JP2008200654A - Wastewater treatment apparatus - Google Patents

Wastewater treatment apparatus Download PDF

Info

Publication number
JP2008200654A
JP2008200654A JP2007042698A JP2007042698A JP2008200654A JP 2008200654 A JP2008200654 A JP 2008200654A JP 2007042698 A JP2007042698 A JP 2007042698A JP 2007042698 A JP2007042698 A JP 2007042698A JP 2008200654 A JP2008200654 A JP 2008200654A
Authority
JP
Japan
Prior art keywords
wastewater
porous material
organic chemical
chemical substance
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007042698A
Other languages
Japanese (ja)
Other versions
JP4934766B2 (en
Inventor
Hiroaki Ozaki
博明 尾▲崎▼
Osamu Yamada
修 山田
Shogo Taniguchi
省吾 谷口
Daisuke Kawasaki
大輔 河▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSU KK
Osaka Sangyo University
Original Assignee
OSU KK
Osaka Sangyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSU KK, Osaka Sangyo University filed Critical OSU KK
Priority to JP2007042698A priority Critical patent/JP4934766B2/en
Publication of JP2008200654A publication Critical patent/JP2008200654A/en
Application granted granted Critical
Publication of JP4934766B2 publication Critical patent/JP4934766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus capable of enhancing treatment efficiency and also reducing the cost for the wastewater treatment. <P>SOLUTION: A porous material TiC/Ir obtained via a combustion/synthesis reaction is adopted as a material for electrodes 2, 3 for decomposing the wastewater 11. Because the porous material includes continuous pores which open outside at the surface, the wastewater can be supplied into an electrolysis chamber 1 through the continuous pores of one of the porous material electrodes and the decomposed wastewater 12 can be discharged outside through those of the other of the porous material electrodes. The electrodes made of the porous material can secure a large area of contact between the supplied wastewater and the electrode due to the large surface area thereof and can have the high efficiency for treating the wastewater because of the capability to adsorb and concentrate an organic chemical substance in the wastewater. Therefore, the apparatus requires neither increasing the number of the electrodes to promote the decomposition, nor adding any additives to enhance the electric conductivity of the wastewater, thus reducing the cost for the wastewater treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、有機化学物質等を含む廃水を処理する廃水処理装置に関する。   The present invention relates to a wastewater treatment apparatus for treating wastewater containing organic chemical substances and the like.

廃水に含まれる有機化学物質には、ダイオキシン類、内分泌撹乱物質、及び、家庭等から排出される医薬品類等があり、従来は、これらを含む廃水中にオゾンを送出して分解処理する方法や、これらを活性炭に吸着除去する方法が採用されていた。しかしながら、これらの有機化学物質は化学的に安定で難分解性のものが多いため、上記分解処理で十分分解されず、また、医薬品類のように水溶性の高いものは活性炭等による吸着も困難であるという問題があった。そのため、上記有機化学物質が十分に分解・除去されないまま河川等に排出されてしまう恐れがあった。   Organic chemical substances contained in wastewater include dioxins, endocrine disrupting substances, and pharmaceuticals discharged from homes, etc., and conventionally, ozone has been sent to wastewater containing these to decompose it. The method of adsorbing and removing these on activated carbon has been adopted. However, since many of these organic chemicals are chemically stable and hardly decomposable, they are not sufficiently decomposed by the above-described decomposition treatment, and those having high water solubility such as pharmaceuticals are difficult to be adsorbed by activated carbon or the like. There was a problem of being. For this reason, the organic chemical substances may be discharged into rivers or the like without being sufficiently decomposed and removed.

このような有機化学物質を効率良く分解・除去するため、図3に示す構成の電気分解法が検討されている。この電気分解法は、有機化学物質を含む廃水11中に陽極2及び陰極3を浸漬し、この陽極2及び陰極3の両電極に直流通電し、その通電によって廃水11中の有機化学物質を化学的に分解・除去するものである。   In order to efficiently decompose and remove such organic chemical substances, an electrolysis method having the configuration shown in FIG. 3 has been studied. In this electrolysis method, anode 2 and cathode 3 are immersed in waste water 11 containing an organic chemical substance, both electrodes of anode 2 and cathode 3 are dc-energized, and the organic chemical substance in waste water 11 is chemistryd by the energization. To be disassembled and removed.

上記電気分解は、両電極2、3の近傍ほど生じやすいため、上記分解を促進するには、上記有機化学物質をできるだけ両電極2、3の近傍に誘導する必要がある。
この有機化学物質は、基本的に、それ自体は帯電しておらず、ほとんどの場合電気的に中性である。そのため、この有機化学物質が、両電極2、3近傍に電気的に引き寄せられることはない。そこで、図3に示すように、電気分解槽1を例えばスターラー13に設置して廃水11を撹拌子14で撹拌したり、特許文献1に示すように処理槽内に多数の電極を配置したりして、未分解の有機化学物質が上記電極近傍へ接近する機会を高める検討が成されている。
Since the electrolysis is more likely to occur in the vicinity of both electrodes 2 and 3, it is necessary to induce the organic chemical substance as close to both electrodes 2 and 3 as possible in order to promote the decomposition.
This organic chemical is essentially uncharged itself and in most cases is electrically neutral. Therefore, this organic chemical substance is not electrically attracted to the vicinity of both electrodes 2 and 3. Therefore, as shown in FIG. 3, the electrolysis tank 1 is installed in a stirrer 13, for example, and the waste water 11 is stirred with a stirrer 14, or a large number of electrodes are arranged in the treatment tank as shown in Patent Document 1. Thus, studies have been made to increase the opportunity for undecomposed organic chemicals to approach the vicinity of the electrode.

また、上記電気分解は、両電極2、3間の電流密度が高いほど進行しやすいが、廃水11は電気伝導体をほとんど含まないためその電気伝導度は低く、電流密度を高くするのが難しい。そのため、特許文献2に示すように、金属塩等の添加物を廃水11に添加してこの廃水11の電気伝導度を高める検討も成されている。
特開2006−281013号公報 特開2006−289285号公報
In addition, the electrolysis tends to proceed as the current density between the electrodes 2 and 3 increases, but the waste water 11 contains almost no electrical conductor, so its electrical conductivity is low and it is difficult to increase the current density. . Therefore, as shown in Patent Document 2, studies have been made to increase the electrical conductivity of the wastewater 11 by adding an additive such as a metal salt to the wastewater 11.
JP 2006-281013 A JP 2006-289285 A

上記のように廃水を撹拌する方法や、電極数を増やす方法は、装置の大型化や装置部品数の増大につながるため、処理コストの面で不利である。
また、金属塩等の添加物を廃水に添加する方法は、その添加物自体が環境汚染源となる恐れがあり、また添加物の費用分だけ、処理コストの上昇にもつながるため好ましくない。
As described above, the method of stirring waste water and the method of increasing the number of electrodes are disadvantageous in terms of processing cost because it leads to an increase in the size of the device and an increase in the number of device parts.
In addition, a method of adding an additive such as a metal salt to waste water is not preferable because the additive itself may become a source of environmental pollution, and the cost of the additive leads to an increase in processing cost.

そこで、この発明は、廃水処理コストを抑えつつ、その処理効率を高めることを課題とする。   Then, this invention makes it a subject to raise the processing efficiency, suppressing a wastewater treatment cost.

上記の課題を解決するため、この発明は、廃水中の有機化学物質を分解処理する際に用いる電極を、2種類以上の無機粉末を燃焼合成反応させることによって得られる、導電性多孔質材料によって構成することとしたのである。
この多孔質材料からなる電極の表面積は外形同形状の非多孔質材料の表面積と比較して圧倒的に広いため、上記廃水と多孔質材料が接触しやすく、その廃水の分解が速やかに成される。
In order to solve the above problems, the present invention provides an electrode used for decomposing an organic chemical substance in wastewater by a conductive porous material obtained by subjecting two or more kinds of inorganic powders to combustion synthesis reaction. It was decided to compose.
Since the surface area of the electrode made of this porous material is overwhelmingly larger than the surface area of the non-porous material having the same outer shape, the waste water and the porous material are easily in contact with each other, and the waste water is quickly decomposed. The

この燃焼合成反応によって得られた多孔質材料は、有機化学物質を吸着しやすいため、この吸着効果によってこの多孔質材料の気孔内において有機化学物質が濃縮される。このように濃縮されることにより、より多くの有機化学物質がこの気孔内に長い時間滞在することとなるため、この有機化学物質の分解が一層効率的に成される。   Since the porous material obtained by this combustion synthesis reaction easily adsorbs organic chemical substances, the organic chemical substances are concentrated in the pores of the porous material by this adsorption effect. By concentrating in this way, more organic chemical substances stay in the pores for a long time, so that the decomposition of the organic chemical substances is performed more efficiently.

この構成において、多孔質材料からなる上記電極(陽極及び陰極)のうち、少なくとも一方の電極に表面に開口した連結気孔を形成し、その連結気孔を通して上記廃水を上記電気分解槽に給水し、あるいは、排水するようにすれば、給水あるいは排水される廃液が電極表面に接触する機会が増大するため、上記分解が一層速やかに成される。   In this configuration, at least one of the electrodes (anode and cathode) made of a porous material is formed with connected pores opened on the surface, and the waste water is supplied to the electrolysis tank through the connected pores, or If the water is drained, the opportunity for the waste water to be supplied or drained to come into contact with the surface of the electrode increases, so that the above decomposition is performed more quickly.

この多孔質材料を合成する燃焼合成反応は、原料となる無機材料粉末を固めて成形体とし、その成形体に着火して上記成形体の一部に燃焼反応を生じさせ、その際の反応熱を駆動力として、継続的に成形体全体に亘って燃焼及び合成反応を生じさせる。そのため、十分な上記反応熱を生じ得る単一の無機粉末であって、しかもその無機粉末が粉末同士を結合するバインダーとしての役割を担い得るものであれば、2種類以上の無機粉末を混合しなくとも、その無機粉末を燃焼合成反応の原料として使用し得る。   In the combustion synthesis reaction for synthesizing this porous material, the inorganic material powder as a raw material is solidified to form a molded body, and the molded body is ignited to cause a combustion reaction in a part of the molded body. As a driving force, combustion and synthesis reaction are continuously generated over the entire compact. Therefore, if it is a single inorganic powder that can generate sufficient heat of reaction and the inorganic powder can serve as a binder for bonding the powders, two or more inorganic powders can be mixed. Even if not, the inorganic powder can be used as a raw material for the combustion synthesis reaction.

このことから、この発明は、電気分解槽中に有機化学物質を含む廃水を供給し、上記電気分解槽に設けた陽極及び陰極間に通電して上記有機化学物質を分解する廃水処理装置において、上記陽極及び陰極の少なくとも一方の電極を、無機粉末を燃焼合成反応させることによって得られる、表面に開口した連結気孔を有する導電性の多孔質材料で構成し、上記廃水を上記電気分解槽に給水し、上記有機化学物質を分解した処理水を排出するに際し、上記給水及び排水の少なくとも一方において、上記多孔質材料からなる陽極及び陰極の連結気孔を通して上記給水及び排水の少なくとも一方を行う構成を採用することができる。   Accordingly, the present invention provides a wastewater treatment apparatus for supplying wastewater containing an organic chemical substance into an electrolysis tank and decomposing the organic chemical substance by energizing between an anode and a cathode provided in the electrolysis tank. At least one of the anode and the cathode is composed of a conductive porous material having connected pores opened on the surface, obtained by subjecting an inorganic powder to combustion synthesis reaction, and supplying the waste water to the electrolysis tank In addition, when discharging the treated water obtained by decomposing the organic chemical substance, at least one of the water supply and drainage is performed through at least one of the water supply and drainage through the connected pores of the anode and the cathode made of the porous material. can do.

この分解作用は、少なくとも一方の電極を廃水が通れば、全く通らない電極に比べて優れたものとなるため、陽極又は陰極の少なくとも一方に廃水が通ればよいが、廃水は両者を通ることが分解効率の観点から好ましい。このことから、一方の電極のみを導電性多孔質材料とし、他方の電極は従来の廃水が通らない非多孔質材料を使用することもできる。電極に廃水を通す手段としては、ポンプ等によって廃水を流し、その流れ内に電極を介在する等が考え得る。
また、電気分解槽に入る廃水及び電気分解槽から出る処理水の全てが電極(多孔質材料)を通ることが好ましいが、非多孔質材料の電極(廃水が通ることのできない電極)に比べれば、少しでも通る電極であれば、分解作用は優れたものとなる。このため、電極を通る廃水量(廃水の流通量)は、流通性、処理能力等を考慮して適宜に設定する。その流通量の調節は、電気分解槽への入口又は出口を電極で塞ぐ大きさ(広さ)等を適宜に設定することにより行う。
さらに、有機化学物質の分解が速やかに成されれば、廃水中に添加物を添加して電気伝導度を上げる必要性はなくなる。
Since this decomposition action is superior to an electrode that does not pass at all if waste water passes through at least one electrode, it is sufficient that the waste water passes through at least one of the anode or the cathode. It is preferable from the viewpoint of decomposition efficiency. For this reason, only one electrode can be a conductive porous material, and the other electrode can be a non-porous material through which conventional wastewater does not pass. As a means for passing the wastewater through the electrode, it is conceivable that the wastewater is flowed by a pump or the like and the electrode is interposed in the flow.
In addition, it is preferable that all of the waste water entering the electrolysis tank and the treated water coming out of the electrolysis tank pass through the electrode (porous material), but compared to the electrode of the non-porous material (electrode through which the waste water cannot pass). If the electrode passes through even a little, the decomposition action is excellent. For this reason, the amount of waste water passing through the electrode (the amount of waste water flowing) is set appropriately in consideration of the flowability, processing capacity, and the like. The flow rate is adjusted by appropriately setting the size (width) of the entrance or exit to the electrolysis tank with the electrode.
Furthermore, if the decomposition of the organic chemical substance is promptly performed, it is not necessary to add an additive to the wastewater to increase the electric conductivity.

また、上記有機化学物質を含む廃水中に塩化物塩を添加すれば、この有機化学物質の分解に寄与する遊離塩素の生成を促進するので、上記電極表面近傍での有機化学物質の分解を一層速やかに行うことができる。   In addition, if a chloride salt is added to the wastewater containing the organic chemical substance, the production of free chlorine that contributes to the decomposition of the organic chemical substance is promoted, so that the decomposition of the organic chemical substance near the electrode surface is further improved. It can be done promptly.

