JP2008194670A - Gas treatment apparatus - Google Patents

Gas treatment apparatus Download PDF

Info

Publication number
JP2008194670A
JP2008194670A JP2007104605A JP2007104605A JP2008194670A JP 2008194670 A JP2008194670 A JP 2008194670A JP 2007104605 A JP2007104605 A JP 2007104605A JP 2007104605 A JP2007104605 A JP 2007104605A JP 2008194670 A JP2008194670 A JP 2008194670A
Authority
JP
Japan
Prior art keywords
electrode
honeycomb structure
high voltage
honeycomb
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007104605A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oya
康裕 大矢
Masayuki Iwata
昌之 岩田
Toshimaru Iguchi
俊丸 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007104605A priority Critical patent/JP2008194670A/en
Publication of JP2008194670A publication Critical patent/JP2008194670A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain stable gas treatment capacity and high gas treatment capacity and to achieve cost reduction. <P>SOLUTION: Honeycomb structures 4 are arranged with intervals along the passing direction (the direction from the inlet of a duct 1 to the outlet thereof) of a gas GS to be treated. The honeycomb structures 4-1 and 4-2 are set as a first honeycomb structure group and an electrode 8 is arranged outside the honeycomb structure 4-1 as a first electrode while an electrode 9 is arranged outside the honeycomb structure 4-2 as a second electrode. The honeycomb structures 4-3 and 4-4 are set as a second honeycomb structure group and the electrode 9 is arranged outside the honeycomb structure 4-3 as a first electrode while an electrode 10 is arranged outside the honeycomb structure 4-4 as a second electrode. High voltages having different values are applied across the electrodes 8 and 9 and across the electrodes 9 and 10 to produce plasma in the through-holes (cells) 4a of the honeycomb structures 4 and the space gaps 12 between the honeycomb structures 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、処理対象ガスに含まれる有害ガスを浄化するガス処理装置に関するものである。   The present invention relates to a gas processing apparatus that purifies harmful gas contained in a gas to be processed.

従来より、排気ガス中で高電圧放電を行ってプラズマ状態を作ることで、排気ガスに含まれる有害ガスの浄化を行う技術が知られている。近年、この技術は、脱臭を目的として、工場の排気を浄化する浄化装置や室内の空気を浄化する空気清浄機に応用されつつある。   2. Description of the Related Art Conventionally, a technique for purifying harmful gas contained in exhaust gas by creating a plasma state by performing high voltage discharge in the exhaust gas is known. In recent years, this technology is being applied to a purification device for purifying factory exhaust and an air purifier for purifying indoor air for the purpose of deodorization.

熱的に非平衡な状態、つまり気体の温度やイオン温度に比べ、電子温度が非常に高い状態のプラズマ(非平衡プラズマ(以下、単にプラズマと言う))は、電子衝突でつくられるイオンやラジカルが常温では起こらない化学反応を促進させるので、有害ガスを効率的に除去あるいは分解することが可能な媒体として有害ガス処理において有用であると考えられている。実用化で肝心なことは、処理時のエネルギーの効率の向上と、プラズマで処理した後に完全に安全な生成物質へと変換されることである。   Plasma that is in a thermally non-equilibrium state, that is, in which the electron temperature is much higher than the temperature of the gas or ion (non-equilibrium plasma (hereinafter simply referred to as plasma)) is the ion or radical produced by electron collision. Promotes a chemical reaction that does not occur at room temperature, and is considered useful in hazardous gas treatment as a medium that can efficiently remove or decompose harmful gases. The key to practical use is to improve the energy efficiency during processing and to convert it into a completely safe product after processing with plasma.

一般に、大気圧でのプラズマは気体放電や電子ビームなどによって生成される。現在において、適用が考えられているものに、窒素酸化物(NOx)、硫黄酸化物(SOx)、フロン、CO2 ,揮発性有機溶剤(VOC)などがある。中でもNOxは車の排ガスなどに含まれているので早急な実用化が必要となっている。 In general, plasma at atmospheric pressure is generated by gas discharge or electron beam. There are nitrogen oxides (NOx), sulfur oxides (SOx), chlorofluorocarbons, CO 2 , volatile organic solvents (VOC), etc. that are currently being considered for application. Above all, NOx is contained in the exhaust gas of a car, so that it needs to be put into practical use immediately.

NOx除去における放電プラズマ(気体放電によって生成されたプラズマ)内の現象は、電子衝突によって1次的に生成されたイオンやラジカルが最初の反応を起こし、その後の反応を通してN2 ,H2 O,NH4 NO3 などの各粒子に変換されて行くものと考えられている。 The phenomenon in discharge plasma (plasma generated by gas discharge) in NOx removal is that ions and radicals generated primarily by electron collision cause an initial reaction, and N 2 , H 2 O, It is thought that it is converted into each particle such as NH 4 NO 3 .

また、有害ガスを例えばアセトアルデヒドやホルムアルデヒドとした場合、この有害ガスをプラズマを通すことによって、CO2 とH2 Oに変換される。この場合、副生成物として、オゾン(O3 )が発生する。 Further, when the harmful gas is, for example, acetaldehyde or formaldehyde, the harmful gas is converted into CO 2 and H 2 O by passing plasma. In this case, ozone (O 3 ) is generated as a by-product.

図5に放電プラズマを利用した従来のガス処理装置の要部を例示する(例えば、特許文献1参照)。同図において、1は処理対象ガス(有害ガスを含む空気)GSが流れるダクト(通風路)であり、ダクト1内には、処理対象ガスGSの通過方向に沿って放電電極2とアース電極3とが交互に配置され、これら電極2,3間にセルと呼ばれる多数の貫通孔4aを有するハニカム構造体4が配設されている。5は高電圧電源である。なお、ハニカム構造体4はセラミックス等の絶縁体で形成されており、特許文献2にもその使用例がある。   FIG. 5 illustrates a main part of a conventional gas processing apparatus using discharge plasma (see, for example, Patent Document 1). In the figure, reference numeral 1 denotes a duct (ventilation path) through which a processing target gas (air containing toxic gas) GS flows. Inside the duct 1, a discharge electrode 2 and a ground electrode 3 are arranged along the passing direction of the processing target gas GS. Are arranged alternately, and a honeycomb structure 4 having a large number of through holes 4 a called cells is disposed between the electrodes 2 and 3. Reference numeral 5 denotes a high voltage power source. The honeycomb structure 4 is formed of an insulator such as ceramics, and Patent Document 2 also has an example of its use.

放電電極2は、金属製メッシュ、極細ワイヤ、または針状体等で形成されている。各放電電極2は、導線6によって高電圧電源5の+極に接続されている。アース電極3は、金属性メッシュ等で形成されている。各アース電極3は、導線7によって高電圧電源5の−極に接続されている。   The discharge electrode 2 is formed of a metal mesh, a fine wire, a needle-like body, or the like. Each discharge electrode 2 is connected to the + pole of the high voltage power supply 5 by a conducting wire 6. The ground electrode 3 is formed of a metallic mesh or the like. Each ground electrode 3 is connected to the negative pole of the high voltage power supply 5 by a conducting wire 7.

このガス処理装置では、処理対象ガスGSをダクト1に流し、放電電極2とアース電極3との間に高電圧電源5からの高電圧(数kV〜数10kV)を印加する。これにより、各ハニカム構造体4の貫通孔4a内にプラズマが発生し、このプラズマ中に生成されるイオンやラジカルによって、処理対象ガスGSに含まれる有害ガスが無害な物質に分解される。   In this gas processing apparatus, the gas GS to be processed is caused to flow through the duct 1, and a high voltage (several kV to several tens kV) from the high voltage power supply 5 is applied between the discharge electrode 2 and the ground electrode 3. Thereby, plasma is generated in the through-holes 4a of the honeycomb structures 4, and harmful gases contained in the processing target gas GS are decomposed into harmless substances by ions and radicals generated in the plasma.

特開2000−140562号公報JP 2000-140562 A 特開2001−276561号公報JP 2001-276561 A

しかしながら、上述した従来のガス処理装置では、次の(1)〜(3)のような問題があった。   However, the conventional gas processing apparatus described above has the following problems (1) to (3).

(1)多数のハニカム構造体4を有するが、ばらつきなく均一なプラズマを発生させる技術が確立されておらず、ハニカム構造体4の性能にばらつきが出てしまう。例えば、同じハニカム構造体4同士でもインピータンス値が異なることがあり、また1つのハニカム構造体4内でも例えばその上下でインピーダンス値が異なるというようなこともあり、全体として均一なプラズマが発生せず、ガス処理能力が不安定となる。また、貫通孔4aだけでのプラズマ発生なので、プラズマの発生量が少なく、ガス処理能力が低い。   (1) Although a large number of honeycomb structures 4 are provided, a technique for generating uniform plasma without variations has not been established, and variations in the performance of the honeycomb structures 4 occur. For example, impedance values may be different even in the same honeycomb structure 4, and impedance values may be different in one honeycomb structure 4, for example, at the top and bottom thereof, so that uniform plasma can be generated as a whole. Therefore, the gas processing capacity becomes unstable. Further, since plasma is generated only through the through holes 4a, the amount of plasma generated is small and the gas processing capacity is low.

(2)ハニカム構造体4は吸湿すると低インピーダンスに、乾燥すると高インピーダンスになる特性を持っており、ハニカム構造体4が低インピーダンスになると、流れる電流が増大し放電電極2とアース電極3との間に印加される高電圧値が低下し、ハニカム構造体4が高インピーダンスになると、流れる電流が減少し放電電極2とアース電極3との間に印加される高電圧値が上昇する。このような高電圧値の変化に対し、所望のプラズマの発生量を確保し得る高電圧値を得ることのできる高電圧電源5は、その設計に要する工数も含めて非常に高価となる。   (2) The honeycomb structure 4 has a characteristic of low impedance when moisture is absorbed and high impedance when dried. When the honeycomb structure 4 becomes low impedance, the flowing current increases and the discharge electrode 2 and the ground electrode 3 When the high voltage value applied between them decreases and the honeycomb structure 4 becomes high impedance, the flowing current decreases and the high voltage value applied between the discharge electrode 2 and the ground electrode 3 increases. The high voltage power supply 5 that can obtain a high voltage value that can secure a desired plasma generation amount with respect to such a change in the high voltage value is very expensive including the man-hours required for its design.

(3)ハニカム構造体4のぞれぞれに対して放電電極2とアース電極3を設けているため、部品点数が多く、構造も複雑となり、高価となる。
(4)単一の電源で高電圧を発生させているので、これ以上のプラズマ発生量の向上は期待できず、ガス処理能力の向上も頭打ちとなる。
(3) Since the discharge electrode 2 and the ground electrode 3 are provided for each of the honeycomb structures 4, the number of parts is large, the structure is complicated, and the cost is increased.
(4) Since a high voltage is generated by a single power source, further improvement in plasma generation cannot be expected, and improvement in gas processing capacity will reach its peak.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、安定したガス処理能力と高いガス処理能力を備えたガス処理装置を安価に提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a gas processing apparatus having a stable gas processing capability and a high gas processing capability at a low cost.

このような目的を達成するために本発明は、通風路内に間隔を設けて配置され処理対象ガスが通過する多数の貫通孔を有する複数のハニカム構造体と、複数のハニカム構造体のうち隣り合う複数のハニカム構造体を1群のハニカム構造体群とし、これらハニカム構造体群毎にその両端に位置するハニカム構造体の外側に配置された第1および第2の電極と、各ハニカム構造体群の第1の電極と第2の電極との間に個別に高電圧を印加しハニカム構造体の貫通孔およびハニカム構造体間の空間にプラズマを発生させる高電圧源とを設けたものである。   In order to achieve such an object, the present invention provides a plurality of honeycomb structures having a large number of through holes arranged at intervals in the ventilation passage and through which the gas to be processed passes, and adjacent to each other among the plurality of honeycomb structures. A plurality of matching honeycomb structures are used as a group of honeycomb structures, and each honeycomb structure group includes first and second electrodes disposed outside the honeycomb structures positioned at both ends thereof, and each honeycomb structure. A high voltage source is provided between the first electrode and the second electrode of the group to generate a plasma in the through holes of the honeycomb structure and the space between the honeycomb structures by individually applying a high voltage. .

この発明によれば、通風路内に複数のハニカム構造体が間隔を設けて配置され、この複数のハニカム構造体のうち隣り合う複数のハニカム構造体を1群のハニカム構造体群とし、これらハニカム構造体群毎にその両端に位置するハニカム構造体の外側に第1および第2の電極が配置される。   According to the present invention, a plurality of honeycomb structures are arranged in the ventilation path at intervals, and a plurality of adjacent honeycomb structures among the plurality of honeycomb structures are used as a group of honeycomb structures, and these honeycomb structures are arranged. The first and second electrodes are arranged outside the honeycomb structure located at both ends of each structure group.

例えば、複数のハニカム構造体が第1のハニカム構造体群と第2のハニカム構造体群とに分けられた場合、第1のハニカム構造体群の両端に位置するハニカム構造体群の外側に第1の電極と第2の電極が配置され、第2のハニカム構造体群の両端に位置するハニカム構造体群の外側に第1の電極と第2の電極が配置される。この場合、第1のハニカム構造体群に対して配置する第1の電極および第2の電極と、第2のハニカム構造体群に対して配置する第1の電極および第2の電極とが存在することになるが、第1のハニカム構造体群に対して配置する第2の電極と第2のハニカム構造体群に対して配置する第1の電極とを共通電極とするなどとしてもよい。   For example, when a plurality of honeycomb structures are divided into a first honeycomb structure group and a second honeycomb structure group, the first honeycomb structure group is positioned outside the honeycomb structure group located at both ends of the first honeycomb structure group. One electrode and a second electrode are arranged, and the first electrode and the second electrode are arranged outside the honeycomb structure group located at both ends of the second honeycomb structure group. In this case, there are a first electrode and a second electrode arranged for the first honeycomb structure group, and a first electrode and a second electrode arranged for the second honeycomb structure group. However, the second electrode disposed with respect to the first honeycomb structure group and the first electrode disposed with respect to the second honeycomb structure group may be used as a common electrode.

各ハニカム構造体群の第1の電極と第2の電極との間には個別に高電圧が印加される。この高電圧の印加により、ハニカム構造体の貫通孔およびハニカム構造体間の空間にプラズマが発生し、このプラズマを通過する際に処理対象ガスに含まれる有害ガスが無害な物質に分解される。   A high voltage is individually applied between the first electrode and the second electrode of each honeycomb structure group. By applying this high voltage, plasma is generated in the through holes of the honeycomb structure and the space between the honeycomb structures, and harmful gas contained in the gas to be processed is decomposed into harmless substances when passing through the plasma.

この発明において、プラズマはハニカム構造体の貫通孔だけではなく、ハニカム構造体間の空間(空気層)にも発生する。このため、貫通孔内での有害ガスの分子分解効果に加え、ハニカム構造体間の空間での有害ガスの分子分解効果が加わり、さらにこの貫通孔内での分子分解効果とハニカム構造体間の空間での分子分解効果との相乗効果により、有害ガスの無害な物質への分解が促進される。また、ハニカム構造体間の空間には、均一なプラズマが大量に発生する。   In the present invention, plasma is generated not only in the through holes of the honeycomb structure but also in the space (air layer) between the honeycomb structures. For this reason, in addition to the molecular decomposition effect of harmful gas in the through holes, the molecular decomposition effect of harmful gas in the space between the honeycomb structures is added. The synergistic effect with the molecular decomposition effect in space promotes the decomposition of harmful gases into harmless substances. A large amount of uniform plasma is generated in the space between the honeycomb structures.

また、この発明において、ハニカム構造体間には空気層が設けられるので、電極間のインピーダンスが安定し、ハニカム構造体の吸湿・乾燥によるインピーダンス変化に対して流れる電流の変化が小さくなり、専用に設計された特殊な高電圧電源を使用する必要がなくなる。
また、この発明において、電極はハニカム構造体群毎に設けるのみでよく、ハニカム構造体毎に電極を配置する必要がなくなり、部品点数が削減され、構造が簡単となり、組立工数も少なくて済む。
Further, in this invention, since an air layer is provided between the honeycomb structures, the impedance between the electrodes is stabilized, and the change in the flowing current with respect to the impedance change due to moisture absorption / drying of the honeycomb structure is reduced. Eliminates the need to use specially designed high voltage power supplies.
In the present invention, the electrodes need only be provided for each honeycomb structure group, and it is not necessary to arrange the electrodes for each honeycomb structure, the number of parts is reduced, the structure is simplified, and the number of assembly steps is reduced.

また、この発明では、各ハニカム構造体群の第1の電極と第2の電極との間に個別に高電圧を印加するので、ハニカム構造体間の空間での電位を安定的に高電界状態に保ち、プラズマを安定して発生させることが可能となり、単一電源を用いる場合に比べてガス処理能力を向上させることが可能となる。   Further, in the present invention, since a high voltage is individually applied between the first electrode and the second electrode of each honeycomb structure group, the potential in the space between the honeycomb structures is stably increased to a high electric field state. Therefore, plasma can be generated stably, and the gas processing capacity can be improved as compared with the case of using a single power source.

本発明では、各ハニカム構造体群の第1の電極と第2の電極との間に個別に高電圧を印加するが、電圧値が異なる高電圧として印加するようにしたり、電圧種別が異なる高電圧として印加するようにしたり、周波数が異なる高電圧として印加するようにするなどとしてもよい。電圧種別を異ならせたり、周波数を異ならせたりすることにより、ハニカム構造体間の空間の電位を複雑な高電界状態にして、プラズマを安定して発生させることが可能となる。   In the present invention, a high voltage is individually applied between the first electrode and the second electrode of each honeycomb structure group. However, a high voltage having a different voltage value may be applied, or a high voltage of a different voltage type may be applied. It may be applied as a voltage, or may be applied as a high voltage having a different frequency. By varying the voltage type or the frequency, the potential of the space between the honeycomb structures can be changed to a complex high electric field state, and plasma can be stably generated.

本発明によれば、通風路内に複数のハニカム構造体を間隔を設けて配置し、この複数のハニカム構造体のうち隣り合う複数のハニカム構造体を1群のハニカム構造体群とし、これらハニカム構造体群毎にその両端に位置するハニカム構造体の外側に第1および第2の電極を配置し、各ハニカム構造体群の第1の電極と第2の電極との間に個別に高電圧を印加するようにしたので、ハニカム構造体の貫通孔だけではなく、ハニカム構造体間の空間にもプラズマが発生するものとなり、貫通孔内での有害ガスの分子分解効果に加え、ハニカム構造体間の空間での有害ガスの分子分解効果が加わり、さらにこの貫通孔内での分子分解効果とハニカム構造体間の空間での分子分解効果との相乗効果により、有害ガスの無害な物質への分解が促進され、ガス処理能力が高まる。また、ハニカム構造体間の空間には、均一なプラズマが大量に発生するので、ガス処理能力が安定する。   According to the present invention, a plurality of honeycomb structures are arranged at intervals in the ventilation path, and a plurality of adjacent honeycomb structures among the plurality of honeycomb structures are made into one group of honeycomb structures, and the honeycombs First and second electrodes are arranged outside the honeycomb structure located at both ends of each structure group, and a high voltage is individually applied between the first electrode and the second electrode of each honeycomb structure group. As a result, the plasma is generated not only in the through holes of the honeycomb structure but also in the spaces between the honeycomb structures. In addition to the molecular decomposition effect of harmful gases in the through holes, the honeycomb structure In addition to the molecular decomposition effect of harmful gas in the space between, and the synergistic effect of the molecular decomposition effect in the through hole and the molecular decomposition effect in the space between the honeycomb structures, the harmful gas is converted into a harmless substance. Decomposition is promoted, Scan processing capacity is increased. Further, since a large amount of uniform plasma is generated in the space between the honeycomb structures, the gas processing capacity is stabilized.

また、本発明によれば、ハニカム構造体間に空気層が設けられるので、電極間のインピーダンスが安定し、ハニカム構造体の吸湿・乾燥によるインピーダンス変化に対して流れる電流の変化が小さくなり、専用に設計された特殊な高電圧電源を使用する必要がなくなり、市販されている安価な高電圧電源を用いることができるようになる。
また、本発明によれば、電極はハニカム構造体群毎に設けるのみでよく、ハニカム構造体毎に電極を配置する必要がない。これにより、部品点数が削減され、構造が簡単となり、組立個数も少なくて済み、コストダウンが図られる。
Further, according to the present invention, since the air layer is provided between the honeycomb structures, the impedance between the electrodes is stabilized, and the change in the flowing current is reduced with respect to the impedance change due to moisture absorption / drying of the honeycomb structure. Therefore, it is not necessary to use a special high-voltage power supply designed in the above-mentioned manner, and a commercially available inexpensive high-voltage power supply can be used.
In addition, according to the present invention, the electrodes need only be provided for each honeycomb structure group, and it is not necessary to arrange the electrodes for each honeycomb structure. As a result, the number of parts is reduced, the structure is simplified, the number of assembled parts can be reduced, and the cost can be reduced.

また、本発明によれば、各ハニカム構造体群の第1の電極と第2の電極との間に個別に高電圧を印加するようにしたので、電圧値が異なる高電圧として印加するようにしたり、電圧種別が異なる高電圧として印加するようにしたり、周波数が異なる高電圧として印加するようにするなどして、ハニカム構造体間の空間での電位を安定的に高電界状態に保ち、プラズマを安定して発生させることが可能となり、単一電源を用いる場合に比べてガス処理能力を向上させることが可能となる。   Further, according to the present invention, since the high voltage is individually applied between the first electrode and the second electrode of each honeycomb structure group, the high voltage having different voltage values is applied. The voltage in the space between the honeycomb structures is stably maintained in a high electric field state by applying a high voltage with a different voltage type or applying a high voltage with a different frequency. Can be generated stably, and the gas processing capacity can be improved as compared with the case of using a single power source.

以下、本発明を図面に基づいて詳細に説明する。
〔実施の形態1〕
図1はこの発明に係るガス処理装置の一実施の形態(実施の形態1)の要部を示す図である。同図において、図5と同一符号は図5を参照して説明した構成要素と同一或いは同等構成要素を示し、その説明は省略する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
[Embodiment 1]
FIG. 1 is a diagram showing a main part of an embodiment (Embodiment 1) of a gas processing apparatus according to the present invention. 5, the same reference numerals as those in FIG. 5 denote the same or equivalent components as those described with reference to FIG. 5, and the description thereof will be omitted.

この実施の形態では、ダクト1内に処理対象ガスGSの通過方向(ダクト1の入口から出口への方向)に沿って、複数のハニカム構造体4を間隔を設けて配置している。この例では、ハニカム構造体4−1と4−2との間に間隔G1を設けて、ハニカム構造体4−3と4−4との間に間隔G2を設けて、ハニカム構造体4−1〜4−4をダクト1内に配置している。   In this embodiment, a plurality of honeycomb structures 4 are arranged in the duct 1 along the passing direction of the processing target gas GS (the direction from the inlet to the outlet of the duct 1) at intervals. In this example, a gap G1 is provided between the honeycomb structures 4-1 and 4-2, and a gap G2 is provided between the honeycomb structures 4-3 and 4-4. ˜4-4 are arranged in the duct 1.

また、ダクト1内の複数のハニカム構造体4のうち隣り合うハニカム構造体4−1と4−2を第1のハニカム構造体群とし、この第1のハニカム構造体群の両端に位置するハニカム構造体4−1および4−2の外側に、第1の電極として電極8を、第2の電極として電極9を配置している。   In addition, adjacent honeycomb structures 4-1 and 4-2 among the plurality of honeycomb structures 4 in the duct 1 serve as a first honeycomb structure group, and honeycombs positioned at both ends of the first honeycomb structure group. Outside the structures 4-1 and 4-2, an electrode 8 is arranged as a first electrode, and an electrode 9 is arranged as a second electrode.

同様にして、ダクト1内の複数のハニカム構造体4のうち隣り合うハニカム構造体4−3と4−4を第2のハニカム構造体群とし、この第2のハニカム構造体群の両端に位置するハニカム構造体4−3および4−3の外側に、第1の電極として電極9を、第2の電極として電極10を配置している。   Similarly, adjacent honeycomb structures 4-3 and 4-4 among the plurality of honeycomb structures 4 in the duct 1 are set as the second honeycomb structure group, and are positioned at both ends of the second honeycomb structure group. Outside the honeycomb structures 4-3 and 4-3, the electrode 9 is arranged as the first electrode, and the electrode 10 is arranged as the second electrode.

なお、本実施の形態において、電極9は第1のハニカム構造体群の第2の電極と第2のハニカム構造体群の第1の電極とを兼ねた共通電極とされているが、第1のハニカム構造体群の第2の電極と第2のハニカム構造体群の第1の電極とを独立した電極とするようにしてもよい。   In the present embodiment, the electrode 9 is a common electrode that serves as both the second electrode of the first honeycomb structure group and the first electrode of the second honeycomb structure group. The second electrode of the honeycomb structure group and the first electrode of the second honeycomb structure group may be independent electrodes.

電極8,9および10は、処理対象ガスGSが通過するように、金属製メッシュとされている。また、本実施の形態において、高電圧電源(高電圧源)5は、電圧値が異なる第1の高電圧電源5−1と第2の高電圧電源5−2とから構成され、電極8が導線11によって高電圧電源5−1の+極に接続され、電極9が導線12によって高電圧電源5−1の−極および高電圧電源5−2の+極に接続され、電極10が導線13によって高電圧電源5−2の−極に接続されている。   The electrodes 8, 9 and 10 are made of metal mesh so that the gas to be processed GS passes through. In the present embodiment, the high voltage power source (high voltage source) 5 includes a first high voltage power source 5-1 and a second high voltage power source 5-2 having different voltage values, and the electrode 8 has The lead wire 11 is connected to the + pole of the high voltage power source 5-1 by the conductive wire 11, the electrode 9 is connected to the negative pole of the high voltage power source 5-1 and the positive pole of the high voltage power source 5-2 by the lead wire 12, and the electrode 10 is connected to the lead wire 13. Is connected to the negative pole of the high voltage power source 5-2.

ハニカム構造体4は、セラミックス等の絶縁体で形成されており、処理対象ガスGSが通過する多数の貫通孔(セル)4aを有している。各ハニカム構造体4の単位面積当たりの貫通孔4aの数は等しくされている。すなわち、本実施の形態では、単位面積当たりの貫通孔4aの数が等しい同一種類のハニカム構造体4−1〜4−4を使用している。   The honeycomb structure 4 is formed of an insulator such as ceramics, and has a large number of through holes (cells) 4a through which the processing target gas GS passes. The number of through holes 4a per unit area of each honeycomb structure 4 is made equal. That is, in this embodiment, the same type of honeycomb structures 4-1 to 4-4 having the same number of through holes 4a per unit area are used.

また、この実施の形態において、ハニカム構造体4−1と4−2との間の間隔G1と、ハニカム構造体4−3と4−4との間の間隔G2とは等しく、例えば0.5mm〜数mmとされている。これにより、ハニカム構造体4−1と4−2との間に空気層14−1が形成され、ハニカム構造体4−3と4−4との間に空気層14−2が形成されている。以下、空気層14(14−1,14−2)を空間ギャップと呼ぶ。   In this embodiment, the gap G1 between the honeycomb structures 4-1 and 4-2 is equal to the gap G2 between the honeycomb structures 4-3 and 4-4, for example, 0.5 mm. It is set to several mm. As a result, an air layer 14-1 is formed between the honeycomb structures 4-1 and 4-2, and an air layer 14-2 is formed between the honeycomb structures 4-3 and 4-4. . Hereinafter, the air layer 14 (14-1, 14-2) is referred to as a space gap.

このガス処理装置では、処理対象ガスGSをダクト1内に流し、電極8と9との間に高電圧電源5−1からの高電圧を、電極9と10との間に高電圧電源5−2からの高電圧を印加する。これにより、ハニカム構造体4の貫通孔4aおよびハニカム構造体4間の空間ギャップ14にプラズマが発生し、このプラズマ中に生成されるイオンやラジカルによって、処理対象ガスGSに含まれる有害ガスが無害な物質に分解される。   In this gas processing apparatus, the gas GS to be processed is caused to flow into the duct 1, a high voltage from the high voltage power source 5-1 is provided between the electrodes 8 and 9, and a high voltage power source 5 is provided between the electrodes 9 and 10. High voltage from 2 is applied. As a result, plasma is generated in the through holes 4a of the honeycomb structure 4 and the space gap 14 between the honeycomb structures 4, and harmful gases contained in the processing target gas GS are harmless by ions and radicals generated in the plasma. It is decomposed into new substances.

本実施の形態において、プラズマはハニカム構造体4の貫通孔4aだけではなく、ハニカム構造体4間の空間ギャップ14にも発生する。このため、貫通孔4a内での有害ガスの分子分解効果に加え、ハニカム構造体4間の空間ギャップ14での有害ガスの分子分解効果が加わり、さらにこの貫通孔4a内での分子分解効果とハニカム構造体4間の空間ギャップ14での分子分解効果との相乗効果により、有害ガスの無害な物質への分解が促進され、ガス処理能力が高まる。また、ハニカム構造体4間の空間ギャップ14には、対向する貫通孔4aの縁面から電界が広がって、均一なプラズマが大量に発生する。これにより、貫通孔4a内に発生するプラズマのばらつきによる影響が小さくなり、ガス処理能力が安定する。   In the present embodiment, plasma is generated not only in the through holes 4 a of the honeycomb structure 4 but also in the space gap 14 between the honeycomb structures 4. For this reason, in addition to the molecular decomposition effect of the harmful gas in the through hole 4a, the molecular decomposition effect of the harmful gas in the space gap 14 between the honeycomb structures 4 is added, and the molecular decomposition effect in the through hole 4a is further increased. The synergistic effect with the molecular decomposition effect in the space gap 14 between the honeycomb structures 4 promotes the decomposition of harmful gases into innocuous substances and increases the gas processing capacity. Further, in the space gap 14 between the honeycomb structures 4, an electric field spreads from the edge surface of the opposing through hole 4a, and a large amount of uniform plasma is generated. Thereby, the influence by the dispersion | variation in the plasma which generate | occur | produces in the through-hole 4a becomes small, and gas processing capability is stabilized.

また、この実施の形態において、ハニカム構造体4間には空気層である空間ギャップ14が設けられるので、この空間ギャップ14により電極間のインピーダンスが安定し、ハニカム構造体の吸湿・乾燥によるインピーダンス変化に対して流れる電流の変化が小さくなる。これにより、電極間に加わる高電圧値の変化が小さくなり、高電圧電源5として、専用に設計された特殊な高電圧電源ではなく、市販されている安価な高電圧電源を使用することができるようになる。   In this embodiment, since the space gap 14 which is an air layer is provided between the honeycomb structures 4, the impedance between the electrodes is stabilized by the space gap 14, and the impedance change due to moisture absorption and drying of the honeycomb structure. The change in the current that flows is reduced. As a result, the change in the high voltage value applied between the electrodes is reduced, and a commercially available inexpensive high voltage power supply can be used as the high voltage power supply 5 instead of a special high voltage power supply designed exclusively. It becomes like this.

また、この実施の形態において、電極はハニカム構造体群毎に設けるのみでよく、ハニカム構造体4毎に電極を配置する必要がない。これにより、部品点数が削減され、構造が簡単となり、組立工数も少なくて済み、コストダウンが図られる。   Further, in this embodiment, the electrodes need only be provided for each honeycomb structure group, and it is not necessary to arrange the electrodes for each honeycomb structure 4. As a result, the number of parts is reduced, the structure is simplified, the number of assembly steps is reduced, and the cost can be reduced.

また、この実施の形態では、第1のハニカム構造体群の第1の電極8と第2の電極9との間に第1の高電圧電源5−1からの高電圧を、第2のハニカム構造体群の第1の電極9と第2の電極10との間に第2の高電圧電源5−2からの高電圧を個別に印加しているので、空間ギャップ14−1,14−2での電位を安定的に高電界状態に保ち、プラズマを安定して発生させることが可能となり、従来のような単一電源を用いる場合に比べてガス処理能力を向上させることが可能となる。また、高電圧電源5−1からの高電圧と高電圧電源5−2からの高電圧が異なる値とすることにより、第1のハニカム構造体群と第2のハニカム構造体群とでプラズマの発生量を変えて、分解可能な有害ガスの種類を異ならせたりすることが可能となる。   In this embodiment, a high voltage from the first high-voltage power source 5-1 is applied between the first electrode 8 and the second electrode 9 of the first honeycomb structure group to the second honeycomb structure. Since the high voltage from the second high voltage power source 5-2 is individually applied between the first electrode 9 and the second electrode 10 of the structure group, the space gaps 14-1 and 14-2 are applied. Thus, it is possible to stably maintain a high electric field state and generate plasma stably, and it is possible to improve the gas processing capacity as compared with the case of using a single power source as in the prior art. Further, by setting the high voltage from the high voltage power supply 5-1 and the high voltage from the high voltage power supply 5-2 to different values, the plasma of the first honeycomb structure group and the second honeycomb structure group is changed. It is possible to change the amount of generated harmful gas by changing the generation amount.

〔実施の形態2〕
実施の形態1では、高電圧電源5として、直流の高電圧電源5−1と5−2との組合せ(DC+DC)としたが、交流の高電圧電源同士の組合せ(AC+AC)としたり、直流と交流の高電圧電源の組合せ(DC+AC)としたり、パルス電源と交流電源との組合せ(パルス+AC)としたするなど、各種の電圧種別の組合せが考えられる。また、交流の高電圧電源を用いた場合、周波数を異ならせるなどしてもよい。また、ハニカム構造体群の数を増やし、個別に印加する高電圧電源の種類をさらに増やしたり、周波数を異ならせたりするようにしてもよい。電圧種別を異ならせたり、周波数を異ならせたりすることにより、ハニカム構造体4間の空間の電位を複雑な高電界状態にして、プラズマを安定して発生させることが可能となる。
[Embodiment 2]
In the first embodiment, the high voltage power supply 5 is a combination of DC high voltage power supplies 5-1 and 5-2 (DC + DC), but a combination of AC high voltage power supplies (AC + AC), Various combinations of voltage types such as a combination of AC high voltage power supply (DC + AC) and a combination of pulse power supply and AC power supply (pulse + AC) are conceivable. Further, when an AC high voltage power supply is used, the frequency may be varied. Further, the number of honeycomb structure groups may be increased to further increase the types of high-voltage power supplies to be individually applied, or to vary the frequency. By changing the voltage type or the frequency, the potential of the space between the honeycomb structures 4 can be changed to a complex high electric field state, and plasma can be generated stably.

図2に高電圧電源5を交流の高電圧電源同士の組合せとした例を示す。この例では、第1の高電圧電源として交流の高電圧電源5−3を用い、第2の高電圧電源として交流の高電圧電源5−4を用いている。この例において、高電圧電源5−3と5−4の周波数を変えると、空間ギャップ14(14−1,14−2)内を複雑な高電界状態とし、全体として空間ギャップ14にプラズマが発生しない休止期間を少なくすることができ、安定してプラズマを発生させることが可能となる。   FIG. 2 shows an example in which the high voltage power supply 5 is a combination of AC high voltage power supplies. In this example, an AC high voltage power supply 5-3 is used as the first high voltage power supply, and an AC high voltage power supply 5-4 is used as the second high voltage power supply. In this example, when the frequencies of the high voltage power supplies 5-3 and 5-4 are changed, the space gap 14 (14-1, 14-2) is changed into a complex high electric field state, and plasma is generated in the space gap 14 as a whole. It is possible to reduce the idle period, and to stably generate plasma.

〔実施の形態3〕
実施の形態1では、処理対象ガスGSの通過方向に沿って複数のハニカム構造体4をダクト1内に設けるようにしたが、図3や図4に示すように、処理対象ガスGSの通過方向に直交する方向に沿って複数のハニカム構造体4をダクト1内に設けるようにしてもよい。
[Embodiment 3]
In the first embodiment, the plurality of honeycomb structures 4 are provided in the duct 1 along the passing direction of the processing target gas GS. However, as shown in FIGS. 3 and 4, the passing direction of the processing target gas GS is performed. A plurality of honeycomb structures 4 may be provided in the duct 1 along a direction orthogonal to the duct 1.

このようにすると、各ハニカム構造体4が処理対象ガスGSの通過方向に対し直交する方向に沿って間隔を設けて配置されるので、処理対象ガスGSの通過方向に沿って配置される場合よりも、処理対象ガスGSが各ハニカム構造体4の貫通孔4aやハニカム構造体4間の空間ギャップ12でプラズマに晒される時間が長くなる。これにより、ガス分解が行われる機会が多くなり、ガス処理能力が向上し、高速流におけるガス処理能力の低下を防ぐことが可能となる。   In this case, since the honeycomb structures 4 are arranged at intervals along the direction orthogonal to the passing direction of the processing target gas GS, the honeycomb structures 4 are arranged along the passing direction of the processing target gas GS. In addition, the time during which the processing target gas GS is exposed to plasma in the through holes 4a of the honeycomb structures 4 and the space gaps 12 between the honeycomb structures 4 becomes longer. As a result, the opportunity for gas decomposition is increased, the gas processing capacity is improved, and it is possible to prevent the gas processing capacity from being lowered in a high-speed flow.

なお、上述した実施の形態1〜3では、ハニカム構造体4−1〜4−4の単位面積当たりの貫通孔4aの数を等しくしているが、ハニカム構造体4−1〜4−4の単位面積当たりの貫通孔4aの数を選択的に異ならせるようにしてもよい。例えば、ハニカム構造体4−1,4−2については単位面積当たりの貫通孔4aの数を少なし、ハニカム構造体4−3,4−4については単位面積当たりの貫通孔4aの数を多くするようにしたり、ハニカム構造体4−1,4−2,4−3,4−4の順で単位面積当たりの貫通孔4aの数を多くするなどとしてもよい。   In the first to third embodiments described above, the number of through holes 4a per unit area of the honeycomb structures 4-1 to 4-4 is equalized. The number of through holes 4a per unit area may be selectively varied. For example, the honeycomb structures 4-1 and 4-2 have a small number of through holes 4a per unit area, and the honeycomb structures 4-3 and 4-4 have a large number of through holes 4a per unit area. Alternatively, the number of through holes 4a per unit area may be increased in the order of honeycomb structures 4-1, 4-2, 4-3, and 4-4.

ハニカム構造体4−1,4−2,4−3,4−4の順で単位面積当たりの貫通孔4aの数を多くすると、ハニカム構造体4−1,4−2,4−3,4−4の順でプラズマの発生量が大きくなり、各ハニカム構造体4で分解可能な有害ガスの種類を異ならせることが可能となる。   When the number of the through holes 4a per unit area is increased in the order of the honeycomb structure 4-1, 4-2, 4-3, 4-4, the honeycomb structure 4-1, 4-2, 4-3, 4 The amount of generated plasma increases in the order of −4, and the types of harmful gases that can be decomposed in each honeycomb structure 4 can be made different.

例えば、その分子が持つエネルギー準位が順に高い有害ガスA,B,C,Dが処理対象ガスGSに含まれていたものとした場合、処理対象ガスGSに含まれる有害ガスAをハニカム構造体4−1で分解し、処理対象ガスGSに含まれる有害ガスBをハニカム構造体4−2で分解し、処理対象ガスGSに含まれる有害ガスCをハニカム構造体4−3で分解し、処理対象ガスGSに含まれる有害ガスDをハニカム構造体4−4で分解するなど、各ハニカム構造体4で分解可能な有害ガスの種類を異ならせることができる。   For example, in the case where harmful gases A, B, C, and D having higher energy levels in their molecules are included in the processing target gas GS, the harmful gas A included in the processing target gas GS is converted into the honeycomb structure. 4-1 is decomposed, the harmful gas B contained in the processing target gas GS is decomposed by the honeycomb structure 4-2, and the harmful gas C contained in the processing target gas GS is decomposed by the honeycomb structure 4-3. The kind of harmful gas that can be decomposed in each honeycomb structure 4 can be made different, for example, the harmful gas D contained in the target gas GS is decomposed by the honeycomb structure 4-4.

この場合、ハニカム構造体4−2での有害ガスBの分解に際し、ハニカム構造体4−1によって分解しきれなかった有害ガスAの分解が行われ、ハニカム構造体4−3での有害ガスCの分解に際し、ハニカム構造体4−1,4−2で分解しきれなかった有害ガスA,Bの分解が行われ、ハニカム構造体4−4での有害ガスDの分解に際し、ハニカム構造体4−1,4−2,4−3で分解しきれなかった有害ガスA,B,Cの分解が行われる。   In this case, when the harmful gas B is decomposed in the honeycomb structure 4-2, the harmful gas A that could not be decomposed by the honeycomb structure 4-1 is decomposed, and the harmful gas C in the honeycomb structure 4-3 is decomposed. At the time of decomposition, harmful gases A and B that could not be decomposed by the honeycomb structures 4-1 and 4-2 are decomposed, and at the time of decomposition of the harmful gas D by the honeycomb structures 4-4, the honeycomb structure 4 Hazardous gases A, B, and C that could not be decomposed by -1,4-2,4-3 are decomposed.

このような方法とすると、1つのハニカム構造体4で全ての有害ガスA,B,C,Dの分解を行うようにした場合よりも、有害ガスの分解に際して発生する副生成物(例えば、オゾン)の発生量を少なくすることができる。   With such a method, a by-product (for example, ozone) generated during the decomposition of the harmful gas, compared with the case where all the harmful gases A, B, C, and D are decomposed by one honeycomb structure 4. ) Can be reduced.

また、上述した実施の形態1〜3ではハニカム構造体4間の間隔G(G1,G2)を等しくしているが、異ならせるようにしてもよい。ハニカム構造体4間の間隔G1,G2を異ならせると、空間ギャップ14−1,14−2でのプラズマの発生量が異なるものとなり、ハニカム構造体4−1〜4−4の単位面積当たりの貫通孔4aの数を選択的に異ならせた場合と同様の作用・効果を得ることができる。この場合、ハニカム構造体4−1〜4−4を単位面積当たりの貫通孔4aの数が等しい同一種類のハニカム構造体とすることができるので、部品の種類を増やさずに済む。   In the first to third embodiments described above, the gap G (G1, G2) between the honeycomb structures 4 is made equal, but may be different. When the gaps G1 and G2 between the honeycomb structures 4 are made different, the amount of plasma generated in the space gaps 14-1 and 14-2 is different, and the unit area of the honeycomb structures 4-1 to 4-4 is different. The same operation and effect as when the number of through holes 4a is selectively varied can be obtained. In this case, since the honeycomb structures 4-1 to 4-4 can be the same type of honeycomb structure having the same number of through holes 4a per unit area, the number of parts does not need to be increased.

また、上述した実施の形態1〜3において、ハニカム構造体4はオゾンを分解する触媒機能を備えたものとしてもよく、ハニカム構造体4−4の下流位置にオゾンを分解する触媒を設けるようにしてもよい。
また、上述した実施の形態1〜3では、ハニカム構造体4の数を4つとしたが、2つ以上のハニカム構造体群を形成することができれば、ハニカム構造体4の数は幾つあってもよい。
また、上述した実施の形態1〜3において、副生成物としてオゾンを大量に発生させ、オゾン発生器として転用するようにしてもよい。
In the first to third embodiments described above, the honeycomb structure 4 may have a catalyst function of decomposing ozone, and a catalyst for decomposing ozone is provided at a downstream position of the honeycomb structure 4-4. May be.
In Embodiments 1 to 3 described above, the number of honeycomb structures 4 is four. However, as long as two or more honeycomb structure groups can be formed, the number of honeycomb structures 4 is not limited. Good.
Moreover, in Embodiment 1-3 mentioned above, ozone may be generated in large quantities as a by-product, and you may make it divert as an ozone generator.

なお、本ガス処理装置は、燃料電池等に用いられる水素を効率的に生成する目的で、炭化水素類等から水素含有ガスを生成する、いわゆる改質にも適用することができる。例えばオクタン(ガソリンの平均分子量に比較的近い物質)C818の場合は、本ガス処理装置に供給すると下記(1)式で示される化学反応が促進され、その結果水素ガスを効率よく生成することができる。
818+8H2O+4(O2+4N2)→8CO2+17H2+16N2・・・・(1)
In addition, this gas processing apparatus can also be applied to so-called reforming for generating a hydrogen-containing gas from hydrocarbons or the like for the purpose of efficiently generating hydrogen used in a fuel cell or the like. For example, in the case of octane (substance relatively close to the average molecular weight of gasoline) C 8 H 18 , when supplied to this gas treatment device, the chemical reaction represented by the following formula (1) is promoted, and as a result, hydrogen gas is efficiently generated. can do.
C 8 H 18 + 8H 2 O + 4 (O 2 + 4N 2 ) → 8CO 2 + 17H 2 + 16N 2 ... (1)

本発明に係るガス処理装置の一実施の形態(実施の形態1)の要部を示す図である。It is a figure which shows the principal part of one Embodiment (Embodiment 1) of the gas processing apparatus which concerns on this invention. 高電圧電源として交流の高電圧電源同士の組合せとした例(実施の形態2)を示す図である。It is a figure which shows the example (Embodiment 2) made into the combination of alternating current high voltage power supplies as a high voltage power supply. 処理対象ガスの通過方向に沿って複数のハニカム構造体をダクト内に設けた例(DC+DCの組合せの場合)を示す図である。It is a figure which shows the example (in the case of the combination of DC + DC) which provided the some honeycomb structure in the duct along the passage direction of process target gas. 処理対象ガスの通過方向に沿って複数のハニカム構造体をダクト内に設けた例(AC+ACの組合せの場合)を示す図である。It is a figure which shows the example (in the case of the combination of AC + AC) which provided the several honeycomb structure in the duct along the passage direction of process target gas. 放電プラズマを利用した従来のガス処理装置の要部を例示する図である。It is a figure which illustrates the principal part of the conventional gas processing apparatus using discharge plasma.

符号の説明Explanation of symbols

1…ダクト(通風路)、4(4−1〜4−4)…ハニカム構造体、4a…貫通孔(セル)、5(5−1〜5−4)…高電圧電源、8,9,10…電極、14(14−1,14−2)…空間ギャップ、G(G1,G2)…間隔、GS…処理対象ガス。   DESCRIPTION OF SYMBOLS 1 ... Duct (ventilation path), 4 (4-1 to 4-4) ... Honeycomb structure, 4a ... Through-hole (cell), 5 (5-1 to 5-4) ... High voltage power supply 8, 9, DESCRIPTION OF SYMBOLS 10 ... Electrode, 14 (14-1, 14-2) ... Spatial gap, G (G1, G2) ... space | interval, GS ... Process target gas.

Claims (4)

通風路内に間隔を設けて配置され前記処理対象ガスが通過する多数の貫通孔を有する複数のハニカム構造体と、
前記複数のハニカム構造体のうち隣り合う複数のハニカム構造体を1群のハニカム構造体群とし、これらハニカム構造体群毎にその両端に位置するハニカム構造体の外側に配置された第1および第2の電極と、
前記各ハニカム構造体群の第1の電極と第2の電極との間に個別に高電圧を印加し前記ハニカム構造体の貫通孔および前記ハニカム構造体間の空間にプラズマを発生させる高電圧源と
を備えることを特徴とするガス処理装置。
A plurality of honeycomb structures having a large number of through holes arranged at intervals in the ventilation path and through which the gas to be treated passes;
A plurality of adjacent honeycomb structures among the plurality of honeycomb structures are regarded as a group of honeycomb structures, and the first and second elements arranged outside the honeycomb structures located at both ends of each honeycomb structure group. Two electrodes;
A high voltage source for generating a plasma in a through hole of the honeycomb structure and a space between the honeycomb structures by individually applying a high voltage between the first electrode and the second electrode of each honeycomb structure group A gas treatment device comprising:
請求項1に記載されたガス処理装置において、
前記高電圧源は、前記各ハニカム構造体群の第1の電極と第2の電極との間に電圧値が異なる高電圧を印加する
ことを特徴とするガス処理装置。
The gas treatment device according to claim 1, wherein
The gas processing apparatus, wherein the high voltage source applies a high voltage having a different voltage value between the first electrode and the second electrode of each honeycomb structure group.
請求項1に記載されたガス処理装置において、
前記高電圧源は、前記各ハニカム構造体群の第1の電極と第2の電極との間に電圧種別が異なる高電圧を印加する
ことを特徴とするガス処理装置。
The gas treatment device according to claim 1, wherein
The gas processing apparatus, wherein the high voltage source applies a high voltage having a different voltage type between the first electrode and the second electrode of each honeycomb structure group.
請求項1に記載されたガス処理装置において、
前記高電圧源は、前記各ハニカム構造体群の第1の電極と第2の電極との間に周波数が異なる高電圧を印加する
ことを特徴とするガス処理装置。
The gas treatment device according to claim 1, wherein
The gas processing apparatus, wherein the high voltage source applies a high voltage having a different frequency between the first electrode and the second electrode of each honeycomb structure group.
JP2007104605A 2007-01-15 2007-04-12 Gas treatment apparatus Pending JP2008194670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104605A JP2008194670A (en) 2007-01-15 2007-04-12 Gas treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007006382 2007-01-15
JP2007104605A JP2008194670A (en) 2007-01-15 2007-04-12 Gas treatment apparatus

Publications (1)

Publication Number Publication Date
JP2008194670A true JP2008194670A (en) 2008-08-28

Family

ID=39754116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104605A Pending JP2008194670A (en) 2007-01-15 2007-04-12 Gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP2008194670A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162455A (en) * 2009-01-14 2010-07-29 Yamatake Corp Gas treatment apparatus
JP2010234256A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
JP2010234261A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
JP2010234255A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
EP2272586A1 (en) * 2009-06-25 2011-01-12 NGK Insulators, Ltd. Plasma reactor
JP2011206703A (en) * 2010-03-30 2011-10-20 Yamatake Corp Gas treatment apparatus
JP2011206705A (en) * 2010-03-30 2011-10-20 Yamatake Corp Gas treatment apparatus
JP2012213720A (en) * 2011-03-31 2012-11-08 Azbil Corp Gas treatment device
JP2012213721A (en) * 2011-03-31 2012-11-08 Azbil Corp Gas treatment device
JP2012213719A (en) * 2011-03-31 2012-11-08 Azbil Corp Gas treatment device
CN103968466A (en) * 2014-05-20 2014-08-06 郑巍 Indoor air processing technology and device
CN104043320A (en) * 2014-05-11 2014-09-17 郑巍 Method for treatment of indoor air pollution by combination of photocatalytic plasma and ultrasonic
JP2016077945A (en) * 2014-10-14 2016-05-16 アズビル株式会社 Gas treatment device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148329A (en) * 1987-12-02 1989-06-09 Mitsui Toatsu Chem Inc Electric discharge treatment device for exhaust gas
JPH03237982A (en) * 1990-02-16 1991-10-23 Tdk Corp Sterilizing and deodorizing apparatus
JPH0435723A (en) * 1990-05-29 1992-02-06 Tdk Corp Sterilizing deodoration unit
JP2000140562A (en) * 1998-11-16 2000-05-23 Denso Corp Gas treatment apparatus
JP2001190652A (en) * 2000-01-17 2001-07-17 Matsushita Electric Ind Co Ltd Deodorizing device
JP2004245096A (en) * 2003-02-12 2004-09-02 Ngk Insulators Ltd Plasma reactor
JP2006261040A (en) * 2005-03-18 2006-09-28 Ngk Insulators Ltd Plasma reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148329A (en) * 1987-12-02 1989-06-09 Mitsui Toatsu Chem Inc Electric discharge treatment device for exhaust gas
JPH03237982A (en) * 1990-02-16 1991-10-23 Tdk Corp Sterilizing and deodorizing apparatus
JPH0435723A (en) * 1990-05-29 1992-02-06 Tdk Corp Sterilizing deodoration unit
JP2000140562A (en) * 1998-11-16 2000-05-23 Denso Corp Gas treatment apparatus
JP2001190652A (en) * 2000-01-17 2001-07-17 Matsushita Electric Ind Co Ltd Deodorizing device
JP2004245096A (en) * 2003-02-12 2004-09-02 Ngk Insulators Ltd Plasma reactor
JP2006261040A (en) * 2005-03-18 2006-09-28 Ngk Insulators Ltd Plasma reactor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162455A (en) * 2009-01-14 2010-07-29 Yamatake Corp Gas treatment apparatus
JP2010234256A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
JP2010234261A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
JP2010234255A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas treatment apparatus
EP2272586A1 (en) * 2009-06-25 2011-01-12 NGK Insulators, Ltd. Plasma reactor
JP2011206705A (en) * 2010-03-30 2011-10-20 Yamatake Corp Gas treatment apparatus
JP2011206703A (en) * 2010-03-30 2011-10-20 Yamatake Corp Gas treatment apparatus
JP2012213720A (en) * 2011-03-31 2012-11-08 Azbil Corp Gas treatment device
JP2012213721A (en) * 2011-03-31 2012-11-08 Azbil Corp Gas treatment device
JP2012213719A (en) * 2011-03-31 2012-11-08 Azbil Corp Gas treatment device
CN104043320A (en) * 2014-05-11 2014-09-17 郑巍 Method for treatment of indoor air pollution by combination of photocatalytic plasma and ultrasonic
CN103968466A (en) * 2014-05-20 2014-08-06 郑巍 Indoor air processing technology and device
JP2016077945A (en) * 2014-10-14 2016-05-16 アズビル株式会社 Gas treatment device

Similar Documents

Publication Publication Date Title
JP2008194670A (en) Gas treatment apparatus
JP2008194668A (en) Gas treatment apparatus
JP5723195B2 (en) Gas processing equipment
JP2003053129A (en) Plasma type gas purifying apparatus and streamer discharge circuit
Malik et al. Coupled sliding discharges: a scalable nonthermal plasma system utilizing positive and negative streamers on opposite sides of a dielectric layer
JP2008194669A (en) Gas treatment apparatus
JP2006187766A (en) Gas treatment apparatus and gas treatment cartridge
US20040093853A1 (en) System and method for using nonthermal plasma reactors
JP5242425B2 (en) Gas processing equipment
JP3580294B2 (en) Creeping discharge electrode, gas processing apparatus and gas processing method using the same
US20060119278A1 (en) Gas decomposition apparatus and gas treatment cartridge
US20090095619A1 (en) Gas treating apparatus
US10577261B2 (en) Water treatment apparatus and water treatment method
JP5416012B2 (en) Gas processing equipment
JP2009165939A (en) Gas treatment apparatus
JP2012213720A (en) Gas treatment device
JP5688231B2 (en) Gas processing equipment
JP2002346334A (en) Gas cleaning apparatus by plasma
JP5486208B2 (en) Gas processing equipment
JP2010234255A (en) Gas treatment apparatus
JP5271773B2 (en) Gas processing equipment
JP2011206298A (en) Gas treatment equipment
JP2011206704A (en) Gas treatment apparatus
KR20030065068A (en) Mixture and one-body type purification apparatus with dielectric barrier structure
JP2011206744A (en) Gas treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120