JP2008198684A - Multilayer ceramic capacitor - Google Patents

Multilayer ceramic capacitor Download PDF

Info

Publication number
JP2008198684A
JP2008198684A JP2007030003A JP2007030003A JP2008198684A JP 2008198684 A JP2008198684 A JP 2008198684A JP 2007030003 A JP2007030003 A JP 2007030003A JP 2007030003 A JP2007030003 A JP 2007030003A JP 2008198684 A JP2008198684 A JP 2008198684A
Authority
JP
Japan
Prior art keywords
ceramic
internal electrode
layer
electrode layer
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007030003A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okuda
和弘 奥田
Masafumi Nakayama
雅文 中山
Masaru Matsumura
優 松村
Kenji Oka
謙次 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007030003A priority Critical patent/JP2008198684A/en
Publication of JP2008198684A publication Critical patent/JP2008198684A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve mechanical strength of a multilayer ceramic capacitor element. <P>SOLUTION: A multilayer ceramic capacitor includes a laminate consisting of ceramic layers 8 and internal electrode layers 9 alternately stacked and external electrodes provided at both ends of the laminate and connected with the internal electrode layers 9. The internal electrode layer 9 has pores 12, in which ceramic grain combination 13 with a narrower boundary than that of the ceramic layer 8 is formed. Thus, a hole inside the element can be reduced, and as a result the mechanical strength of the element can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は積層セラミックコンデンサに関するものである。   The present invention relates to a multilayer ceramic capacitor.

図3(a)(b)に示すように、積層セラミックコンデンサ1は、セラミック層2と内部電極層3とを交互に積層した積層体4と、この積層体4の両端に設けられ、内部電極層3と接続された外部電極5とを備えている。   As shown in FIGS. 3 (a) and 3 (b), a multilayer ceramic capacitor 1 includes a multilayer body 4 in which ceramic layers 2 and internal electrode layers 3 are alternately stacked, and provided at both ends of the multilayer body 4. An external electrode 5 connected to the layer 3 is provided.

そして近年、素子の小型化に伴い、内部電極層3の厚みを薄くして層数を増やし、小型でも静電容量の大きい積層セラミックコンデンサ1を形成することが求められている。   In recent years, with the miniaturization of elements, it is required to reduce the thickness of the internal electrode layer 3 to increase the number of layers, and to form the multilayer ceramic capacitor 1 having a large capacitance even though it is small.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2003−197029号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
Japanese Patent Laid-Open No. 2003-197029

従来、積層セラミックコンデンサ1の内部電極層3を薄くすると、素子(積層セラミックコンデンサ1)の機械的強度が低下するという問題があった。   Conventionally, when the internal electrode layer 3 of the multilayer ceramic capacitor 1 is thinned, there is a problem that the mechanical strength of the element (multilayer ceramic capacitor 1) is lowered.

すなわち、積層体4を焼結する工程では、セラミック層2を焼結するため、薄い内部電極層3にも大きな熱容量が加わっている。したがって図4に示すように、内部電極層3が縮み、切断され、その部分に空孔6が形成されてしまう。よって素子の内部に多数の空孔6を有することになり、素子の機械的強度が低下するのであった。   That is, in the step of sintering the laminated body 4, the ceramic layer 2 is sintered, so that a large heat capacity is also applied to the thin internal electrode layer 3. Therefore, as shown in FIG. 4, the internal electrode layer 3 shrinks and is cut, and a hole 6 is formed in that portion. Therefore, a large number of holes 6 are provided in the element, and the mechanical strength of the element is lowered.

そこで本発明は、素子の機械的強度を向上させることを目的とする。   Accordingly, an object of the present invention is to improve the mechanical strength of the element.

この目的を達成するため本発明は、内部電極層の孔にはセラミック層よりも粒界の狭いセラミック粒結合体が形成されたものとする。   In order to achieve this object, in the present invention, a ceramic grain bonded body having a grain boundary narrower than that of the ceramic layer is formed in the hole of the internal electrode layer.

これにより本発明は、素子の機械的強度を向上させることができる。   Thereby, this invention can improve the mechanical strength of an element.

それは内部電極層に形成された孔に、セラミック層よりも粒界の狭いセラミック粒結合体が形成されているためである。   This is because a ceramic grain bonded body having a grain boundary narrower than that of the ceramic layer is formed in the hole formed in the internal electrode layer.

すなわち本発明は、内部電極層の孔に高密度のセラミック粒結合体が形成されているため、素子内部の空孔を低減でき、結果として、素子の機械的強度を向上させることができるのである。   That is, according to the present invention, since the high-density ceramic grain combination is formed in the holes of the internal electrode layer, the voids inside the element can be reduced, and as a result, the mechanical strength of the element can be improved. .

(実施の形態1)
図1(a)に示すように、本実施の形態における積層セラミックコンデンサ7は、セラミック層8と内部電極層9とを交互にされた積層体10と、この積層体10の両端に設けられ、内部電極層9と接続された外部電極11とを備えている。そして図2に示すように、内部電極層9は複数の孔12を有し、この孔12内にはセラミック層8よりも粒界(セラミック粒子間のすき間)の狭いセラミック粒結合体13が形成されている。
(Embodiment 1)
As shown in FIG. 1 (a), a multilayer ceramic capacitor 7 in the present embodiment is provided with a multilayer body 10 in which ceramic layers 8 and internal electrode layers 9 are alternated, and both ends of the multilayer body 10, An external electrode 11 connected to the internal electrode layer 9 is provided. As shown in FIG. 2, the internal electrode layer 9 has a plurality of holes 12, and a ceramic grain bonded body 13 having a narrower grain boundary (a gap between ceramic grains) than the ceramic layer 8 is formed in the holes 12. Has been.

なお、本実施の形態では、セラミック層8もセラミック粒結合体13もセラミック粒子の結合体からなるものであるが、セラミック層8の粒界はより多くの無機化合物が介在しているのに対し、セラミック粒結合体13は粒界が狭い上、この粒界には殆ど無機化合物が介在していない。   In the present embodiment, both the ceramic layer 8 and the ceramic grain bonded body 13 are made of a ceramic particle bonded body, but the grain boundary of the ceramic layer 8 is interspersed with more inorganic compounds. Further, the ceramic grain bonded body 13 has a narrow grain boundary, and almost no inorganic compound is present in the grain boundary.

また本実施の形態におけるセラミック粒結合体のセラミック粒子の粒径は、セラミック層8のセラミック粒子の粒径よりも大きく、セラミック粒結合体13の粒界に含まれる無機化合物の含有率は、セラミック層8の粒界に含まれる無機化合物の含有率よりも小さいものとした。   In addition, the particle size of the ceramic particles of the ceramic particle combination in the present embodiment is larger than the particle size of the ceramic particles of the ceramic layer 8, and the content of the inorganic compound contained in the grain boundary of the ceramic particle combination 13 is ceramic. The content of the inorganic compound contained in the grain boundary of the layer 8 was set to be smaller.

以下本実施の形態における積層セラミックコンデンサ7の材料を説明する。なお、本実施の形態におけるセラミックコンデンサのサイズは縦×横が1.6mm×0.8mmとした。また下記に示す粒径、含有率などの数値は、特に断りの無い限り、焼結工程前の原料としての数値を記載した。   Hereinafter, the material of the multilayer ceramic capacitor 7 in the present embodiment will be described. In addition, the size of the ceramic capacitor in the present embodiment is 1.6 mm × 0.8 mm in length × width. Further, the numerical values such as the particle size and the content rate shown below are values as raw materials before the sintering step unless otherwise specified.

内部電極層9用に、粒径0.1〜0.4μmの球形Ni粉末と、粒径0.02〜0.1μmのBaTiO3を15〜25wt%程度と、バインダーとしての微量の有機化合物とを溶剤に混ぜたペーストを用いた。 For the internal electrode layer 9, spherical Ni powder having a particle size of 0.1 to 0.4 μm, BaTiO 3 having a particle size of 0.02 to 0.1 μm, about 15 to 25 wt%, and a small amount of organic compound as a binder A paste mixed with a solvent was used.

またセラミック層8用に、粒径0.2〜0.4μmのBaTiO3に、BaSiO2、BaCaSiO3などの無機化合物と、バインダーとしての有機化合物とを溶剤に混ぜたペーストを用いた。 For the ceramic layer 8, a paste prepared by mixing an inorganic compound such as BaSiO 2 or BaCaSiO 3 and an organic compound as a binder in BaTiO 3 having a particle diameter of 0.2 to 0.4 μm in a solvent was used.

なお、本実施の形態の構成とするためには、セラミック粒結合体13用ペーストのBaTiO3の粒径が、セラミック層8用ペーストのBaTiO3の粒径よりも小さくなるように、0.02μm〜0.1μmとすることが望ましい。 In order to obtain the configuration of the present embodiment, 0.02 μm so that the particle size of BaTiO 3 in the paste for ceramic particle bonded body 13 is smaller than the particle size of BaTiO 3 in the paste for ceramic layer 8. It is desirable that the thickness be ˜0.1 μm.

また外部電極11としては、Cu粉末にガラス成分などを混ぜた電極ペーストを用いた。   As the external electrode 11, an electrode paste in which a glass component or the like was mixed with Cu powder was used.

以下本実施の形態における積層セラミックコンデンサ7の製造方法について説明する。   Hereinafter, a method for manufacturing the multilayer ceramic capacitor 7 according to the present embodiment will be described.

はじめに、上述のセラミック層8用のスラリーをPETフィルム上に塗布し、乾燥させ、未焼結のセラミック層8(以下グリーンシートという)を形成する。この時のグリーンシートの厚みは1μm程度とする。   First, the slurry for the ceramic layer 8 described above is applied onto a PET film and dried to form an unsintered ceramic layer 8 (hereinafter referred to as a green sheet). At this time, the thickness of the green sheet is about 1 μm.

次に先ほどのグリーンシート上に、内部電極層9用のペーストをスクリーン印刷で印刷し、内部電極層9を形成する。この時の内部電極層9の厚みは1μm程度とする。   Next, the paste for the internal electrode layer 9 is printed on the green sheet by screen printing to form the internal electrode layer 9. The thickness of the internal electrode layer 9 at this time is about 1 μm.

そしてその後内部電極層9が形成されたグリーンシートを、内部電極層9が交互に外部電極11の陽極側、陰極側と接続されるよう、ずらして積層し、切断して個片化する。   Thereafter, the green sheet on which the internal electrode layer 9 is formed is laminated while being shifted so that the internal electrode layers 9 are alternately connected to the anode side and the cathode side of the external electrode 11, and cut into individual pieces.

次に個片化した積層体10を、N2とH2の混合ガス雰囲気下で、最大温度1200℃〜1300℃で2時間、その他昇温、降温工程含めて計20時間程度炉に入れ、焼結させる。 Next, the separated laminated body 10 is put in a furnace for about 20 hours in total, including a temperature rising and cooling step, at a maximum temperature of 1200 ° C. to 1300 ° C. for 2 hours under a mixed gas atmosphere of N 2 and H 2 . Sinter.

そして積層体10のチッピングを防ぐため、角部を面取りする。その後積層体10の両端に外部電極11用のペーストを塗布し、700℃〜800℃で焼付け、最後にNiメッキとSnメッキを順に施すと本実施の形態の積層セラミックコンデンサ7が形成される。   In order to prevent chipping of the laminate 10, the corners are chamfered. Thereafter, a paste for the external electrode 11 is applied to both ends of the multilayer body 10 and baked at 700 ° C. to 800 ° C., and finally Ni plating and Sn plating are performed in this order to form the multilayer ceramic capacitor 7 of the present embodiment.

以下に本実施の形態における効果を説明する。   The effect in this Embodiment is demonstrated below.

まず、本実施の形態では、素子(積層セラミックコンデンサ7)の機械的強度を向上させることができる。   First, in the present embodiment, the mechanical strength of the element (multilayer ceramic capacitor 7) can be improved.

それは図2に示すように、内部電極層9に形成された孔12に、セラミック層8よりも粒界の狭いセラミック粒結合体13が形成されているためである。   This is because, as shown in FIG. 2, a ceramic grain bonded body 13 having a grain boundary narrower than that of the ceramic layer 8 is formed in the hole 12 formed in the internal electrode layer 9.

すなわち積層体(図1の10)を焼結する工程では、内部電極層9の金属(Ni)の焼成温度は700〜800℃前後であるにもかかわらず、セラミックの焼結温度に合わせ、1200℃〜1300℃前後まで昇温する必要がある。したがって、内部電極層9には、内部電極層9の焼成に必要な熱容量以上の負荷がかかり、内部電極層9が縮み、最終的には切断されてしまうのであった。そしてこの現象は、内部電極層9が薄くなるほど顕著になっていた。   That is, in the step of sintering the laminated body (10 in FIG. 1), although the firing temperature of the metal (Ni) of the internal electrode layer 9 is around 700 to 800 ° C., it is matched with the sintering temperature of the ceramic 1200 It is necessary to raise the temperature to about 1 to about 1300 ° C. Therefore, the internal electrode layer 9 is subjected to a load greater than the heat capacity necessary for firing the internal electrode layer 9, and the internal electrode layer 9 shrinks and is eventually cut. This phenomenon becomes more prominent as the internal electrode layer 9 becomes thinner.