上記多孔質材料は、金属間化合物、ホウ化物セラミックス、窒化物セラミックス、炭化物セラミックス及び珪化物セラミックスの少なくとも1種類以上からなる導電性材料とすることもできる。
さらに、上記電極に、白金、イリジウム、オスミウムから選択される少なくとも1種類の金属粉末を添加すれば、上記各金属粉末が分解の際に反応触媒作用を発揮するので、上記電極表面近傍での有機化学物質の分解を一層速やかに行うことができる。
The porous material may be a conductive material composed of at least one of intermetallic compounds, boride ceramics, nitride ceramics, carbide ceramics, and silicide ceramics.
Furthermore, if at least one kind of metal powder selected from platinum, iridium, and osmium is added to the electrode, each metal powder exerts a reaction catalytic action upon decomposition, so that an organic substance in the vicinity of the electrode surface can be obtained. Chemical substances can be decomposed more rapidly.

この発明は、燃焼合成反応で得られた導電性の多孔質材料で電極を構成し、その電極を用いて有機物を含む廃水を電気分解するようにしたものであって、この燃焼合成反応で得られた多孔質材料は廃水中の有機化学物質を吸着し、この多孔質材料の気孔内で濃縮する作用がある。そのため、従来の活性炭等と比較してこの有機化学物質を効率良く分解することができる。
また、上記電極に用いた多孔質材料の表面積は非常に広いため、電極の数を増やさなくとも、十分速やかに有機化学物質の分解処理を行うことができる。また、そもそも分解処理の効率が高いので、電流密度を高めるために廃水中に添加物を添加する必要がない。そのため、電極や添加物に要するコストを大幅に削減することができる。
In the present invention, an electrode is composed of a conductive porous material obtained by a combustion synthesis reaction, and waste water containing organic matter is electrolyzed using the electrode. The obtained porous material has an action of adsorbing organic chemical substances in the wastewater and concentrating them in the pores of the porous material. Therefore, this organic chemical substance can be efficiently decomposed compared with conventional activated carbon or the like.
Further, since the surface area of the porous material used for the electrodes is very wide, the organic chemical substance can be decomposed sufficiently quickly without increasing the number of electrodes. In addition, since the efficiency of the decomposition treatment is high in the first place, it is not necessary to add an additive to the wastewater in order to increase the current density. Therefore, the cost required for the electrodes and additives can be greatly reduced.

この発明に係る廃水処理装置は、電気分解槽中に有機化学物質を含む廃水を供給して、この電気分解槽中に設けた陽極及び陰極間に通電し、この通電によって有機化学物質を分解して処理するものである。
この実施形態を図1に示して説明する。この廃水処理装置は、筒状の電気分解槽1の廃水供給側に燃焼合成反応により作製された多孔質材料からなる陽極2、及び、排出側に同じく燃焼合成反応で作製された多孔質材料からなる陰極3が設けられ、この電気分解槽1は両電極2、3によって隙間なく封止されている。この両電極2、3には、それぞれ、廃水が流通する孔が形成された白金からなるリング4、4が密接して設けられ、両リング4、4は導線5で直流電源6に接続されている。
The wastewater treatment apparatus according to the present invention supplies wastewater containing an organic chemical substance into an electrolysis tank, energizes between an anode and a cathode provided in the electrolysis tank, and decomposes the organic chemical substance by this energization. Are to be processed.
This embodiment will be described with reference to FIG. This waste water treatment apparatus is composed of an anode 2 made of a porous material produced by a combustion synthesis reaction on the waste water supply side of a cylindrical electrolysis tank 1 and a porous material also made by a combustion synthesis reaction on the discharge side. The electrolysis tank 1 is sealed with both electrodes 2 and 3 without a gap. The electrodes 2 and 3 are respectively provided with rings 4 and 4 made of platinum in which holes through which waste water flows are formed in close contact with each other, and both the rings 4 and 4 are connected to a DC power source 6 by a conducting wire 5. Yes.

この電気分解槽1の廃水供給側はチューブ7によって廃水タンク8に接続され、排出側はポンプ9を介してチューブ7によって処理水タンク10に接続されている。このポンプ9を稼動すると、廃水タンク中8の廃水11が吸引(同図中の白抜き矢印)されて、陽極2を通して電気分解槽1内に供給される。この陽極2を通過する際に、廃水11中の有機化学物質が分解される。
この際、上記有機化学物質は多孔質材料の連結気孔内に吸着され、濃縮される。この濃縮された状態で電極表面において分解され、あるいは、後述する遊離塩素によって分解される。
さらに、この廃水11が陰極3を流通する際にもその廃水11中に残存している有機化学物質が分解される。上記有機化学物質の大部分が分解された後の処理水12は処理水タンク10に貯められる。
The waste water supply side of the electrolysis tank 1 is connected to a waste water tank 8 by a tube 7, and the discharge side is connected to a treated water tank 10 by a tube 7 via a pump 9. When the pump 9 is operated, the waste water 11 in the waste water tank 8 is sucked (white arrow in the figure) and supplied into the electrolysis tank 1 through the anode 2. When passing through the anode 2, the organic chemical substances in the waste water 11 are decomposed.
At this time, the organic chemical substance is adsorbed and concentrated in the connected pores of the porous material. In this concentrated state, it is decomposed on the electrode surface or decomposed by free chlorine described later.
Further, when the waste water 11 flows through the cathode 3, the organic chemical substances remaining in the waste water 11 are decomposed. The treated water 12 after most of the organic chemical substance is decomposed is stored in the treated water tank 10.

ここで、両電極2、3に用いる多孔質材料について説明する。この多孔質材料は、チタンカーバイドにイリジウムを分散したものであって、次の手順によって作製される。   Here, the porous material used for both electrodes 2 and 3 will be described. This porous material is obtained by dispersing iridium in titanium carbide, and is produced by the following procedure.

まず、チタン粉末とカーボン粉末を1:0.9のモル比で混合し、さらに、イリジウム粉末をその約3重量%の割合で混合する。このイリジウム粉末は、1〜5重量%の範囲にあることが好ましい。この混合粉末を金型に充填し、プレス加工して1辺が100mmで厚さが10mmの四角板状の成形体とする。
次に、上記成形体を黒鉛板状に置いて、この成形体の上部の一端に放電着火する。この放電着火によって上記成形体の燃焼合成反応が開始し、その燃焼合成反応が上記成形体の全体に伝播する。この燃焼の際の燃焼合成反応によって、イリジウムが分散したチタンカーバイド(TiC/Ir)の多孔質体が得られる。このサイズの成形体であれば、上記燃焼合成反応に要する時間は10秒程度である。
First, titanium powder and carbon powder are mixed at a molar ratio of 1: 0.9, and iridium powder is further mixed at a ratio of about 3% by weight. The iridium powder is preferably in the range of 1 to 5% by weight. The mixed powder is filled into a mold and pressed to form a square plate-like molded body having a side of 100 mm and a thickness of 10 mm.
Next, the molded body is placed in the shape of a graphite plate, and discharge ignition is performed on one end of the molded body. By this discharge ignition, a combustion synthesis reaction of the molded body starts, and the combustion synthesis reaction propagates to the entire molded body. By the combustion synthesis reaction during the combustion, a porous body of titanium carbide (TiC / Ir) in which iridium is dispersed is obtained. In the case of a molded body of this size, the time required for the combustion synthesis reaction is about 10 seconds.

上記実施形態に使用した電極の作製に際しては、その主原料として、チタンとカーボンの2種類の粉末を用いたが、電極の特性(連結気孔の気孔度、電気伝導性、耐食性等)を所望の仕様とするために、これ以外の原料を用いることができ、また、その種類を3種類以上とすることもできる。
また、上記イリジウム粉末の代わりに、白金又はオスミウムの粉末を用いることもでき、さらに、これらを適宜混合して用いることもできる。
上記の燃焼合成反応に際し、上記放電着火に代えて、レーザ照射やカーボンヒータを用いた加熱による着火方法等も採用し得る。
In the production of the electrode used in the above embodiment, two types of powders, titanium and carbon, were used as the main raw materials, but the characteristics of the electrode (porosity of connected pores, electrical conductivity, corrosion resistance, etc.) were desired. In order to make it a specification, a raw material other than this can be used, and the kind can also be made into three or more kinds.
Further, instead of the iridium powder, platinum or osmium powder may be used, and these may be used in appropriate mixture.
In the above-described combustion synthesis reaction, instead of the discharge ignition, an ignition method by laser irradiation or heating using a carbon heater may be employed.

上記実施形態に示す廃水処理装置を用いて、上記有機化学物質の一種である各種医薬品成分を溶解した溶液(模擬廃水11)の処理を行った。ここで用いた上記医薬品成分は次の通りである。   Using the wastewater treatment apparatus shown in the above embodiment, a solution (simulated wastewater 11) in which various pharmaceutical ingredients, which are a kind of the organic chemical substance, were dissolved was treated. The pharmaceutical components used here are as follows.

CA:クロフィブリック酸(Clofibric acid:抗脂血症薬とその代謝物)
CAM:クラリスロマイシン(Clarithromycin:抗生物質)
IDM:インドメタシン(Indomethacin:解熱鎮痛消炎剤)
KEP:ケトプロフェン(Ketoprofen:経皮鎮痛消炎剤)
DCF:ジクロフェナクナトリウム(Diclofenac Sodium:鎮痛・消炎・解熱剤)
NPX:ナプロキセン(Naproxen:鎮痛・抗炎症・解熱剤)
IPA:イソプロピルアンチピリン(Isopropylantipyrine:解熱鎮痛剤)
GFZ:ゲムフィブロジル(Gemfibrozil:解熱鎮痛抗炎症剤)
IBP:イブプロフェン(Ibuprofen:抗炎症・鎮痛・解熱剤)
CBZ:カルバマゼピン(Carbamazepine:抗てんかん剤)
CA: Clofibric acid (antilipidemic drug and its metabolite)
CAM: clarithromycin (antibiotics)
IDM: Indomethacin (Indomethacin)
KEP: Ketoprofen (Ketoprofen)
DCF: Diclofenac sodium (Diclofenac Sodium: analgesic / anti-inflammatory / antipyretic)
NPX: Naproxen (Naproxen: analgesic / anti-inflammatory / antipyretic)
IPA: Isopropylantipyrine (An antipyretic analgesic)
GFZ: Gemfibrozil (An anti-inflammatory agent for antipyretic analgesia)
IBP: Ibuprofen (Ibuprofen: anti-inflammatory, analgesic, antipyretic)
CBZ: Carbamazepine (Carbamapine)

溶解した各医薬品成分の濃度は10mg/lであって、実際の廃水11中に検出される医薬品濃度よりも高濃度である。つまり、この高濃度の模擬廃水11から医薬品成分が所定量以上分解処理できれば(環境に影響を及ぼさない程度の濃度にできれば)、実際の廃水処理において上記多孔質材料の分解処理能力が飽和状態に達して廃水処理に支障を来たす事態は回避できる。   The concentration of each dissolved drug component is 10 mg / l, which is higher than the concentration of the drug detected in the actual waste water 11. That is, if the pharmaceutical component can be decomposed by a predetermined amount or more from the high concentration simulated waste water 11 (if the concentration can be adjusted so as not to affect the environment), the decomposition processing capacity of the porous material is saturated in the actual waste water treatment. It can be avoided that the wastewater treatment is disturbed.

この廃水処理に際しては、模擬廃水11の吸引流量を40ml/分とした。また、処理開始から60分経過するまでの間、5〜10分おきに陰極3通過後の処理水12から1mlをサンプル採取し、処理水12に残留している医薬品成分の濃度を高速液体クロマトグラフ質量分析装置で測定した。この装置の定量限界は1μg/lである。この測定の際、遊離塩素量も併せて測定した。   In this wastewater treatment, the suction flow rate of the simulated wastewater 11 was set to 40 ml / min. In addition, 1 ml is sampled from the treated water 12 after passing through the cathode 3 every 5 to 10 minutes until 60 minutes have elapsed from the start of the treatment, and the concentration of the pharmaceutical components remaining in the treated water 12 is determined by high performance liquid chromatography. Measured with a graph mass spectrometer. The limit of quantification of this device is 1 μg / l. During this measurement, the amount of free chlorine was also measured.

上記廃水処理装置で処理を行った後の残留医薬品成分の濃度の時間変化を図2に示す。この結果から、処理開始後から10分程度で、いずれの医薬品成分についてもその除去率が急速に高まることが明らかとなった。また、60分処理後の時点においても、概ね50%以上の除去率が達成できた。
この除去率は、上記多孔質材料の清掃・交換頻度を高めたり、この処理装置で処理した処理水12を再度同形式の処理装置で多段処理したりすることで、一層高めることができる。
FIG. 2 shows the change over time in the concentration of the residual pharmaceutical ingredient after the treatment with the wastewater treatment apparatus. From this result, it was revealed that the removal rate of any pharmaceutical ingredient increased rapidly in about 10 minutes after the start of the treatment. Further, even after 60 minutes of treatment, a removal rate of approximately 50% or more was achieved.
This removal rate can be further increased by increasing the frequency of cleaning / replacement of the porous material, or by treating the treated water 12 treated by this treatment apparatus again with a multi-stage treatment apparatus of the same type.

また、この処理に際し、処理開始から5分経過までは遊離塩素はほとんど検出されなかったが、上記除去率が急速に高まる10分経過後は、遊離塩素が検出された。このことは、除去率の向上(有機化学物質の分解)に遊離塩素が関与していることを示唆しており、この遊離塩素の生成を促進する塩化物塩を廃水中に予め添加しておくことで、処理開始直後の上記除去率の向上が期待できる。この塩化物塩として塩化ナトリウム等を採用すれば、上記処理後にこの塩化物塩が河川等に排出されても環境に悪影響を及ぼす恐れは低い。   In this treatment, almost no free chlorine was detected until 5 minutes after the start of treatment, but free chlorine was detected after 10 minutes when the removal rate rapidly increased. This suggests that free chlorine is involved in improving the removal rate (decomposition of organic chemicals), and a chloride salt that promotes the production of this free chlorine is added to the wastewater in advance. Thus, an improvement in the removal rate immediately after the start of processing can be expected. If sodium chloride or the like is employed as the chloride salt, there is little risk of adverse effects on the environment even if the chloride salt is discharged into a river or the like after the treatment.

上記廃水処理装置の構成については、必ずしも廃水供給側を陽極2、排出側を陰極3とする必要性はなく、極性を逆にすることもできる。
また、上記実施形態では、電気分解槽1を両電極2、3で隙間なく封止する構成としたが、例えば、両電極2、3の一部に孔を設け、廃水11又は処理水12の一部が上記連結気孔を経由せずに、直接電気分解槽1に供給又は排出される構成とすることもできる。
Regarding the configuration of the wastewater treatment apparatus, it is not always necessary to use the anode 2 on the wastewater supply side and the cathode 3 on the discharge side, and the polarity can be reversed.
Moreover, in the said embodiment, it was set as the structure which sealed the electrolysis tank 1 with both the electrodes 2 and 3 without gap, For example, a hole is provided in a part of both electrodes 2 and 3, and waste water 11 or the treated water 12 of A part may be directly supplied to or discharged from the electrolysis tank 1 without going through the connecting pores.

実際の廃水に含まれる医薬品成分の濃度は、この実施形態において使用した模擬廃水に含まれる医薬品成分の濃度よりもかなり低い。このような希薄廃水中の有機化学物質を処理する際、上記燃焼合成反応によって得られた多孔質材料を電極として用いると、この電極が上記有機化学物質を吸着して、その吸着によって上記希薄廃水中の有機化学物質が濃縮されるため、上記分解が非常に効率的なものとなる。   The concentration of the pharmaceutical ingredient contained in the actual wastewater is considerably lower than the concentration of the pharmaceutical ingredient contained in the simulated wastewater used in this embodiment. When treating the organic chemical substance in the diluted wastewater, if the porous material obtained by the combustion synthesis reaction is used as an electrode, the electrode adsorbs the organic chemical substance, and the adsorption causes the diluted wastewater. The decomposition is very efficient because the organic chemicals in it are concentrated.

比較例として、図3に示す回分方式の構成によって、模擬廃水11の一部を電極と接触させて処理した結果を図4に示す。この回分方式による廃液処理は、各医薬品成分の除去率に大きなばらつきがあり、数種類の医薬品成分に関しては、20%以下の低い除去率しか得られなかった。   As a comparative example, FIG. 4 shows a result obtained by processing a part of the simulated waste water 11 in contact with the electrode by the configuration of the batch system shown in FIG. The waste liquid treatment by this batch method has a large variation in the removal rate of each pharmaceutical component, and only a low removal rate of 20% or less was obtained for several types of pharmaceutical components.

上記実施形態では、電極2、3に電気分解槽1に給排される廃水(処理水)を強制的に流通するようにしたが、廃水が電極2、3内を流通すれば、何れの態様でもよい。また、図3に示した電気分解槽1に単に電極2、3を浸漬させたものにおいても、この実施形態に係る多孔質材料からなる電極を使用すれば、この発明の効果を少なからず発揮することができる。   In the above embodiment, the waste water (treated water) supplied to and discharged from the electrolysis tank 1 is forcibly distributed to the electrodes 2 and 3, but any aspect can be used as long as the waste water flows through the electrodes 2 and 3. But you can. Further, even when the electrodes 2 and 3 are simply immersed in the electrolysis tank 1 shown in FIG. 3, if the electrode made of the porous material according to this embodiment is used, the effects of the present invention are exhibited to some extent. be able to.

一実施形態を示す装置構成図Device configuration diagram showing one embodiment 同装置による廃水処理後の除去率を示す図The figure which shows the removal rate after the wastewater treatment with the same equipment 回分方式による装置構成図System configuration diagram by batch method 同装置による廃水処理後の除去率を示す図The figure which shows the removal rate after the wastewater treatment with the same equipment

符号の説明Explanation of symbols

1 電気分解槽
2 陽極
3 陰極
4 リング
5 導線
6 直流電源
7 チューブ
8 廃水タンク
9 ポンプ
10 処理水タンク
11 廃水
12 処理水
13 スターラー
14 撹拌子
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Anode 3 Cathode 4 Ring 5 Conductor 6 DC power supply 7 Tube 8 Waste water tank 9 Pump 10 Treated water tank 11 Waste water 12 Treated water 13 Stirrer 14 Stirrer

Claims (5)

2種類以上の無機粉末からなる混合粉末を成形し、得られた成形体を燃焼合成反応させることにより得られる導電性の多孔質材料を電極(2、3)として用いて、有機化学物質を含む廃水(11)を電気分解することを特徴とする廃水処理装置。   Using a conductive porous material obtained by molding a mixed powder composed of two or more types of inorganic powders and subjecting the resulting molded body to a combustion synthesis reaction as an electrode (2, 3), including an organic chemical substance A wastewater treatment apparatus characterized by electrolyzing wastewater (11). 電気分解槽(1)中に有機化学物質を含む廃水(11)を供給し、上記電気分解槽(1)に設けた陽極(2)及び陰極(3)間に通電して上記有機化学物質を分解する廃水処理装置において、
上記陽極(2)及び陰極(3)の少なくとも一方の電極を、無機粉末を燃焼合成反応させることによって得られる、表面に開口した連結気孔を有する導電性の多孔質材料で構成し、上記廃水(11)を上記電気分解槽(1)に給水し、上記有機化学物質を分解した処理水(12)を排出するに際し、上記給水及び排水の少なくとも一方において、上記多孔質材料からなる陽極(2)及び陰極(3)の連結気孔を通して上記給水及び排水の少なくとも一方を行うことを特徴とする廃水処理装置。
Waste water (11) containing an organic chemical substance is supplied into the electrolysis tank (1), and the organic chemical substance is supplied by energizing between the anode (2) and the cathode (3) provided in the electrolysis tank (1). In the wastewater treatment equipment that decomposes,
At least one of the anode (2) and the cathode (3) is composed of a conductive porous material having connected pores opened on the surface, obtained by subjecting an inorganic powder to combustion synthesis reaction, and the waste water ( 11) is supplied to the electrolysis tank (1), and when the treated water (12) obtained by decomposing the organic chemical substance is discharged, at least one of the water supply and drainage, the anode (2) made of the porous material. And at least one of the water supply and drainage through the connected pores of the cathode (3).
上記多孔質材料からなる電極(2、3)が、金属間化合物、ホウ化物セラミックス、窒化物セラミックス、炭化物セラミックス及び珪化物セラミックスの少なくとも1種類以上からなることを特徴とする請求項1又は2に記載の廃水処理装置。   The electrode (2, 3) made of the porous material is made of at least one of intermetallic compounds, boride ceramics, nitride ceramics, carbide ceramics and silicide ceramics. The wastewater treatment apparatus as described. 上記多孔質材料からなる電極(2、3)が、白金、イリジウム、オスミウムから選択される少なくとも1種類の金属粉末を添加したものであることを特徴とする請求項1から3のいずれかに記載の廃水処理装置。   The electrode (2, 3) made of the porous material is obtained by adding at least one metal powder selected from platinum, iridium, and osmium. Wastewater treatment equipment. 上記有機化学物質を含む廃水(11)中に塩化物塩を添加したことを特徴とする請求項1から4のいずれかに記載の廃水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 4, wherein a chloride salt is added to the wastewater (11) containing the organic chemical substance.
JP2007042698A 2007-02-22 2007-02-22 Waste water treatment equipment Expired - Fee Related JP4934766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042698A JP4934766B2 (en) 2007-02-22 2007-02-22 Waste water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042698A JP4934766B2 (en) 2007-02-22 2007-02-22 Waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2008200654A true JP2008200654A (en) 2008-09-04
JP4934766B2 JP4934766B2 (en) 2012-05-16

