JP2008196555A - Shaft supporting structure of transmission - Google Patents

Shaft supporting structure of transmission Download PDF

Info

Publication number
JP2008196555A
JP2008196555A JP2007030982A JP2007030982A JP2008196555A JP 2008196555 A JP2008196555 A JP 2008196555A JP 2007030982 A JP2007030982 A JP 2007030982A JP 2007030982 A JP2007030982 A JP 2007030982A JP 2008196555 A JP2008196555 A JP 2008196555A
Authority
JP
Japan
Prior art keywords
bearing
reaction force
rigidity
holding
holding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007030982A
Other languages
Japanese (ja)
Inventor
Makoto Taniguchi
真 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007030982A priority Critical patent/JP2008196555A/en
Publication of JP2008196555A publication Critical patent/JP2008196555A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Details Of Gearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress deterioration of durability of a bearing for supporting a transmission shaft and a retaining portion for retaining the bearing. <P>SOLUTION: When a radial reaction force of gear engagement works on the transmission shaft 1, a load due to this reaction force works on every ball 4c of a ball bearing 4 of supporting the shaft 1 and a retaining portion 3 of holding the bearing 4.To average a load on each ball 4c due to the operation of the reaction force and loads that the retaining portion 3 receives from the balls, a rigidity adjuster 6 for adjusting the peripheral rigidity of the bearing 4 in the retaining portion 3 so that the rigidity of a portion on which the reaction force works becomes lower than the rigidity of the other portions.This can prevent concentration of loads onto balls 4c and portions of the retaining portion 3 in the direction of operation of the reaction force and consequently suppress deterioration of durability of the bearing 4 and the retainer 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、トランスミッションの軸支持構造に関するものである。   The present invention relates to a shaft support structure for a transmission.

従来より、自動車等の車両における原動機と車輪との間の回転伝達経路上には、その経路を通じて伝達される回転の速度を変更するためのトランスミッションが設けられている。   Conventionally, on a rotation transmission path between a prime mover and wheels in a vehicle such as an automobile, a transmission for changing the speed of rotation transmitted through the path is provided.

こうしたトランスミッションにおいては、変速用の各種ギヤが固定された複数の軸同士がそれらギヤによる噛み合いを通じて回転伝達可能に連結されており、噛み合うギヤを切り換えることによってトランスミッションの入力回転速度と出力回転速度との比である変速比を変更する変速動作が行われる。そして、このようにトランスミッションの変速動作を行うことにより、車両における原動機と車輪との間の回転伝達経路上にて、その経路を通じて伝達される回転の速度が変更される。   In such a transmission, a plurality of shafts to which various gears for shifting are fixed are connected so as to be able to transmit rotation through meshing of these gears, and the input rotational speed and the output rotational speed of the transmission are switched by switching the meshed gears. A speed change operation for changing the speed ratio, which is the ratio, is performed. By performing the speed change operation of the transmission in this way, the speed of rotation transmitted through the route is changed on the rotation transmission route between the prime mover and the wheels in the vehicle.

トランスミッションに設けられた複数の軸は、例えば特許文献1に示される軸受けによって同トランスミッションのケースに回転可能に支持されている。この特許文献1では、トランスミッションのケースでの軸受けの保持が、同軸受けをボルトによりケースに固定することによって実現されている。また、これに代えて、トランスミッションのケースに軸受けが嵌め込まれる保持部を形成し、その軸受けを同保持部により同軸受けの外周面全体が内接した状態で保持することも考えられる。この場合、ケースでの軸受けの保持をより確実に行うことが可能になる。
特開2002−188710(段落[0018]、図2、図3)
A plurality of shafts provided in the transmission are rotatably supported on the case of the transmission by a bearing shown in Patent Document 1, for example. In Patent Document 1, the bearing is held in the transmission case by fixing the coaxial receiver to the case with a bolt. Alternatively, it may be possible to form a holding portion into which the bearing is fitted in the transmission case, and hold the bearing with the entire outer peripheral surface of the coaxial bearing inscribed by the holding portion. In this case, it is possible to more reliably hold the bearing in the case.
JP 2002-188710 (paragraph [0018], FIG. 2, FIG. 3)

ところで、トランスミッションにおいては、互いに噛み合うギヤによる軸間での回転伝達時、それら軸に対しギヤの噛み合い反力という大きな力が径方向に作用し、軸を支持する保持部に対しては軸受けを介して上記反力の作用に基づく荷重が付与される。ここで、上記反力の作用に伴い軸受け及び保持部に対し荷重が働く際、それら軸受け及び保持部における上記反力の作用する方向に位置する部分では、他の部分と比較して大きな荷重が働く。言い換えれば、軸受け及び保持部における上記反力の作用する方向に位置する部分に、上記反力の作用に伴う荷重が集中することとなる。そして、こうした荷重の集中が生じることにより軸受け及び保持部の耐久性が悪化する。   By the way, in the transmission, when rotation is transmitted between the shafts by the gears meshing with each other, a large force called a gear meshing reaction force acts on the shafts in the radial direction, and the holding portion that supports the shafts via the bearings. Thus, a load based on the reaction force is applied. Here, when a load is applied to the bearing and the holding portion in accordance with the reaction force, a portion of the bearing and the holding portion that is located in the direction in which the reaction force acts has a larger load than the other portions. work. In other words, the load accompanying the action of the reaction force is concentrated on the portion of the bearing and the holding portion that is located in the direction in which the reaction force acts. And the durability of a bearing and a holding | maintenance part deteriorates because such concentration of load arises.

本発明はこのような実情に鑑みてなされたものであって、その目的は、トランスミッションの軸を支持する軸受け、及びその軸受けを保持する保持部の耐久性悪化を抑制することのできるトランスミッションの軸支持構造を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a shaft for a transmission that can suppress deterioration in durability of a bearing that supports the shaft of the transmission and a holding portion that holds the bearing. It is to provide a support structure.

以下、上記目的を達成するための手段及びその作用効果について記載する。
上記目的を達成するため、請求項1記載の発明では、トランスミッションの駆動時にギヤの噛み合い反力が径方向に作用する軸を回転可能に支持する軸受けと、その軸受けを保持すべく前記トランスミッションのケースに形成された保持部とを備え、前記保持部には前記軸受けがその外周面の周方向全体を内接させた状態で保持されているトランスミッションの軸支持構造において、前記保持部の前記反力が作用する方向に位置する部分の剛性が他の部分の剛性よりも低い状態となるよう、前記保持部における前記軸受けの周方向回りの剛性を調整する剛性調整部を設けた。
In the following, means for achieving the above object and its effects are described.
To achieve the above object, according to the first aspect of the present invention, there is provided a bearing for rotatably supporting a shaft on which a gear meshing reaction force acts in the radial direction when the transmission is driven, and a case of the transmission for holding the bearing. In the shaft support structure of the transmission in which the bearing is held in a state in which the entire circumferential direction of the outer peripheral surface thereof is inscribed in the holding portion, the reaction force of the holding portion A rigidity adjusting portion is provided for adjusting the rigidity of the holding portion around the circumferential direction of the bearing so that the rigidity of the portion located in the direction in which the bearing acts is lower than the rigidity of the other portions.

トランスミッションの軸に対しギヤの噛み合い反力が径方向に作用すると、上記軸を支持する軸受け、及びその軸受けを保持する保持部には上記反力に基づく荷重が付与される。上記構成によれば、保持部における上記反力の作用方向に位置する部分の剛性を他の部分の剛性よりも低い状態とすることで、上記反力の作用に伴い軸受け及び保持部が受ける荷重の平均化が図られるようになる。すなわち、上記反力の作用に伴い軸受け及び保持部が受ける荷重のうち、同反力の作用する方向に位置する部分の受ける荷重が低く抑えられ、その荷重が低く抑えられる分だけ他の部分の受ける荷重が大きくなる。このように上記反力の作用に伴い軸受け及び保持部が受ける荷重の平均化が図られ、軸受け及び保持部における上記反力の作用方向に位置する部分への荷重の集中が抑制されるため、その荷重の集中による軸受け及び保持部の耐久性悪化が抑制されるようになる。   When a gear meshing reaction force acts on the transmission shaft in the radial direction, a load based on the reaction force is applied to the bearing that supports the shaft and the holding portion that holds the bearing. According to the above configuration, the load received by the bearing and the holding unit in accordance with the action of the reaction force by setting the rigidity of the part located in the action direction of the reaction force in the holding part to be lower than the rigidity of the other part. Is averaged. That is, among the loads received by the bearing and the holding part due to the action of the reaction force, the load received by the part located in the direction in which the reaction force acts is suppressed low, and the load of other parts is reduced by the amount that the load is suppressed low. The load received is increased. In this way, the load received by the bearing and the holding part with the action of the reaction force is averaged, and the concentration of the load on the part located in the reaction direction of the reaction force in the bearing and the holding part is suppressed. Deterioration of the durability of the bearing and the holding part due to the concentration of the load is suppressed.

請求項2記載の発明では、請求項1記載の発明において、前記軸受けは、内輪と外輪との間で転動可能な転動体が前記軸の周方向に並べて多数設けられる転がり軸受けであることを要旨とした。   According to a second aspect of the present invention, in the first aspect of the present invention, the bearing is a rolling bearing in which a large number of rolling elements capable of rolling between an inner ring and an outer ring are arranged in the circumferential direction of the shaft. It is a summary.

ギヤの噛み合い反力が軸に作用すると、保持部に対しては軸受けの各転動体を介して上記反力の作用に基づく荷重が付与される。ここで、軸受けの各転動体のうち、上記噛み合い反力の作用方向に位置する転動体には、他の転動体に比べて大きな荷重が働く。従って、上記反力の作用に伴い保持部が転動体を介して受ける荷重のうち、同反力の作用する方向に位置する転動体を介して受ける荷重は、他の転動体を介して受ける荷重と比較して大きなものとなる。また、上記軸の回転時には、軸受けの各転動体が内輪と外輪との間で転動しながら周方向に回転し、保持部における上記反力の作用する方向に位置する部分に対応した部分を通過する。この部分を通過する転動体に関しては、同転動体に作用する荷重が急速に増加しその後に急速に減少する。このように転動体に作用する荷重が急変すると、転動体が内輪と外輪との間ではねて傷ついたり破損したりするおそれがあり、軸受けの耐久性が悪化することとなる。   When the meshing reaction force of the gear acts on the shaft, a load based on the reaction force is applied to the holding portion via each rolling element of the bearing. Here, among the rolling elements of the bearing, a larger load is applied to the rolling elements positioned in the direction in which the meshing reaction force acts than the other rolling elements. Therefore, among the loads received by the holding portion via the rolling elements in response to the reaction force, the loads received via the rolling elements located in the direction in which the reaction force acts are loads received via the other rolling elements. It becomes big compared with. Further, during the rotation of the shaft, each rolling element of the bearing rotates in the circumferential direction while rolling between the inner ring and the outer ring, and a portion corresponding to the portion located in the direction in which the reaction force acts on the holding portion pass. As for the rolling elements passing through this portion, the load acting on the rolling elements increases rapidly and then decreases rapidly. If the load acting on the rolling element changes suddenly in this way, the rolling element may be damaged or damaged between the inner ring and the outer ring, and the durability of the bearing will be deteriorated.

しかし、上記構成によれば、保持部における上記反力の作用方向に位置する部分の剛性が他の部分の剛性よりも低い状態とされ、これにより上記反力の作用に伴い保持部が各転動体を介して受ける荷重の平均化が図られるようになる。すなわち、上記反力の作用に伴い保持部が各転動体を介して受ける荷重のうち、同反力の作用する方向に位置する転動体を介して受ける荷重が低く抑えられ、その荷重が低く抑えられる分だけ他の転動体を介して受ける荷重が大きくなる。このため、上記軸の回転に伴い軸受けの各転動体が内輪と外輪との間で周方向に回転するとき、保持部における上記反力の作用する方向に位置する部分に対応した部分を通過する転動体に働く荷重が急変すること、すなわち急速に増加しその後に急速に減少するということは抑制される。従って、転動体に働く上記反力に伴う荷重の急変によって同転動体が内輪と外輪との間ではねて傷ついたり破損したりすることを抑制でき、ひいては軸受けの耐久性悪化を抑制することができる。   However, according to the above configuration, the rigidity of the portion of the holding portion that is located in the reaction direction of the reaction force is lower than the rigidity of the other portions. The load received through the moving body can be averaged. That is, among the loads received by the holding portion via the rolling elements in response to the reaction force, the load received via the rolling elements located in the direction in which the reaction force acts is kept low, and the load is kept low. As much as possible, the load received through the other rolling elements increases. For this reason, when each rolling element of the bearing rotates in the circumferential direction between the inner ring and the outer ring in accordance with the rotation of the shaft, it passes through a portion corresponding to the portion located in the direction in which the reaction force acts in the holding portion. A sudden change in the load acting on the rolling elements, that is, a rapid increase and a rapid decrease thereafter is suppressed. Accordingly, it is possible to suppress the rolling element from being damaged or damaged between the inner ring and the outer ring due to a sudden change in the load caused by the reaction force acting on the rolling element, thereby suppressing the deterioration of the durability of the bearing. it can.

請求項3記載の発明では、請求項1又は2記載の発明において、前記剛性調整部は、前記保持部の前記反力が作用する方向に位置する部分の剛性を低下させるものとした。
上記構成によれば、剛性調整部によって保持部における上記反力が作用する方向に位置する部分の剛性が低下され、それによって同部分の剛性が他の部分の剛性よりも低い状態を的確につくりだすことができる。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the rigidity adjusting portion reduces the rigidity of a portion of the holding portion located in the direction in which the reaction force acts.
According to the above configuration, the rigidity adjusting portion reduces the rigidity of the portion of the holding portion located in the direction in which the reaction force acts, thereby accurately creating a state where the rigidity of the portion is lower than the rigidity of the other portions. be able to.

請求項4記載の発明では、請求項3記載の発明において、前記剛性調整部は、前記保持部の前記反力が作用する方向に位置する部分における前記軸の径方向についての厚さを、他の部分における同径方向についての厚さよりも薄くすることによって形成されていることを要旨とした。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the rigidity adjusting portion may have a thickness in the radial direction of the shaft at a portion located in a direction in which the reaction force acts on the holding portion. The gist is that it is formed by making it thinner than the thickness in the same diameter direction in the part.

上記構成によれば、保持部に対する剛性調整部の形成が容易であるため、保持部における上記反力の作用する方向に位置する部分の剛性を他の部分の剛性より低くすることも容易に行える。   According to the above configuration, since it is easy to form the rigidity adjusting portion with respect to the holding portion, the rigidity of the portion located in the direction in which the reaction force acts on the holding portion can be easily made lower than the rigidity of the other portions. .

請求項5記載の発明では、請求項4記載の発明において、前記剛性調整部は、前記保持部における前記軸受けの外周面に対応する部分を切削することによって形成されていることを要旨とした。   The invention according to claim 5 is the invention according to claim 4, wherein the rigidity adjusting portion is formed by cutting a portion of the holding portion corresponding to the outer peripheral surface of the bearing.

トランスミッションの保持部回りにはギヤなどの他の部品が設けられていたり、保持部の外面にはリブや溝が形成されていたりするため、その保持部の外面側に剛性調整部を設けることは難しい。しかし、上記構成によれば、保持部における軸受けの外周面に対応する部分、言い換えれば保持部の内面側の部分を切削することにより剛性調整部が形成されるため、その剛性調整部の形成を保持部回りの他の部品や保持部の外面側に形成されたリブや溝によって妨げられることなく行うことができる。従って、保持部における同剛性調整部の形成自由度が高まる。   There are other parts such as gear around the holding part of the transmission, and ribs and grooves are formed on the outer surface of the holding part, so it is not possible to provide a rigidity adjustment part on the outer surface side of the holding part difficult. However, according to the above configuration, the rigidity adjusting portion is formed by cutting the portion of the holding portion corresponding to the outer peripheral surface of the bearing, in other words, the portion on the inner surface side of the holding portion. This can be carried out without being obstructed by other parts around the holding part and ribs and grooves formed on the outer surface side of the holding part. Accordingly, the degree of freedom in forming the rigidity adjusting portion in the holding portion increases.

請求項6記載の発明では、請求項5記載の発明において、前記軸受けは、内輪と外輪との間で転動可能な転動体が前記軸の周方向に並べて多数設けられる転がり軸受けであり、前記保持部においては、前記軸の軸線方向についての一方側が開放されるとともに他方側が閉塞されており、前記剛性調整部は、前記保持部における前記軸受けの外周面に対応する部分のうちの前記他方側の部分を切削することによって形成されるとともに、前記軸受けの転動体よりも前記一方側寄りの位置にまで及んでいることを要旨とした。   The invention according to claim 6 is the invention according to claim 5, wherein the bearing is a rolling bearing in which a large number of rolling elements that can roll between an inner ring and an outer ring are arranged in a circumferential direction of the shaft, In the holding part, one side in the axial direction of the shaft is opened and the other side is closed, and the rigidity adjusting part is the other side of the part corresponding to the outer peripheral surface of the bearing in the holding part. The gist of the present invention is that it is formed by cutting this part and extends to a position closer to the one side than the rolling element of the bearing.

上記構成によれば、ギヤの噛み合い反力が軸受けの転動体に作用すると、その軸受けの転動体が保持部における同軸受けの外周面に対応する部分を切削することによって形成された剛性調整部側に押される。このように転動体が剛性調整部側に押されると、その軸受け(外輪等)の剛性調整部側への変形により、同軸受けの保持部の一方側からの抜け落ちが生じにくくなる。   According to the above configuration, when the meshing reaction force of the gear acts on the rolling element of the bearing, the rigidity adjusting part side formed by cutting the portion corresponding to the outer peripheral surface of the coaxial receiver in the holding part. Pressed. When the rolling element is pushed to the rigidity adjusting portion side in this way, the bearing (outer ring or the like) is deformed to the rigidity adjusting portion side, so that it is difficult for the holding portion of the coaxial receiver to come off from one side.

以下、本発明を、自動車等の車両における原動機と車輪との間の回転伝達経路上に設けられるトランスミッションに適用した一実施形態について説明する。
上記トランスミッションにおいては、変速用の各種ギヤの固定された複数の軸同士がそれらギヤの噛み合いを通じて回転伝達可能に連結されており、噛み合うギヤを切り換えることによってトランスミッションの入力回転速度と出力回転速度との比である変速比を変更する変速動作が行われる。このようにトランスミッションの変速動作を行うことにより、車両における原動機と車輪との間の回転伝達経路上にて、その経路を通じて伝達される回転の速度が変更される。
Hereinafter, an embodiment in which the present invention is applied to a transmission provided on a rotation transmission path between a prime mover and wheels in a vehicle such as an automobile will be described.
In the above transmission, a plurality of fixed shafts of various gears for shifting are connected so as to be able to transmit rotation through meshing of these gears, and the input rotational speed and output rotational speed of the transmission are switched by switching the meshing gears. A speed change operation for changing the speed ratio, which is the ratio, is performed. By performing the speed change operation of the transmission in this manner, the speed of rotation transmitted through the route on the rotation transmission route between the prime mover and the wheels in the vehicle is changed.

図1は、トランスミッションの軸支持構造、より詳しくは同トランスミッションにおける所定の軸1の支持構造を示す部分断面図である。同図に示されるように、トランスミッションのケース2には軸1を支持するための保持部3が形成されており、その保持部3には軸1に取り付けられた転がり軸受け4がその外周面全体を内接させた状態で保持されている。保持部3は、図中の右側に向けて開口する穴5を備え、その穴5内に軸受け4を保持している。保持部3においては、こうした穴5の形成により、一方側(図中の右側)が開放されるとともに他方側(図中の左側)が閉塞されている。   FIG. 1 is a partial sectional view showing a shaft support structure of a transmission, more specifically, a support structure of a predetermined shaft 1 in the transmission. As shown in the figure, the transmission case 2 is formed with a holding portion 3 for supporting the shaft 1, and the rolling bearing 4 attached to the shaft 1 has an entire outer peripheral surface thereof. Is held in an inscribed state. The holding portion 3 includes a hole 5 that opens toward the right side in the drawing, and holds the bearing 4 in the hole 5. In the holding part 3, the formation of such a hole 5 opens one side (right side in the figure) and closes the other side (left side in the figure).

また、上記軸受け4は、軸1の外周面に嵌め込まれる内輪4a、保持部3の穴5の内周面に嵌め込まれる外輪4b、及びそれら内輪4aと外輪4bとの間に周方向に並べられて転動可能となる多数のボール4cを備えている。そして、軸1の回転時には軸受け4における内輪4aと外輪4bとの間に設けられた各ボール4cが転がりながら軸1の周方向に回転し、こうした軸受け4の動きによって軸1が保持部3に回転可能に支持されることとなる。   The bearing 4 is arranged in the circumferential direction between an inner ring 4a fitted on the outer circumferential surface of the shaft 1, an outer ring 4b fitted on the inner circumferential surface of the hole 5 of the holding portion 3, and the inner ring 4a and the outer ring 4b. And a large number of balls 4c that can be rolled. When the shaft 1 rotates, the balls 4c provided between the inner ring 4a and the outer ring 4b of the bearing 4 rotate in the circumferential direction of the shaft 1 while rolling, and the shaft 1 moves to the holding portion 3 by the movement of the bearing 4. It will be supported rotatably.

ところで、トランスミッションにおいては、互いに噛み合うギヤによる軸間での回転伝達時、それら軸に対しギヤの噛み合い反力という大きな力が径方向に作用する。ここで、例えば車両の前進時には、上記ギヤの噛み合い反力が軸1に対し図中の矢印Y1方向に作用する。また、車両の後進時にはトランスミッションにおける各軸の回転方向が前進時とは逆方向になるため、軸1に対するギヤの噛み合い反力の作用方向も上記矢印Y1方向とは逆方向になる。そして、軸1に対して上記反力が作用するときには、軸1を支持する軸受け4における内輪4aと外輪4bとの間に設けられた多数のボール4cに対し上記反力の作用に基づく荷重が付与され、軸受け4を保持する保持部3に対しては各ボール4cを介して上記反力の作用に基づく荷重が付与される。   By the way, in a transmission, when rotation is transmitted between shafts by meshing gears, a large force called a gear meshing reaction force acts on these shafts in the radial direction. Here, for example, when the vehicle moves forward, the meshing reaction force of the gear acts on the shaft 1 in the direction of the arrow Y1 in the figure. Further, when the vehicle is moving backward, the rotation direction of each shaft in the transmission is opposite to that when moving forward, so that the direction of action of the gear meshing reaction force with respect to the shaft 1 is also opposite to the arrow Y1 direction. And when the said reaction force acts with respect to the axis | shaft 1, the load based on the effect | action of the said reaction force is applied with respect to many ball | bowl 4c provided between the inner ring | wheel 4a and the outer ring | wheel 4b in the bearing 4 which supports the axis | shaft 1. A load based on the action of the reaction force is applied to the holding portion 3 that holds the bearing 4 through the balls 4c.

この実施形態では、上記反力の作用に基づき軸受け4の各ボール4cが受ける荷重、及び、上記反力の作用に基づき保持部3が各ボール4cを介して受ける荷重の平均化を図るべく、保持部3における軸受け4の周方向回りの剛性を調整する剛性調整部6が同保持部3に設けられている。より詳しくは、保持部3の上記反力が作用する方向に位置する部分の剛性が他の部分の剛性よりも低い状態となるよう、同保持部3に剛性調整部6が設けられている。この剛性調整部6は、保持部3の上記反力が作用する方向(矢印Y1方向及び矢印Y1と逆方向)に位置する部分であって軸受け4の外周面に対応する部分を切削することによって形成されている。こうした剛性調整部6を形成することで、保持部3における上記反力が作用する方向に位置する部分の厚さが他の部分の厚さよりも薄くされる。その結果、保持部3における上記反力が作用する方向に位置する部分の剛性が他の部分の剛性よりも低くされる。   In this embodiment, in order to average the load received by each ball 4c of the bearing 4 based on the reaction force and the load received by the holding unit 3 via the ball 4c based on the reaction force, A rigidity adjusting unit 6 that adjusts the rigidity of the bearing 4 around the circumferential direction of the bearing 4 is provided in the holding unit 3. More specifically, the rigidity adjusting portion 6 is provided in the holding portion 3 so that the rigidity of the portion of the holding portion 3 located in the direction in which the reaction force acts is lower than the rigidity of the other portions. The rigidity adjusting portion 6 is a portion that is located in the direction in which the reaction force of the holding portion 3 acts (the direction of the arrow Y1 and the direction opposite to the arrow Y1) and that corresponds to the outer peripheral surface of the bearing 4 by cutting. Is formed. By forming the rigidity adjusting portion 6, the thickness of the portion of the holding portion 3 located in the direction in which the reaction force acts is made thinner than the thickness of the other portions. As a result, the rigidity of the portion located in the direction in which the reaction force acts on the holding portion 3 is made lower than the rigidity of the other portions.

次に、剛性調整部6の詳細な形状について、図1〜図3を併せ参照して説明する。なお、図2は図1の軸1、保持部3、及び軸受け4を図中の右側から見た正面図であり、図3は図1の保持部3を矢印A−A方向から見た断面図である。   Next, the detailed shape of the rigidity adjusting unit 6 will be described with reference to FIGS. 2 is a front view of the shaft 1, the holding portion 3, and the bearing 4 of FIG. 1 viewed from the right side in the drawing, and FIG. 3 is a cross-sectional view of the holding portion 3 of FIG. FIG.

剛性調整部6は、保持部3における軸受け4の外周面に対応する部分のうちの他方側(図1の左側)の部分を切削することによって形成されるとともに、軸受け4のボール4cよりも一方側(図1の右側)寄りの位置にまで及んでいる。   The rigidity adjusting portion 6 is formed by cutting a portion on the other side (left side in FIG. 1) of portions corresponding to the outer peripheral surface of the bearing 4 in the holding portion 3, and is one than the ball 4 c of the bearing 4. It extends to the side (right side in FIG. 1).

また、剛性調整部6の内形に関しては、その剛性調整部6の切削深さ、及び同剛性調整部6の内部空間における軸1の径方向についての断面積が、保持部3の他方側から一方側に向かうほど徐々に小さくなるよう形成されている。更に、剛性調整部6の切削深さは、上記ギヤの噛み合い反力の作用する方向に位置する部分にて最大となり、その部分から軸1の周方向に離れるほど徐々に小さくなっている。従って、軸受け4(外輪4b)と保持部3の穴5との軸1の軸線方向についての接触長さは、上記反力の作用する方向に位置する部分にて最小となり、その部分から軸1の周方向に離れるほど徐々に長くなる。   Further, regarding the inner shape of the rigidity adjusting portion 6, the cutting depth of the rigidity adjusting portion 6 and the cross-sectional area in the radial direction of the shaft 1 in the internal space of the rigidity adjusting portion 6 are from the other side of the holding portion 3. It is formed so as to gradually become smaller toward one side. Further, the cutting depth of the rigidity adjusting portion 6 is maximized in a portion located in the direction in which the gear meshing reaction force acts, and gradually decreases as the distance from the portion in the circumferential direction of the shaft 1 increases. Therefore, the contact length in the axial direction of the shaft 1 between the bearing 4 (outer ring 4b) and the hole 5 of the holding portion 3 is minimum at the portion located in the direction in which the reaction force acts, and the shaft 1 The longer it is, the longer it becomes.

なお、図4は、図2の軸1、保持部3、及び軸受け4を矢印B−B方向から見た断面図である。同図から分かるように、保持部3において、上記反力の作用する方向に位置する部分から軸1の周方向に最も離れた位置では、軸受け4の外周面における軸1の軸線方向全体に亘って穴5の内周面と接触しており、その軸受け4の外周面と穴5の内周面とにおける上記軸線方向についての長さが最大となっている。   FIG. 4 is a cross-sectional view of the shaft 1, the holding unit 3, and the bearing 4 of FIG. 2 as viewed from the direction of the arrow BB. As can be seen from the figure, in the holding portion 3, the position farthest in the circumferential direction of the shaft 1 from the portion located in the direction in which the reaction force acts is over the entire axial direction of the shaft 1 on the outer peripheral surface of the bearing 4. The length in the axial direction of the outer peripheral surface of the bearing 4 and the inner peripheral surface of the hole 5 is maximum.

次に、保持部3に上記剛性調整部6を形成した場合に上記反力の作用に基づき、軸受け4の各ボール4cが受ける荷重、及び保持部3が各ボール4cを介して受ける荷重の大きさについて、図5及び図6を参照して説明する。なお、これらの図では上記反力の作用に基づき各ボール4cが受ける荷重の大きさ、及び保持部3が各ボール4cを介して受ける荷重の大きさを細い矢印の長さで示しており、図5の細い矢印は剛性調整部6を形成していない場合の上記荷重の大きさを表し、図6の細い矢印は剛性調整部6を形成した場合の上記荷重の大きさを表している。   Next, when the rigidity adjusting portion 6 is formed on the holding portion 3, the load received by each ball 4c of the bearing 4 and the load received by the holding portion 3 via each ball 4c based on the action of the reaction force. This will be described with reference to FIGS. In these figures, the magnitude of the load received by each ball 4c based on the action of the reaction force and the magnitude of the load received by the holding portion 3 via each ball 4c are indicated by the length of the thin arrow. The thin arrow in FIG. 5 represents the magnitude of the load when the rigidity adjusting portion 6 is not formed, and the thin arrow in FIG. 6 represents the magnitude of the load when the rigidity adjusting portion 6 is formed.

保持部3に剛性調整部6を形成していない場合、図5に示されるように、上記反力が軸1に対して矢印Y1で示す方向に作用すると、その軸1を支持する軸受け4の各ボール4cのうち、上記反力の作用方向に位置するボール4cには、他のボール4cに比べて大きな荷重が働く。従って、上記反力の作用に伴い保持部3が各ボール4cを介して受ける荷重のうち、同反力の作用する方向(この例では矢印Y1方向)に位置するボール4cを介して受ける荷重は、他のボール4cを介して受ける荷重と比較して大きなものとなる。言い換えれば軸受け4における上記反力の作用方向に位置するボール4c、及び保持部3における上記反力の作用方向に位置する部分に、上記反力の作用に伴う荷重が集中することとなる。そして、こうした荷重の集中が生じることにより軸受け4及び保持部3の耐久性が悪化する。   When the rigidity adjusting portion 6 is not formed in the holding portion 3, as shown in FIG. 5, when the reaction force acts on the shaft 1 in the direction indicated by the arrow Y1, the bearing 4 supporting the shaft 1 Of each ball 4c, a larger load is applied to the ball 4c located in the direction of the reaction force than the other balls 4c. Therefore, among the loads received by the holding unit 3 via the balls 4c due to the reaction force, the loads received via the ball 4c located in the direction in which the reaction force acts (in this example, the direction of the arrow Y1) The load is larger than the load received through the other balls 4c. In other words, the load associated with the reaction force is concentrated on the ball 4c positioned in the reaction direction of the reaction force in the bearing 4 and the portion of the holding portion 3 positioned in the reaction direction of the reaction force. And the durability of the bearing 4 and the holding | maintenance part 3 deteriorates because such concentration of load arises.

また、軸1の回転時には、軸受け4の各ボール4cが内輪4aと外輪4bとの間で転動しながら周方向に回転し、保持部3における上記反力の作用する方向(矢印Y1方向)に位置する部分に対応した部分を通過する。この部分を通過するボール4cに関しては、同ボール4cに作用する荷重が急速に増加しその後に急速に減少する。このようにボール4cに作用する荷重が急変すると、ボール4cが内輪4aと外輪4bとの間ではねて傷ついたり破損したりするおそれがあり、軸受け4の耐久性が悪化することとなる。   When the shaft 1 rotates, the balls 4c of the bearing 4 rotate in the circumferential direction while rolling between the inner ring 4a and the outer ring 4b, and the direction in which the reaction force acts on the holding portion 3 (the direction of the arrow Y1) Passes through the part corresponding to the part located at. Regarding the ball 4c passing through this portion, the load acting on the ball 4c increases rapidly and then decreases rapidly. When the load acting on the ball 4c changes abruptly in this manner, the ball 4c may be damaged or damaged between the inner ring 4a and the outer ring 4b, and the durability of the bearing 4 will be deteriorated.

これに対し、保持部3に剛性調整部6を形成した場合、保持部3おける上記反力の作用方向(矢印Y1方向)に位置する部分の剛性が他の部分の剛性よりも低い状態となる。これにより、図6に示されるように、上記反力の作用に伴い軸受け4の各ボール4cが受ける荷重、及び、上記反力の作用に伴い保持部3が各ボール4cを介して受ける荷重の平均化が図られるようになる。すなわち、上記反力の作用に伴い軸受け4の各ボール4cが受ける荷重のうち、同反力の作用する方向(矢印Y1方向)に位置するボール4cの受ける荷重が低く抑えられ、その荷重が低く抑えられる分だけ他のボール4cの受ける荷重が大きくなる。また、上記反力の作用に伴い保持部3が各ボール4cを介して受ける荷重のうち、同反力の作用する方向(矢印Y1方向)に位置するボール4cを介して受ける荷重が低く抑えられ、その荷重が低く抑えられる分だけ他のボール4cを介して受ける荷重が大きくなる。   On the other hand, when the rigidity adjusting part 6 is formed in the holding part 3, the rigidity of the part located in the action direction (arrow Y1 direction) of the reaction force in the holding part 3 is lower than the rigidity of the other parts. . As a result, as shown in FIG. 6, the load received by each ball 4c of the bearing 4 as a result of the reaction force and the load received by the holding portion 3 via the ball 4c as a result of the reaction force. Averaging is achieved. That is, among the loads received by the respective balls 4c of the bearing 4 due to the reaction force, the load received by the ball 4c located in the direction in which the reaction force acts (the direction of the arrow Y1) is suppressed to a low level. The load received by the other balls 4c increases by the amount that can be suppressed. In addition, among the loads received by the holding unit 3 through the balls 4c in response to the reaction force, the loads received through the balls 4c located in the direction in which the reaction force acts (the direction of the arrow Y1) are kept low. The load received through the other balls 4c is increased by the amount that the load is kept low.

このように上記反力の作用に伴い軸受け4の各ボール4cが受ける荷重、及び、上記反力の作用に伴い保持部3が各ボール4cを介して受ける荷重の平均化が図られることにより、軸受け4における上記反力の作用方向に位置するボール4c、及び、保持部3における上記反力の作用方向に位置する部分に荷重が集中することは抑制される。従って、その荷重の集中により軸受け4及び保持部3の耐久性が悪化することは抑制されるようになる。   Thus, by averaging the load received by each ball 4c of the bearing 4 with the action of the reaction force and the load received by the holding portion 3 through the ball 4c with the action of the reaction force, Concentration of the load on the ball 4c located in the reaction direction of the reaction force in the bearing 4 and the portion of the holding portion 3 located in the action direction of the reaction force is suppressed. Therefore, deterioration of the durability of the bearing 4 and the holding part 3 due to the concentration of the load is suppressed.

また、上記軸1の回転に伴い軸受け4の各ボール4cが内輪4aと外輪4bとの間で周方向に回転するとき、保持部3における上記反力の作用する方向(矢印Y1方向)に位置する部分に対応した部分を通過するボール4cに働く荷重が急変すること、すなわち急速に増加しその後に急速に減少するということは抑制される。従って、ボール4cに働く上記反力に伴う荷重の急変によって同ボール4cが内輪4aと外輪4bとの間ではねて傷ついたり破損したりすることを抑制でき、ひいては軸受け4の耐久性悪化を抑制することができる。   Further, when each ball 4c of the bearing 4 rotates in the circumferential direction between the inner ring 4a and the outer ring 4b as the shaft 1 rotates, it is positioned in the direction in which the reaction force acts on the holding portion 3 (arrow Y1 direction). It is suppressed that the load acting on the ball 4c passing through the portion corresponding to the portion to be changed suddenly increases, that is, rapidly increases and then decreases rapidly. Therefore, it is possible to prevent the ball 4c from being damaged or damaged between the inner ring 4a and the outer ring 4b due to a sudden change in the load caused by the reaction force acting on the ball 4c, thereby suppressing deterioration of the durability of the bearing 4. can do.

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)保持部3に剛性調整部6を設けることにより、軸1に対するギヤの噛み合い反力の作用に伴い軸受け4の各ボール4cが受ける荷重、及び、上記反力の作用に伴い保持部3が各ボール4cを介して受ける荷重の平均化が図られる。これにより、軸受け4における上記反力の作用方向に位置するボール4c、及び、保持部3における上記反力の作用方向に位置する部分に荷重が集中して、それらに働く荷重が大きくなることは抑制される。従って、その荷重の集中により軸受け4及び保持部3の耐久性が悪化することは抑制されるようになる。
According to the embodiment described in detail above, the following effects can be obtained.
(1) By providing the rigidity adjusting portion 6 in the holding portion 3, the load received by each ball 4c of the bearing 4 with the action of the meshing reaction force of the gear with respect to the shaft 1, and the holding portion 3 with the action of the reaction force. Is averaged through the balls 4c. Thereby, the load concentrates on the ball 4c located in the reaction direction of the reaction force in the bearing 4 and the portion located in the reaction direction of the reaction force in the holding portion 3, and the load acting on them increases. It is suppressed. Therefore, deterioration of the durability of the bearing 4 and the holding part 3 due to the concentration of the load is suppressed.

(2)保持部3に剛性調整部6を設けることにより、上記反力の作用に伴い軸受け4の各ボール4cが受ける荷重の平均化が図られるため、軸1の回転時に軸受け4の各ボール4cが保持部3におけるギヤの噛み合い反力の作用する方向に位置する部分に対応した部分を通過する際、ボール4cに働く荷重が急変することはない。従って、そのボール4cに働く荷重の急変に伴い、同ボール4cが内輪4aと外輪4bとの間ではねて傷ついたり破損したりすることを抑制でき、ひいては軸受け4の耐久性悪化を抑制することができるようになる。   (2) Since the rigidity adjusting portion 6 is provided in the holding portion 3, the load received by each ball 4 c of the bearing 4 due to the action of the reaction force is averaged, so that each ball of the bearing 4 is rotated when the shaft 1 is rotated. When 4c passes through a portion of the holding portion 3 that corresponds to the portion where the gear meshing reaction force acts, the load acting on the ball 4c does not change suddenly. Therefore, it is possible to suppress the ball 4c from being damaged or damaged between the inner ring 4a and the outer ring 4b due to a sudden change in the load acting on the ball 4c, and thereby suppressing the deterioration of the durability of the bearing 4. Will be able to.

(3)上記剛性調整部6は、保持部3の上記反力が作用する方向に位置する部分の剛性が他の部分の剛性よりも低い状態となるよう、同保持部3における軸受け4の周方向回りの剛性を調整するものである。具体的には、保持部3の上記反力が作用する方向に位置する部分の剛性を低下させるよう上記剛性調整部6が設けられている。これにより、上述した状態、すなわち保持部3の上記反力が作用する方向に位置する部分の剛性が他の部分の剛性よりも低い状態を的確につくり出すことができる。   (3) The rigidity adjusting portion 6 is configured so that the rigidity of the portion of the holding portion 3 located in the direction in which the reaction force acts is lower than the rigidity of the other portion. This adjusts the rigidity around the direction. Specifically, the rigidity adjusting unit 6 is provided so as to reduce the rigidity of the portion of the holding unit 3 located in the direction in which the reaction force acts. Thereby, the state mentioned above, ie, the state in which the rigidity of the part located in the direction in which the reaction force of the holding part 3 acts can be accurately created.

(4)また、剛性調整部6は、保持部3における上記反力が作用する方向に位置する部分における軸1の径方向についての厚さを、他の部分における同径方向についての厚さよりも薄くすることによって形成されている。このため、保持部3に対する剛性調整部6の形成を容易に行うことができる。従って、保持部3における上記反力の作用する方向に位置する部分の剛性を他の部分の剛性より低くすることも容易に行えるようになる。   (4) Moreover, the rigidity adjustment part 6 makes the thickness about the radial direction of the axis | shaft 1 in the part located in the direction where the said reaction force acts in the holding | maintenance part 3 rather than the thickness about the same radial direction in another part. It is formed by thinning. For this reason, it is possible to easily form the rigidity adjusting portion 6 with respect to the holding portion 3. Accordingly, the rigidity of the portion of the holding portion 3 located in the direction in which the reaction force acts can be easily made lower than the rigidity of the other portions.

(5)上記剛性調整部6の具体的な形成方法としては、保持部3の上記反力が作用する方向に位置する部分であって軸受け4の外周面に対応する部分(穴5の内周面)を切削するという方法が採用される。ここで、トランスミッションの保持部3回りにはギヤなどの他の部品が設けられていたり、保持部3の外面にはリブや溝が形成されていたりするため、その保持部の外面側に剛性調整部を設けることは難しい。しかし、上述したように保持部3における穴5の内周面を切削して剛性調整部6を形成することにより、その形成を保持部3回りの他の部品や保持部3の外面側に形成されたリブや溝によって妨げられることなく行うことができる。従って、保持部3における剛性調整部6の形成自由度が高められるようになる。   (5) As a specific method of forming the rigidity adjusting portion 6, a portion of the holding portion 3 located in the direction in which the reaction force acts and a portion corresponding to the outer peripheral surface of the bearing 4 (the inner periphery of the hole 5 The method of cutting the surface) is employed. Here, since other parts such as gears are provided around the holding part 3 of the transmission or ribs and grooves are formed on the outer surface of the holding part 3, the rigidity adjustment is performed on the outer surface side of the holding part. It is difficult to provide a part. However, as described above, the rigidity adjusting portion 6 is formed by cutting the inner peripheral surface of the hole 5 in the holding portion 3, thereby forming the formation on other parts around the holding portion 3 or on the outer surface side of the holding portion 3. This can be done without being interrupted by the ribs and grooves formed. Accordingly, the degree of freedom in forming the rigidity adjusting portion 6 in the holding portion 3 is increased.

(6)剛性調整部6の切削深さは、上記ギヤの噛み合い反力の作用する方向に位置する部分にて最大となり、その部分から軸1の周方向に離れるほど徐々に小さくなっている。従って、剛性調整部6が形成された部分の保持部3における軸1の径方向についての厚さに関しては、上記反力の作用する方向に位置する部分で最小となり、その部分から同軸1の周方向に離れるほど徐々に大きくなる。このため、保持部3における剛性調整部6が形成された部分の剛性に関しても、上記反力の作用する方向に位置する部分で最低となり、その部分から同軸1の周方向に離れるほど徐々に高くなる。このように保持部3における剛性調整部6の形成された部分の剛性を上記周方向について徐々に変化させることで、軸受け4の各ボール4cが保持部3におけるギヤの噛み合い反力の作用する方向に位置する部分に対応した部分を通過する際、同ボール4cに働く荷重が急変することを、より的確に抑制できるようになる。   (6) The cutting depth of the rigidity adjusting portion 6 is maximized at the portion located in the direction in which the gear meshing reaction force acts, and gradually decreases as the distance from the portion in the circumferential direction of the shaft 1 increases. Accordingly, the thickness in the radial direction of the shaft 1 in the holding portion 3 of the portion where the rigidity adjusting portion 6 is formed is the smallest in the portion located in the direction in which the reaction force acts, and the circumference of the coaxial 1 from that portion. The larger the distance, the larger the distance. For this reason, the rigidity of the portion of the holding portion 3 where the rigidity adjusting portion 6 is formed is also the lowest in the portion located in the direction in which the reaction force acts, and gradually increases as the distance from the portion in the circumferential direction of the coaxial 1 increases. Become. In this way, by gradually changing the rigidity of the portion where the rigidity adjusting portion 6 is formed in the holding portion 3 in the circumferential direction, each ball 4c of the bearing 4 acts in the direction in which the gear meshing reaction force acts on the holding portion 3. When passing through a portion corresponding to the portion located at, the sudden change in the load acting on the ball 4c can be more accurately suppressed.

(7)図7に示されるように、剛性調整部6は、保持部3における軸受け4の外周面に対応する部分のうちの他方側(図中左側)、言い換えれば穴5の閉塞側の部分を切削することによって形成される。更に、剛性調整部6は、軸受け4のボール4cよりも一方側(図中右側)、言い換えれば穴5の開放側寄りの位置にまで及んでいる。従って、矢印Y1で示されるギヤの噛み合い反力が軸受け4のボール4cに作用すると、そのボール4cが剛性調整部6側に押される。このようにボール4cが剛性調整部6側に押されると、軸受け4(外輪4b)の剛性調整部6側への図中の二点鎖線で示される変形により、同軸受け4の保持部3の一方側(開放側)からの抜け落ちが生じにくくなる。   (7) As shown in FIG. 7, the rigidity adjusting portion 6 is the other side (left side in the drawing) of the portion corresponding to the outer peripheral surface of the bearing 4 in the holding portion 3, in other words, the portion on the closed side of the hole 5. It is formed by cutting. Furthermore, the rigidity adjusting portion 6 extends to one side (right side in the figure) of the ball 4 c of the bearing 4, in other words, to a position closer to the opening side of the hole 5. Therefore, when the meshing reaction force of the gear indicated by the arrow Y1 acts on the ball 4c of the bearing 4, the ball 4c is pushed to the rigidity adjusting portion 6 side. Thus, when the ball 4c is pushed to the rigidity adjusting portion 6 side, the deformation of the bearing 4 (outer ring 4b) toward the rigidity adjusting portion 6 side by the deformation shown by the two-dot chain line in the figure causes the holding portion 3 of the coaxial receiver 4 to move. Dropping off from one side (open side) is less likely to occur.

なお、上記実施形態は、例えば以下のように変更することもできる。
・剛性調整部6に関しては、必ずしも軸受け4のボール4cよりも穴5の開放側寄りにまで及ぶように形成する必要はなく、例えば図8に示されるようにボール4cよりも穴5の閉塞側寄りの位置までにとどまるように形成してもよい。
In addition, the said embodiment can also be changed as follows, for example.
The rigidity adjusting portion 6 is not necessarily formed so as to extend closer to the opening side of the hole 5 than the ball 4c of the bearing 4, for example, as shown in FIG. 8, the closed side of the hole 5 rather than the ball 4c. You may form so that it may stay to the position of a near side.

・図9に示されるように、剛性調整部6に関しては、保持部3における軸受け4の外周面に対応する部分(穴5の内周面)のうち、同穴5の開放側の部分に形成することも可能である。この場合、剛性調整部6が穴5の開口部分付近に形成されるため、その形成のための作業が容易になる。なお、このように剛性調整部6を形成するうえでは、軸受け4の穴5からの抜け落ちを抑制する観点から、剛性調整部6が軸受け4のボール4cよりも穴5の開放側寄りの位置までにとどまるように形成することが好ましい。   As shown in FIG. 9, the rigidity adjusting portion 6 is formed in the portion of the holding portion 3 corresponding to the outer peripheral surface of the bearing 4 (inner peripheral surface of the hole 5) on the open side portion of the hole 5. It is also possible to do. In this case, since the rigidity adjusting portion 6 is formed in the vicinity of the opening portion of the hole 5, an operation for forming the rigidity adjusting portion 6 is facilitated. In forming the rigidity adjusting portion 6 in this manner, from the viewpoint of suppressing the dropout of the bearing 4 from the hole 5, the rigidity adjusting portion 6 is located closer to the opening side of the hole 5 than the ball 4 c of the bearing 4. It is preferable to form so that it may remain.

・剛性調整部6を保持部3の外面側に形成してもよい。
・剛性調整部6は、保持部3におけるギヤの噛み合い反力の作用する方向に位置する部分に、他の部分よりも柔らかい材料からなる別部品を組み付けることによって形成されるものであってもよい。この場合、保持部3における上記反力の作用する方向に位置する部分に関して、軸1の径方向についての厚さを他の部分における同径方向についての厚さよりも薄くする必要はなくなる。
The rigidity adjusting unit 6 may be formed on the outer surface side of the holding unit 3.
The rigidity adjusting unit 6 may be formed by assembling a separate part made of a material softer than the other part in a part located in the direction in which the gear meshing reaction force acts in the holding part 3. . In this case, it is not necessary to make the thickness in the radial direction of the shaft 1 thinner than the thickness in the same radial direction in the other portions of the holding portion 3 that is located in the direction in which the reaction force acts.

・剛性調整部6は、保持部3における上記反力の作用する方向に位置する部分以外の部分の剛性を高めるものであってもよい。例えば、保持部3における上記反力の作用する方向に位置する部分以外の部分にリブを設けることにより、その部分に上記剛性調整部6を形成することが考えられる。また、保持部3における上記反力の作用する方向に位置する部分よりも硬い材料からなる別部品を、その部分以外の部分に組み付けることによって上記剛性調整部6を形成するようにしてもよい。以上のように剛性調整部6を設けた場合、保持部3における上記反力の作用する方向に位置する部分の剛性が他の部分の剛性よりも相対的に低くなり、これによって保持部3における上記反力の作用する方向に位置する部分の剛性が他の部分の剛性よりも低い状態がつくり出されることとなる。   -The rigidity adjustment part 6 may raise the rigidity of parts other than the part located in the direction in which the said reaction force acts in the holding | maintenance part 3. FIG. For example, it is conceivable that the rigidity adjusting portion 6 is formed in a portion of the holding portion 3 other than the portion positioned in the direction in which the reaction force acts by providing a rib. Moreover, you may make it form the said rigidity adjustment part 6 by assembling | attaching another part which consists of material harder than the part located in the direction where the said reaction force acts in the holding | maintenance part 3 to parts other than the part. When the rigidity adjusting portion 6 is provided as described above, the rigidity of the portion located in the direction in which the reaction force acts in the holding portion 3 is relatively lower than the rigidity of the other portions, and thereby the holding portion 3 The state where the rigidity of the part located in the direction in which the reaction force acts is lower than the rigidity of the other part is created.

・転がり軸受け4として、円筒コロや円錐コロを転動体とする転がり軸受けを採用してもよい。
・転がり軸受け4に代えて滑り軸受けを用いてもよい。
-As the rolling bearing 4, you may employ | adopt the rolling bearing which uses a cylindrical roller or a cone roller as a rolling element.
A sliding bearing may be used in place of the rolling bearing 4.

本実施形態におけるトランスミッションの軸支持構造を示す部分断面図。The fragmentary sectional view which shows the shaft support structure of the transmission in this embodiment. 図1の軸、保持部、及び軸受けを図中の右側から見た正面図。The front view which looked at the axis | shaft, holding | maintenance part, and bearing of FIG. 1 from the right side in a figure. 図1の保持部を矢印A−A方向から見た断面図。Sectional drawing which looked at the holding | maintenance part of FIG. 1 from the arrow AA direction. 図2の軸、保持部、及び軸受けを矢印B−B方向から見た断面図。Sectional drawing which looked at the axis | shaft, holding | maintenance part, and bearing of FIG. 2 from the arrow BB direction. 軸に対するギヤの噛み合い反力の作用に基づいて軸受けの各ボールが受ける荷重、及び上記反力の作用に基づいて保持部が各ボールを介して受ける荷重の大きさを示す説明図。Explanatory drawing which shows the magnitude | size of the load which each ball | bowl of a bearing receives based on the effect | action of the meshing reaction force of the gear with respect to a shaft, and the load which a holding | maintenance part receives via each ball | bowl based on the effect | action of the said reaction force. 軸に対するギヤの噛み合い反力の作用に基づいて軸受けの各ボールが受ける荷重、及び上記反力の作用に基づいて保持部が各ボールを介して受ける荷重の大きさを示す説明図。Explanatory drawing which shows the magnitude | size of the load which each ball | bowl of a bearing receives based on the effect | action of the meshing reaction force of the gear with respect to a shaft, and the load which a holding | maintenance part receives via each ball | bowl based on the effect | action of the said reaction force. 上記保持部における剛性調整部回りを示す拡大断面図。The expanded sectional view which shows the rigidity adjustment part periphery in the said holding | maintenance part. 剛性調整部の他の形成例を示す拡大断面図。The expanded sectional view which shows the other example of formation of a rigidity adjustment part. 剛性調整部の他の形成例を示す拡大断面図。The expanded sectional view which shows the other example of formation of a rigidity adjustment part.

符号の説明Explanation of symbols

1…軸、2…ケース、3…保持部、4…軸受け、4a…内輪、4b…外輪、4c…ボール、5…穴、6…剛性調整部。   DESCRIPTION OF SYMBOLS 1 ... Shaft, 2 ... Case, 3 ... Holding part, 4 ... Bearing, 4a ... Inner ring, 4b ... Outer ring, 4c ... Ball, 5 ... Hole, 6 ... Stiffness adjustment part

Claims (6)

トランスミッションの駆動時にギヤの噛み合い反力が径方向に作用する軸を回転可能に支持する軸受けと、その軸受けを保持すべく前記トランスミッションのケースに形成された保持部とを備え、前記保持部には前記軸受けがその外周面の周方向全体を内接させた状態で保持されているトランスミッションの軸支持構造において、
前記保持部の前記反力が作用する方向に位置する部分の剛性が他の部分の剛性よりも低い状態となるよう、前記保持部における前記軸受けの周方向回りの剛性を調整する剛性調整部を設けた
ことを特徴とするトランスミッションの軸支持構造。
A bearing that rotatably supports a shaft on which a gear meshing reaction force acts in a radial direction when the transmission is driven, and a holding portion that is formed in the case of the transmission to hold the bearing, the holding portion includes In the shaft support structure of the transmission in which the bearing is held in a state where the entire circumferential direction of the outer peripheral surface is inscribed,
A stiffness adjusting unit that adjusts the stiffness of the holding portion around the circumferential direction of the bearing so that the stiffness of the portion located in the direction in which the reaction force acts is lower than the stiffness of the other portion; A transmission shaft support structure characterized by being provided.
前記軸受けは、内輪と外輪との間で転動可能な転動体が前記軸の周方向に並べて多数設けられる転がり軸受けである
請求項1記載のトランスミッションの軸支持構造。
2. The shaft support structure for a transmission according to claim 1, wherein the bearing is a rolling bearing in which a large number of rolling elements that can roll between an inner ring and an outer ring are arranged in a circumferential direction of the shaft.
前記剛性調整部は、前記保持部の前記反力が作用する方向に位置する部分の剛性を低下させるものである
請求項1又は2記載のトランスミッションの軸支持構造。
The transmission shaft support structure according to claim 1, wherein the rigidity adjusting unit is configured to reduce a rigidity of a portion of the holding unit positioned in a direction in which the reaction force acts.
前記剛性調整部は、前記保持部の前記反力が作用する方向に位置する部分における前記軸の径方向についての厚さを、他の部分における同径方向についての厚さよりも薄くすることによって形成されている
請求項3記載のトランスミッションの軸支持構造。
The rigidity adjusting portion is formed by making the thickness of the holding portion in the radial direction of the portion located in the direction in which the reaction force acts smaller than the thickness of the other portion in the same radial direction. The transmission shaft support structure according to claim 3.
前記剛性調整部は、前記保持部における前記軸受けの外周面に対応する部分を切削することによって形成されている
請求項4記載のトランスミッションの軸支持構造。
The transmission shaft support structure according to claim 4, wherein the rigidity adjusting portion is formed by cutting a portion of the holding portion corresponding to an outer peripheral surface of the bearing.
前記軸受けは、内輪と外輪との間で転動可能な転動体が前記軸の周方向に並べて多数設けられる転がり軸受けであり、
前記保持部においては、前記軸の軸線方向についての一方側が開放されるとともに他方側が閉塞されており、
前記剛性調整部は、前記保持部における前記軸受けの外周面に対応する部分のうちの前記他方側の部分を切削することによって形成されるとともに、前記軸受けの転動体よりも前記一方側寄りの位置にまで及んでいる
請求項5記載のトランスミッションの軸支持構造。
The bearing is a rolling bearing in which a large number of rolling elements that can roll between an inner ring and an outer ring are arranged in the circumferential direction of the shaft,
In the holding portion, one side of the shaft in the axial direction is opened and the other side is closed,
The rigidity adjusting portion is formed by cutting the other side portion of the holding portion corresponding to the outer peripheral surface of the bearing, and is positioned closer to the one side than the rolling element of the bearing. The transmission shaft support structure according to claim 5, wherein
JP2007030982A 2007-02-09 2007-02-09 Shaft supporting structure of transmission Pending JP2008196555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030982A JP2008196555A (en) 2007-02-09 2007-02-09 Shaft supporting structure of transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030982A JP2008196555A (en) 2007-02-09 2007-02-09 Shaft supporting structure of transmission

Publications (1)

Publication Number Publication Date
JP2008196555A true JP2008196555A (en) 2008-08-28

Family

ID=39755693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030982A Pending JP2008196555A (en) 2007-02-09 2007-02-09 Shaft supporting structure of transmission

Country Status (1)

Country Link
JP (1) JP2008196555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128879A1 (en) * 2013-02-21 2014-08-28 三菱重工業株式会社 Bearing structure and wind power generation device
JP2021085479A (en) * 2019-11-28 2021-06-03 トヨタ自動車株式会社 Gear support structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128879A1 (en) * 2013-02-21 2014-08-28 三菱重工業株式会社 Bearing structure and wind power generation device
EP2927524A4 (en) * 2013-02-21 2016-01-20 Mitsubishi Heavy Ind Ltd Bearing structure and wind power generation device
JP5951877B2 (en) * 2013-02-21 2016-07-13 三菱重工業株式会社 Bearing structure and wind power generator
JP2021085479A (en) * 2019-11-28 2021-06-03 トヨタ自動車株式会社 Gear support structure

Similar Documents

Publication Publication Date Title
JP6047999B2 (en) Rotating support device
WO2007025975A3 (en) Angular ball bearing tandem comprising a seal on both end faces
JPWO2011062269A1 (en) Rotation support device for pinion shaft
JP2016109253A (en) Rolling bearing
JP2008232295A (en) Tapered roller bearing
JP2008196555A (en) Shaft supporting structure of transmission
JP2008019922A (en) Planetary gear supporting structure for construction machine planetary gear reduction gear
JP6171444B2 (en) Rolling bearing device and pinion shaft support device for vehicle
JP5471282B2 (en) Pinion shaft rotation support device
WO2012153656A1 (en) Planetary friction gear continuously variable transmission
US10663037B2 (en) Helical gear device
JP4003247B2 (en) Rolling bearing device with oil supply means
JP4816404B2 (en) Planetary gear rotation support device
JP4894652B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2008196570A (en) Rolling bearing device
JP2008110659A (en) Rolling bearing device for wheel
JP2007024105A (en) Angular contact ball bearing
JP2018184969A (en) Hub unit bearing
JP2006226308A (en) Cage for conical roller bearing
JP2008185191A (en) Rolling bearing device
JP2010002043A (en) Bearing for cross shaft coupling
JP4914718B2 (en) Continuously variable transmission
JP2006214520A (en) Bearing device for gear speed-increasing gear
JP2009228845A (en) Transmission and manufacturing method thereof
JP6236754B2 (en) Tandem double-row angular contact ball bearing, differential device, and automobile