JP2008195587A - Method for producing fibrous porous silica particle - Google Patents

Method for producing fibrous porous silica particle Download PDF

Info

Publication number
JP2008195587A
JP2008195587A JP2007034419A JP2007034419A JP2008195587A JP 2008195587 A JP2008195587 A JP 2008195587A JP 2007034419 A JP2007034419 A JP 2007034419A JP 2007034419 A JP2007034419 A JP 2007034419A JP 2008195587 A JP2008195587 A JP 2008195587A
Authority
JP
Japan
Prior art keywords
porous silica
fibrous porous
silica particles
nonionic surfactant
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007034419A
Other languages
Japanese (ja)
Other versions
JP5051512B2 (en
Inventor
Shiori Kubo
史織 久保
Katsunori Kosuge
勝典 小菅
Nobuyuki Kikukawa
伸行 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007034419A priority Critical patent/JP5051512B2/en
Publication of JP2008195587A publication Critical patent/JP2008195587A/en
Application granted granted Critical
Publication of JP5051512B2 publication Critical patent/JP5051512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient method for synthesizing uniform fibrous porous silica particles having a fiber length of several hundred micron meters or above, further having a controlled pore properties, and having a micropore volume of ≥0.1 ml/g in a short time. <P>SOLUTION: A mixed liquid comprising an acidic aqueous solution, a nonionic surfactant, silicate ester and water is reacted in the presence of a metal salt, so as to obtain fibrous porous silica particles with a micropore volume of 0.10 to 0.25 ml/g. It is preferable that mixing-stirring reaction is performed at 30 to <50°C for 30 min to 2 hr, and aging reaction is performed at 30 to 100°C for 30 min to 10 hr. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、繊維状多孔質シリカ粒子の製造方法に関するものであり、より詳細には、0.1ml/g以上のマイクロ孔容量を有し、マイクロ孔を通して連結したメソ孔が、規則的に配列された、繊維長数百ミクロンメートル以上の繊維状多孔質シリカ粒子を効率的に製造する方法に関する。   The present invention relates to a method for producing fibrous porous silica particles. More specifically, the present invention has a micropore capacity of 0.1 ml / g or more, and mesopores connected through micropores are regularly arranged. The present invention relates to a method for efficiently producing fibrous porous silica particles having a fiber length of several hundred microns or more.

ケイ酸エステルをシリカ源として用いて、メソ孔およびマイクロ孔のそれぞれの大きさおよび容量を制御する研究は、多方面でなされている。同時に、実用化を踏まえた多孔質シリカ粒子の合成においては、粒子のマクロ形態を制御することも重要であり、これまで、球状、ロッド状、膜、モノリス、繊維状などの形態の合成例が知られている。   There have been many studies to control the size and capacity of mesopores and micropores using silicate esters as silica sources. At the same time, in the synthesis of porous silica particles based on practical application, it is also important to control the macro form of the particles. So far, examples of synthesis of spherical, rod-like, membrane, monolith, fibrous, etc. Are known.

たとえば、界面活性剤として非イオン性界面活性剤であるトリブロック共重合体を用い、これとケイ酸エステルを用いた多孔質シリカ粒子の合成方法が、Science誌(非特許文献1)とJACS誌(非特許文献2)に掲載された。該当報告によると、非イオン界面活性剤(Pluronic P123=EO20PO70EO20)を攪拌溶解させた強酸性溶液に、テトラエチルオルソシリケートを滴下して20時間攪拌した後、80℃において一晩熟成させ得られたシリカ前駆体を洗浄、室温において乾燥、500℃で焼成し、マイクロ孔とメソ孔を有する多孔質シリカ粒子を得られるとしている。
また、テフロン容器内で、前記非イオン界面活性剤P123を水および塩酸の混合液に35℃において一晩攪拌した後、攪拌したままテトラエチルオルソシリケートを滴下し、5分間攪拌した後、混合液を35℃で20時間、さらに異なる温度で24時間熟成させたものを、ろ過および洗浄し、乾燥および550℃で焼成することより、ロッド状のメソポーラスシリカ粒子を得る方法も知られている(非特許文献3)。
For example, a method of synthesizing porous silica particles using a triblock copolymer which is a nonionic surfactant as a surfactant and a silicate ester is described in Science (Non-patent Document 1) and JACS. (Non-Patent Document 2). According to the corresponding report, tetraethyl orthosilicate was added dropwise to a strongly acidic solution in which a nonionic surfactant (Pluronic P123 = EO 20 PO 70 EO 20 ) was stirred and dissolved, and the mixture was aged at 80 ° C. overnight. The obtained silica precursor is washed, dried at room temperature, and calcined at 500 ° C. to obtain porous silica particles having micropores and mesopores.
In a Teflon container, the nonionic surfactant P123 was stirred overnight at 35 ° C. in a mixture of water and hydrochloric acid, and then tetraethylorthosilicate was added dropwise with stirring, and the mixture was stirred for 5 minutes. A method of obtaining rod-shaped mesoporous silica particles is also known by filtering and washing, aging at 550 ° C. after aging at 35 ° C. for 20 hours and further at different temperatures (non-patent document). Reference 3).

しかしながら、これらの方法では、残念ながら、反応に長時間を要し、また均一で長尺状の繊維状多孔質シリカ粒子を得ることが困難であった。   However, these methods unfortunately require a long time for the reaction, and it is difficult to obtain uniform and long fibrous porous silica particles.

一方、非イオン性界面活性剤として前記したP123を用い、塩化カリウムを38℃下で、塩酸水溶液に溶解させ、攪拌の下、テトラエチルオルソシリケートを加え、24時間、攪拌した後、100℃で24時間、オートクレーブ加熱を行い、繊維状のメソポーラスシリカ粒子を合成する方法も提案されている(非特許文献4及び非特許文献5)。   On the other hand, using the above-mentioned P123 as a nonionic surfactant, potassium chloride was dissolved in an aqueous hydrochloric acid solution at 38 ° C., tetraethyl orthosilicate was added with stirring, and the mixture was stirred for 24 hours. A method of synthesizing fibrous mesoporous silica particles by performing autoclave heating for a period of time has also been proposed (Non-patent Documents 4 and 5).

しかし、この方法は、攪拌時間が長く、更には24時間の熟成が必要となる等の長時間の合成やオートクレーブ加熱が必要であり、また得られた合成物についても、マイクロ孔容量が0.05ml/g以下と小さく、KCl塩の添加によって0.01ml/gとさらに減少している。(非特許文献5、比較例1)
また、繊維の長さや幅など、繊維全体の均一性が必ずしも十分なものではなかった。当該研究目的が、生成物の水蒸気、熱水等の水熱条件下での生成物の安定性向上にあり、その向上にはマイクロ孔の存在が重要であるとしながら、当該合成方法では金属塩の添加がむしろ障害となっていることが明らかである。
However, this method requires a long stirring time and further requires 24 hours of aging and autoclave heating, and the resultant product also has a micropore capacity of 0. It is as small as 05 ml / g or less and further decreased to 0.01 ml / g by the addition of KCl salt. (Non-Patent Document 5, Comparative Example 1)
Moreover, the uniformity of the whole fiber, such as the length and width of the fiber, is not always sufficient. The purpose of the study is to improve the stability of the product under hydrothermal conditions such as water vapor and hot water, and the presence of micropores is important for the improvement. It is clear that the addition of is rather an obstacle.