Family

ID=39778678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042698A Expired - Fee Related JP4934766B2 (en) 2007-02-22 2007-02-22 Waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP4934766B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147298A (en) * 2015-06-15 2016-12-23 주식회사 성일엔텍 Facing spark type sludge solubilization apparatus and its control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055063A (en) * 2001-06-07 2003-02-26 Osamu Yamada Method for manufacturing ceramic porous material
JP2004016911A (en) * 2002-06-14 2004-01-22 Ohbayashi Corp Method, apparatus and system for treatment of organic chlorine compound
JP2005087860A (en) * 2003-09-17 2005-04-07 Fuji Photo Film Co Ltd Treatment method for leachate from industrial waste disposal plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055063A (en) * 2001-06-07 2003-02-26 Osamu Yamada Method for manufacturing ceramic porous material
JP2004016911A (en) * 2002-06-14 2004-01-22 Ohbayashi Corp Method, apparatus and system for treatment of organic chlorine compound
JP2005087860A (en) * 2003-09-17 2005-04-07 Fuji Photo Film Co Ltd Treatment method for leachate from industrial waste disposal plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147298A (en) * 2015-06-15 2016-12-23 주식회사 성일엔텍 Facing spark type sludge solubilization apparatus and its control method
KR101690556B1 (en) 2015-06-15 2016-12-28 주식회사 성일엔텍 Control method of facing spark type sludge solubilization apparatus

Also Published As

Publication number Publication date
JP4934766B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
Shi et al. Highly efficient removal of amoxicillin from water by three-dimensional electrode system within granular activated carbon as particle electrode
WO2017088534A1 (en) Wastewater treatment device and method for treating wastewater by means of device
JP5881727B2 (en) Carbon bed electrolyzer for waste liquid treatment and its process
JP2002285369A (en) Electrolytic cell for producing hydrogen peroxide solution and hypohalide, and method therefor
US20160167985A1 (en) Method for treating wastewater and device for carrying out said method
JP4934766B2 (en) Waste water treatment equipment
JP2003126860A (en) Method and apparatus for treatment of waste liquid or waste water
JP2004202283A (en) Method and apparatus for treating organic compound-containing water
JP2018196883A (en) Method for controlling generation of halogen-containing by-products in drinking water treatment
US5439567A (en) Process for treatment of a fluid and apparatus therefor
WO2000047520A1 (en) Apparatus and method for hydrothermal electrolysis
JP2009248059A (en) Simultaneously manufacturing apparatus for ozone water and hydrogen peroxide water
JP2009034625A (en) Wastewater treatment apparatus and method
JP5004427B2 (en) Processing method of methane fermentation digestive juice
JP2006198619A (en) Process for treatment of liquid and apparatus therefor
JP2005021744A (en) Method and apparatus for electrolyzing emulsion
JPH0730158Y2 (en) Water treatment
JP2004237207A (en) Method and apparatus for treating organic compound-containing water
JP2004237165A (en) Method and apparatus for treating organic compound-containing water
JPH11221570A (en) Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same
JP4002358B2 (en) Hydrothermal electrolysis method and apparatus
JP2005186032A (en) Method and apparatus for electrolytic treatment for organic compound-containing water
JP2005279608A (en) Fixed bed-used electrolysis method and electrolysis apparatus
JP2004195391A (en) Method and apparatuf for treating water containing organic compound including nonionic surfactant
JP2005262133A (en) Electrochemical processing apparatus and method of substance contained in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees