JP2008198668A - Flattening and polishing method and method of manufacturing semiconductor device - Google Patents

Flattening and polishing method and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2008198668A
JP2008198668A JP2007029798A JP2007029798A JP2008198668A JP 2008198668 A JP2008198668 A JP 2008198668A JP 2007029798 A JP2007029798 A JP 2007029798A JP 2007029798 A JP2007029798 A JP 2007029798A JP 2008198668 A JP2008198668 A JP 2008198668A
Authority
JP
Japan
Prior art keywords
polishing
surfactant
polished
oxide film
planarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007029798A
Other languages
Japanese (ja)
Inventor
Mika Fujii
美香 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007029798A priority Critical patent/JP2008198668A/en
Priority to TW096150646A priority patent/TW200845168A/en
Priority to KR1020080000065A priority patent/KR20080074722A/en
Priority to US12/010,922 priority patent/US20080194183A1/en
Priority to CNA2008100048772A priority patent/CN101239453A/en
Publication of JP2008198668A publication Critical patent/JP2008198668A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0456Ladders or other supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B17/00Connecting constructional elements or machine parts by a part of or on one member entering a hole in the other and involving plastic deformation
    • F16B17/006Connecting constructional elements or machine parts by a part of or on one member entering a hole in the other and involving plastic deformation of rods or tubes to sheets or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B37/00Nuts or like thread-engaging members
    • F16B37/04Devices for fastening nuts to surfaces, e.g. sheets, plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0406Details thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/30Installations of cables or lines on walls, floors or ceilings

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flattening and polishing method by which higher flattening and polishing can be established for CMP polishing, and to provide a method of manufacturing a semiconductor device using the flattening and polishing method. <P>SOLUTION: This method is used to flatten and polish a target wafer. A polishing slurry containing abrasive grains and an encapsulated surfactant 36 with a coated surface is employed to flatten the surface to be polished. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体製造プロセスで用いられる平坦化研磨方法、及び半導体装置の製造方法に関する。   The present invention relates to a planarization polishing method used in a semiconductor manufacturing process and a semiconductor device manufacturing method.

半導体装置、いわゆる半導体集積回路の製造プロセスでは、その素子分離領域となるSTI(shallow trench isolation)領域の形成工程において、表面を平坦化するための技術として、CMP(chemical mechanical polishing)技術が広く用いられている。半導体装置におけるSTI領域は一般的に、図7に示すようにして形成される。   In a manufacturing process of a semiconductor device, so-called semiconductor integrated circuit, a CMP (chemical mechanical polishing) technique is widely used as a technique for planarizing the surface in a process of forming an STI (shallow trench isolation) region as an element isolation region. It has been. An STI region in a semiconductor device is generally formed as shown in FIG.

先ず、図6Aに示すように、シリコン半導体基板1の表面にシリコン窒化(SiN)膜2を成膜する。   First, as shown in FIG. 6A, a silicon nitride (SiN) film 2 is formed on the surface of the silicon semiconductor substrate 1.

次に、フォトリソグラフィ技術を用いて、このシリコン窒化膜2上に形成すべきSTI領域に対応した部分に開口部を有する所要パターンのレジストマスク(図示せず)を形成する。そして、図6Bに示すように、レジストマスクを介してドライエッチングによりシリコン窒化膜2をパターニングし、さらにシリコン窒化膜2をマスクにドライエッチングによりシリコン基板1に所要パターンの溝3を形成する。ここで、シリコン窒化膜2が形成されている領域が、後の素子形成領域となる。   Next, a resist mask (not shown) having a required pattern having an opening in a portion corresponding to the STI region to be formed on the silicon nitride film 2 is formed by using a photolithography technique. Then, as shown in FIG. 6B, the silicon nitride film 2 is patterned by dry etching through a resist mask, and a groove 3 having a required pattern is formed on the silicon substrate 1 by dry etching using the silicon nitride film 2 as a mask. Here, the region where the silicon nitride film 2 is formed becomes a later element formation region.

次に、図6Cに示すように、CVD(chemical vapor deposition)法により、溝3内にシリコン酸化(SiO2)膜4を埋め込む。このとき、溝3以外の基板表面(すなわちシリコン窒化膜2)上にもシリコン酸化膜4が堆積される。   Next, as shown in FIG. 6C, a silicon oxide (SiO 2) film 4 is embedded in the trench 3 by CVD (chemical vapor deposition). At this time, the silicon oxide film 4 is also deposited on the substrate surface other than the groove 3 (that is, the silicon nitride film 2).

次に、図6Dに示すように、溝3以外の基板表面上に堆積したシリコン酸化(SiO2)膜を、CMP法により研磨して除去する。これにより、溝3内にシリコン酸化膜4を埋め込んでなるSTI領域(素子分離領域)5が形成される。この後工程で、シリコン窒化膜2が除去され、除去された領域に所要の半導体素子が形成される。   Next, as shown in FIG. 6D, the silicon oxide (SiO 2) film deposited on the substrate surface other than the groove 3 is polished and removed by the CMP method. As a result, an STI region (element isolation region) 5 in which the silicon oxide film 4 is buried in the trench 3 is formed. In this subsequent process, the silicon nitride film 2 is removed, and a required semiconductor element is formed in the removed region.

近年の半導体素子の高集積化に伴い、STI領域5の形成に際してのCMP処理(いわゆるSTI−CMPプロセス)に要求される平坦化性能は益々厳しくなってきており、従来より酸化膜の研磨に用いられるシリカ系スラリーでは、要求性能を満足することができなくなってきた。これは、シリコン酸化膜4が凸状に形成されるシリコン窒化膜2の面積率、即ち後の素子形成領域が半導体ウェーハ面内で不均一であることによる。シリコン窒化膜2の面積率が高い領域では高い凸状シリコン酸化膜4aが成膜され、シリコン窒化膜2の面積率が低い領域では低い凸状シリコン酸化膜4bが堆積される。   With the recent high integration of semiconductor elements, the planarization performance required for the CMP process (so-called STI-CMP process) in forming the STI region 5 has become increasingly severe and has been used for polishing an oxide film conventionally. With the silica-based slurry, it has become impossible to satisfy the required performance. This is because the area ratio of the silicon nitride film 2 on which the silicon oxide film 4 is formed in a convex shape, that is, the subsequent element formation region is not uniform within the semiconductor wafer surface. A high convex silicon oxide film 4a is formed in a region where the area ratio of the silicon nitride film 2 is high, and a low convex silicon oxide film 4b is deposited in a region where the area ratio of the silicon nitride film 2 is low.

具体的には、凸部の面積率が高い領域でのシリコン酸化膜4aの研磨除去が完了するまでの間に、シリコン窒化膜2とシリコン酸化膜4の選択比から、凸部の面積率の低い領域にある溝3のシリコン酸化膜4が過剰に研磨される。この過剰の研磨により、図6Eに示すように、いわゆるディッシング6が生じて平坦化が悪化する。平坦性の悪化は半導体素子の信頼性、歩留りの劣化を招く。   Specifically, the area ratio of the convex portion is determined from the selection ratio of the silicon nitride film 2 and the silicon oxide film 4 until the polishing removal of the silicon oxide film 4a in the region where the convex portion has a high area ratio is completed. The silicon oxide film 4 in the groove 3 in the low region is excessively polished. By this excessive polishing, as shown in FIG. 6E, so-called dishing 6 occurs, and the flattening deteriorates. Deterioration of flatness leads to deterioration of reliability and yield of semiconductor elements.

STI−CMPプロセスの平坦化性改善策として、セリア(酸化セリウム:CeO2)砥粒と添加剤(いわゆる界面活性剤)を含むセリア系スラリーを用いた研磨方法がある。これは、被研磨面の凸部では研磨時の圧力集中によって添加剤が脱離して研磨が進行するが、圧力の低い凹部では吸着した添加剤によって研磨が抑制されるため、凸部を選択的に研磨することで、高平坦な研磨面を得ようとするものである。このセリア系スラリーは、シリカ系スラリーと比べて平坦性だけでなく、研磨レート、選択比の点でも有利である。   As a measure for improving the flatness of the STI-CMP process, there is a polishing method using a ceria-based slurry containing ceria (cerium oxide: CeO2) abrasive grains and an additive (so-called surfactant). This is because, in the convex portion of the surface to be polished, the additive is desorbed due to pressure concentration during polishing and the polishing proceeds, but in the concave portion having a low pressure, polishing is suppressed by the adsorbed additive. It is intended to obtain a highly flat polished surface. This ceria-based slurry is advantageous not only in terms of flatness but also in terms of polishing rate and selection ratio as compared with a silica-based slurry.

セリア砥粒を用いた高平坦化研磨法としては、例えば特許文献1がある。これは、セリウムの酸化物粒子およびシリコン窒化膜選択吸着性を有する界面活性剤を含むCMP研磨液(研磨用スラリー)を用いて、界面活性剤によるシリコン窒化膜の研磨速度低下作用によって高平坦化研磨を行う方法である。   As a highly planarized polishing method using ceria abrasive grains, for example, there is Patent Document 1. This is achieved by using a CMP polishing liquid (slurry for polishing) containing a cerium oxide particle and a surfactant having selective adsorption properties of a silicon nitride film to achieve high planarization by reducing the polishing rate of the silicon nitride film by the surfactant. This is a method of polishing.

特開2004−14624号公報JP 2004-14624 A

ところで、セリア系スラリーを用いたSTI−CMPプロセスにおいても、依然として素子形成領域の疎密差の影響を受け、高平坦な研磨面を得ることが困難になってきている。図7A,Bを参照してさらに説明する。今、セリア砥粒12と、砥粒12に作用する界面活性剤13を含むセリア系スラリー、すなわち凹部3のシリコン酸化膜4の膜面の保護作用がある界面活性剤13を含むセリア系スラリーを用いる場合について説明する。図7A,Bに示すように、セリア系スラリーを用い、研磨パッド11を被研磨面に押し当てて研磨を開始したとき、凸部4aでは高い圧力がかかるため、界面活性剤13が除去された凸部4aでは選択的研磨が進行し、被研磨面の平坦化が進行していく。しかしながら、セリア系スラリーはシリコン酸化膜4の研磨速度がシリコン窒化膜2に対して速いため、特に素子分離領域5の面積が大きい領域ではディッシング6が顕著となり、平坦性が悪化する。   By the way, even in the STI-CMP process using the ceria-based slurry, it is still difficult to obtain a highly flat polished surface due to the influence of the density difference in the element formation region. This will be further described with reference to FIGS. 7A and 7B. Now, a ceria-based slurry containing ceria abrasive grains 12 and a surfactant 13 acting on the abrasive grains 12, that is, a ceria-based slurry containing a surfactant 13 having a protective action on the film surface of the silicon oxide film 4 in the recess 3 is obtained. The case of using will be described. As shown in FIGS. 7A and 7B, when ceria-based slurry was used and polishing was started by pressing the polishing pad 11 against the surface to be polished, a high pressure was applied to the convex portion 4a, so the surfactant 13 was removed. In the convex portion 4a, selective polishing proceeds, and the surface to be polished becomes flat. However, since the ceria-based slurry has a higher polishing rate of the silicon oxide film 4 than the silicon nitride film 2, the dishing 6 becomes prominent especially in the region where the element isolation region 5 is large, and the flatness deteriorates.

また、セリア系スラリーは、シリカ系スラリーに比べて、スクラッチが多いという問題もあり、特に素子形成領域にスクラッチが発生して下地のSi基板に達した場合、歩留りを悪化させる問題がある。   In addition, the ceria-based slurry has a problem that there are more scratches than the silica-based slurry, and in particular, when the scratch is generated in the element formation region and reaches the underlying Si substrate, there is a problem that the yield is deteriorated.

本発明は、上述の点に鑑み、CMP法を用いた研磨において、より高平坦化研磨を可能にした平坦化研磨方法、及びこの平坦化研磨方法を用いた半導体装置の製造方法を提供するものである。   In view of the above, the present invention provides a planarization polishing method that enables higher planarization polishing in polishing using the CMP method, and a method for manufacturing a semiconductor device using the planarization polishing method. It is.

本発明に係る平坦化研磨方法は、被研磨ウェーハを平坦に研磨する平坦化研磨方法であって、砥粒と、表面がコーティングされてカプセル化した界面活性剤とを含む研磨用スラリーを用いて被研磨面を平坦に研磨することを特徴とする。
この平坦化研磨では、研磨面が酸化膜であることが好ましい。
The flattening polishing method according to the present invention is a flattening polishing method for flatly polishing a wafer to be polished, using a polishing slurry containing abrasive grains and a surfactant whose surface is coated and encapsulated. The surface to be polished is polished flat.
In this flattening polishing, the polished surface is preferably an oxide film.

本発明に係る半導体装置の製造方法は、素子分離領域となるSTI領域の形成に際し、半導体基板の溝部以外の領域上に堆積された酸化膜を、砥粒と、表面がコーティングされてカプセル化した界面活性剤とを含む研磨用スラリーを用いて平坦に研磨する工程を有することを特徴とする。   In the method of manufacturing a semiconductor device according to the present invention, an oxide film deposited on a region other than a groove portion of a semiconductor substrate is encapsulated with abrasive grains and a surface when forming an STI region serving as an element isolation region. It has the process of grind | polishing flatly using the slurry for grinding | polishing containing surfactant.

本発明では、研磨用スラリーに含む界面活性剤が表面をコーティングしたカプセル化しているので、界面活性剤による保護を必要とする低い領域にのみ、カプセルが破壊されて選択的に界面活性剤が供給され、それ以外の部分ではカプセルが破られず、保護作用がないので、研磨が進む。これにより、高平坦化の研磨が行える。   In the present invention, since the surfactant contained in the slurry for polishing is encapsulated with the surface coated, the capsule is broken and selectively supplied to the low area requiring protection by the surfactant. In other parts, the capsule is not broken and there is no protective action, so that the polishing proceeds. Thereby, highly planarized polishing can be performed.

本発明に係る平坦化研磨方法によれば、界面活性剤が被研磨ウェーハ面内での研磨の進行に応じて被研磨面に直接作用するので、高平坦化研磨を行うことができる。
本発明に係る半導体装置の製造方法によれば、界面活性剤が被研磨ウェーハ面内での研磨の進行に応じて被研磨面に直接作用するので、素子形成領域の疎密差によらない高平坦化研磨を行うことができる。
According to the planarization polishing method of the present invention, the surfactant acts directly on the surface to be polished in accordance with the progress of polishing within the surface of the wafer to be polished, so that highly flattening polishing can be performed.
According to the method for manufacturing a semiconductor device according to the present invention, the surfactant acts directly on the surface to be polished in accordance with the progress of polishing in the surface of the wafer to be polished. Polishing can be performed.

以下、図面を参照して本発明の実施の形態を説明する。なお、本発明は、この例示に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to this example.

本実施の形態は、半導体装置、いわゆる半導体集積回路の製造に適用した場合であり、特にそのSTIによる素子分離領域を形成する際のCMP法による酸化膜の平坦化研磨に適用した場合である。被研磨膜は一例として高密度プラズマSiO2膜とする。   The present embodiment is a case where the present invention is applied to the manufacture of a semiconductor device, a so-called semiconductor integrated circuit, and is particularly a case where the present invention is applied to planarization polishing of an oxide film by a CMP method when forming an element isolation region by the STI. As an example, the film to be polished is a high-density plasma SiO 2 film.

図1に、本実施の形態の研磨に用いられる一般的なCMP装置の概略構成を示す。このCMP装置21は、回転軸22を中心の回転可能に配置された定盤23を有し、この定盤23上に研磨パッド24が配置される。研磨パッド24の上方に本実施の形態に係る研磨用スラリー25を供給するスラリー供給管26が配置される。平坦化研磨される被研磨体、本例では半導体ウェーハ27は、その被研磨面を研磨パッド24に対接するように載置される。この半導体ウェーハ27の裏面に研磨ヘッド28が所要の荷重をもって対接される。研磨ヘッド28は、半導体ウェーハ27に所要の荷重を掛けながら、半導体ウェーハ27と共に軸29を中心に回転されるように構成される。   FIG. 1 shows a schematic configuration of a general CMP apparatus used for polishing according to the present embodiment. The CMP apparatus 21 has a surface plate 23 that is rotatably arranged around a rotation shaft 22, and a polishing pad 24 is disposed on the surface plate 23. A slurry supply pipe 26 for supplying the polishing slurry 25 according to the present embodiment is disposed above the polishing pad 24. The object to be polished to be flattened, in this example, the semiconductor wafer 27 is placed so that the surface to be polished is in contact with the polishing pad 24. The polishing head 28 is brought into contact with the back surface of the semiconductor wafer 27 with a required load. The polishing head 28 is configured to be rotated around the shaft 29 together with the semiconductor wafer 27 while applying a required load to the semiconductor wafer 27.

被研磨ウェーハである半導体ウェーハ27は、図3Aに示すように、前述の図6Cと同様の構成を有する。すなわち、シリコン半導体基板27aの表面にシリコン窒化(SiN)膜31を成膜し、フォトリソグラフィ技術を用いてシリコン窒化膜31上に所要パターンの開口部を有するレジストマスクを形成し、このレジストマスクを介してドライエッチングによりシリコン窒化膜31をパターンし、さらにシリコン窒化膜31をマスクにシリコン基板27aに所要パターンの溝32を形成する。この溝32は素子分離領域となるSTI領域に対応する位置に形成される。次に、溝32内に埋め込むように基板全面にCVD法により、シリコン酸化(SiO2)膜33を堆積する。このようにして、シリコン窒化膜31の面積率の疎密差に応じてシリコン酸化膜の凸部領域33a,33b、すなわち面積率が大きく高さの大きい凸部領域33aとその近傍に面積率が小さく高さの小さい凸部領域33bとが混在する、半導体ウェーハ27が形成される。   As shown in FIG. 3A, the semiconductor wafer 27 which is a wafer to be polished has the same configuration as that of FIG. 6C described above. That is, a silicon nitride (SiN) film 31 is formed on the surface of the silicon semiconductor substrate 27a, and a resist mask having an opening having a required pattern is formed on the silicon nitride film 31 by using a photolithography technique. Then, the silicon nitride film 31 is patterned by dry etching, and a groove 32 having a required pattern is formed in the silicon substrate 27a using the silicon nitride film 31 as a mask. The groove 32 is formed at a position corresponding to the STI region that becomes the element isolation region. Next, a silicon oxide (SiO 2) film 33 is deposited on the entire surface of the substrate by a CVD method so as to be embedded in the trench 32. In this manner, the area ratio of the silicon oxide film 31 is small in the vicinity of the convex areas 33a and 33b of the silicon oxide film, that is, the convex area 33a having a large area ratio and a large height in accordance with the density difference of the area ratio of the silicon nitride film 31. The semiconductor wafer 27 in which the convex region 33b having a small height is mixed is formed.

次に、図1のCMP装置21を用いて本発明の一実施の形態に係る平坦化研磨方法と共に、この平坦化研磨方法を用いて上記半導体ウェーハ27を平坦化研磨してSTI領域を形成する半導体装置の製造方法を説明する。
本実施の形態においては、先ず、図3Aに示すように、上記の半導体ウェーハ27をその被研磨面をCMP装置21の研磨パッド24上に対接するように載置する。
Next, using the CMP apparatus 21 shown in FIG. 1, together with the planarization polishing method according to one embodiment of the present invention, the semiconductor wafer 27 is planarized and polished using this planarization polishing method to form the STI region. A method for manufacturing a semiconductor device will be described.
In the present embodiment, first, as shown in FIG. 3A, the semiconductor wafer 27 is placed so that the surface to be polished is in contact with the polishing pad 24 of the CMP apparatus 21.

次に、図3A,Bに示すように、研磨パッド24上にスラリー供給管26から本実施の形態に係る研磨用スラリー25を滴下しながら、かつ研磨ヘッド28に保持された半導体ウェーハ27被研磨面を研磨パッド24に押し付け、荷重を与えて研磨を開始する。研磨用スラリー25は、セリア砥粒(図示せず)と、表面がコーティンされてカプセル化した界面活性剤36(白丸表示)とを含んで形成される。この界面活性剤は、研磨されるシリコン酸化膜33に対して保護作用がある界面活性剤である。このカプセル化した界面活性剤36は、図12に示すように、界面活性剤37をコーティング壁35で被服して形成されている。具体的なスラリー構成は後述する。   Next, as shown in FIGS. 3A and 3B, the semiconductor wafer 27 to be polished held by the polishing head 28 while dripping the polishing slurry 25 according to the present embodiment from the slurry supply pipe 26 onto the polishing pad 24. The surface is pressed against the polishing pad 24 and a load is applied to start polishing. The polishing slurry 25 includes ceria abrasive grains (not shown) and a surfactant 36 (indicated by white circles) whose surface is coated and encapsulated. This surfactant is a surfactant having a protective effect on the silicon oxide film 33 to be polished. The encapsulated surfactant 36 is formed by coating a surfactant 37 with a coating wall 35 as shown in FIG. A specific slurry configuration will be described later.

図3Aの状態で、研磨用スラリー25は研磨パッド24上に供給されることにより、カプセル化された界面活性剤36が、被研磨面の凸部領域33a,33bを含む全面に付着される。
そして、図3Bの状態で、被研磨面の凸部領域3a,33bに付着したカプセル化界面活性剤36は、研磨パッド24に触れて押し退けられ被研磨面の凹部領域33cに付着する。
In the state of FIG. 3A, the polishing slurry 25 is supplied onto the polishing pad 24, whereby the encapsulated surfactant 36 adheres to the entire surface including the convex regions 33a and 33b of the surface to be polished.
In the state of FIG. 3B, the encapsulated surfactant 36 adhering to the convex regions 3a and 33b on the surface to be polished is pushed away by touching the polishing pad 24 and adheres to the concave region 33c on the surface to be polished.

次に、図3Cに示すように、凸部領域の研磨が進行する。この研磨では、面積率が低く高さの小さい凸部領域33bの研磨の進行が早いため、拡大図Aで示すように、凸部領域の近傍に存在するカプセル化界面活性剤36に圧力とせん断力がかかる。   Next, as shown in FIG. 3C, polishing of the convex region proceeds. In this polishing, the convex area 33b having a low area ratio and a small height progresses quickly, so that as shown in the enlarged view A, pressure and shear are applied to the encapsulated surfactant 36 present in the vicinity of the convex area. It takes power.

そして、図4Dに示すように、上記の圧力とせん断力によりカプセルが破壊されて界面活性剤37(黒丸表示)が放出される。   Then, as shown in FIG. 4D, the capsule is broken by the pressure and shearing force, and the surfactant 37 (shown by a black circle) is released.

図3Eに示すように、凸部領域33aの研磨が進行する間も、凹部33cは界面活性剤37で保護されるため、研磨の進行が抑制される。   As shown in FIG. 3E, since the concave portion 33c is protected by the surfactant 37 even during the polishing of the convex region 33a, the progress of the polishing is suppressed.

図4Fに示すように、凸部領域33aの研磨の進行に応じてカプセルが破壊され、界面活性剤37が順次作用する。そして、図4Gに示すように、最終的にシリコン窒化膜31の面積率の差、いわゆる素子形成領域の疎密差によらず、全域で平坦研磨され、シリコン窒化膜31に達した時点で平坦化研磨処理が終了する。これによって、高平坦化された研磨面が得られる。このようにして、ディッシングの発生がなく、良好なSTI領域38が形成される。
その後、シリコン窒化膜31を除去し、シリコン窒化膜31が除去された素子形成領域に所要の半導体素子を形成して、目的の半導体装置を得る。
As shown in FIG. 4F, as the polishing of the convex region 33a progresses, the capsule is broken and the surfactant 37 acts sequentially. Then, as shown in FIG. 4G, the entire surface is flatly polished regardless of the difference in the area ratio of the silicon nitride film 31, that is, the so-called density difference in the element formation region, and is flattened when the silicon nitride film 31 is reached. The polishing process ends. As a result, a highly planarized polished surface can be obtained. In this manner, dishing does not occur and a good STI region 38 is formed.
Thereafter, the silicon nitride film 31 is removed, a required semiconductor element is formed in the element formation region from which the silicon nitride film 31 has been removed, and a target semiconductor device is obtained.

図3A〜図4Gでは、シリコン窒化膜31に達する平坦化研磨を、1回の研磨処理で行うようにしたが、その他、2回の処理で行うようにすることもできる。   In FIGS. 3A to 4G, the planarization polishing reaching the silicon nitride film 31 is performed by one polishing process, but may be performed by two other processes.

次に、2回の研磨処理で平坦化する本発明の他の実施の形態に係る平坦化研磨方法、及びこの平坦化研磨方法を用いた半導体装置の製造方法を説明する。本実施の形態は、セリア系スラリーにカプセル化した界面活性剤を添加した研磨用スラリーを用いて、シリコン酸化膜33による被研磨面の凸部領域33a,33bが平坦化するまでの第1回目の研磨処理を行う。すなわち、前述の図4Fの工程を経て、図5のシリコン酸化膜33が平坦化する工程に至る。次いで、シリコン窒化膜31が露出されるまでの第2回目の研磨処理を行って、前述の図4Gの高平坦化研磨を完了する。   Next, a planarization polishing method according to another embodiment of the present invention in which planarization is performed by two polishing processes, and a semiconductor device manufacturing method using the planarization polishing method will be described. In the present embodiment, a polishing slurry in which a surfactant encapsulated in a ceria-based slurry is added is used for the first time until the convex regions 33a and 33b of the surface to be polished by the silicon oxide film 33 are flattened. Polishing process is performed. That is, the process of FIG. 4F described above is followed by a process of planarizing the silicon oxide film 33 of FIG. Next, a second polishing process is performed until the silicon nitride film 31 is exposed, and the high planarization polishing of FIG. 4G is completed.

この第2回目の研磨処理では、界面活性剤を添加しない研磨用スラリーのみで行ってもよい。第2回目の研磨処理では、研磨の際の被研磨面は既に平坦化されていて残膜も薄いため、界面活性剤を用いなくても高平坦な研磨面を維持しながら削り込みを完了することができる(図3G参照)。第2回目の研磨処理に用いるスラリーは、第1回目と同じセリア系スラリーを用いてもよく、その他、シリカ系、アルミナ系、または硝酸鉄系のスラリーを用いることもできる。特に、スクラッチの観点からは、シリカ系スラリーで研磨面を仕上げるのが望ましい。   The second polishing process may be performed only with a polishing slurry to which no surfactant is added. In the second polishing process, the surface to be polished at the time of polishing is already flattened and the remaining film is thin, so that polishing is completed while maintaining a highly flat polished surface without using a surfactant. (See FIG. 3G). As the slurry used for the second polishing treatment, the same ceria-based slurry as that used in the first polishing may be used, or a silica-based, alumina-based, or iron nitrate-based slurry may be used. In particular, from the viewpoint of scratching, it is desirable to finish the polished surface with a silica-based slurry.

次に、コーティングしてカプセル化した界面活性剤を含む研磨用スラリーを用いた具体的な研磨方法について説明する。ここでは、コーティングした界面活性剤を予め研磨用スラリーに所要量、本例では2wt%添加し、研磨パッドを介して被研磨ウェーハ上にこの研磨用スラリーを供給しながら以下の条件にて研磨を行う。   Next, a specific polishing method using a polishing slurry containing a coated and encapsulated surfactant will be described. Here, the required amount of the coated surfactant is added to the polishing slurry in advance, 2 wt% in this example, and polishing is performed under the following conditions while supplying this polishing slurry onto the wafer to be polished through the polishing pad. Do.

〔研磨条件〕
定盤回転数: 100rpm
研磨ヘッド回転数: 107rpm
研磨圧力: 300hPa
研磨パッドコンディショナー条件: Ex−situ
セリア系スラリー流量(界面活性剤2wt%添加): 200cc/min
[Polishing conditions]
Plate rotation speed: 100rpm
Polishing head rotation speed: 107 rpm
Polishing pressure: 300 hPa
Polishing pad conditioner conditions: Ex-situ
Ceria-based slurry flow rate (surfactant 2wt% added): 200cc / min

セリア粒子の粒径、すなわち酸化セリウム(CeO2)の粒径としては、50nm〜250nmとすることができる。   The particle diameter of the ceria particles, that is, the particle diameter of cerium oxide (CeO2) can be 50 nm to 250 nm.

ここでは、研磨用スラリーとして酸性のセリア系スラリーを用いたが、それ以外に、シリカ、アルミナ、硝酸鉄系スラリー等を用いてもよい。コーティングした界面活性剤の添加量は、0.1〜10wt%の範囲が望ましい。この数値は良好な研磨特性(平坦性、県下速度)が得られる範囲の濃度である。   Here, an acidic ceria-based slurry is used as the polishing slurry, but silica, alumina, iron nitrate-based slurry, or the like may be used in addition thereto. The addition amount of the coated surfactant is desirably in the range of 0.1 to 10 wt%. This numerical value is a concentration within a range where good polishing characteristics (flatness, prefecture speed) can be obtained.

コーティングした界面活性剤の供給方法としては、研磨用スラリーに事前混合して供給することができる。その他、コーティングした界面活性剤を水溶液として研磨用スラリーとは別々に供給してもよく、あるいはスラリー供給管に、この界面活性剤の水溶液を供給する界面活性剤供給管を連通させて供給してもよい。   As a method for supplying the coated surfactant, it can be premixed and supplied to the polishing slurry. In addition, the coated surfactant may be supplied as an aqueous solution separately from the polishing slurry, or the surfactant supply pipe for supplying the surfactant aqueous solution may be connected to the slurry supply pipe for supply. Also good.

コーティングする界面活性剤は、酸化膜の研磨を抑制する作用があるものとする。ここでは、界面活性剤としてアルキルベンゼンスルホン酸塩を用いるが、それ以外に、脂肪酸ナトリウム塩、アルキル硫酸塩、硫酸エステル塩、脂肪酸カリウム塩、ポリオキシエチレンアルキルエーテル硫酸塩、脂肪酸エステル、α−オレフィンスルホン酸塩、モノアルキルリン酸エステル塩、アルカンスルホン酸塩、アミノ酸、ポリアクリル酸塩、ポリアクリル酸アンモニウム塩、ポリカルボン酸アンモニウム塩、スルホコハク酸ジエステル塩、アルキルアミン塩酸塩、アルキルエーテルスルホン酸塩などを用いてもよい。   The surfactant to be coated has an action of suppressing polishing of the oxide film. Here, alkylbenzene sulfonate is used as the surfactant, but in addition to that, fatty acid sodium salt, alkyl sulfate, sulfate ester salt, fatty acid potassium salt, polyoxyethylene alkyl ether sulfate, fatty acid ester, α-olefin sulfone. Acid salts, monoalkyl phosphate esters, alkane sulfonates, amino acids, polyacrylates, ammonium polyacrylates, polycarboxylic acid ammonium salts, sulfosuccinic acid diester salts, alkylamine hydrochlorides, alkyl ether sulfonates, etc. May be used.

カプセル化するためのコーティング材としては、コーティング加工が容易で、界面活性剤と研磨スラリーを変質させない材料を用いる。ここでは、ポリウレタン樹脂を用いるが、その他、界面活性剤やスラリーとの反応しない組み合わせのポリマー材料であれば、例えば、ポリスチレン樹脂、ポリエステル樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリビニルアルコール樹脂、ポリカーボネート樹脂、メラミン樹脂、尿素樹脂、ゼラチンなどを用いてもよい。   As the coating material for encapsulating, a material that can be easily coated and does not alter the surfactant and the polishing slurry is used. Here, polyurethane resin is used, but other polymer materials that do not react with surfactants or slurries, for example, polystyrene resin, polyester resin, polyurea resin, polyamide resin, polyethylene resin, polyvinyl alcohol resin, polycarbonate Resins, melamine resins, urea resins, gelatin and the like may be used.

界面活性剤分子の大きさは、2nm〜3nm程度である。また、コーティングした界面活性剤の大きさは、10nm〜5000nm程度とすることができる。ここでカプセル化した界面活性剤は、単体の界面活性剤、あるいは複数の単体界面活性剤が集合された状態でコーティングされているものを含む。これに対するコーティングの厚さは、研磨時にコーティング膜にかかる研磨圧力、せん断力によって破壊する機械的強度になるように設定する。すなわち、コーティング膜の機械的強度は、研磨圧力、せん断力による機械的強度以下とする。   The size of the surfactant molecule is about 2 nm to 3 nm. The size of the coated surfactant can be about 10 nm to 5000 nm. The surfactant encapsulated here includes a single surfactant or a coating in which a plurality of single surfactants are aggregated. The thickness of the coating is set so as to have a mechanical strength that is broken by the polishing pressure and shearing force applied to the coating film during polishing. That is, the mechanical strength of the coating film is set to be equal to or lower than the mechanical strength due to the polishing pressure and the shearing force.

界面活性剤のコーティング(被膜)方法は、化学的方法、物理化学的方法、機械的方法に大別される。本発明における界面活性剤のコーティング方法としては、シームレスカプセル化法や界面重合法、in−situ重合法、液中乾燥法、コアセルベーション法、噴霧乾燥法、乾式混合法などがある。特に、液体である界面活性剤のコーティング方法としては、界面重合法、in−situ重合法、コアセルベーション法、シームレスカプセル化法などが適している。   Surfactant coating (coating) methods are roughly classified into chemical methods, physicochemical methods, and mechanical methods. Examples of the surfactant coating method in the present invention include a seamless encapsulation method, an interfacial polymerization method, an in-situ polymerization method, a submerged drying method, a coacervation method, a spray drying method, and a dry mixing method. In particular, as a method for coating a liquid surfactant, an interfacial polymerization method, an in-situ polymerization method, a coacervation method, a seamless encapsulation method, and the like are suitable.

1.化学的方法(化学反応によってコーティング膜を形成する)。
・界面重合法では、分散相と分散媒の双方から別々のモノマーを供給し、分散相の表面、即ち界面での重合反応によってコーティング膜を形成する。
・in−situ重合法では、分散相又は分散媒のいずれか一方側からのみ、モノマーその他の反応剤を供給し、核物質表面での重合反応によってコーティング膜を形成する。
1. Chemical method (forms coating film by chemical reaction).
In the interfacial polymerization method, separate monomers are supplied from both the dispersed phase and the dispersion medium, and a coating film is formed by a polymerization reaction on the surface of the dispersed phase, that is, the interface.
In the in-situ polymerization method, a monomer or other reactant is supplied only from either the dispersed phase or the dispersion medium, and a coating film is formed by a polymerization reaction on the surface of the core material.

2.物理化学方法(析出、凝固などによってコーティング膜を形成する)。
・コアセルベーション法では、コーティング材となる樹脂を溶解させた溶液に核物質を分散させ、核物質のまわりに樹脂を析出させてコーティング膜を形成する。
・液中乾燥法では、核物質を含有するコーティング材溶液を液状媒体中に分散してエマルジョンを調製し、減圧または加熱によって溶剤を除去してコーティング膜を形成する。
2. Physicochemical method (forms coating film by precipitation, solidification, etc.).
In the coacervation method, a core material is dispersed in a solution in which a resin serving as a coating material is dissolved, and the resin is deposited around the core material to form a coating film.
In the in-liquid drying method, a coating material solution containing a core substance is dispersed in a liquid medium to prepare an emulsion, and the solvent is removed by decompression or heating to form a coating film.

3.機械的方法(機械的にコーティング膜を形成する)。
・噴霧乾燥法では、核物質を添加し、コーティング材溶液を噴霧状にして熱風中に噴出し、コーティング材を渡河している液体を蒸発させてコーティング膜を形成する。
3. Mechanical method (mechanically forming a coating film).
In the spray drying method, the core material is added, the coating material solution is sprayed and sprayed into hot air, and the liquid crossing the coating material is evaporated to form a coating film.

4.その他の方法。
・シームレスカプセル化法では、液体を滴下したときに界面張力によって球状になる物質を利用して、継ぎ目のないコーティング膜を形成する。
4). Other methods.
In the seamless encapsulation method, a seamless coating film is formed using a material that becomes spherical due to interfacial tension when a liquid is dropped.

上述の本実施の形態に係る平坦化研磨方法及び半導体装置の製造方法によれば、コーティングした界面活性剤を添加した研磨用スラリーを用いるので、その添加剤である界面活性剤が被研磨ウェーハ面内での研磨の進行に応じて、選択的に被研磨面に直接作用する。これにより、素子形成領域の疎密差によらない高平坦化研磨がより高精度、かつ効率的に行うことができ、半導体素子の信頼性、歩留りが向上する。また、界面活性剤の使用量を必要最低限に抑えることができるため、半導体装置の製造コトストを低減できる。   According to the planarization polishing method and the semiconductor device manufacturing method according to the above-described embodiment, since the polishing slurry to which the coated surfactant is added is used, the surfactant which is the additive is the surface of the wafer to be polished. It selectively acts directly on the surface to be polished according to the progress of the polishing inside. As a result, high planarization polishing not depending on the density difference in the element formation region can be performed with higher accuracy and efficiency, and the reliability and yield of the semiconductor element are improved. In addition, since the amount of the surfactant used can be minimized, the manufacturing cost of the semiconductor device can be reduced.

本実施の形態に係る平坦化研磨方法は、上述したように、砥粒と、表面がコーティングされてカプセル化した界面活性剤とを含む研磨用スラリーを用いて行うようにしている。この研磨方法では、被研磨面の凸部の平坦化に従って凸部近傍の凹部に付着したカプセル化した界面活性剤に研磨圧力とせん断力がかかり、コーティング膜を破壊して界面化成剤が放出し、近傍の研磨の進行を選択的に抑制する。ウェーハ面内では、凸部の研磨の進行に応じて界面活性剤が順次作用するため、素子形成領域の疎密差によらない高平坦化研磨が可能となり、半導体素子の信頼性、歩留りが向上する。   As described above, the planarization polishing method according to the present embodiment is performed using a polishing slurry containing abrasive grains and a surfactant whose surface is coated and encapsulated. In this polishing method, polishing pressure and shearing force are applied to the encapsulated surfactant adhering to the concave portion near the convex portion as the convex portion of the surface to be polished is flattened, destroying the coating film and releasing the interfacial chemical. The progress of polishing in the vicinity is selectively suppressed. In the wafer surface, the surfactants act sequentially as the polishing of the convex portions progresses, so high planarization polishing is possible without depending on the density difference of the element formation region, and the reliability and yield of the semiconductor elements are improved. .

前述の特許文献1では、被研磨面の膜種類によって界面活性剤が選択的に作用するものであるのに対して、本発明は、パターンの疎密差による研磨の進行によって界面活性剤を作用させるものであることから、異種材料(例えば、被研磨面がSiO2であれば、異種材料はSiNとなる)が被研磨面に露出する前の段階の同一材料からなる被研磨面にて平坦化を行うことができ、より高平坦な研磨が可能となる。更に、高平坦な研磨が完了した時点では残膜も薄いため、平坦性を維持しながら、例えばスクラッチの少ない従来のシリカ系スラリーにて仕上げ研磨を行うこともできるため、セリア系スラリーの問題点であるスクラッチが低減でき、研磨プロセスの自由度が広がる。   In Patent Document 1 described above, the surfactant acts selectively depending on the film type of the surface to be polished, whereas the present invention allows the surfactant to act by the progress of polishing due to the difference in density of the pattern. Therefore, flattening is performed on the surface to be polished made of the same material before the different material (for example, if the surface to be polished is SiO2, the different material is SiN) is exposed to the surface to be polished. It is possible to perform polishing with higher flatness. Furthermore, since the remaining film is thin when high-flat polishing is completed, it is possible to perform final polishing with, for example, a conventional silica-based slurry with few scratches while maintaining flatness. As a result, scratches can be reduced, and the degree of freedom in the polishing process is expanded.

上例では、本発明の平坦化研磨法を、半導体ウェーハの研磨に適用したが、その他の基板(ウェーハ)、すなわち被研磨面が酸化膜を有する基板の研磨にも適用することができる。   In the above example, the planarization polishing method of the present invention is applied to polishing a semiconductor wafer. However, it can also be applied to polishing other substrates (wafers), that is, substrates having an oxide film on the surface to be polished.

本発明に適用されるCMP装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the CMP apparatus applied to this invention. カプセル化した界面活性剤の模式的断面図である。It is typical sectional drawing of the encapsulated surfactant. A〜C 本発明に係る平坦化研磨方法、及びこの研磨方法を用いた半導体装置の製造方法の一実施の形態を示す製造工程図(その1)である。1A to 1C are manufacturing process diagrams (part 1) illustrating an embodiment of a planarization polishing method according to the present invention and a method of manufacturing a semiconductor device using the polishing method. D〜G 本発明に係る平坦化研磨方法、及びこの研磨方法を用いた半導体装置の製造方法の一実施の形態を示す製造工程図(その2)である。DG is the manufacturing process figure (the 2) which shows one Embodiment of the planarization grinding | polishing method which concerns on this invention, and the manufacturing method of the semiconductor device using this grinding | polishing method. 本発明に係る平坦化研磨方法、及びこの研磨方法を用いた半導体装置の製造方法の他の実施の形態を示す途中の工程図である。It is process drawing in the middle which shows other embodiment of the planarization grinding | polishing method which concerns on this invention, and the manufacturing method of the semiconductor device using this grinding | polishing method. A〜E 従来の平坦化研磨法を用いた半導体装置の製造方法の例を示す製造工程図である。A to E are manufacturing process diagrams showing an example of a manufacturing method of a semiconductor device using a conventional planarization polishing method. 従来の研磨状態の説明に供する説明図である。It is explanatory drawing with which it uses for description of the conventional grinding | polishing state.

符号の説明Explanation of symbols

21・・CMP装置、23・・定盤、24・・研磨パッド、25・・研磨用スラリー、26・・スラリー供給管、27・・半導体ウェーハ、28・・研磨ヘッド、27a・・シリコン半導体基板、31・・シリコン窒化膜、32・・溝部、33・・シリコン酸化膜、33a、33b・・凸部領域、35・・コーティング壁、36・・カプセル化した界面活性剤、37・・界面活性剤、38・・STI領域   21..CMP apparatus, 23..Surface plate, 24..Polishing pad, 25..Slurry for polishing, 26..Slurry supply pipe, 27..Semiconductor wafer, 28..Polishing head, 27a..Silicon semiconductor substrate 31 ... Silicon nitride film 32 ... Groove part 33 ... Silicon oxide film 33a, 33b ... Projection area 35 ... Coating wall 36 ... Encapsulated surfactant 37 ... Surfactant Agents, 38 ·· STI region

Claims (13)

被研磨ウェーハを平坦に研磨する平坦化研磨方法であって、
砥粒と、表面がコーティングされてカプセル化した界面活性剤とを含む研磨用スラリーを用いて被研磨面を平坦に研磨する
ことを特徴とする平坦化研磨方法。
A planarization polishing method for polishing a wafer to be polished flatly,
A flattening polishing method comprising polishing a surface to be polished flatly using a polishing slurry containing abrasive grains and a surfactant whose surface is coated and encapsulated.
前記被研磨面が酸化膜である
ことを特徴とする請求項1記載の平坦化研磨方法。
The planarization polishing method according to claim 1, wherein the surface to be polished is an oxide film.
前記砥粒がセリア粒子であるセリア系研磨用スラリーを用いる
ことを特徴とする請求項2記載の平坦化研磨方法。
The planarization polishing method according to claim 2, wherein a ceria-based polishing slurry in which the abrasive grains are ceria particles is used.
前記界面活性剤は、研磨される前記酸化膜に作用する界面活性剤である
ことを特徴とする請求項2記載の平坦化研磨方法。
The planarization polishing method according to claim 2, wherein the surfactant is a surfactant that acts on the oxide film to be polished.
前記酸化膜は、基板の溝部と、該溝部以外の下地シリコン窒化膜上とにわたって形成されたシリコン酸化膜であり、
前記界面活性剤は、前記シリコン酸化膜に作用する界面活性剤である
ことを特徴とする請求項2記載の平坦化研磨方法。
The oxide film is a silicon oxide film formed over the groove portion of the substrate and on the underlying silicon nitride film other than the groove portion,
The planarization polishing method according to claim 2, wherein the surfactant is a surfactant that acts on the silicon oxide film.
砥粒と、表面がコーティングされてカプセル化した界面活性剤とを含む第1の研磨用スラリーを用いて、被研磨面の凸部領域が平坦化するまで研磨を行い、
以降の研磨を界面活性剤を含まない第2の研磨用スラリーを用いて行う
ことを特徴とする請求項2記載の平坦化研磨方法。
Using the first polishing slurry containing abrasive grains and a surface-coated and encapsulated surfactant, polishing is performed until the convex region of the surface to be polished is flattened,
The flattening polishing method according to claim 2, wherein the subsequent polishing is performed using a second polishing slurry not containing a surfactant.
前記カプセル化した界面活性剤のコーティング膜の機械的強度が、研磨圧力、せん断力による機械的強度以下である
ことを特徴とする請求項1記載の平坦化研磨方法。
The planarization polishing method according to claim 1, wherein the mechanical strength of the encapsulated surfactant coating film is equal to or lower than the mechanical strength due to polishing pressure and shear force.
素子分離領域となるSTI領域の形成に際し、
半導体基板の溝部以外の領域上に堆積された酸化膜を、砥粒と、表面がコーティングされてカプセル化した界面活性剤とを含む研磨用スラリーを用いて平坦に研磨する工程を有する
ことを特徴とする半導体装置の製造方法。
In forming the STI region that becomes the element isolation region,
A step of polishing flatly an oxide film deposited on a region other than a groove portion of a semiconductor substrate using a polishing slurry containing abrasive grains and a surfactant whose surface is coated and encapsulated. A method for manufacturing a semiconductor device.
前記溝部以外の領域上の酸化膜が、窒化膜の下地膜上に堆積されている
ことを特徴とする請求項8記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 8, wherein an oxide film on a region other than the groove is deposited on a base film of a nitride film.
前記砥粒がセリア粒子であるセリア系研磨用スラリーを用いる
ことを特徴とする請求項8記載の平坦化研磨方法。
The planarization polishing method according to claim 8, wherein a ceria-based polishing slurry in which the abrasive grains are ceria particles is used.
前記界面活性剤は、研磨される前記酸化膜に作用する界面活性剤である
ことを特徴とする請求項8記載の平坦化研磨方法。
The planarization polishing method according to claim 8, wherein the surfactant is a surfactant that acts on the oxide film to be polished.
砥粒と、表面がコーティングされてカプセル化した界面活性剤とを含む第1の研磨用スラリーを用いて、前記酸化膜の凸部領域が平坦化するまで研磨を行い、
以降の研磨を界面活性剤を含まない第2の研磨用スラリーを用いて行う
ことを特徴とする請求項8記載の半導体装置の製造方法。
Using the first polishing slurry containing abrasive grains and a surface-coated encapsulated surfactant, polishing is performed until the convex region of the oxide film is flattened,
The method for manufacturing a semiconductor device according to claim 8, wherein the subsequent polishing is performed using a second polishing slurry that does not contain a surfactant.
前記カプセル化した界面活性剤のコーティング膜の機械的強度が、研磨圧力、せん断力による機械的強度以下である
ことを特徴とする請求項8記載の半導体装置の製造方法。
9. The method of manufacturing a semiconductor device according to claim 8, wherein the mechanical strength of the encapsulated surfactant coating film is equal to or less than the mechanical strength due to polishing pressure and shearing force.
JP2007029798A 2007-02-08 2007-02-08 Flattening and polishing method and method of manufacturing semiconductor device Pending JP2008198668A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007029798A JP2008198668A (en) 2007-02-08 2007-02-08 Flattening and polishing method and method of manufacturing semiconductor device
TW096150646A TW200845168A (en) 2007-02-08 2007-12-27 Planarization polishing method and method for manufacturing semiconductor device
KR1020080000065A KR20080074722A (en) 2007-02-08 2008-01-02 Planarization polishing method and method for manufacturing semiconductor device
US12/010,922 US20080194183A1 (en) 2007-02-08 2008-01-31 Planarization polishing method and method for manufacturing semiconductor device
CNA2008100048772A CN101239453A (en) 2007-02-08 2008-02-05 Planarization grinding method and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007029798A JP2008198668A (en) 2007-02-08 2007-02-08 Flattening and polishing method and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2008198668A true JP2008198668A (en) 2008-08-28

Family

ID=39686243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029798A Pending JP2008198668A (en) 2007-02-08 2007-02-08 Flattening and polishing method and method of manufacturing semiconductor device

Country Status (5)

Country Link
US (1) US20080194183A1 (en)
JP (1) JP2008198668A (en)
KR (1) KR20080074722A (en)
CN (1) CN101239453A (en)
TW (1) TW200845168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171409A (en) * 2010-02-17 2011-09-01 Disco Corp Wafer polishing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI443741B (en) * 2011-01-14 2014-07-01 Univ Nat Chiao Tung A smoothing method to decrease bowing of group iii nitride semiconductor substrate
TWI517935B (en) * 2013-04-16 2016-01-21 國立台灣科技大學 Supplying system of adding gas into slurry and method thereof
CN105199668A (en) * 2015-08-14 2015-12-30 芜湖真空科技有限公司 Edging material for LOW-E glass and preparation method of edging material
US10199255B2 (en) * 2016-03-10 2019-02-05 Infineon Technologioes AG Method for providing a planarizable workpiece support, a workpiece planarization arrangement, and a chuck
CN109590820B (en) * 2019-01-02 2021-07-06 中国科学院上海光学精密机械研究所 Method for processing surface roughness of superhard laser crystal
JP7317532B2 (en) * 2019-03-19 2023-07-31 キオクシア株式会社 Polishing device and polishing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171409A (en) * 2010-02-17 2011-09-01 Disco Corp Wafer polishing method

Also Published As

Publication number Publication date
KR20080074722A (en) 2008-08-13
TW200845168A (en) 2008-11-16
CN101239453A (en) 2008-08-13
US20080194183A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
US5891205A (en) Chemical mechanical polishing composition
JP3514908B2 (en) Abrasive
JP4537010B2 (en) Chemical mechanical polishing slurry and chemical mechanical polishing method using the same
US8497210B2 (en) Shallow trench isolation chemical mechanical planarization
KR100393368B1 (en) Cmp method and semiconductor manufacturing device
JP2008198668A (en) Flattening and polishing method and method of manufacturing semiconductor device
JP2002313760A (en) Chemical mechanical polishing slurry, chemical mechanical polishing method, and shallow trench element separation method adopting the same
JP2001200242A (en) Aqueous slurry
JP2011151405A (en) Surface flattening method of semiconductor device
JP2005159351A (en) High selectivity colloidal silica slurry
TWI294456B (en)
JP4202826B2 (en) Chemical mechanical polishing method of organic film and manufacturing method of semiconductor device
JP2000228391A (en) Method and apparatus for precise-polishing semiconductor substrate
US20040127045A1 (en) Chemical mechanical planarization of wafers or films using fixed polishing pads and a nanoparticle composition
JP2002043256A (en) Method and apparatus for planarizing semiconductor wafer
US7125321B2 (en) Multi-platen multi-slurry chemical mechanical polishing process
JP2003179020A (en) Polishing cloth texture transferring prevention method
CN108473850A (en) The polishing method of low k substrates
US8211325B2 (en) Process sequence to achieve global planarity using a combination of fixed abrasive and high selectivity slurry for pre-metal dielectric CMP applications
TW202124617A (en) Polishing solution, polishing method, and semiconductor component manufacturing method
US7857986B2 (en) Chemical mechanical polishing slurry and chemical mechanical polishing apparatus and method
US7109117B2 (en) Method for chemical mechanical polishing of a shallow trench isolation structure
WO2008157048A1 (en) Chemical-mechanical polishing compositions containing aspartame and methods of making and using the same
KR101096447B1 (en) Method of manufacturing semiconductor device
US20080176403A1 (en) Method of polishing a layer and method of manufacturing a semiconductor device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217