D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrckson, B. F.Chmelka, G. D. Stucky; Science, Vol. 279, 548, 1998D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrckson, B. F. Chmelka, G. D. Stucky; Science, Vol. 279, 548, 1998 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky; J. Am. Chem.Soc., Vol. 120, No.24, 6024, 1998D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky; J. Am. Chem. Soc., Vol. 120, No. 24, 6024, 1998 A. Sayari, B. H. Han, Y. Yang; J. Am. Chem. Soc., Vol. 126, No. 44,14348, 2004A. Sayari, B. H. Han, Y. Yang; J. Am. Chem. Soc., Vol. 126, No. 44,14348, 2004 C. Yu, J. Fan, B. Tian, D. Zhao; Chem. Mater., Vol. 16, No.5, 889,2004C. Yu, J. Fan, B. Tian, D. Zhao; Chem. Mater., Vol. 16, No. 5, 889, 2004 F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu, D. Zhao; J. Phys.Chem. B, Vol. 109, 8723, 2005F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu, D. Zhao; J. Phys. Chem. B, Vol. 109, 8723, 2005

本発明は、上記のような実情に鑑みなされたものであって、繊維長が数百ミクロンメートル以上と長く、均一であり、しかも、細孔特性が制御され、0.1ml/g以上のマイクロ孔容量を有する、繊維状多孔質シリカ粒子を短時間に合成する効率的な方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the fiber length is as long as several hundred microns or more, is uniform, and the pore characteristics are controlled, and the micropores of 0.1 ml / g or more are controlled. An object is to provide an efficient method for synthesizing fibrous porous silica particles having a pore volume in a short time.

本発明においては、上記の課題を解決するため、鋭意検討した結果、比較的安価な非イオン性界面活性剤を構造制御試薬として使用し、この酸性水溶液に、シリコンアルコキシド等のケイ酸エステルを混合すると共に該反応系に金属塩を添加して反応を行うと、短時間で、繊維長が長く、均一であり、しかも、マイクロ孔容量を一定量以上に保持できるよう、細孔特性が制御された、長さ数百ミクロンメートル以上の繊維状多孔質シリカ粒子が得られることを見出し、本発明を完成するに至った。
すなわち、この出願によれば、以下の発明が提供される。
〈1〉酸性水溶液、非イオン性界面活性剤、ケイ酸エステル及び水を含む混合液を、金属塩の存在下で反応させ、0.10〜0.25ml/gのマイクロ孔容量を有する繊維状多孔質シリカ粒子を得ることを特徴とする繊維状多孔質シリカ粒子の製造方法。
〈2〉酸性水溶液と非イオン性界面活性剤を含む混合溶液と上記金属塩とケイ酸エステル及び水を含む混合液を混合・攪拌し、生成する反応懸濁液を熟成した後、繊維状多孔質シリカ前駆体を濾別し、ついで該前駆体中の非イオン界面活性剤を除去することを特徴とする〈1〉に記載の繊維状多孔質シリカ粒子の製造方法。
〈3〉混合・攪拌反応を30℃以上50℃未満で、30分〜2時間行うことを特徴とする上記〈1〉又は〈2〉に記載の繊維状多孔質シリカ粒子の製造方法。
〈4〉熟成反応を30〜100℃で、30分〜10時間行うことを特徴とする上記〈1〉から〈3〉の何れかに記載の繊維状多孔質シリカ粒子の製造方法。
〈5〉酸性水溶液が塩酸水溶液であることを特徴とする上記〈1〉から〈4〉の何れかに記載の繊維状多孔質シリカ粒子の製造方法。
〈6〉非イオン界面活性剤がポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオシキドを含むトリブロック共重合体であることを特徴とする上記〈1〉から〈5〉の何れかに記載の繊維状多孔質シリカ粒子の製造方法。
In the present invention, in order to solve the above problems, as a result of intensive studies, a relatively inexpensive nonionic surfactant is used as a structure control reagent, and a silicate ester such as silicon alkoxide is mixed with this acidic aqueous solution. In addition, when the reaction is carried out by adding a metal salt to the reaction system, the pore characteristics are controlled so that the fiber length is long and uniform in a short time, and the micropore volume can be maintained above a certain amount. In addition, the inventors have found that fibrous porous silica particles having a length of several hundred microns or more can be obtained, and have completed the present invention.
That is, according to this application, the following invention is provided.
<1> A fibrous solution having a micropore volume of 0.10 to 0.25 ml / g by reacting a mixed solution containing an acidic aqueous solution, a nonionic surfactant, a silicate ester and water in the presence of a metal salt. A method for producing fibrous porous silica particles, comprising obtaining porous silica particles.
<2> Mixing and stirring a mixed solution containing an acidic aqueous solution and a nonionic surfactant and a mixed solution containing the above metal salt, silicate ester, and water, aging the resulting reaction suspension, The method for producing fibrous porous silica particles according to <1>, wherein the porous silica precursor is filtered off and then the nonionic surfactant in the precursor is removed.
<3> The method for producing fibrous porous silica particles according to <1> or <2>, wherein the mixing / stirring reaction is performed at 30 ° C. or higher and lower than 50 ° C. for 30 minutes to 2 hours.
<4> The method for producing fibrous porous silica particles according to any one of <1> to <3>, wherein the aging reaction is performed at 30 to 100 ° C. for 30 minutes to 10 hours.
<5> The method for producing fibrous porous silica particles according to any one of <1> to <4>, wherein the acidic aqueous solution is a hydrochloric acid aqueous solution.
<6> The fibrous porous material according to any one of <1> to <5> above, wherein the nonionic surfactant is a triblock copolymer containing polyethylene oxide-polypropylene oxide-polyethylene oxide. A method for producing silica particles.

本発明の製造方法によれば、ケイ酸エステルをシリカ原料としてこれまで極めて困難であった、長繊維状でマイクロ孔容量が大きく、且つマイクロ孔がメソ孔に通じ、均一で、しかも細孔特性が制御された繊維状多孔質シリカ粒子を簡便かつ短時間に合成することができる。
このようにして得られる繊維状多孔質シリカ粒子は、多数のマイクロ孔による強い吸着能と、長いメソ孔を移動することによる長い滞留時間が、見かけ上より高い吸着能として発現し、加えて吸着分子がメソ孔内を移動する際の抵抗が小さく、高い粒子内拡散能が発揮されるため、シリカ特有の易脱離能は損なわれない。
この有機的に連結するマイクロ孔とメソ孔の協同的な吸着現象は、繊維長が長く、マイクロ孔容量が大きい程、高い吸着能が発現するので、形状選択能を発揮して効率的に種々の有用な分子、イオンをトラップすることができ、工業用および環境保全の両面で有用な、分子篩い、触媒担体、触媒さらにはセンサー等の機能性セラミックス素材として活用できる。とくに、繊維状というマクロ形態を活かした、高性能吸着剤としての利用価値が極めて高いものである。
According to the production method of the present invention, silicate ester is a silica raw material, which has been extremely difficult until now, is a long fiber shape, has a large micropore capacity, and the micropores pass through mesopores, and is uniform and has pore characteristics. Can be synthesized easily and in a short time.
The fibrous porous silica particles obtained in this way have a strong adsorption ability due to a large number of micropores and a long residence time due to the movement of long mesopores, which is apparently higher than the apparent adsorption ability. Since the resistance when the molecules move in the mesopores is small and high intra-particle diffusivity is exhibited, the easy desorption ability peculiar to silica is not impaired.
This cooperative adsorption phenomenon of organically connected micropores and mesopores exhibits a higher adsorption ability as the fiber length is longer and the micropore capacity is larger. Can be used as functional ceramic materials such as molecular sieves, catalyst carriers, catalysts, and sensors, which are useful for both industrial and environmental conservation purposes. In particular, it has a very high utility value as a high-performance adsorbent utilizing the macro form of fiber.

