 1 μm, it is difficult to synthesize stably.

本発明のコアシェル粒子(D)の粒子径分布は特に制限されるものではないが、中空シリコーン系粒子が均一な屈折率を有するという点からは、有機高分子粒子(A)の粒子径分布は狭い方が好ましい。   The particle size distribution of the core-shell particles (D) of the present invention is not particularly limited, but from the point that the hollow silicone-based particles have a uniform refractive index, the particle size distribution of the organic polymer particles (A) is Narrower is preferable.

本発明では、例えば、有機高分子粒子(A)および/または有機溶媒(B)と、酸触媒を含む5〜120℃の水に対し、乳化剤、SiO4/2単位の原料、RSiO3/2単位の原料、およびR2SiO2/2単位の原料と水の混合物をラインミキサーやホモジナイザーで乳化した乳化液を一括あるいは連続的に追加することにより、シリコーン系化合物(C)で被覆されたコアシェル粒子(D)を得ることができる。乳化液の追加は一括でも連続でも構わない。時間的には長くなるがラテックス状粒子の安定性や粒子径分布を重視するなら連続追加を採用することが好ましい。乳化液の追加前に酸触媒を添加して、直ちに加水分解と縮合反応が進む条件で連続追加を行うと、コアシェル粒子は時間とともに大きく成長し、通常のシード重合のように、狭い粒子径分布を示すものを得ることができる。30分ないし1時間の比較的短い時間の連続追加を行うと、比較的良い生産性と狭い粒子径分布を両立することもできる。 In the present invention, for example, an organic polymer particle (A) and / or an organic solvent (B) and water at 5 to 120 ° C. containing an acid catalyst are used as an emulsifier, a SiO 4/2 unit raw material, RSiO 3/2 The core shell coated with the silicone compound (C) by adding the raw material of the unit and the emulsion obtained by emulsifying the mixture of the raw material of R 2 SiO 2/2 unit and water with a line mixer or homogenizer all at once or continuously. Particles (D) can be obtained. The emulsified liquid may be added all at once or continuously. Although it takes a long time, it is preferable to employ continuous addition if importance is attached to the stability of the latex particles and the particle size distribution. If the acid catalyst is added before the addition of the emulsion and continuous addition is performed under conditions where hydrolysis and condensation proceed immediately, the core-shell particles grow large over time, and a narrow particle size distribution, as in normal seed polymerization. Can be obtained. When continuous addition is performed for a relatively short time of 30 minutes to 1 hour, both relatively good productivity and a narrow particle size distribution can be achieved.

本発明に使用できる乳化剤としては、アニオン系乳化剤やノニオン系乳化剤が好適に使用されうる。アニオン系乳化剤の具体例としては、例えば、アルキルベンゼンスルホン酸ナトリウム、ラウリルスルホン酸ナトリウム、オレイン酸カリウムなどが挙げられるが、特にドデシルベンゼンスルホン酸ナトリウムが好適に用いられる。ノニオン系乳化剤の具体例としては、例えば、ポリオキシエチレンノニルフェニルエーテルやポリオキシエチレンラウリルエーテルなどが挙げられる。   As the emulsifier that can be used in the present invention, an anionic emulsifier and a nonionic emulsifier can be suitably used. Specific examples of the anionic emulsifier include sodium alkylbenzene sulfonate, sodium lauryl sulfonate, potassium oleate and the like, and sodium dodecylbenzene sulfonate is particularly preferably used. Specific examples of nonionic emulsifiers include polyoxyethylene nonylphenyl ether and polyoxyethylene lauryl ether.

本発明に用いることのできる酸触媒は、例えば、脂肪族スルホン酸、脂肪族置換ベンゼンスルホン酸、脂肪族置換ナフタレンスルホン酸などのスルホン酸類、および硫酸、塩酸、硝酸などの鉱酸類が挙げられる。これらの中では、オルガノシロキサンの乳化安定性に優れる観点から、脂肪族置換ベンゼンスルホン酸が好ましく、n−ドデシルベンゼンスルホン酸が特に好ましい。   Examples of the acid catalyst that can be used in the present invention include sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzenesulfonic acid, and aliphatic substituted naphthalenesulfonic acid, and mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid. Among these, aliphatic substituted benzenesulfonic acid is preferable and n-dodecylbenzenesulfonic acid is particularly preferable from the viewpoint of excellent emulsion stability of the organosiloxane.

コアシェル粒子(D)を製造する際の反応のための加熱は、適度な重合速度が得られるという点で5〜120℃が好ましく、20〜80℃がより好ましい。   The heating for the reaction in producing the core-shell particles (D) is preferably 5 to 120 ° C, more preferably 20 to 80 ° C in that an appropriate polymerization rate can be obtained.

本発明において、コアシェル粒子(D)中から有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去する方法としては、例えば、有機溶剤を用いる方法、燃焼による方法などがあげられる。コアシェル粒子(D)中の有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去するのに使用される有機溶剤としては、コアになる有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を溶解し、シェルになるシリコーン系化合物(C)を溶解しないものが好ましい。具体例としては、アセトン、トルエン、ベンゼン、キシレン、n−ヘキサン等が挙げられる。   In the present invention, examples of the method for removing the particles composed of the organic polymer particles (A) and / or the organic solvent (B) from the core-shell particles (D) include a method using an organic solvent and a combustion method. It is done. As the organic solvent used for removing the particles composed of the organic polymer particles (A) and / or the organic solvent (B) in the core-shell particles (D), the organic polymer particles (A) and / Or what melt | dissolves the particle | grains which consist of an organic solvent (B), and does not melt | dissolve the silicone type compound (C) used as a shell is preferable. Specific examples include acetone, toluene, benzene, xylene, n-hexane and the like.

また、本発明では、コアを除去したのちさらに中空シリコーン系微粒子(E)を有機溶剤で洗浄することもできる。洗浄に用いることのできる有機溶剤の具体例としては、メタノール、n−ヘキサン等が挙げられる。   In the present invention, after removing the core, the hollow silicone fine particles (E) can be washed with an organic solvent. Specific examples of the organic solvent that can be used for washing include methanol and n-hexane.

有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去して得られる、本発明の中空シリコーン系微粒子(E)の体積平均粒子径0.001〜1μmの範囲であることが好ましく、更には0.002〜0.5μmの範囲であることがより好ましい。0.001μmより小さい粒子や1μmより大きな粒子は被膜つき基材の透明性を低下させる傾向がある。   The volume average particle diameter of the hollow silicone fine particles (E) of the present invention obtained by removing particles comprising the organic polymer particles (A) and / or the organic solvent (B) is in the range of 0.001 to 1 μm. Is more preferable, and the range of 0.002 to 0.5 μm is more preferable. Particles smaller than 0.001 μm and particles larger than 1 μm tend to lower the transparency of the coated substrate.

本発明の中空シリコーン系微粒子(E)は、従来の中空シリカに比較して空隙率が大きいため、少量の使用で反射率を低下させることができる。このため、被膜強度の低下がなく低い反射率を示す被膜つき基材を得ることができる。   Since the hollow silicone fine particles (E) of the present invention have a larger porosity than conventional hollow silica, the reflectance can be lowered with a small amount of use. For this reason, the base material with a film which shows a low reflectance without the fall of film strength can be obtained.

本発明の被膜形成用フッ素系樹脂(F)としては、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、エチレンと4フッ化エチレンのコポリマー(ETFE)、パーフルオロエチレンプロペンコポリマー(FEP)、テトラフルオロエチレン−パーフルオロジオキソールコポリマー(TFE/PDD)などやそれらの変性化合物が使用できる。屈折率を低くするためにはフッ素系樹脂のフッ素置換されたアルキル鎖を長くすることが好ましく、一方でアルキル鎖を長くしすぎると形成された低屈折率層の膜強度が低下する問題がある。屈折率や膜形成の際の溶剤溶解、入手のし易さから被膜形成用フッ素系樹脂としては、三菱レイヨンの17FM、旭硝子のCYTOP、デュポンのTEFLON-AFなどが適している。   Examples of the fluororesin (F) for film formation of the present invention include polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), a copolymer of ethylene and tetrafluoroethylene (ETFE), and a perfluoroethylene propene copolymer (FEP). ), Tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), etc., and modified compounds thereof. In order to lower the refractive index, it is preferable to lengthen the fluorine-substituted alkyl chain of the fluororesin. On the other hand, if the alkyl chain is too long, the film strength of the formed low refractive index layer is lowered. . From the viewpoint of refractive index, solvent dissolution during film formation, and availability, Mitsubishi Rayon's 17FM, Asahi Glass's CYTOP, DuPont's TEFLON-AF, and the like are suitable as the film-forming fluororesin.

中空シリコーン系微粒子(E)と被膜形成用フッ素系樹脂(F)を含む被膜(G)は、これらの他に、必要ならアクリル樹脂、ウレタン樹脂、ポリエステル樹脂、メラミン樹脂、シリコーン樹脂などの塗料用樹脂やアルコキシシラン等の加水分解性有機ケイ素化合物を加えてもよい。   In addition to these, the coating (G) containing the hollow silicone fine particles (E) and the fluororesin (F) for film formation is used for paints such as acrylic resin, urethane resin, polyester resin, melamine resin, and silicone resin, if necessary. Hydrolyzable organosilicon compounds such as resins and alkoxysilanes may be added.

基材上に中空シリコーン系微粒子(E)と被膜形成用フッ素系樹脂(F)を含む被膜(G)を形成するためには、中空シリコーン系微粒子(E)を溶剤に分散させ、この分散液と被膜形成用フッ素系樹脂(F)とを混合し、基材上に塗布して乾燥させればよい。膜形成の際の溶剤としてはケトン類、エステル類、フェノール類、トルエン等の芳香族炭化水素類、パーフルオロ(2−ブチルテトラヒドロフラン)等のフロン類、メタノール、エタノール、プロパノール、エチレングリコール等のアルコール類等が使用できる。基材上に塗布する方法としては通常コート法、スピナー法、ディップ法、スプレー法等を用いることができる。   In order to form a coating (G) containing hollow silicone fine particles (E) and a film-forming fluororesin (F) on a substrate, the hollow silicone fine particles (E) are dispersed in a solvent, and this dispersion is used. And a film-forming fluororesin (F) may be mixed, applied onto a substrate and dried. Solvents used for film formation include ketones, esters, phenols, aromatic hydrocarbons such as toluene, chlorofluorocarbons such as perfluoro (2-butyltetrahydrofuran), alcohols such as methanol, ethanol, propanol, and ethylene glycol. Can be used. As a method for coating on the substrate, a coating method, a spinner method, a dip method, a spray method, or the like can be usually used.

被膜中の中空シリコーン系微粒子と被膜形成用フッ素系樹脂の比率は、99/1〜1/99の範囲であることが好ましく、更には45/55〜5/95の範囲であることがより好ましい。この比率が99/1より大きくなり、中空シリコーン系微粒子が多くなると被膜強度が低下する傾向を示す。この比率が1/99より小さくなり、中空シリコーン系微粒子が少なくなると被膜の屈折率が低下せず、反射防止効果が小さくなる傾向を示す。   The ratio between the hollow silicone fine particles and the film-forming fluororesin in the coating is preferably in the range of 99/1 to 1/99, more preferably in the range of 45/55 to 5/95. . When this ratio is greater than 99/1 and the amount of hollow silicone fine particles increases, the coating strength tends to decrease. When this ratio is less than 1/99 and the number of hollow silicone fine particles is decreased, the refractive index of the coating does not decrease, and the antireflection effect tends to decrease.

被膜(G)は基材上に単独で形成しても良く、他の被膜とともに形成しても良い。他の被膜としては、例えば保護膜、ハードコート膜、平坦化膜、高屈折率膜、絶縁膜、導電性樹脂膜、導電性金属微粒子膜、導電性金属酸化物微粒子膜、プライマー膜などが挙げられる。   The coating (G) may be formed alone on the substrate, or may be formed together with other coatings. Examples of the other coating include a protective film, a hard coat film, a planarizing film, a high refractive index film, an insulating film, a conductive resin film, a conductive metal fine particle film, a conductive metal oxide fine particle film, and a primer film. It is done.

本発明に使用される基材としては、ポリエチレンテレフタレート(PET)、ポリカーボネート、アクリル等のプラスチックやガラス等が挙げられる。基材の形状はとくに限定されず、フィルム状でも板状でもレンズ状でも良い。   Examples of the substrate used in the present invention include plastics such as polyethylene terephthalate (PET), polycarbonate, and acrylic, and glass. The shape of the substrate is not particularly limited, and may be a film shape, a plate shape, or a lens shape.

本発明を実施例に基づき具体的に説明するが、本発明はこれらのみに限定されない。なお、以下の実施例および比較例における測定および試験はつぎのように行った。   The present invention will be specifically described based on examples, but the present invention is not limited thereto. Measurements and tests in the following examples and comparative examples were performed as follows.

[体積平均粒子径]
有機高分子粒子、コアシェル粒子の体積平均粒子径をラテックスの状態で測定した。測定装置として、リード&ノースラップインスツルメント(LEED&NORTHRUP INSTRUMENTS)社製のMICROTRAC UPAを用いて、光散乱法により体積平均粒子径(μm)を測定した。
[Volume average particle diameter]
The volume average particle diameter of the organic polymer particles and the core-shell particles was measured in a latex state. The volume average particle size (μm) was measured by a light scattering method using MICROTRAC UPA manufactured by LEED & NORTHRUUP INSTRUMENTS as a measuring device.

[有機高分子の重量平均分子量]
有機高分子の重量平均分子量は、GPC測定データよりポリスチレン標準試料で作成した検量線を用いて換算して求めた。
[Weight average molecular weight of organic polymer]
The weight average molecular weight of the organic polymer was determined by conversion from a GPC measurement data using a calibration curve prepared with a polystyrene standard sample.

[コアシェル粒子の確認]
ラテックス状態のコアシェル粒子の確認は、ラテックスをエポキシ樹脂に溶解・硬化後、ルテニウムで染色しTEM観察することにより行った。コアシェル構造であることが確認できたものを○、確認できなかったものを×と判定した。
[Confirmation of core-shell particles]
Confirmation of the core-shell particles in the latex state was performed by dissolving and curing the latex in an epoxy resin, dyeing it with ruthenium, and observing it with a TEM. Those that could be confirmed to have a core-shell structure were judged as “good”, and those that could not be confirmed as “poor”.

[被膜中の中空シリコーン系微粒子の確認]
被膜中の中空シリコーン系微粒子の確認は、被膜をルテニウムで染色しTEM観察することにより行った。
[Confirmation of hollow silicone fine particles in coating]
The hollow silicone fine particles in the coating were confirmed by staining the coating with ruthenium and TEM observation.

[コアシェル粒子からの有機高分子等の除去の確認]
凝固後のコアシェル粒子に対ラテックス5倍量のn−ヘキサンを加えて混合・撹拌・静置・分別を行い、透明な上澄み液中のポリアクリル酸ブチル量を求めることによりコアの除去を確認した。コアが除去されていることが確認できたものを○、確認できなかったものを×と判定した。
[Confirmation of organic polymer removal from core-shell particles]
Addition of 5 times the amount of latex n-hexane to the core-shell particles after coagulation, mixing, stirring, standing and fractionating were performed, and the removal of the core was confirmed by determining the amount of polybutyl acrylate in the transparent supernatant. . The case where it was confirmed that the core was removed was judged as ◯, and the case where the core could not be confirmed as x.

[反射率の測定]
塗布面と反対側のPETフィルム表面をサンドペーパーで荒し、黒色塗料で塗りつぶしたものを分光光度計(日本分光株式会社製 紫外可視分光光度計V−560型、積分球装置ISV−469型)により反射率を測定し、可視光域での極小値を読み取った。
[Measurement of reflectance]
Using a spectrophotometer (UV-spectrophotometer V-560 type, integrating sphere device ISV-469 type, manufactured by JASCO Corporation), the surface of the PET film opposite to the coated surface is roughened with sandpaper and painted with black paint. The reflectance was measured, and the minimum value in the visible light range was read.

[全光線透過率の測定]
ヘイズメーター(日本電色工業株式会社製 NDH−300A)を用いて全光線透過率の測定を行なった。
[Measurement of total light transmittance]
The total light transmittance was measured using a haze meter (NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd.).

[密着性の測定]
被膜付基材の表面にナイフで縦横1mmの間隔で11本の平行な傷をつけ100個の升目をつくり、セロファンテープをこれに接着した。その後セロファンテープを剥し、被膜が残っている升目の数により密着性を判定した。残存升目が95〜100であるものをA、残存升目が90〜94であるものをB、残存升目0〜89であるものをCとした。
[Measurement of adhesion]
Eleven parallel scratches were made on the surface of the coated substrate with a knife at intervals of 1 mm in length and width to make 100 squares, and cellophane tape was adhered thereto. Thereafter, the cellophane tape was peeled off, and the adhesion was determined based on the number of squares on which the film remained. A sample having a residual mesh of 95-100 was designated as A, a sample having a residual cell of 90-94 was designated as B, and a sample having a residual mesh of 0-89 was designated as C.

[耐消しゴム性測定]
市販の消しゴム(クラウン社製)を用いて1Kg加重で5回の往復運動の後、被膜付基材の表面の傷の有無を評価した。
[Eraser resistance measurement]
A commercially available eraser (Crown) was used to evaluate the presence or absence of scratches on the surface of the coated substrate after 5 reciprocations at 1 kg weight.

(実施例1)
撹拌機、還流冷却器、窒素吹込口、単量体追加口、温度計を備えた5口フラスコに、水400重量部(種々の希釈水も含む水の総量)およびドデシルベンゼンスルホン酸ソーダ(SDBS)2重量部(固形分)をとり混合した後、50℃に昇温し、液温が50℃に達した後、窒素置換を行った。その後、ブチルアクリレート10重量部、t−ドデシルメルカプタン3重量部、パラメンタンハイドロパーオキサイド0.01重量部の混合液を加えた。30分後、硫酸第一鉄(FeSO4・7H2O)0.002重量部、エチレンジアミンテトラアセティックアシッド・2Na塩0.005重量部、ホルムアルデヒドスルフォキシル酸ソーダ0.2重量部を加えてさらに1時間重合させた。その後ブチルアクリレート90重量部、t−ドデシルメルカプタン27重量部、パラメンタンハイドロパーオキサイド0.1重量部の混合液を3時間かけて連続追加した。2時間の後重合を行い、有機高分子ラテックス(P−1)を得た。このラテックスの体積平均粒子径は0.1μm、重量平均分子量は6000であった。
(Example 1)
In a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, monomer addition port, thermometer, 400 parts by weight of water (total amount of water including various dilution water) and sodium dodecylbenzenesulfonate (SDBS) ) After 2 parts by weight (solid content) were taken and mixed, the temperature was raised to 50 ° C., and after the liquid temperature reached 50 ° C., nitrogen substitution was performed. Thereafter, a mixed solution of 10 parts by weight of butyl acrylate, 3 parts by weight of t-dodecyl mercaptan, and 0.01 parts by weight of paramentane hydroperoxide was added. After 30 minutes, add 0.002 parts by weight of ferrous sulfate (FeSO 4 .7H 2 O), 0.005 parts by weight of ethylenediaminetetraacetic acid 2Na salt, and 0.2 parts by weight of sodium formaldehydesulfoxylate. The polymerization was further continued for 1 hour. Thereafter, a mixed solution of 90 parts by weight of butyl acrylate, 27 parts by weight of t-dodecyl mercaptan, and 0.1 parts by weight of paramentane hydroperoxide was continuously added over 3 hours. Post-polymerization was performed for 2 hours to obtain an organic polymer latex (P-1). The latex had a volume average particle size of 0.1 μm and a weight average molecular weight of 6000.

撹拌機、還流冷却器、窒素吹込口、単量体追加口、温度計を備えた5口フラスコに、水500重量部(種々の希釈水も含む水の総量)、ドデシルベンゼンスルホン酸(DBSA)3重量部、有機高分子(P−1)25重量部(固形分)を混合した。この時のpHは1.8であった。80℃に昇温し、窒素置換を行った。その後、別途純水100重量部、SDBS(固形分)0.5重量部、メチルトリメトキシシラン(MTMS)25重量部の混合物を30分かけて一定速度で全量を追加した。追加終了後、5時間撹拌を続けた後、25℃に冷却して20時間放置し、ラテックス状のコアシェル粒子を得た。このコアシェル粒子の体積平均粒子径の確認結果を表1に示した。また、TEM観察によりコアシェル構造を確認し結果を表1に示した。   In a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, monomer addition port, thermometer, 500 parts by weight of water (total amount of water including various dilution waters), dodecylbenzenesulfonic acid (DBSA) 3 parts by weight and 25 parts by weight (solid content) of an organic polymer (P-1) were mixed. The pH at this time was 1.8. The temperature was raised to 80 ° C., and nitrogen substitution was performed. Thereafter, a total amount of 100 parts by weight of pure water, 0.5 parts by weight of SDBS (solid content), and 25 parts by weight of methyltrimethoxysilane (MTMS) was added at a constant rate over 30 minutes. After completion of the addition, stirring was continued for 5 hours, followed by cooling to 25 ° C. and allowing to stand for 20 hours to obtain latex-like core-shell particles. The confirmation results of the volume average particle diameter of the core-shell particles are shown in Table 1. Further, the core-shell structure was confirmed by TEM observation, and the results are shown in Table 1.

つづいて、ラテックス状のコアシェル粒子100重量部に対し、アセトンをまず50重量部を加えて5分間撹拌し、その後アセトン150重量部を加えて25分間撹拌した。3時間静置すると凝固粒子層と透明な上澄層に分離する。上澄液を除いた後、濾紙を用いて凝固粒子層を単離した。それをメタノール70重量%、n−ヘキサン30重量%の混合溶剤300重量部に分散させた。この分散液を3時間静置すると凝固粒子層と透明な上澄層に分離する。濾紙を用いて凝固粒子層を単離した。このコアシェル粒子からの有機高分子の除去の確認結果を表1に示した。単離された濾過粒子をトルエンに分散させ、粒子濃度が1重量%の分散液を得た。   Subsequently, 50 parts by weight of acetone was first added to 100 parts by weight of latex-like core-shell particles and stirred for 5 minutes, and then 150 parts by weight of acetone was added and stirred for 25 minutes. When allowed to stand for 3 hours, it separates into a solidified particle layer and a transparent supernatant layer. After removing the supernatant, the coagulated particle layer was isolated using filter paper. This was dispersed in 300 parts by weight of a mixed solvent of 70% by weight of methanol and 30% by weight of n-hexane. When this dispersion is allowed to stand for 3 hours, it is separated into a coagulated particle layer and a transparent supernatant layer. The coagulated particle layer was isolated using filter paper. Table 1 shows the results of confirming the removal of the organic polymer from the core-shell particles. The isolated filtered particles were dispersed in toluene to obtain a dispersion having a particle concentration of 1% by weight.

この分散液と予めトルエンに1重量%の濃度で溶解しておいた被膜形成用フッ素系樹脂を混合し、中空シリコーン系粒子とフッ素系樹脂の割合が表1の通りになるよう調整した。被膜形成用フッ素系樹脂としては、17FM(三菱レイヨン製)を使用した。   This dispersion was mixed with a film-forming fluororesin previously dissolved in toluene at a concentration of 1% by weight, and the ratio of the hollow silicone-based particles to the fluororesin was adjusted as shown in Table 1. 17FM (manufactured by Mitsubishi Rayon) was used as the fluorine-based resin for film formation.

この塗膜液をPETフィルムにディップ法で塗布し、その後110℃で20分間乾燥し、被膜の厚さが0.1〜0.2μmの被膜付基材を得た。   This coating solution was applied to a PET film by a dip method, and then dried at 110 ° C. for 20 minutes to obtain a coated substrate with a coating thickness of 0.1 to 0.2 μm.

この被膜付基材の反射率を測定し可視光域での最低反射率を求めた。また、同基材の全光線透過率、耐消しゴム性、密着性の評価結果も表1に示した。   The reflectance of this coated substrate was measured to determine the minimum reflectance in the visible light region. In addition, Table 1 also shows the evaluation results of the total light transmittance, resistance to erase rubber, and adhesion of the substrate.

(実施例2〜4、比較例2〜3)
撹拌機、還流冷却器、窒素吹込口、単量体追加口、温度計を備えた5口フラスコに、水400重量部(種々の希釈水も含む水の総量)およびドデシルベンゼンスルホン酸ソーダ(SDBS)12重量部(固形分)をとり混合した後、50℃に昇温し、液温が50℃に達した後、窒素置換を行った。その後、ブチルアクリレート10重量部、t−ドデシルメルカプタン3重量部、パラメンタンハイドロパーオキサイド0.01重量部の混合液を加えた。30分後、硫酸第一鉄(FeSO4・7H2O)0.002重量部、エチレンジアミンテトラアセティックアシッド・2Na塩0.005重量部、ホルムアルデヒドスルフォキシル酸ソーダ0.2重量部を加えてさらに1時間重合させた。その後ブチルアクリレート90重量部、t−ドデシルメルカプタン27重量部、パラメンタンハイドロパーオキサイド0.1重量部の混合液を3時間かけて連続追加した。2時間の後重合を行い、有機高分子ラテックス(P−2)を得た。このラテックスの体積平均粒子径は0.015μm、重量平均分子量は6000であった。
(Examples 2-4, Comparative Examples 2-3)
In a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, monomer addition port, thermometer, 400 parts by weight of water (total amount of water including various dilution water) and sodium dodecylbenzenesulfonate (SDBS) ) After 12 parts by weight (solid content) was taken and mixed, the temperature was raised to 50 ° C., and after the liquid temperature reached 50 ° C., nitrogen substitution was performed. Thereafter, a mixed solution of 10 parts by weight of butyl acrylate, 3 parts by weight of t-dodecyl mercaptan, and 0.01 parts by weight of paramentane hydroperoxide was added. After 30 minutes, add 0.002 parts by weight of ferrous sulfate (FeSO 4 .7H 2 O), 0.005 parts by weight of ethylenediaminetetraacetic acid 2Na salt, and 0.2 parts by weight of sodium formaldehydesulfoxylate. The polymerization was further continued for 1 hour. Thereafter, a mixed solution of 90 parts by weight of butyl acrylate, 27 parts by weight of t-dodecyl mercaptan, and 0.1 parts by weight of paramentane hydroperoxide was continuously added over 3 hours. Post-polymerization was performed for 2 hours to obtain an organic polymer latex (P-2). The latex had a volume average particle size of 0.015 μm and a weight average molecular weight of 6000.

撹拌機、還流冷却器、窒素吹込口、単量体追加口、温度計を備えた5口フラスコに、水500重量部(種々の希釈水も含む水の総量)、ドデシルベンゼンスルホン酸(DBSA)3重量部、有機高分子(P−2)25重量部(固形分)を混合した。この時のpHは1.8であった。80℃に昇温し、窒素置換を行った。その後、別途純水100重量部、SDBS(固形分)0.5重量部、メチルトリメトキシシラン(MTMS)75重量部の混合物を30分かけて一定速度で全量を追加した。追加終了後、5時間撹拌を続けた後、25℃に冷却して20時間放置し、ラテックス状のコアシェル粒子を得た。このコアシェル粒子の体積平均粒子径の確認結果を表1に示した。また、TEM観察によりコアシェル構造を確認し結果を表1に示した。   In a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, monomer addition port, thermometer, 500 parts by weight of water (total amount of water including various dilution waters), dodecylbenzenesulfonic acid (DBSA) 3 parts by weight and 25 parts by weight (solid content) of an organic polymer (P-2) were mixed. The pH at this time was 1.8. The temperature was raised to 80 ° C., and nitrogen substitution was performed. Thereafter, a total amount of 100 parts by weight of pure water, 0.5 parts by weight of SDBS (solid content), and 75 parts by weight of methyltrimethoxysilane (MTMS) was added at a constant rate over 30 minutes. After completion of the addition, stirring was continued for 5 hours, followed by cooling to 25 ° C. and allowing to stand for 20 hours to obtain latex-like core-shell particles. The confirmation results of the volume average particle diameter of the core-shell particles are shown in Table 1. Further, the core-shell structure was confirmed by TEM observation, and the results are shown in Table 1.

つづいて、ラテックス状のコアシェル粒子100重量部に対し、アセトンをまず50重量部を加えて5分間撹拌し、その後アセトン150重量部を加えて25分間撹拌した。3時間静置すると凝固粒子層と透明な上澄層に分離する。上澄液を除いた後、濾紙を用いて凝固粒子層を単離した。それをメタノール70重量%、n−ヘキサン30重量%の混合溶剤300重量部に分散させた。この分散液を3時間静置すると凝固粒子層と透明な上澄層に分離する。濾紙を用いて凝固粒子層を単離した。このコアシェル粒子からの有機高分子の除去の確認結果を表1に示した。単離された濾過粒子をトルエンに分散させ、粒子濃度が1重量%の分散液を得た。   Subsequently, 50 parts by weight of acetone was first added to 100 parts by weight of latex-like core-shell particles and stirred for 5 minutes, and then 150 parts by weight of acetone was added and stirred for 25 minutes. When allowed to stand for 3 hours, it separates into a coagulated particle layer and a transparent supernatant layer. After removing the supernatant, the coagulated particle layer was isolated using filter paper. This was dispersed in 300 parts by weight of a mixed solvent of 70% by weight of methanol and 30% by weight of n-hexane. When this dispersion is allowed to stand for 3 hours, it is separated into a coagulated particle layer and a transparent supernatant layer. The coagulated particle layer was isolated using filter paper. Table 1 shows the results of confirming the removal of the organic polymer from the core-shell particles. The isolated filtered particles were dispersed in toluene to obtain a dispersion having a particle concentration of 1% by weight.

この分散液と予め表1に示した溶剤に1重量%の濃度で溶解しておいた被膜形成用フッ素系樹脂(とアクリル樹脂)を混合し、中空シリコーン系粒子とフッ素系樹脂(とアクリル樹脂)の割合が表1の通りになるよう調整した。溶剤としては、トルエンまたはフリナートFC(住友3M製、パーフルオロ(2−ブチルテトラヒドロフラン))を使用した。被膜形成用フッ素系樹脂としては、17FM(三菱レイヨン製)、TEFLON AF1600(デュポン製)、またはCYTOP(旭硝子製)を使用した。アクリル樹脂としては、ヒタロイド1007(日立化成製)を使用した。   This dispersion and a fluororesin for film formation (and acrylic resin) dissolved in the solvent shown in Table 1 at a concentration of 1% by weight were mixed, and hollow silicone-based particles and fluororesin (and acrylic resin) were mixed. ) Was adjusted as shown in Table 1. As the solvent, toluene or Flinate FC (manufactured by Sumitomo 3M, perfluoro (2-butyltetrahydrofuran)) was used. As the fluorine-based resin for film formation, 17FM (manufactured by Mitsubishi Rayon), TEFLON AF1600 (manufactured by DuPont), or CYTOP (manufactured by Asahi Glass) was used. As the acrylic resin, Hitaroid 1007 (manufactured by Hitachi Chemical) was used.

この塗膜液をPETフィルムにディップ法で塗布し、その後110℃で20分間乾燥し、被膜の厚さが0.1〜0.2μmの被膜付基材を得た。   This coating solution was applied to a PET film by a dip method, and then dried at 110 ° C. for 20 minutes to obtain a coated substrate with a coating thickness of 0.1 to 0.2 μm.

この被膜付基材の反射率を測定し可視光域での最低反射率を求めた。また、同基材の全光線透過率、耐消しゴム性、密着性の評価結果も表1に示した。
(比較例1)
なにも塗布しないPETフィルムの評価結果を表1に示した。
The reflectance of this coated substrate was measured to determine the minimum reflectance in the visible light region. In addition, Table 1 also shows the evaluation results of the total light transmittance, resistance to erase rubber, and adhesion of the substrate.
(Comparative Example 1)
Table 1 shows the evaluation results of the PET film not coated at all.

Figure 2008201908
有機高分子粒子からなる粒子を、RSiO4/2単位、RSiO3/2単位およびR2SiO2/2単位からなるシリコーン系化合物で被覆したコアシェル粒子中の有機高分子を除去した体積平均粒子径0.001〜1μmの中空シリコーン系微粒子と被膜形成用フッ素系樹脂を含む被膜を持つ実施例1〜4のPETフィルムは、比較例1〜3のPETフィルムよりも低い反射率を示した。また、実施例1〜4のPETフィルムは、比較例2のPETフィルムよりも高い密着性、膜強度を示した。
Figure 2008201908
Volume average particle diameter obtained by removing organic polymer from core-shell particles in which organic polymer particles are coated with a silicone compound comprising RSiO 4/2 units, RSiO 3/2 units and R 2 SiO 2/2 units. The PET films of Examples 1 to 4 having a coating containing 0.001 to 1 μm hollow silicone fine particles and a fluororesin for forming a film showed a lower reflectance than the PET films of Comparative Examples 1 to 3. In addition, the PET films of Examples 1 to 4 showed higher adhesion and film strength than the PET film of Comparative Example 2.

Claims (5)

下記工程(a)〜工程(c)からなる被膜付基材の製造方法。
(a)有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を、SiO4/2単位、RSiO3/2単位(式中、Rは、炭素数1乃至4のアルキル基、炭素数6乃至24の芳香族基、ビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基の少なくとも1種を示す)およびR2SiO2/2単位(式中、Rは、炭素数1乃至4のアルキル基、炭素数6乃至24の芳香族基、ビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基の少なくとも1種を示す)からなる群より選ばれる1単位又は2単位以上からなり、R2SiO2/2単位の割合が20モル%以下、RSiO3/2単位の割合が50モル%以上であるシリコーン系化合物(C)により被覆して、コアシェル粒子(D)を製造する工程
(b)コアシェル粒子(D)中の有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去して体積平均粒子径0.001〜1μmの中空シリコーン系微粒子(E)を製造する工程
(c)中空シリコーン系微粒子(E)と被膜形成用フッ素系樹脂(F)を含む被膜(G)を単独または他の被膜とともに基材表面上に形成する工程
The manufacturing method of the base material with a film which consists of following process (a)-process (c).
(A) Particles composed of organic polymer particles (A) and / or organic solvent (B) are converted into SiO 4/2 units, RSiO 3/2 units (wherein R is an alkyl group having 1 to 4 carbon atoms, An aromatic group having 6 to 24 carbon atoms, a vinyl group, a γ- (meth) acryloxypropyl group, or an organic group having an SH group) and an R 2 SiO 2/2 unit (wherein R is Or an organic group having 1 to 4 carbon atoms, an aromatic group having 6 to 24 carbon atoms, a vinyl group, a γ- (meth) acryloxypropyl group, or an SH group). Covered with a silicone compound (C) consisting of one unit or two or more units selected, wherein the proportion of R 2 SiO 2/2 units is 20 mol% or less and the proportion of RSiO 3/2 units is 50 mol% or more. And (b) core-shell process for producing core-shell particles (D) A step of producing hollow silicone fine particles (E) having a volume average particle diameter of 0.001 to 1 μm by removing particles comprising organic polymer particles (A) and / or organic solvent (B) in the child (D) ( c) A step of forming the coating (G) containing the hollow silicone fine particles (E) and the fluororesin (F) for forming a film, alone or together with other coatings on the surface of the substrate.
前記有機高分子粒子(A)および/または有機溶剤(B)との合計量と、シリコーン系化合物(C)との重量比率が2/98〜95/5であることを特徴とする、請求項1記載の被膜付基材の製造方法。   The weight ratio of the total amount of the organic polymer particles (A) and / or the organic solvent (B) to the silicone compound (C) is 2/98 to 95/5. The manufacturing method of the base material with a film of 1 description. 有機溶剤を用いて前記コアシェル粒子(D)中の有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去することを特徴とする、請求項1又は2に記載の被膜付基材の製造方法。   3. The coated film according to claim 1, wherein particles comprising the organic polymer particles (A) and / or the organic solvent (B) in the core-shell particles (D) are removed using an organic solvent. A method for producing a substrate. 外周部がSiO4/2単位、RSiO3/2単位(式中、Rは、炭素数1乃至4のアルキル基、炭素数6乃至24の芳香族基、ビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基の少なくとも1種を示す)およびR2SiO2/2単位(式中、Rは、炭素数1乃至4のアルキル基、炭素数6乃至24の芳香族基、ビニル基、γ−(メタ)アクリロキシプロピル基又はSH基をもつ有機基の少なくとも1種を示す)からなる群より選ばれる1単位又は2単位以上からなり、R2SiO2/2単位の割合が20モル%以下、RSiO3/2単位の割合が50モル%以上であるシリコーン系化合物(C)からなる体積平均粒子径0.001〜1μmの中空シリコーン系微粒子(E)と被膜形成用フッ素系樹脂(F)を含む被膜(G)を単独または他の被膜とともに基材表面上に有する被膜付基材。 The outer periphery is SiO 4/2 unit, RSiO 3/2 unit (wherein R is an alkyl group having 1 to 4 carbon atoms, an aromatic group having 6 to 24 carbon atoms, a vinyl group, γ- (meth) acryloxy). And an R 2 SiO 2/2 unit (wherein R is an alkyl group having 1 to 4 carbon atoms, an aromatic group having 6 to 24 carbon atoms), and an R 2 SiO 2/2 unit (which represents at least one organic group having a propyl group or SH group) 1 unit or 2 units or more selected from the group consisting of vinyl group, γ- (meth) acryloxypropyl group or SH group), and a ratio of R 2 SiO 2/2 units Of hollow silicone fine particles (E) having a volume average particle diameter of 0.001 to 1 μm and a fluorine for film formation, comprising a silicone compound (C) having a ratio of 20 mol% or less and an RSiO 3/2 unit ratio of 50 mol% or more. A coating (G) containing a resin (F) alone or Film-coated substrate having on a substrate surface with the coating. 前記中空シリコーン系微粒子(E)が、有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を前記シリコーン系化合物(C)により被覆したコアシェル粒子(D)中から有機高分子粒子(A)および/または有機溶剤(B)からなる粒子を除去して得られる中空シリコーン系微粒子であることを特徴とする、請求項4に記載の被膜付基材。   The hollow silicone fine particles (E) are composed of organic polymer particles (A) and / or organic solvent (B) coated with the silicone compound (C) and the core-shell particles (D). 5. The coated substrate according to claim 4, wherein the substrate is a hollow silicone fine particle obtained by removing particles comprising (A) and / or an organic solvent (B).
JP2007039813A 2007-02-20 2007-02-20 Coated substrate having coating film comprising hollow silicone particulate and fluorine resin Pending JP2008201908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007039813A JP2008201908A (en) 2007-02-20 2007-02-20 Coated substrate having coating film comprising hollow silicone particulate and fluorine resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007039813A JP2008201908A (en) 2007-02-20 2007-02-20 Coated substrate having coating film comprising hollow silicone particulate and fluorine resin

Publications (1)

Publication Number Publication Date
JP2008201908A true JP2008201908A (en) 2008-09-04

Family

ID=39779735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039813A Pending JP2008201908A (en) 2007-02-20 2007-02-20 Coated substrate having coating film comprising hollow silicone particulate and fluorine resin

Country Status (1)

Country Link
JP (1) JP2008201908A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084017A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Organic-inorganic hybrid hollow fine particle, anti-reflective resin composition, coating agent for antireflection film, antireflection layered product, and antireflection film
JP2011064737A (en) * 2009-09-15 2011-03-31 Nikon Corp Optical system component
US20140045957A1 (en) * 2012-08-08 2014-02-13 Canon Kabushiki Kaisha Method for manufacturing dispersion of hollow particles, method for manufacturing antireflective film, and method for manufacturing optical element
US20150056371A1 (en) * 2012-03-26 2015-02-26 Canon Kabushiki Kaisha Method of producing hollow particles, method of producing antireflection coating, and method of producing optical element
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
JP2021054941A (en) * 2019-09-30 2021-04-08 積水化成品工業株式会社 Hollow particle and use therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084017A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Organic-inorganic hybrid hollow fine particle, anti-reflective resin composition, coating agent for antireflection film, antireflection layered product, and antireflection film
JP2011064737A (en) * 2009-09-15 2011-03-31 Nikon Corp Optical system component
US20150056371A1 (en) * 2012-03-26 2015-02-26 Canon Kabushiki Kaisha Method of producing hollow particles, method of producing antireflection coating, and method of producing optical element
US9802175B2 (en) * 2012-03-26 2017-10-31 Canon Kabushiki Kaisha Method of producing hollow particles, method of producing antireflection coating, and method of producing optical element
US20140045957A1 (en) * 2012-08-08 2014-02-13 Canon Kabushiki Kaisha Method for manufacturing dispersion of hollow particles, method for manufacturing antireflective film, and method for manufacturing optical element
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
JP2021054941A (en) * 2019-09-30 2021-04-08 積水化成品工業株式会社 Hollow particle and use therefor
JP7258709B2 (en) 2019-09-30 2023-04-17 積水化成品工業株式会社 Hollow particles and their uses

Similar Documents

Publication Publication Date Title
JP5563762B2 (en) Method for producing hollow silicone fine particles
JP2008201908A (en) Coated substrate having coating film comprising hollow silicone particulate and fluorine resin
JP2010116442A (en) Coating liquid for forming transparent film and substrate with film
JP6280036B2 (en) Aqueous polymer emulsion for opaque film and coating applications on flexible substrates
JP2009051934A (en) Fluorine-containing hollow silicone particle, and base material with coating film having coating film comprising the particle and fluororesin
JP2008303358A (en) Coating liquid for forming hollow silicone particle-based film and substrate with film
CN110225949A (en) Coating composition, antireflection film and its manufacturing method, laminated body and solar cell module
WO2004085493A1 (en) Polymer particle coated with silica, method for producing the same and use of the same
JP2008274261A (en) Coating liquid for forming hollow silicone particle-based film and substrate with coating
JP5286879B2 (en) Oval or acicular polymer particles containing fine particles and method for producing the same
JP2006212987A (en) Transfer material
JP2010100679A (en) Hollow silicone based fluorine-containing multifunctional resin application liquid and base material with coating film using the same
JP2009073170A (en) Coated substrate having coating film comprising hollow particles
JP5341357B2 (en) Hollow silicone fine particles with controlled particle size and porosity distribution and method for producing the same
WO2008044462A1 (en) Method for production of hollow silicone microparticle, and hollow silicone microparticle produced by the method
JP2009056674A (en) Transfer antireflection film
JP6426975B2 (en) Coating composition and method for producing optical coating film
JP2009024032A (en) Hollow silicone-based fine particle aggregate and substrate with transparent coating film
JP2008308678A (en) Vinyl polymer-coated hollow silicone-based fine particle and coated base using the fine particle
CN105907212A (en) Transmittance-increasing anti-haze coating material for optical BOPET film and preparation method thereof
JP2009241387A (en) Substrate with coating containing hollow silicone base particulate by which distribution of particle diameter and porosity was conroled
WO2001070826A1 (en) Resin particle and process for producing the same
JP2010095657A (en) Coating liquid containing resin-coated hollow silicone-based microparticles and coating-film-forming multifunctional acrylic compound, and substrate with coating film using the coating liquid
JP2009057450A (en) Substrate with coating film of hollow silicone fine particle containing curing catalyst
JP2009263444A (en) Base material comprising hollow silicone fine particle or bell-structure silicone fine particle including core particle in hollow particle