そして従来、図4に示すように、内部電極層3が切断された部分に空孔6ができてしまい、素子の内部に多数の空孔6が存在することで、機械的強度が低下するという問題があった。   Conventionally, as shown in FIG. 4, holes 6 are formed in the portion where the internal electrode layer 3 is cut, and the mechanical strength is reduced due to the presence of a large number of holes 6 inside the element. There was a problem.

一方本実施の形態では、図2に示すように、内部電極層9の孔12に高密度のセラミック粒結合体13が形成されているため、素子内部の空孔を低減でき、結果として、素子の機械的強度を向上させることができるのである。これによりたとえばこの積層セラミックコンデンサ7を基板に実装する時、実装方向に応力が掛かっても、素子の割れなどを抑制することができる。   On the other hand, in the present embodiment, as shown in FIG. 2, since the high-density ceramic grain bonded body 13 is formed in the holes 12 of the internal electrode layer 9, vacancies inside the elements can be reduced. It is possible to improve the mechanical strength. As a result, for example, when the multilayer ceramic capacitor 7 is mounted on a substrate, even if stress is applied in the mounting direction, cracking of the element can be suppressed.

なお、全ての孔12にセラミック粒結合体13を隙間無く形成する必要は無い。例えば本実施の形態では、一部空孔が残存する場合もあるが、孔12の80%〜95%を、空孔ではなくセラミック粒結合体13で埋める事が出来、素子の機械的強度を向上させることができる。   In addition, it is not necessary to form the ceramic particle combination 13 in all the holes 12 without a gap. For example, in the present embodiment, some holes may remain, but 80% to 95% of the holes 12 can be filled with the ceramic particle combination 13 instead of the holes, and the mechanical strength of the element can be increased. Can be improved.

また本実施の形態では、内部電極層9間の空孔の発生を抑制することで、素子の耐湿特性を向上させることができる。   In the present embodiment, the moisture resistance characteristics of the element can be improved by suppressing the generation of holes between the internal electrode layers 9.

また内部電極層9にBaTiO3を含有させるのは、内部電極層9とセラミック層8との焼成収縮挙動を近似させることができるためであるが、本実施の形態では、内部電極層9用のペーストに、セラミック層8用のペーストより粒径の小さいBaTiO3を含有させたことにより、セラミック層8よりも内部電極層9のBaTiO3粒子の焼結性を高める事ができる。よって内部電極層9が焼結する過程において、内部電極層9から孔12へとBaTiO3が押し出され、小さい粒子同士が固まり、効率よく粒界の狭いセラミック粒結合体13を形成することができる。 Moreover, the reason why BaTiO 3 is contained in the internal electrode layer 9 is that the firing shrinkage behavior of the internal electrode layer 9 and the ceramic layer 8 can be approximated. By including BaTiO 3 having a particle diameter smaller than that of the paste for the ceramic layer 8 in the paste, the sinterability of the BaTiO 3 particles of the internal electrode layer 9 can be enhanced as compared with the ceramic layer 8. Therefore, in the process of sintering the internal electrode layer 9, BaTiO 3 is extruded from the internal electrode layer 9 to the holes 12, the small particles are solidified, and the ceramic particle combination 13 having a narrow grain boundary can be efficiently formed. .

そしてその結果、内部電極層9の空孔を低減し、素子の機械的強度を向上させることができる。   As a result, voids in the internal electrode layer 9 can be reduced, and the mechanical strength of the element can be improved.

また本実施の形態では、積層体10の焼結工程後、セラミック粒結合体13のセラミック粒子(焼結後のBaTiO3粒子)の粒径は、セラミック層8のセラミック粒子の粒径よりも大きくなっている。 In the present embodiment, after the sintering process of the laminate 10, the particle size of the ceramic particles (BaTiO 3 particles after sintering) of the ceramic particle bonded body 13 is larger than the particle size of the ceramic particles of the ceramic layer 8. It has become.

すなわち内部電極層9は、電極の抵抗値が大きくなるのを防ぐため、セラミック層8のように無機化合物を入れることが出来ない。したがって、焼結工程後、セラミック粒結合体13の粒界に含まれる無機化合物の含有率は、セラミック層8の粒界に含まれる無機化合物の含有率よりも小さくなっている。   That is, the internal electrode layer 9 cannot contain an inorganic compound like the ceramic layer 8 in order to prevent the resistance value of the electrode from increasing. Therefore, after the sintering step, the content of the inorganic compound contained in the grain boundary of the ceramic grain bonded body 13 is smaller than the content of the inorganic compound contained in the grain boundary of the ceramic layer 8.

このような条件下では、孔12に複数のセラミック粒子(焼結後のBaTiO3粒子)からなるセラミック粒結合体13を形成すると、この粒界に空間が形成されやすくなり、空孔を効率良く埋めることが出来ないのである。 Under such conditions, when the ceramic particle combination 13 made of a plurality of ceramic particles (BaTiO 3 particles after sintering) is formed in the hole 12, a space is easily formed in the grain boundary, and the holes are efficiently formed. It cannot be filled.

一方本実施の形態では、内部電極層9に含まれていた焼結前のBaTiO3は粒径が小さいため、焼結性が高い、したがって、内部電極層9から孔12へとBaTiO3が押し出され素早く粒子成長し、大きな粒子を形成できるため、空孔をより低減でき、素子の機械的強度をより向上させることができるのである。 On the other hand, in the present embodiment, the BaTiO 3 before sintering contained in the internal electrode layer 9 has a small particle size and thus has high sinterability. Therefore, BaTiO 3 is extruded from the internal electrode layer 9 to the hole 12. Since the particles can grow quickly and form large particles, the number of holes can be reduced, and the mechanical strength of the device can be further improved.

本発明は、素子の機械的強度を向上させることが出来る為、たとえば小型・薄型の素子を基板に実装する時の破損を抑制することができ、機械的信頼性に優れた小型電子部品の形成に有効である。   Since the present invention can improve the mechanical strength of the element, for example, it is possible to suppress damage when a small and thin element is mounted on a substrate, and to form a small electronic component having excellent mechanical reliability. It is effective for.

(a)本実施の形態における積層セラミックコンデンサの斜視図、(b)本実施の形態における積層セラミックコンデンサの断面図(A) Perspective view of the multilayer ceramic capacitor in the present embodiment, (b) Cross-sectional view of the multilayer ceramic capacitor in the present embodiment 本実施の形態における積層セラミックコンデンサの要部を示す模式断面図Schematic cross-sectional view showing the main part of the multilayer ceramic capacitor in the present embodiment (a)従来の積層セラミックコンデンサの斜視図、(b)従来の積層セラミックコンデンサの断面図(A) Perspective view of conventional multilayer ceramic capacitor, (b) Cross-sectional view of conventional multilayer ceramic capacitor 従来の積層セラミックコンデンサの要部を示す模式断面図Schematic cross-sectional view showing the main parts of a conventional multilayer ceramic capacitor

符号の説明Explanation of symbols

7 積層セラミックコンデンサ
8 セラミック層
9 内部電極層
10 積層体
11 外部電極
12 孔
13 セラミック粒結合体
7 Multilayer Ceramic Capacitor 8 Ceramic Layer 9 Internal Electrode Layer 10 Laminate 11 External Electrode 12 Hole 13 Ceramic Grain Combined Body

Claims (3)

セラミック層と内部電極層とが交互に積層された積層体と、
この積層体の両端に設けられ、前記内部電極層と接続された外部電極とを備えた積層セラミックコンデンサにおいて、
前記内部電極層は孔を有し、
この孔には前記セラミック層よりも粒界の狭いセラミック粒結合体が形成された積層セラミックコンデンサ。
A laminate in which ceramic layers and internal electrode layers are alternately laminated;
In the multilayer ceramic capacitor provided at both ends of the multilayer body and provided with external electrodes connected to the internal electrode layer,
The internal electrode layer has holes;
A multilayer ceramic capacitor in which a ceramic grain combination having a grain boundary narrower than that of the ceramic layer is formed in the hole.
前記セラミック粒結合体の粒径は、
前記セラミック層の粒径よりも大きい請求項1に記載の積層セラミックコンデンサ。
The particle size of the ceramic grain bonded body is:
The multilayer ceramic capacitor according to claim 1, wherein the multilayer ceramic capacitor is larger than a particle size of the ceramic layer.
前記セラミック粒結合体の粒界は、
前記セラミック層の粒界よりも無機化合物の含有率が小さい請求項1または2に記載の積層セラミックコンデンサ。
The grain boundaries of the ceramic grain combination are:
The multilayer ceramic capacitor according to claim 1, wherein the content of the inorganic compound is smaller than the grain boundary of the ceramic layer.
JP2007030003A 2007-02-09 2007-02-09 Multilayer ceramic capacitor Pending JP2008198684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030003A JP2008198684A (en) 2007-02-09 2007-02-09 Multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030003A JP2008198684A (en) 2007-02-09 2007-02-09 Multilayer ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2008198684A true JP2008198684A (en) 2008-08-28

Family

ID=39757383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030003A Pending JP2008198684A (en) 2007-02-09 2007-02-09 Multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2008198684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199171A (en) * 2009-02-24 2010-09-09 Shinko Electric Ind Co Ltd Chip component mounted wiring board
WO2015098728A1 (en) * 2013-12-25 2015-07-02 Tdk株式会社 Lamination-type ceramic electronic part

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068559A (en) * 2001-08-29 2003-03-07 Kyocera Corp Laminated ceramic capacitor and method of manufacturing the same
JP2003077761A (en) * 2001-09-05 2003-03-14 Nec Tokin Ceramics Corp Multilayer ceramic capacitor and multilayer ceramic component
JP2004311985A (en) * 2003-03-27 2004-11-04 Tdk Corp Laminated chip capacitor and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068559A (en) * 2001-08-29 2003-03-07 Kyocera Corp Laminated ceramic capacitor and method of manufacturing the same
JP2003077761A (en) * 2001-09-05 2003-03-14 Nec Tokin Ceramics Corp Multilayer ceramic capacitor and multilayer ceramic component
JP2004311985A (en) * 2003-03-27 2004-11-04 Tdk Corp Laminated chip capacitor and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199171A (en) * 2009-02-24 2010-09-09 Shinko Electric Ind Co Ltd Chip component mounted wiring board
WO2015098728A1 (en) * 2013-12-25 2015-07-02 Tdk株式会社 Lamination-type ceramic electronic part
US9530566B2 (en) 2013-12-25 2016-12-27 Tdk Corporation Multilayer ceramic electronic component
JPWO2015098728A1 (en) * 2013-12-25 2017-03-23 Tdk株式会社 Multilayer ceramic electronic components

Similar Documents

Publication Publication Date Title
KR102145315B1 (en) Multi-layered ceramic capacitor and board having the same mounted thereon
US10622157B2 (en) Multilayer ceramic structure
US9129752B2 (en) Ceramic electronic component and method of manufacturing the same
KR101496814B1 (en) Multilayered ceramic capacitor, the method of the same and board for mounting the same
JP3259686B2 (en) Ceramic electronic components
JP5628250B2 (en) Conductive paste composition for internal electrode, multilayer ceramic capacitor, and method for producing the same
US9818538B2 (en) Multilayer ceramic electronic component and board for mounting thereof
JP7296744B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2014082435A (en) Multi-layered ceramic electronic component and method of manufacturing the same
KR20130111752A (en) Conductive paste composition for internal electrode and multilayer ceramic electronic component containing the same
JP2011135082A (en) Laminated ceramic capacitor and method of manufacturing the same
KR101434103B1 (en) Multilayered ceramic electronic component and board for mounting the same
KR20140024584A (en) Conductive paste composition for internal electrode and multilayer ceramic electronic component containing the same
US20140098454A1 (en) Multilayered ceramic electronic component and method of manufacturing the same
JP2017120881A (en) Multi-layer ceramic capacitor and method of producing the same
JP2008198684A (en) Multilayer ceramic capacitor
KR102703772B1 (en) Method for manufacturing multi-layered ceramic electronic componentthe
KR101994719B1 (en) Multilayer ceramic electronic component and method for manufacturing the same
JP2010212503A (en) Laminated ceramic capacitor
JPH11233309A (en) Laminated varistor
JP4335177B2 (en) Multilayer electronic components and multilayer ceramic capacitors
JP2005109218A (en) Electrode paste and manufacturing method of ceramic electronic component using it
JP2010098023A (en) Ceramic electronic component and electronic device using the same
JP2013021010A (en) Multilayer ceramic capacitor
JP2011171651A (en) Ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100128

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410