本発明の繊維状多孔質シリカ粒子の製造方法は、酸性水溶液、非イオン性界面活性剤、ケイ酸エステル及び水を含む混合液を、金属塩の存在下で反応させて、マイクロ孔容積0.10〜0.25ml/gを有し、好ましくは、長さ数百ミクロンメートル以上の繊維状多孔質シリカ粒子を製造することを特徴としている。   The method for producing fibrous porous silica particles of the present invention comprises reacting a mixed solution containing an acidic aqueous solution, a nonionic surfactant, a silicate ester and water in the presence of a metal salt to give a micropore volume of 0. It is characterized by producing fibrous porous silica particles having a length of 10 to 0.25 ml / g, preferably a length of several hundred microns or more.

すなわち、本発明方法においては、非イオン性界面活性剤の自己組織化を利用し、混合溶液内において規則構造を形成した非イオン性界面活性剤ミセルを鋳型として、ケイ酸エステルを非イオン性界面活性剤、オキソニウムイオン、陰イオンを介した相互作用により非イオン性界面活性剤ミセルの周囲に配列させ、最後に焼成によって非イオン性界面活性剤ミセルの鋳型部分のみを除去することにより、得られるシリカに非イオン性界面活性剤ミセル由来の規則的な細孔構造を付与することを基本とするものであるが、反応系に金属塩を添加することによって、反応溶液を均質化することで、ミセル構造の安定化を図り、繊維状形態の基本構造単位と考えられる個々のロッド状粒子の伸張を促す反応温度において、短時間の攪拌工程を経由することによって、ロッド状粒子間の連結を促進させ、さらに一定温度で熟成させ、均質で長い繊維状多孔質シリカ粒子を効率的に得ることを本旨とする。
本発明のマイクロ孔容量を一定量以上に保持し、且つ長さ数百ミクロンメートル以上の繊維状多孔質シリカ粒子を効率的に製造するための好ましい条件を更に詳細に説明する。
本発明の繊維状多孔質シリカ粒子はほぼ同じ大きさのロッド状粒子(基本粒子)の連鎖体であり(図1(a)及び(b))、その前駆体であるシリカ種と界面活性剤とのロッド状ナノ複合体の生成、成長、連鎖の過程を厳密に制御することによって、繊維長並びにマイクロ孔容積が決定される。
繊維長を長くするためには、上記ロッド状ナノ複合体の長さ自体がまず図1に示すように1〜2μmに成長する反応条件でなければならない。反応系内に添加された金属塩は、水分子との強い相互作用によって、水分子と界面活性剤との相互作用を弱め、界面活性剤はより疎水的になる。この結果、反応系がより均質化することで、ミセルの形成が促進され、さらに高次ミセル構造の安定化を図り、本発明においては繊維状粒子の基本構造単位であるロッド状ナノ複合体間の一様な連鎖が促され、最終的に長さの均質な繊維状多孔質シリカ粒子が生成することになる。
一方、ロッド状ナノ複合体の長さは、攪拌反応の温度に強く依存する。本発明で使用する非イオン界面活性剤(ポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオシキドを含むトリブロック共重合体P123)とシリカ種との塩酸水溶液中での協同的な秩序形成において、比較的低温(30℃未満)並びに50℃超では、ロッド状ナノ複合体は1μm以上には伸張しない。さらに、1μm以上に伸張する温度範囲であっても、攪拌時間によっては、球状ナノ複合体となってしまうことがあり、繊維状粒子が得られない。またロッド状ナノ複合体となっても1μm以上に成長することはなく、さらに成長したとしても短い繊維状粒子となってしまう。
すなわち、図2は、攪拌時間が短い場合の例(比較例2)で、攪拌温度45℃で、20分間攪拌して得られた最終生物のSEM像であり、基本粒子は、球状ナノ複合体となり、粒子形態は繊維状に成長することはない。
図3は、攪拌時間が長い場合の例(比較例3)であり、攪拌温度45℃で、20時間攪拌して得られた最終生物のSEM像であり、ロッド状粒子は1μm以上であるが、繊維長は不均一で、しかも短く、この特徴は攪拌時間3時間経過後から既に認められる。
このことは、熟成温度によって、メソ孔径が変化することから明らかなように(実施例5)、本繊維状多孔質粒子の前駆体が、“準安定状態”にあることに起因している。即ち、攪拌時間を長くすると、一旦成長した繊維状多孔質粒子の前駆体が短く、しかも不揃いになることを示している。
また、本発明に係る、非イオン界面活性剤を使用して得られるシリカ多孔性粒子のメソ孔とマイクロ孔は、それぞれ疎水部(ポリプロピレンオキシド基)と親水部(ポリエチレンオキシド基)の除去された後の痕跡として形成される。この時、両者の親疎水性の程度は反応条件に敏感であり、メソ孔と同時にマイクロ孔の大きさや量は反応条件によって大きな影響を受ける。例えば、マイクロ孔容量は、反応条件、特に熟成温度や攪拌温度ばかりでなく、攪拌時間にも敏感であり、攪拌時間が長くなる程マイクロ孔容量は減少し、たとえば、比較例3の場合(攪拌時間20時間)、0.1ml/g未満となってしまう。
さらに、シリコンアルコキシドを原料とする場合、シリカの縮合が進行するに従いアルコールが発生し、生成物の形態並びに細孔特性に影響することから、反応系からアルコールを除去する操作が一般に行われるが、非特許文献5のように、攪拌時間を24時間として、熟成反応を100℃で24時間行った場合には、マイクロ孔容量は0.01ml/gと著しく小さくなってしまう。
したがって、本発明において、長さ数百ミクロンメートル以上且つマイクロ孔容量0.10〜0.25ml/gを有する繊維状多孔質シリカ粒子を製造するためには、ロッド状ナノ複合体が1μm以上に伸張する条件下で、特に金属塩の添加と攪拌時間を短くすることが極めて重要なファクターとなる。
That is, in the method of the present invention, nonionic surfactant micelles that form a regular structure in a mixed solution using self-organization of a nonionic surfactant are used as a template, and a silicate ester is used as a nonionic interface. It is obtained by arranging around the nonionic surfactant micelle by interaction through the activator, oxonium ion, and anion, and finally removing only the template part of the nonionic surfactant micelle by baking. It is based on imparting a regular pore structure derived from nonionic surfactant micelles to the silica obtained, but by adding a metal salt to the reaction system, the reaction solution is homogenized. Through a short stirring step at a reaction temperature that stabilizes the micelle structure and promotes the extension of individual rod-like particles considered to be the basic structural unit of the fibrous form It allows to accelerate the linkage between the rod-shaped particles, aged further at a constant temperature, and spirit to obtain a homogeneous and long fibrous porous silica particles efficiently.
The preferred conditions for efficiently producing fibrous porous silica particles having a micropore volume of the present invention at a certain level or more and having a length of several hundred microns or more will be described in more detail.
The fibrous porous silica particle of the present invention is a chain of rod-like particles (basic particles) having almost the same size (FIGS. 1 (a) and (b)), and the precursor silica type and the surfactant. The fiber length as well as the micropore volume are determined by strictly controlling the process of formation, growth, and chaining of the rod-like nanocomposite.
In order to increase the fiber length, the length of the rod-shaped nanocomposite itself must first be a reaction condition for growing to 1 to 2 μm as shown in FIG. The metal salt added in the reaction system weakens the interaction between the water molecule and the surfactant due to the strong interaction with the water molecule, and the surfactant becomes more hydrophobic. As a result, the homogenization of the reaction system promotes the formation of micelles, further stabilizes the higher-order micelle structure, and in the present invention, between the rod-shaped nanocomposites that are the basic structural units of fibrous particles. Is promoted to form a uniform porous fibrous silica particle having a uniform length.
On the other hand, the length of the rod-shaped nanocomposite strongly depends on the temperature of the stirring reaction. In the cooperative order formation in the hydrochloric acid aqueous solution of the nonionic surfactant (polyblock copolymer P123 containing polyethylene oxide-polypropylene oxide-polyethylene oxide) and silica species used in the present invention, a relatively low temperature ( Below 30 ° C.) and above 50 ° C., the rod-shaped nanocomposite does not stretch beyond 1 μm. Furthermore, even in a temperature range extending to 1 μm or more, depending on the stirring time, a spherical nanocomposite may be formed, and fibrous particles cannot be obtained. Moreover, even if it becomes a rod-shaped nanocomposite, it does not grow to 1 μm or more, and even if it grows further, it becomes short fibrous particles.
That is, FIG. 2 is an example of the case where the stirring time is short (Comparative Example 2), which is an SEM image of the final organism obtained by stirring at a stirring temperature of 45 ° C. for 20 minutes, and the basic particles are spherical nanocomposites. Thus, the particle form does not grow into a fibrous form.
FIG. 3 is an example in which the stirring time is long (Comparative Example 3), which is an SEM image of the final product obtained by stirring for 20 hours at a stirring temperature of 45 ° C., and the rod-shaped particles are 1 μm or more. The fiber length is non-uniform and short, and this feature is already observed after 3 hours of stirring time.
This is due to the fact that the precursor of the present fibrous porous particles is in a “metastable state” as is apparent from the fact that the mesopore diameter varies depending on the aging temperature (Example 5). That is, when the stirring time is lengthened, the precursors of the fibrous porous particles once grown are short and irregular.
Further, the mesopores and micropores of the silica porous particles obtained by using the nonionic surfactant according to the present invention have the hydrophobic portion (polypropylene oxide group) and the hydrophilic portion (polyethylene oxide group) removed, respectively. Formed as a later trace. At this time, the degree of hydrophilicity / hydrophobicity of both is sensitive to the reaction conditions, and the size and amount of the micropores as well as the mesopores are greatly influenced by the reaction conditions. For example, the micropore volume is sensitive not only to the reaction conditions, particularly the aging temperature and the stirring temperature, but also to the stirring time. The longer the stirring time, the smaller the micropore volume. For example, in the case of Comparative Example 3 (stirring 20 hours), it becomes less than 0.1 ml / g.
Furthermore, when silicon alkoxide is used as a raw material, an alcohol is generated as the condensation of silica proceeds, and this affects the morphology and pore characteristics of the product, so the operation of removing the alcohol from the reaction system is generally performed. As in Non-Patent Document 5, when the stirring time is 24 hours and the ripening reaction is performed at 100 ° C. for 24 hours, the micropore volume is significantly reduced to 0.01 ml / g.
Therefore, in the present invention, in order to produce fibrous porous silica particles having a length of several hundred micrometers or more and a micropore capacity of 0.10 to 0.25 ml / g, the rod-shaped nanocomposite has a thickness of 1 μm or more. Under the conditions of stretching, it is a very important factor to shorten the addition time of the metal salt and the stirring time.

これまでに、繊維状粒子の生成を促進するためには、原料混合比の他に、攪拌速度と攪拌時間、並びに攪拌及び熟成反応温度等の基本的な反応条件を厳密に制御することが重要であるとされているが、従来の方法の多くは、長時間攪拌することが一般的で、その間に繊維状形状が破壊され、短い繊維状粒子しか得ることができず、また多数のミクロ孔を形成することが困難であった。さらに、ケイ酸エステルをシリカ原料とする場合、広い反応条件で伸張したロッド状粒子が生成することが分かっているが、ロッド状粒子を有効に連結するためには、上記の基本的な反応条件を制御するだけでは難しい。
本発明の、ケイ酸エステルをシリカ原料とした繊維状多孔質シリカ粒子の製造方法は、上記の基本的な反応条件を踏まえつつ、反応溶液全体の均質化に有効な金属塩の添加によって、マイクロ孔容量を0.10〜0.25ml/gに保持したまま、均質で長い繊維状多孔性シリカ粒子が得られるという、従来の技術常識では予期することのできない知見を踏まえて完成されたものである。
マイクロ孔容量が0.10ml/g未満であると、高い吸着能が発揮されず、またマイクロ孔容量が0.25ml/gを超えるものは、高い吸着能が期待されるもののその合成が困難となる。
Until now, in order to promote the formation of fibrous particles, it is important to strictly control basic reaction conditions such as stirring speed and stirring time, and stirring and aging reaction temperature in addition to the raw material mixing ratio. However, in many of the conventional methods, it is common to stir for a long time, during which the fibrous shape is destroyed, and only short fibrous particles can be obtained. It was difficult to form. Furthermore, when silica ester is used as a silica raw material, it is known that rod-like particles stretched under a wide range of reaction conditions are produced, but in order to connect rod-like particles effectively, the basic reaction conditions described above are used. It is difficult just to control.
The method for producing fibrous porous silica particles using a silicate ester as a silica raw material of the present invention is based on the above basic reaction conditions, and by adding a metal salt effective for homogenization of the entire reaction solution, It was completed based on the knowledge that could not be anticipated by conventional technical common sense that uniform and long fibrous porous silica particles can be obtained while maintaining the pore volume at 0.10 to 0.25 ml / g. is there.
When the micropore volume is less than 0.10 ml / g, high adsorption ability is not exhibited, and when the micropore volume exceeds 0.25 ml / g, high adsorption ability is expected, but its synthesis is difficult. Become.

すなわち、金属塩を添加しなくても、ロッド状粒子自体の生成は認められるが、ロッド状粒子同士の連結すなわち繊維形状は金属塩の添加の有無により大きな影響を受けることが判明した。
本発明で使用できる金属塩としては、強酸性下の反応溶液中において、シリケート骨格内のSiを置換し難い金属塩であれば良く、例えば、Na、K、Li、Ca、Mg、Al、Zr、Ti、Co及びNi等の金属塩が挙げられる。
また、塩の種類は、特に制約されず、塩化物、硫酸塩、硝酸塩、リン酸塩等の無機塩やその水和物のいずれも使用することができる。また、これらの金属塩は、単独でもあるいは2種以上併用して用いることもできる。
That is, it was found that the formation of rod-shaped particles themselves was observed without adding a metal salt, but the connection between the rod-shaped particles, that is, the fiber shape was greatly influenced by the presence or absence of the addition of the metal salt.
The metal salt that can be used in the present invention may be any metal salt that is difficult to replace Si in the silicate skeleton in a reaction solution under strong acidity. For example, Na, K, Li, Ca, Mg, Al, Zr , Ti, Co, Ni, and other metal salts.
The type of salt is not particularly limited, and any of inorganic salts such as chlorides, sulfates, nitrates and phosphates and hydrates thereof can be used. These metal salts can be used alone or in combination of two or more.

つぎに、本発明の繊維状多孔質シリカ粒子の製造方法について詳述する。本発明の方法においては、酸性水溶液、非イオン性界面活性剤、ケイ酸エステル及び水を含む混合液を反応させて繊維状多孔質シリカ粒子を製造する方法において、反応系に上記の金属塩の少なくとも1種を存在させることが必要である。   Next, the method for producing the fibrous porous silica particles of the present invention will be described in detail. In the method of the present invention, in the method of producing fibrous porous silica particles by reacting a mixed solution containing an acidic aqueous solution, a nonionic surfactant, a silicate ester and water, It is necessary that at least one species is present.

これらの原料成分や金属塩の添加方法や添加順序には制限はなく、酸性水溶液と非イオン性界面活性剤を含む混合溶液に金属塩を添加し、ついで、ケイ酸エステル及び水を含む混合液を混合してもよく、また、酸性水溶液と非イオン性界面活性剤および金属塩を含む混合溶液にケイ酸エステル及び水を含む混合液を添加してもよく、また、酸性水溶液、非イオン性界面活性剤、水およびケイ酸エステルを含む混合溶液の調製後30分以内、好ましくは10分以内に、金属塩を添加してもよい。   There are no restrictions on the method and order of addition of these raw material components and metal salts, the metal salt is added to a mixed solution containing an acidic aqueous solution and a nonionic surfactant, and then a mixed solution containing a silicate ester and water. In addition, a mixed solution containing a silicate ester and water may be added to a mixed solution containing an acidic aqueous solution, a nonionic surfactant and a metal salt, and an acidic aqueous solution, nonionic The metal salt may be added within 30 minutes, preferably within 10 minutes, after the preparation of the mixed solution containing the surfactant, water and silicate ester.

本発明においては、好ましくは、攪拌下の酸性水溶液と非イオン性界面活性剤を含む混合溶液に上記金属塩を添加後、ケイ酸エステル及び水を含む混合液を滴下する。
攪拌条件たとえば攪拌温度や攪拌時間は、原料や金属塩の種類あるいは所望とする繊維状多孔質シリカ粒子の特性などを考慮することによって適宜定められるが、特に、本願の製造方法は、攪拌温度と攪拌時間が最終生成物の形状と細孔特性に影響を与えるため、攪拌温度は30℃以上50℃未満、好ましくは40℃以上50℃未満、攪拌時間は30分〜2時間、好ましくは40分〜2時間である。
In the present invention, preferably, after adding the metal salt to a mixed solution containing an acidic aqueous solution and a nonionic surfactant under stirring, a mixed solution containing a silicate ester and water is dropped.
Stirring conditions such as stirring temperature and stirring time are appropriately determined by considering the kind of raw material and metal salt or desired characteristics of the fibrous porous silica particles. Since the stirring time affects the shape and pore characteristics of the final product, the stirring temperature is 30 ° C. or higher and lower than 50 ° C., preferably 40 ° C. or higher and lower than 50 ° C., and the stirring time is 30 minutes to 2 hours, preferably 40 minutes. ~ 2 hours.

このような攪拌により、一定時間経過後、反応液が懸濁し、白色生成物が生成する。つぎに、本発明においては、この反応懸濁液を熟成する。
熟成条件たとえば熟成温度や熟成時間は、原料や金属塩の種類あるいは所望とする繊維状多孔質シリカ粒子の特性などを考慮することによって適宜定められるが、通常、熟成温度は30℃〜100℃、好ましくは35〜100℃、より好ましくは35〜80℃、熟成時間は30分間〜10時間、好ましくは1時間〜9時間、より好ましくは3時間〜6時間である。
By such stirring, the reaction solution is suspended after a certain time, and a white product is produced. Next, in the present invention, this reaction suspension is aged.
The aging conditions such as aging temperature and aging time are appropriately determined by considering the kind of raw material and metal salt or desired properties of the fibrous porous silica particles, but the aging temperature is usually from 30 ° C to 100 ° C, Preferably it is 35-100 degreeC, More preferably, it is 35-80 degreeC, Aging time is 30 minutes-10 hours, Preferably it is 1 hour-9 hours, More preferably, it is 3 hours-6 hours.

このような熟成を行った後、反応液から固体生成物を濾過などの手段により分離し、乾燥、焼成することにより、所望とする繊維状多孔質シリカ粒子を得る。
この固体生成物は、その中に非イオン界面活性剤を含有する繊維状多孔質シリカ前駆体粒子であり、乾燥、焼成することにより、該粒子から除去され、非イオン界面活性剤由来のミセルに基づく細孔が形成される。
乾燥、焼成条件には特に制限はないが、通常、室温で1日程度乾燥させ、500℃以上、好ましくは550℃以上で1時間程度焼成する。
After such aging, the solid product is separated from the reaction solution by means such as filtration, dried and fired to obtain desired fibrous porous silica particles.
This solid product is a fibrous porous silica precursor particle that contains a nonionic surfactant therein, and is removed from the particle by drying and firing to form micelles derived from the nonionic surfactant. Based pores are formed.
There are no particular restrictions on the drying and firing conditions, but usually, drying is performed at room temperature for about 1 day, followed by firing at 500 ° C. or higher, preferably 550 ° C. or higher for about 1 hour.

つぎに、本発明で用いる原料およびその配合比について説明する。
酸性水溶液としては、塩酸、硫酸、硝酸、燐酸、酢酸等の無機酸や有機酸が使用されるが、塩酸、硫酸、硝酸、燐酸等の無機酸を用いるのがよく、中でも、塩酸が好ましい。
Next, the raw materials used in the present invention and the blending ratio thereof will be described.
As the acidic aqueous solution, inorganic acids and organic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and acetic acid are used. Inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid are preferably used, and hydrochloric acid is particularly preferable.

非イオン性界面活性剤非イオン性界面活性剤としては、ポリエチレンオキシドーポリプロピレンオキシド-ポリエチレンオキシド(PEO−PPO−PEO)からなる分子量約2000から約13000程度の様々な重合比のトリブロック共重合体を使用することができる。   Nonionic Surfactant Nonionic surfactant is a triblock copolymer having a molecular weight of about 2000 to about 13000 and made of polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO). Can be used.

本発明で使用される、非イオン性界面活性剤において、ブロック共重合体の重合比や各種ポリマーの平均分子量に特に制限は持たないが、反応温度以下で酸に溶解するものが好ましい。特に、トリブロック共重合体(PEO−PPO−PEO)において、その重量平均分子量は約4000乃至約8000であることが望ましい。   In the nonionic surfactant used in the present invention, the polymerization ratio of the block copolymer and the average molecular weight of various polymers are not particularly limited, but those that are soluble in an acid at a reaction temperature or lower are preferable. In particular, in the triblock copolymer (PEO-PPO-PEO), the weight average molecular weight is preferably about 4000 to about 8000.

本発明で使用されるケイ酸エステルとしては、Si―アルコキシドで、テトラメチルオルソシリケート、テトラエチルオルソシリケート、テトライソプロピルオルソシリケート、テトラ−n―ブチルオルソシリケート等を用いることが可能であり、中でもテトラエチルオルソシリケート(以下TEOSと略す)が好ましく使用される。   As the silicate ester used in the present invention, Si-alkoxide, tetramethyl orthosilicate, tetraethyl orthosilicate, tetraisopropyl orthosilicate, tetra-n-butyl orthosilicate, etc. can be used. Silicate (hereinafter abbreviated as TEOS) is preferably used.

出発原料の混合モル比は、ケイ酸エステル:非イオン界面活性剤:酸:水:金属塩=1:0.015〜0.02:5.50〜6.5:150〜220:0.16〜3.0である。   The mixing molar ratio of the starting materials is silicate ester: nonionic surfactant: acid: water: metal salt = 1: 0.015 to 0.02: 5.50 to 6.5: 150 to 220: 0.16 ~ 3.0.

また、本発明の製造方法によれば、ヘキサゴナル構造と呼ばれる、周期的に配列する細孔を有し、その細孔容量や細孔径は、反応温度や反応時間、原料の組成比、添加する無機塩の種類によって、容易にコントロールが可能である。また、ミクロンオーダーの繊維状多孔質シリカ粒子の前駆体を、短時間内に製造できる。   In addition, according to the production method of the present invention, there are periodically arranged pores called a hexagonal structure, and the pore volume and pore diameter are determined depending on the reaction temperature, reaction time, composition ratio of raw materials, added inorganic Depending on the type of salt, it can be easily controlled. Moreover, the precursor of the fibrous porous silica particle of a micron order can be manufactured within a short time.

以下、本発明方法の最も好ましい態様を記載する。
本発明の繊維状多孔質シリカ粒子の合成では、非イオン性界面活性剤(Pluronic P123)と塩酸とを攪拌混合しながら均質溶液となってから金属塩を添加し、ついでTEOSと水の混合溶液を滴下し、反応溶液を調製する。
Hereinafter, the most preferred embodiments of the method of the present invention will be described.
In the synthesis of the fibrous porous silica particles of the present invention, a nonionic surfactant (Pluronic P123) and hydrochloric acid are stirred and mixed to form a homogeneous solution, then a metal salt is added, and then a mixed solution of TEOS and water Is added dropwise to prepare a reaction solution.

上記の反応溶液を、30℃以上50℃未満好ましくは40℃以上50℃未満で30分間以上好ましくは40分間〜2時間の範囲の一定温度下において攪拌した後、攪拌を停止し、直ちに30〜100℃好ましくは35〜80℃において30分間〜10時間好ましくは3時間〜6時間熟成し、白色の固体生成物を得る。この生成物をろ過・洗浄し、反応後懸濁液から固体生成物を分離し、室温〜100℃で十分乾燥させる。最後に500℃以上、好ましくは550℃以上で1時間以上焼成を行い、マイクロ孔容量0.10〜0.25ml/g、長さ数百ミクロンメートル以上の繊維状多孔質シリカ粒子を得る。   The above reaction solution was stirred at a constant temperature of 30 ° C. or higher and lower than 50 ° C., preferably 40 ° C. or higher and lower than 50 ° C. for 30 minutes or longer, preferably 40 minutes to 2 hours. Aging at 100 ° C., preferably 35-80 ° C., for 30 minutes to 10 hours, preferably 3 hours to 6 hours, yields a white solid product. This product is filtered and washed, and after the reaction, the solid product is separated from the suspension and sufficiently dried at room temperature to 100 ° C. Finally, firing is performed at 500 ° C. or higher, preferably 550 ° C. or higher for 1 hour or longer to obtain fibrous porous silica particles having a micropore capacity of 0.10 to 0.25 ml / g and a length of several hundred microns or more.

次に本発明を実施例によって更に具体的に説明するが、本発明はこの実施例によって限定されない。尚、実施例で行った各試験方法は下記の方法に依った。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited by this Example. In addition, each test method performed in the Example depended on the following method.

(測定法)
(1) 全体観察:日本電子製JSM5300(走査型電子顕微鏡)を使用し、加速電圧10kV、WD11mmで観察した。
(2) 比表面積・細孔径分布:日本ベル製BELSORP miniを使用し、液体窒素温度で測定した窒素吸着等温線からBET比表面積を求め、全細孔容量はメソ孔容量とミクロ孔容量の合計として、tプロット法により求めた。また、マクロ孔容量はtプロット法により算出した。細孔径分布は、BJH法により解析した。
(Measurement method)
(1) Overall observation: JSM5300 (scanning electron microscope) manufactured by JEOL Ltd. was used and observed at an acceleration voltage of 10 kV and a WD of 11 mm.
(2) Specific surface area and pore size distribution: BEL specific surface area was calculated from nitrogen adsorption isotherm measured at liquid nitrogen temperature using BELSORP mini manufactured by Nippon Bell, and total pore volume is the sum of mesopore volume and micropore volume. Was obtained by the t plot method. The macropore volume was calculated by the t plot method. The pore size distribution was analyzed by the BJH method.

(実施例1)
非イオン性界面活性剤であるトリブロック共重合体Pluronic P123 (PEO20PPO70PEO20)(平均分子量5800)(Aldrich;以下、単にP123ともいう)塩酸とを45℃において約550rpmで攪拌した。10分後に塩化ナトリウムを添加し、さらに10分後TEOSと水の混合液を添加した。本実施例では、添加する塩化ナトリウムの量を変化させ、混合溶液のモル比は、TEOS:P123:HCl:HO:NaCl=1:0.017:5.85:199:0.166−2.99とした。この混合溶液をさらに1時間攪拌した後、攪拌を停止し、予め80℃に保温した恒温水槽に移し3時間熟成させた。反応懸濁液から固体生成物を濾別し、60℃で充分乾燥させた後、600℃で1時間加熱して有機成分を除去して繊維状多孔質シリカ粒子を得た。表1に合成条件を示し、これに対応する生成物の、比表面積、全細孔容量、マイクロ孔容積、細孔径(メソ孔直径)を表2に示す。図4に、実施例1−5の走査型電子顕微鏡(SEM)像を示す。
(Example 1)
Triblock copolymer Pluronic P123 (PEO 20 PPO 70 PEO 20 ) (average molecular weight 5800) (Aldrich; hereinafter also simply referred to as P123) hydrochloric acid, which is a nonionic surfactant, was stirred at 45 ° C. at about 550 rpm. After 10 minutes, sodium chloride was added, and after 10 minutes, a mixture of TEOS and water was added. In this example, the amount of sodium chloride to be added was changed, and the molar ratio of the mixed solution was TEOS: P123: HCl: H 2 O: NaCl = 1: 0.017: 5.85: 199: 0.166− 2.99. The mixed solution was further stirred for 1 hour, then the stirring was stopped, and the mixed solution was transferred to a constant temperature water bath previously kept at 80 ° C. and aged for 3 hours. The solid product was separated from the reaction suspension by filtration, sufficiently dried at 60 ° C., and then heated at 600 ° C. for 1 hour to remove organic components to obtain fibrous porous silica particles. Table 1 shows the synthesis conditions, and Table 2 shows the specific surface area, total pore volume, micropore volume, and pore diameter (mesopore diameter) of the corresponding product. FIG. 4 shows a scanning electron microscope (SEM) image of Example 1-5.

(実施例2)
実施例1において、塩酸濃度を表1に記載の濃度に代えた以外は実施例1−5と同様にして、繊維状多孔質シリカ粒子を得た。得られた生成物の、比表面積、全細孔容量、マイクロ孔容積、細孔径(メソ孔直径)を表2に示す。
(Example 2)
In Example 1, fibrous porous silica particles were obtained in the same manner as in Example 1-5 except that the hydrochloric acid concentration was changed to the concentrations shown in Table 1. Table 2 shows the specific surface area, total pore volume, micropore volume, and pore diameter (mesopore diameter) of the obtained product.

(実施例3)
実施例1において、攪拌時間を表1に記載した条件に代えた以外は実施例1−5と同様にして、繊維状多孔質シリカ粒子を得た。得られた生成物の、比表面積、全細孔容量、マイクロ孔容積、細孔径(メソ孔直径)を表2に示す。
(Example 3)
In Example 1, fibrous porous silica particles were obtained in the same manner as in Example 1-5 except that the stirring time was changed to the conditions described in Table 1. Table 2 shows the specific surface area, total pore volume, micropore volume, and pore diameter (mesopore diameter) of the obtained product.

(実施例4)
実施例1において、熟成時間を表1に記載した条件に代えた以外は実施例1−5と同様にして、繊維状多孔質シリカ粒子を得た。得られた生成物の、比表面積、全細孔容量、マイクロ孔容積、細孔径(メソ孔直径)を表2に示す。
Example 4
In Example 1, fibrous porous silica particles were obtained in the same manner as in Example 1-5 except that the aging time was changed to the conditions described in Table 1. Table 2 shows the specific surface area, total pore volume, micropore volume, and pore diameter (mesopore diameter) of the obtained product.

(実施例5)
実施例1において、攪拌温度と熟成温度を表1に記載した条件に代えた以外は実施例1と同様にして、繊維状多孔質シリカ粒子を得た。得られた生成物の、比表面積、全細孔容量、マイクロ孔容積、細孔径(メソ孔直径)を表2に示す。
(Example 5)
In Example 1, fibrous porous silica particles were obtained in the same manner as in Example 1 except that the stirring temperature and the aging temperature were changed to the conditions described in Table 1. Table 2 shows the specific surface area, total pore volume, micropore volume, and pore diameter (mesopore diameter) of the obtained product.

(実施例6)
実施例1において、金属塩を表1に記載した金属塩に代えた以外は実施例1−5と同様にして、繊維状多孔質シリカ粒子を得た。得られた生成物の、比表面積、全細孔容量、マイクロ孔容積、細孔径(メソ孔直径)を表2に示す。実施例6−3及び実施例6−8のSEM像をそれぞれ図5および図6に示す。なお、金属塩の添加量を変化させた実施例1の場合を除き、添加する金属塩の物質量は、反応溶液中において電離した陰イオンの物質量が1.49モルになるように調整した。また実施例6−1のように、添加する金属塩の陰イオンが2価の場合には0.75モル添加し、実施例6に含まれる他の実施例の場合と反応溶液中の電荷が同等になるようにした。
(Example 6)
In Example 1, fibrous porous silica particles were obtained in the same manner as in Example 1-5 except that the metal salt was replaced with the metal salt described in Table 1. Table 2 shows the specific surface area, total pore volume, micropore volume, and pore diameter (mesopore diameter) of the obtained product. The SEM images of Example 6-3 and Example 6-8 are shown in FIGS. 5 and 6, respectively. Except in the case of Example 1 in which the addition amount of the metal salt was changed, the amount of the metal salt added was adjusted so that the amount of the anion ionized in the reaction solution was 1.49 mol. . Further, as in Example 6-1, when the anion of the metal salt to be added is divalent, 0.75 mol is added, and the charge in the reaction solution is the same as in the other examples included in Example 6. I tried to be equivalent.

産業上の利用の可能性Industrial applicability

本発明の製造方法は、ケイ酸エステルをシリカ原料とする多種多様なメソポア多孔性シリカ材料に関する従来の合成法と比較し、金属塩を添加するだけの単純な反応系において、マイクロ孔容積0.1ml/g以上で、長さ数百ミクロンメートル以上の繊維状多孔質シリカ粒子を極めて短時間で合成できることから工業規模への応用も容易であり、更に、製造される繊維状多孔質シリカ粒子は、高比表面積、細孔径の均一性、単分散性等の特徴を併せ持つことから、形状選択能を利用した分子篩、吸着剤や、高分散性繊維状粒子であることを利用した樹脂添加剤、ガス分離膜、加えて触媒担体、触媒、クロマトグラフ用担体としての利用に適する。
すなわち、本発明による繊維状多孔質シリカ粒子は、樹脂添加剤、インク吸着用フィラー、調湿剤、増粘剤等の用途に利用される。さらに、繊維状形態を利用して単独乃至他の無機物質および有機化合物と混合することによりフェルト様に加工成型し、各種フィルター素材として広く利用することが可能である。さらに、メソ孔と連結して共存するマイクロ孔を利用して粒子内拡散能に優れた環境汚染排出ガス状物質等の浄化プロセスへの応用、あるいはゼオライトやシリカゲルに代わるシリカ多孔体として新規用途を導くことが期待される。また、細孔表面を金属及び金属酸化物等で化学修飾することによって種々の触媒の開発にも展開可能である。さらには、高耐熱環境下における多孔性材料や複合材料等として種々の用途が期待される。
The production method of the present invention has a micropore volume of 0. 0 in a simple reaction system in which only a metal salt is added, as compared with a conventional synthesis method for a wide variety of mesoporous porous silica materials using silicate ester as a silica raw material. Since it is possible to synthesize fibrous porous silica particles having a length of several hundreds of micrometers or more at a rate of 1 ml / g or more in an extremely short time, application to an industrial scale is easy. Further, the produced fibrous porous silica particles are In addition, since it has characteristics such as high specific surface area, uniformity of pore diameter, monodispersity, etc., molecular sieve using shape selection ability, adsorbent, resin additive using being highly dispersible fibrous particles, It is suitable for use as a gas separation membrane, in addition to a catalyst carrier, a catalyst and a chromatographic carrier.
That is, the fibrous porous silica particles according to the present invention are used for applications such as resin additives, ink adsorbing fillers, humidity control agents, and thickeners. Furthermore, it can be processed and molded in a felt-like manner by mixing it alone or with other inorganic substances and organic compounds using a fibrous form, and can be widely used as various filter materials. In addition, using micropores that coexist with mesopores, they can be applied to purification processes of environmental pollutant exhaust gas substances with excellent intra-particle diffusivity, or new uses as silica porous materials to replace zeolite and silica gel. Expected to lead. It can also be developed in the development of various catalysts by chemically modifying the surface of the pores with metals and metal oxides. Furthermore, various uses are expected as a porous material and a composite material in a high heat-resistant environment.

(a)ロッド状粒子のFE−SEM像 (b)ロッド状粒子の連鎖体の模式図(A) FE-SEM image of rod-shaped particles (b) Schematic diagram of a chain of rod-shaped particles 比較例2の多孔質シリカ粒子のSEM写真SEM photograph of porous silica particles of Comparative Example 2 比較例3の多孔質シリカ粒子のSEM写真SEM photograph of porous silica particles of Comparative Example 3 実施例1−5で得た繊維状多孔質シリカ粒子のSEM写真SEM photograph of fibrous porous silica particles obtained in Example 1-5 実施例6−3で得た繊維状多孔質シリカ粒子のSEM写真SEM photograph of fibrous porous silica particles obtained in Example 6-3 実施例6−8で得た繊維状多孔質シリカ粒子のSEM写真SEM photograph of fibrous porous silica particles obtained in Example 6-8

Claims (6)

酸性水溶液、非イオン性界面活性剤、ケイ酸エステル及び水を含む混合液を、金属塩の存在下で反応させ、0.10〜0.25ml/gのマイクロ孔容量を有する繊維状多孔質シリカ粒子を得ることを特徴とする繊維状多孔質シリカ粒子の製造方法。   Fibrous porous silica having a micropore volume of 0.10 to 0.25 ml / g by reacting a mixed solution containing an acidic aqueous solution, a nonionic surfactant, a silicate ester and water in the presence of a metal salt A method for producing fibrous porous silica particles, characterized in that the particles are obtained. 酸性水溶液と非イオン性界面活性剤を含む混合溶液と上記金属塩とケイ酸エステル及び水を含む混合液を混合・攪拌し、生成する反応懸濁液を熟成した後、繊維状多孔質シリカ前駆体を濾別し、ついで該前駆体中の非イオン界面活性剤を除去することを特徴とする請求項1に記載の繊維状多孔質シリカ粒子の製造方法。   A mixed solution containing an acidic aqueous solution and a nonionic surfactant and a mixed solution containing the above metal salt, silicate ester and water are mixed and stirred, and after aging the resulting reaction suspension, a fibrous porous silica precursor is obtained. 2. The method for producing fibrous porous silica particles according to claim 1, wherein the body is filtered off and then the nonionic surfactant in the precursor is removed. 混合・攪拌反応を30℃以上50℃未満で、30分〜2時間行うことを特徴とする請求項1又は2に記載の繊維状多孔質シリカ粒子の製造方法。   The method for producing fibrous porous silica particles according to claim 1 or 2, wherein the mixing and stirring reaction is performed at 30 ° C or more and less than 50 ° C for 30 minutes to 2 hours. 熟成反応を30〜100℃で、30分〜10時間行うことを特徴とする請求項1から3の何れかに記載の繊維状多孔質シリカ粒子の製造方法。   The method for producing fibrous porous silica particles according to any one of claims 1 to 3, wherein the aging reaction is performed at 30 to 100 ° C for 30 minutes to 10 hours. 酸性水溶液が塩酸水溶液であることを特徴とする請求項1から4の何れかに記載の繊維状多孔質シリカ粒子の製造方法。   The method for producing fibrous porous silica particles according to any one of claims 1 to 4, wherein the acidic aqueous solution is an aqueous hydrochloric acid solution. 非イオン界面活性剤がポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオシキドを含むトリブロック共重合体であることを特徴とする請求項1から5の何れかに記載の繊維状多孔質シリカ粒子の製造方法。   The method for producing fibrous porous silica particles according to any one of claims 1 to 5, wherein the nonionic surfactant is a triblock copolymer containing polyethylene oxide-polypropylene oxide-polyethylene oxide.
JP2007034419A 2007-02-15 2007-02-15 Method for producing fibrous porous silica particles Expired - Fee Related JP5051512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034419A JP5051512B2 (en) 2007-02-15 2007-02-15 Method for producing fibrous porous silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034419A JP5051512B2 (en) 2007-02-15 2007-02-15 Method for producing fibrous porous silica particles

Publications (2)

Publication Number Publication Date
JP2008195587A true JP2008195587A (en) 2008-08-28
JP5051512B2 JP5051512B2 (en) 2012-10-17

Family

ID=39754881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034419A Expired - Fee Related JP5051512B2 (en) 2007-02-15 2007-02-15 Method for producing fibrous porous silica particles

Country Status (1)

Country Link
JP (1) JP5051512B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228986A (en) * 2009-03-27 2010-10-14 National Institute Of Advanced Industrial Science & Technology Rod-shaped porous silica particle
JP2016209877A (en) * 2010-03-02 2016-12-15 キング アブドゥーラ ユニバーシティ オブ サイエンス アンド テクノロジー High surface area fibrous silica nanoparticle
CN107416843A (en) * 2017-06-14 2017-12-01 齐鲁工业大学 A kind of silica yolk eggshell structural material of the flower-shaped kernel containing big spacing and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201803983D0 (en) 2017-09-13 2018-04-25 Unifrax I Llc Materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124204A (en) * 2004-10-27 2006-05-18 National Institute Of Advanced Industrial & Technology Large pore diameter fiber-like porous silica particle and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124204A (en) * 2004-10-27 2006-05-18 National Institute Of Advanced Industrial & Technology Large pore diameter fiber-like porous silica particle and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228986A (en) * 2009-03-27 2010-10-14 National Institute Of Advanced Industrial Science & Technology Rod-shaped porous silica particle
JP2016209877A (en) * 2010-03-02 2016-12-15 キング アブドゥーラ ユニバーシティ オブ サイエンス アンド テクノロジー High surface area fibrous silica nanoparticle
CN107416843A (en) * 2017-06-14 2017-12-01 齐鲁工业大学 A kind of silica yolk eggshell structural material of the flower-shaped kernel containing big spacing and preparation method thereof
CN107416843B (en) * 2017-06-14 2019-06-14 齐鲁工业大学 A kind of silica yolk-eggshell structural material of the flower-shaped kernel containing big spacing and preparation method thereof

Also Published As

Publication number Publication date
JP5051512B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP4925086B2 (en) Thin or fibrous organic / inorganic porous silica particles and method for producing the same
JP4831663B2 (en) Thin plate-like porous silica metal composite particles and production method thereof
KR100878559B1 (en) Mesoporous silica particles and preparation method of thereof
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
JP2004143026A (en) Spherical silica porous particle, and production method therefor
JP4855582B2 (en) Mesoporous silica, mesoporous silica composite and production method thereof
JP2007197289A (en) Spherical silica-based mesoporous body, method for producing the same and base catalyst using the same
KR101171799B1 (en) Method for recycling of silica etching waste and method for preparing mesoporous materials
WO2003097530A1 (en) Three dimensional high regular nano-porous inorganic material having fine pores and method for preparation thereof, and method for evaluation thereof
JP2006290680A (en) Spherical nanoparticle porous body and method for synthesizing the same
JP5051512B2 (en) Method for producing fibrous porous silica particles
Rahmat et al. Sodium silicate as source of silica for synthesis of mesoporous SBA-15
JP2001340755A (en) Porous material for adsorbing and separating gas and method of adsorbing and separating gas using the same
JP5110553B2 (en) Fibrous porous silica metal composite particles and method for producing the same
JP5070665B2 (en) Porous body and method for producing the same
JP4099811B2 (en) Shaped porous silica or silica metal composite particles and method for producing the same
JP3005678B2 (en) Method for producing mesoporous silica material
JP4566537B2 (en) Silica-based mesoporous material and method for producing the same
Jin et al. A two-step route to synthesis of small-pored and thick-walled SBA-16-type mesoporous silica under mildly acidic conditions
JP5273551B2 (en) Method for producing fibrous porous silica particles
JP4756484B2 (en) Method for producing fibrous porous silica particles and fibrous porous silica particles
KR100900919B1 (en) Manufacturing Method for Mesoporous Material with Zeolite Framework
JP4604212B2 (en) Large pore fibrous silica particles and method for producing the same
JP4484193B2 (en) Spherical micropore silica porous particles and method for producing the same
Li et al. An unusual example of morphology controlled periodic mesoporous organosilica single crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees