JP2008190763A - Internal heat exchanger structure for air conditioning system - Google Patents

Internal heat exchanger structure for air conditioning system Download PDF

Info

Publication number
JP2008190763A
JP2008190763A JP2007024863A JP2007024863A JP2008190763A JP 2008190763 A JP2008190763 A JP 2008190763A JP 2007024863 A JP2007024863 A JP 2007024863A JP 2007024863 A JP2007024863 A JP 2007024863A JP 2008190763 A JP2008190763 A JP 2008190763A
Authority
JP
Japan
Prior art keywords
heat exchanger
internal heat
pressure side
refrigerant
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007024863A
Other languages
Japanese (ja)
Inventor
Kazue Yoshida
一恵 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2007024863A priority Critical patent/JP2008190763A/en
Publication of JP2008190763A publication Critical patent/JP2008190763A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal heat exchanger structure for an air conditioning system, which reduces the rate of heat exchange of the internal heat exchanger 6 in heating operation by a simple structure. <P>SOLUTION: A plate member 18 as a flow control means having a different amount of resistance according to a flow direction, is arranged in a passage 13a on the high-pressure side of the internal heat exchanger 13. Since the internal heat exchanger functions as a heat pump in heating operation, the flow rate of a refrigerant is changed by inverting a flow in the passage 13a on the high-pressure side by changeover of a selector valve 12, and the internal heat exchanger 13 varies a quantity of heat to be heat-exchanged between the cooling operation and the heating operation. The extra heat exchange is not performed in the heating operation, therefore, while optimizing the temperature of the refrigerant up to the suction opening 1a of a compressor 1 and maintaining cooling efficiency in the cooling operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に、自動車等、車両に用いられて、内部熱交換器を有する冷却システムで、特に、炭酸ガス冷凍サイクルを用いた空調システムの内部熱交換器構造に関するものである。   The present invention mainly relates to a cooling system used in a vehicle such as an automobile and having an internal heat exchanger, and more particularly to an internal heat exchanger structure of an air conditioning system using a carbon dioxide refrigeration cycle.

従来、図9に示すような内部熱交換器を用いた空調システムが、知られている(例えば、特許文献1等参照)。   Conventionally, an air conditioning system using an internal heat exchanger as shown in FIG. 9 is known (see, for example, Patent Document 1).

まず、構成から説明すると、この従来の空調システム10では、車両用走行エンジン等からの駆動力を得て、気相状態の吐出側の炭酸ガスを圧縮する圧縮機1が、放熱器(ガスクーラ)2に接続されている。   First, in terms of configuration, in this conventional air conditioning system 10, a compressor 1 that obtains driving force from a vehicular travel engine or the like and compresses carbon dioxide on the discharge side in a gas phase is a radiator (gas cooler). 2 is connected.

この室外熱交換器2は、前記圧縮機1で圧縮された炭酸ガスを、外気等との間で、熱交換して、冷却するように構成されている。   The outdoor heat exchanger 2 is configured to heat and exchange the carbon dioxide gas compressed by the compressor 1 with the outside air or the like.

また、この室外熱交換器2の出口部側には、圧力制御弁としての膨張弁3が、設けられていて、前記炭酸ガスを減圧することにより、低温低圧の気液2相状態の炭酸ガスとなるように構成されている。   Further, an expansion valve 3 as a pressure control valve is provided on the outlet side of the outdoor heat exchanger 2, and by reducing the pressure of the carbon dioxide gas, the low-temperature low-pressure gas-liquid two-phase carbon dioxide gas is provided. It is comprised so that.

この気液2相状態の炭酸ガスは、エバポレータ4内で蒸発する際に、車室内の空気から熱を奪って、車室内空気を冷却する。   When the gas-liquid two-phase carbon dioxide evaporates in the evaporator 4, it takes heat from the air in the passenger compartment and cools the air in the passenger compartment.

更に、このエバポレータ4は、液相状態のCO2を、一時的に蓄えるアキュムレータ5を介して、内部熱交換器6内の低圧側通路6bに接続されている。 Further, the evaporator 4 is connected to a low-pressure side passage 6b in the internal heat exchanger 6 through an accumulator 5 that temporarily stores liquid phase CO 2 .

また、この内部熱交換器6では、前記室外熱交換器2と膨張弁3との間に介在される高圧側通路6aが、この低圧側通路6bに隣接配置されている。   Further, in the internal heat exchanger 6, a high-pressure side passage 6a interposed between the outdoor heat exchanger 2 and the expansion valve 3 is disposed adjacent to the low-pressure side passage 6b.

そして、これらの高圧側通路6aと、低圧側通路6bとの間で、熱交換が行われるように、構成されている。   And it is comprised so that heat exchange may be performed between these high voltage | pressure side channel | paths 6a and the low voltage | pressure side channel | path 6b.

また、この空調システムでは、低圧側通路6b内を通過する低温低圧の炭酸ガスの流通を可変するパイパス通路7が、電磁弁8によって、開閉塞可能に設けられている。   Further, in this air conditioning system, a bypass passage 7 that changes the flow of low-temperature and low-pressure carbon dioxide gas passing through the low-pressure side passage 6 b is provided by an electromagnetic valve 8 so as to be opened and closed.

次に、この従来例の空調システム10の作用効果について説明する。   Next, the function and effect of the conventional air conditioning system 10 will be described.

このように構成された従来の内部熱交換器6を用いた空調システム10では、例えば、冷房運転時、一定圧力10.7MPaを超えて(図10中B−C)、前記膨張弁3が開放されると、炭酸ガスは、減圧されながら、気相状態から気液2相状態に相変化して(図10中C−D)、エバポレータ4内に流れ込み、蒸発する(図10中D−A)。   In the air conditioning system 10 using the conventional internal heat exchanger 6 configured as described above, for example, during the cooling operation, the expansion valve 3 is opened when the constant pressure exceeds 10.7 MPa (BC in FIG. 10). Then, the carbon dioxide gas undergoes a phase change from a gas phase to a gas-liquid two-phase state (CD in FIG. 10) while being decompressed, flows into the evaporator 4 and evaporates (DA in FIG. 10). ).

このため、車室内の空気から熱が奪われて、車室内空気が冷却される。   For this reason, heat is taken from the air in the passenger compartment, and the passenger compartment air is cooled.

更に、バイパス通路7によって、前記アキュムレータ5から流出した炭酸ガスが、前記内部熱交換器6の低圧側通路6bを迂回すると、低圧側通路6b内の低圧炭酸ガスと、高圧通路6a内の高圧炭酸ガスとの間で、熱交換が行われず、圧縮機1の吸入側の加熱がされなくなる。   Further, when the carbon dioxide gas flowing out from the accumulator 5 bypasses the low pressure side passage 6b of the internal heat exchanger 6 by the bypass passage 7, the low pressure carbon dioxide gas in the low pressure side passage 6b and the high pressure carbon dioxide in the high pressure passage 6a are used. Heat exchange with the gas is not performed, and the suction side of the compressor 1 is not heated.

従って、前記内部熱交換器6を経由して、前記圧縮機1に、炭酸ガスが吸入される場合に比して、圧縮機1の吸入側炭酸ガス温度を低下させることができる。   Accordingly, the suction side carbon dioxide gas temperature of the compressor 1 can be lowered as compared with the case where carbon dioxide is sucked into the compressor 1 via the internal heat exchanger 6.

このため、圧縮機1の吸入側から吐出側に至る炭酸ガスの通路において、炭酸ガス温度を低下させることが出来、圧縮機1の破損を未然に防止することができる。   For this reason, the carbon dioxide gas temperature can be lowered in the carbon dioxide gas passage from the suction side to the discharge side of the compressor 1, and the compressor 1 can be prevented from being damaged.

また、内部熱交換器6の高圧側通路6aの流れを逆転させることにより、冬場にヒートポンプ化して、暖房にも適用できるようにした構成のものも知られている(例えば、特許文献2等参照)。
特開平11−201568号公報(0022段落乃至0066段落、図1) 特開2000−130878号公報(0012段落乃至0040段落、図1、図3)
In addition, a configuration is also known in which the flow of the high-pressure side passage 6a of the internal heat exchanger 6 is reversed so that the heat pump is used in winter and can be applied to heating (see, for example, Patent Document 2). ).
JP 11-151568 (paragraphs 0022 to 0066, FIG. 1) JP 2000-130878 (paragraphs 0012 to 0040, FIGS. 1 and 3)

しかしながら、このように構成された従来の空調システムの内部熱交換器構造では、ヒートポンプ化することにより、暖房にも使用できる構成とすると、暖房運転時、外気温度が低くて、圧力も低下し、サイクルバランスが冷房運転時と異なることが知られている。   However, in the internal heat exchanger structure of the conventional air conditioning system configured as described above, when it is configured to be used for heating by converting to a heat pump, the outside air temperature is low and the pressure is also reduced during heating operation. It is known that the cycle balance is different from that during cooling operation.

このため、暖房運転時には、内部熱交換器6の熱交換器6の熱交換器量が、過大となり、圧縮機1の吸入開口部1aに至る炭酸ガス温度が、上昇しすぎるといった問題があった。   For this reason, at the time of heating operation, the amount of the heat exchanger of the heat exchanger 6 of the internal heat exchanger 6 becomes excessive, and there is a problem that the temperature of the carbon dioxide gas reaching the suction opening 1a of the compressor 1 increases excessively.

そこで、この発明は、簡便な構成で、暖房運転時の内部熱交換器6の熱交換量を減らすことができる空調システムの内部熱交換器構造を提供することを課題としている。   Then, this invention makes it a subject to provide the internal heat exchanger structure of the air conditioning system which can reduce the heat exchange amount of the internal heat exchanger 6 at the time of heating operation with simple structure.

上記目的を達成するために、請求項1に記載された発明は、冷暖房切換可能なヒートポンプサイクルに用いられ、冷媒を吸入し、該吸入した冷媒を、圧縮する圧縮機と、室外空気及び冷媒間で熱交換を行う室外熱交換器と、室内に吹き出す室内空気と冷媒との間で熱交換を行う室内熱交換器と、前記室外熱交換器及び該室内熱交換器との間に設けられて、冷媒を減圧する減圧器と、冷房運転時には、前記減圧器にて減圧される前の高圧冷媒と、前記圧縮機に吸入される低圧冷媒とを各々高圧側通路及び低圧側通路に挿通して熱交換を行うことにより、前記室内熱交換器の入口側と出口側との比エンタルピ差を増大させる内部熱交換器とを有し、暖房運転時には、該内部熱交換器の高圧側通路の流れを逆転させることにより、ヒートポンプ化可能な空調システムの内部熱交換器構造であって、前記内部熱交換器の高圧側通路には、流れ方向に応じて抵抗量が異なる流量制限手段前記内部熱交換器の高圧側通路には、流れ方向に応じて、抵抗量が異なる流量制限手段を内蔵した空調システムの内部熱交換器構造を特徴としている。   In order to achieve the above object, the invention described in claim 1 is used in a heat pump cycle capable of switching between heating and cooling, and sucks refrigerant and compresses the sucked refrigerant between the outdoor air and the refrigerant. Between the outdoor heat exchanger for exchanging heat, the indoor heat exchanger for exchanging heat between the indoor air blown into the room and the refrigerant, the outdoor heat exchanger and the indoor heat exchanger. The decompressor for decompressing the refrigerant, and the high-pressure refrigerant before being decompressed by the decompressor and the low-pressure refrigerant sucked into the compressor are inserted into the high-pressure side passage and the low-pressure side passage, respectively, during the cooling operation. An internal heat exchanger that increases a specific enthalpy difference between the inlet side and the outlet side of the indoor heat exchanger by performing heat exchange, and flows in the high-pressure side passage of the internal heat exchanger during heating operation. Can be converted to a heat pump by reversing In the internal heat exchanger structure of the air conditioning system, the flow rate restricting means having a different resistance depending on the flow direction flows in the high-pressure side passage of the internal heat exchanger, and flows in the high-pressure side passage of the internal heat exchanger. It features an internal heat exchanger structure of an air conditioning system that incorporates flow restricting means with different resistances depending on the direction.

また、請求項2に記載されたものは、前記内部熱交換器の高圧側通路が並列に複数あり、流れ方向に応じて各々の前記高圧側通路の抵抗量が異なるように、該高圧側通路に、前記流量制限手段を内蔵した請求項1記載の内部熱交換器構造を特徴としている。   Further, in the present invention, a plurality of high-pressure side passages of the internal heat exchanger are provided in parallel, and the resistance amount of each of the high-pressure side passages varies depending on the flow direction. The internal heat exchanger structure according to claim 1, wherein the flow rate restricting means is built in.

そして、請求項3に記載されたものは、前記流量制限手段が、前記高圧側通路内に装着されて、冷房運転時の冷媒の流れ方向下流側に向けて凸状のバーリング孔部を貫通形成したプレート部材を有する請求項1又は2記載の空調システムの内部熱交換器構造を特徴としている。   According to a third aspect of the present invention, the flow restriction means is mounted in the high-pressure side passage, and a convex burring hole is formed penetrating toward the downstream side in the refrigerant flow direction during cooling operation. An internal heat exchanger structure of an air conditioning system according to claim 1 or 2 having a plate member.

更に、請求項4に記載されたものは、前記内部熱交換器が、前記高圧側通路を構成する一対の上側通路及び下側通路と、該上側通路及び下側通路の各左,右端部開口が、各々接続された略円筒形形状を呈するヘッダ部材とを有し、該ヘッダ部材の内側面に、前記流量制限手段が係止されて、装着される請求項1乃至3のうち、何れか一項記載の空調システムの内部熱交換器構造を特徴としている。   Further, according to a fourth aspect of the present invention, the internal heat exchanger includes a pair of upper and lower passages constituting the high-pressure side passage, and left and right end openings of the upper and lower passages. And a header member having a substantially cylindrical shape connected to each other, and the flow restricting means is locked and attached to the inner surface of the header member. It is characterized by the internal heat exchanger structure of the air conditioning system according to one item.

このように構成された請求項1記載の発明は、流れ方向に応じて、抵抗量が異なる流量制御手段を、前記内部熱交換器の高圧側通路に設けたので、暖房運転時にヒートポンプ化するため、該高圧側通路の流れを逆転させると、各々の高圧側通路の冷媒の流量比を変更することが出来、交換される熱量を、冷房運転時と暖房運転時とで、可変可能である。   In the invention according to claim 1 configured as described above, since the flow rate control means having different resistance amounts according to the flow direction is provided in the high-pressure side passage of the internal heat exchanger, the heat pump can be converted into a heat pump during the heating operation. When the flow in the high-pressure side passage is reversed, the flow rate ratio of the refrigerant in each high-pressure side passage can be changed, and the amount of heat exchanged can be varied between the cooling operation and the heating operation.

このため、圧縮機の吸入開口部に至る冷媒の温度を最適化して、冷房運転時の冷房効率を維持しつつ、暖房運転時に、余分な熱交換を行わせないように設定できる。   For this reason, it is possible to optimize the temperature of the refrigerant reaching the suction opening of the compressor and maintain the cooling efficiency during the cooling operation while preventing excessive heat exchange during the heating operation.

また、請求項2に記載されたものは、前記流量制限手段により、並列に複数設けられた高圧側通路の抵抗量が、流れ方向に応じて異なるため、暖房運転時にヒートポンプ化するため、該高圧側通路の流れを逆転させると、各々の高圧側通路の冷媒の流量比を変更することが出来、交換される熱量を、冷房運転時と暖房運転時とで、可変可能である。   Further, according to the second aspect of the present invention, since the amount of resistance of the plurality of high-pressure side passages provided in parallel differs depending on the flow direction by the flow rate restricting unit, When the flow of the side passages is reversed, the flow rate ratio of the refrigerant in each high-pressure side passage can be changed, and the amount of heat exchanged can be varied between the cooling operation and the heating operation.

このため、圧縮機の吸入開口部に至る冷媒の温度を最適化して、冷房運転時の冷房効率を維持しつつ、暖房運転時に、余分な熱交換を行わせないように設定できる。   For this reason, it is possible to optimize the temperature of the refrigerant reaching the suction opening of the compressor and maintain the cooling efficiency during the cooling operation while preventing excessive heat exchange during the heating operation.

そして、請求項3に記載されたものは、前記流量制限手段が、前記高圧側通路を構成する内側面に装着されて、冷房運転時の冷媒の流れ方向下流側に向けて、凸状のバーリング孔部を貫通形成したプレート部材を有する。   Further, according to a third aspect of the present invention, the flow restricting means is mounted on the inner side surface constituting the high-pressure side passage, and has a convex burring toward the downstream side in the refrigerant flow direction during cooling operation. The plate member has a hole formed therethrough.

このため、冷房運転時の冷媒の流れ方向では、該プレート部材のバーリング孔部を通過する冷媒の抵抗量を少なく、そして、暖房運転時に該高圧側通路の流れを逆転させると、冷媒の抵抗量が、増大する。   For this reason, in the flow direction of the refrigerant during the cooling operation, the resistance amount of the refrigerant passing through the burring hole of the plate member is reduced, and when the flow of the high-pressure side passage is reversed during the heating operation, the resistance amount of the refrigerant Will increase.

従って、暖房運転時にヒートポンプ化するために必要とする熱量だけを、該内部熱交換器の高圧側通路に挿通して、熱交換出来、圧縮機に吸入される冷媒の温度が、上昇しすぎる虞が無い。   Therefore, only the amount of heat necessary for heat pumping during heating operation can be inserted into the high-pressure side passage of the internal heat exchanger to exchange heat, and the temperature of the refrigerant sucked into the compressor may rise too much. There is no.

更に、請求項4に記載されたものは、前記内部熱交換器のうち、前記ヘッダ部材の内側面に、前記流量制限手段が係止されて、装着されている。   Further, according to a fourth aspect of the present invention, in the internal heat exchanger, the flow rate restricting means is locked and attached to the inner side surface of the header member.

このため、内部熱交換器の熱交換を行う部分の構造を変更することなく、前記流量制限手段の係止位置や或いは形状を変更することにより、容易に、暖房時の圧縮機の吸入温度及び吐出温度の調整を行うことが出来る。   For this reason, without changing the structure of the part that performs heat exchange of the internal heat exchanger, the intake temperature of the compressor during heating and The discharge temperature can be adjusted.

次に、図面に基づいて、この発明を実施するための最良の実施の形態の空調システムの内部熱交換器構造について説明する。   Next, the internal heat exchanger structure of the air conditioning system of the best mode for carrying out the present invention will be described based on the drawings.

なお、前記従来例と同一乃至均等な部分については同一符号を付して、説明する。   In addition, the same code | symbol is attached | subjected and demonstrated about the part thru | or equivalent to the said prior art example.

図1乃至図8は、この発明の最良の実施の形態の空調システムの内部熱交換器構造を示すものである。   1 to 8 show an internal heat exchanger structure of an air conditioning system according to the best mode of the present invention.

まず、全体の構成について、図1及び図2を用いて説明すると、この実施の形態の空調システム11の内部熱交換器構造では、車両用走行エンジン等からの駆動力を得て、気相状態の冷媒としての炭酸ガスを圧縮する圧縮機1が、設けられている。   First, the overall configuration will be described with reference to FIG. 1 and FIG. 2. In the internal heat exchanger structure of the air conditioning system 11 of this embodiment, a driving force from a vehicular traveling engine or the like is obtained to obtain a gas phase state. A compressor 1 for compressing carbon dioxide gas as the refrigerant is provided.

図1に示す冷房の場合、この圧縮機1は、吐出開口部1b側が、切換弁12を介して、室外熱交換器2に接続されていると共に、吸入開口部1a側が、内部熱交換器13と接続されている。   In the case of the cooling shown in FIG. 1, the compressor 1 is connected to the outdoor heat exchanger 2 via the switching valve 12 on the discharge opening 1b side, and to the internal heat exchanger 13 on the suction opening 1a side. Connected with.

このうち、前記室外熱交換器2は、前記圧縮機1で圧縮された炭酸ガスを、外気等との間で、熱交換して、冷却するように構成されている。   Among these, the said outdoor heat exchanger 2 is comprised so that the carbon dioxide gas compressed with the said compressor 1 may be heat-exchanged with external air etc., and may be cooled.

また、この室外熱交換器2の出口部側には、一方の圧力制御弁としての第1絞り弁14が、設けられていて、前記炭酸ガスが、減圧されることにより、低温低圧の気液2相状態の炭酸ガスとなるように構成されている。   Moreover, the 1st throttle valve 14 as one pressure control valve is provided in the exit part side of this outdoor heat exchanger 2, and when the said carbon dioxide gas is pressure-reduced, low-temperature low-pressure gas-liquid It is configured to be a two-phase carbon dioxide gas.

この気液2相状態の炭酸ガスは、他方の圧力制御弁としての第2絞り弁15を介して接続される前記従来のエバポレータ4に相当する室内熱交換器16内で、蒸発する際に、車室内の空気から熱を奪って、車室内空気を冷却するように構成されている。   When the gas-liquid two-phase carbon dioxide evaporates in the indoor heat exchanger 16 corresponding to the conventional evaporator 4 connected via the second throttle valve 15 as the other pressure control valve, Heat is taken from the air in the passenger compartment to cool the passenger compartment air.

更に、この室内熱交換器16は、液相状態のCO2を、一時的に蓄えるアキュムレータ5を介して、内部熱交換器13内の低圧側通路13bに接続されている。 Further, the indoor heat exchanger 16 is connected to the low-pressure side passage 13b in the internal heat exchanger 13 via an accumulator 5 that temporarily stores liquid phase CO 2 .

そして、この内部熱交換器13では、前記室外熱交換器2と室内熱交換器16との間に介在される高圧側通路13aが、この低圧側通路13bに隣接配置されていて、これらの高圧側通路13aと、低圧側通路13bとの間で、熱交換が行われるように構成されている。   In the internal heat exchanger 13, a high-pressure side passage 13a interposed between the outdoor heat exchanger 2 and the indoor heat exchanger 16 is disposed adjacent to the low-pressure side passage 13b. Heat exchange is performed between the side passage 13a and the low-pressure side passage 13b.

また、前記切換弁12は、図1に示すように、前記圧縮機1の吐出開口部1b側を、前記室外熱交換器2側に連通させて、前記室内熱交換器16からの冷媒を、前記アキュムレータ5に戻す冷房運転時切換位置と、図2に示すように、前記圧縮機1の吐出開口部1b側を、前記室内熱交換器16に連通させると共に、前記室外熱交換器2から送られてくる冷媒を、前記アキュムレータ5に戻す暖房運転時切換位置とが、選択的に切換可能となるように構成されている。   Further, as shown in FIG. 1, the switching valve 12 communicates the discharge opening 1b side of the compressor 1 to the outdoor heat exchanger 2 side so that the refrigerant from the indoor heat exchanger 16 is As shown in FIG. 2, the cooling operation switching position to be returned to the accumulator 5 and the discharge opening 1 b side of the compressor 1 are communicated with the indoor heat exchanger 16 and sent from the outdoor heat exchanger 2. The heating operation switching position for returning the refrigerant to the accumulator 5 can be selectively switched.

次に、この実施の形態の前記内部熱交換器13の構成について、図3乃至図8を用いて、詳述する。   Next, the configuration of the internal heat exchanger 13 of this embodiment will be described in detail with reference to FIGS.

この実施の形態の内部熱交換器13では、多孔管により構成される前記高圧側通路13aが、上側通路13c及び下側通路13dを、上,下に一対並設して、流路方向を略水平となるように設けられている。   In the internal heat exchanger 13 of this embodiment, the high-pressure side passage 13a formed of a porous tube has a pair of an upper passage 13c and a lower passage 13d arranged in parallel on the upper and lower sides, so that the flow direction is substantially the same. It is provided to be horizontal.

また、この高圧側通路13aのうち、これらの上側通路13c及び下側通路13dの各左,右端部開口は、略円筒形形状を呈するヘッダ部材13g及びヘッダ部材13hの各対向側面に、接続されていて、各々内部が、連通されている。   Further, in the high-pressure side passage 13a, the left and right end openings of the upper passage 13c and the lower passage 13d are connected to the opposing side surfaces of the header member 13g and the header member 13h each having a substantially cylindrical shape. And each inside is communicated.

このうち、ヘッダ部材13gは、内部通路を略上下方向に沿わせて延設されていて、下面部から、前記第2絞り弁15と連結される下側開口部13kが、下方に向けて延出されている。   Among these members, the header member 13g extends along the internal passage in a substantially vertical direction, and the lower opening 13k connected to the second throttle valve 15 extends downward from the lower surface. Has been issued.

また、このヘッダ部材13gの内部には、流れ方向に応じて、抵抗量が異なる流量制限手段としてのプレート部材18が、内蔵されている。   In addition, a plate member 18 serving as a flow rate restricting unit having a different resistance according to the flow direction is built in the header member 13g.

このプレート部材18は、図6に示すように、平面視略環状を呈して略平坦な円環部18bの略中央に、冷房運転時の冷媒の流れ方向(図3中矢印a方向)下流側に向けて、凸状のバーリング孔部18cが、円筒状に周縁の立壁部18dを立設させて、貫通形成されている。   As shown in FIG. 6, the plate member 18 has a substantially annular shape in a plan view and is substantially in the center of a substantially flat annular portion 18 b on the downstream side in the refrigerant flow direction (in the direction of arrow a in FIG. 3) during cooling operation. A convex burring hole 18c is formed so as to penetrate the peripheral wall 18d in a cylindrical shape.

流路縮小部、拡大部、管路入口部の通路抵抗は、一般に、以下、数式1で示せる。
通路抵抗=損失係数×流速^2×密度/2・・・・・(数式1)
損失係数は、バーリング孔部18cの立壁部側18d側から、冷媒を流す場合に対し、円環部18bの平坦部側から流した場合は、大幅に小さい。
In general, the passage resistance of the flow path reduction portion, the enlargement portion, and the pipe inlet portion can be expressed by Equation 1 below.
Passage resistance = Loss coefficient x Flow velocity ^ 2 x Density / 2 (Equation 1)
The loss coefficient is significantly smaller when flowing from the flat portion side of the annular portion 18b than when flowing the refrigerant from the standing wall portion side 18d side of the burring hole portion 18c.

このため、前記上下に複数設けられた上下側通路13c,13dでは、前記ヘッダ部材13gの上下方向略中間位置に設けられた前記プレート部材18によって、冷房運転時と暖房運転時との流れ方向に応じて各々の上下側通路13c,13dを通過する抵抗量が異なるように設定されている。   For this reason, in the upper and lower side passages 13c and 13d provided in the upper and lower sides, the plate member 18 provided at a substantially intermediate position in the vertical direction of the header member 13g causes the flow direction between the cooling operation and the heating operation. Accordingly, the amount of resistance passing through each of the upper and lower passages 13c and 13d is set to be different.

また、このプレート部材18の円環部18bの反対側両側面からは、各々一対の係止片18a,18aが、凸設されている。   Further, a pair of locking pieces 18a and 18a are provided so as to protrude from both sides of the plate member 18 on the opposite side of the annular portion 18b.

そして、縦方向に二つ割された前記ヘッダ部材13gを構成する半円筒状部材13i,13jの内側面に形成された各スリット17,17に、各々、これらの係止片18a,18aが係止されることにより、円筒状の前記ヘッダ部材13gが組み立てられた状態で、高圧側通路13aを構成する内側面に装着されるように構成されている。   The locking pieces 18a and 18a are respectively engaged with the slits 17 and 17 formed on the inner side surfaces of the semi-cylindrical members 13i and 13j constituting the header member 13g divided in the vertical direction. By being stopped, the cylindrical header member 13g is assembled and attached to the inner side surface constituting the high-pressure side passage 13a.

また、この実施の形態のプレート部材18は、前記ヘッダ部材13gの長手方向で、前記上側通路13cの端部開口が接続されている部分と、下側通路13dの端部開口が接続されている部分との間に、位置するように装着されている。   Further, in the plate member 18 of this embodiment, a portion where the end opening of the upper passage 13c is connected and an end opening of the lower passage 13d are connected in the longitudinal direction of the header member 13g. It is mounted so as to be positioned between the parts.

更に、前記ヘッダ部材13hの上面部には、前記第1絞り弁14と連結される上側開口部13mが、上方に向けて延設されている。   Further, an upper opening 13m connected to the first throttle valve 14 extends upward on the upper surface of the header member 13h.

また、この内部熱交換器13の低圧側通路13bは、多孔管により構成されていて、前記各上側通路13c及び下側通路13dに沿って、隣接配置される上側通路13e及び下側通路13fが、上,下に一対並設されて、流路方向が略水平となるように設けられている。   Further, the low pressure side passage 13b of the internal heat exchanger 13 is constituted by a perforated pipe, and an upper passage 13e and a lower passage 13f which are arranged adjacent to each other along the upper passage 13c and the lower passage 13d. The upper and lower sides are arranged in parallel so that the flow path direction is substantially horizontal.

また、この低圧側通路13bのうち、これらの上側通路13e及び下側通路13fの各左,右端部開口は、略円筒形形状を呈するヘッダ部材13n及びヘッダ部材13pの対向側面に、各々接続されていて、内部が、各々連通されている。   Further, in the low-pressure side passage 13b, the left and right end openings of the upper passage 13e and the lower passage 13f are respectively connected to opposite side surfaces of the header member 13n and the header member 13p having a substantially cylindrical shape. And the inside is communicated with each other.

このうち、ヘッダ部材13nは、内部通路が、略上下方向に沿わせて延設されていて、下面部から、前記圧縮機1の吸入開口部1a側と連結される出口側開口部13qが、下方に向けて延出されている。   Among them, the header member 13n has an internal passage extending substantially along the vertical direction, and an outlet side opening 13q connected to the suction opening 1a side of the compressor 1 from the lower surface portion. It is extended downward.

また、前記ヘッダ部材13pの内部通路は、略上下方向に沿わせて延設されていて、上面部から、前記アキュムレータ5と連結される入口側開口部13rが、下方に向けて延出されている。   Further, the internal passage of the header member 13p extends substantially along the vertical direction, and an inlet-side opening 13r connected to the accumulator 5 extends downward from the upper surface. Yes.

次に、この実施の形態の空調システムの内部熱交換器構造の作用効果について説明する。   Next, the effect of the internal heat exchanger structure of the air conditioning system of this embodiment will be described.

このように構成された実施の形態の空調システムの内部熱交換器構造では、冷房運転時、図1に示すように、前記切換弁12の切換位置が、冷房運転時切換位置とされると、前記圧縮機1の吐出開口部1b側が、前記室外熱交換器2側に連通されると共に、前記室内熱交換器16からの冷媒が、前記アキュムレータ5に戻るように接続される。   In the internal heat exchanger structure of the air conditioning system of the embodiment configured as described above, when the cooling operation is performed, as illustrated in FIG. 1, when the switching position of the switching valve 12 is the cooling operation switching position, The discharge opening 1 b side of the compressor 1 is connected to the outdoor heat exchanger 2 side, and the refrigerant from the indoor heat exchanger 16 is connected to return to the accumulator 5.

また、前記第1絞り弁14を開放すると共に、第2絞り弁15を絞り、前記圧縮機1から吐出されて、内部熱交換器13の高圧側通路13aから送られてくる高圧冷媒が、減圧されることにより、低温低圧の気液2相状態の炭酸ガスが、室内熱交換器16内で、蒸発される。   Further, the first throttle valve 14 is opened, the second throttle valve 15 is throttled, and the high-pressure refrigerant discharged from the compressor 1 and sent from the high-pressure side passage 13a of the internal heat exchanger 13 is decompressed. As a result, the low-temperature low-pressure gas-liquid two-phase carbon dioxide is evaporated in the indoor heat exchanger 16.

このため、車室内の空気から熱が奪われて、車室内空気が冷却される。   For this reason, heat is taken from the air in the passenger compartment, and the passenger compartment air is cooled.

この際、前記内部熱交換器13の高圧側通路13a内の冷媒と、低圧側通路13b内の冷媒との間で熱交換が行われて、室内熱交換器16の入口側における冷媒の比エンタルピが、熱交換を行わない場合に比して小さくなる。   At this time, heat exchange is performed between the refrigerant in the high-pressure side passage 13a of the internal heat exchanger 13 and the refrigerant in the low-pressure side passage 13b, and the specific enthalpy of the refrigerant on the inlet side of the indoor heat exchanger 16 is achieved. However, it is smaller than when heat exchange is not performed.

従って、前記室内熱交換器16の入口側と出口側との比エンタルピ差が、前記内部熱交換器6にて、熱交換を行わない場合に比して、大きくなるので、冷凍能力が向上する。   Accordingly, the specific enthalpy difference between the inlet side and the outlet side of the indoor heat exchanger 16 is larger than that in the case where heat exchange is not performed in the internal heat exchanger 6, so that the refrigerating capacity is improved. .

この実施の形態の空調システム11では、冷房運転時、前記高圧側通路13aの下流側に位置するヘッダ部材13gの内側面に設けられた前記プレート部材18が、図3に示すように、冷房運転時の冷媒の流れ方向(図3中矢印a方向)下流側に向けて、凸状のバーリング孔部18c内を、少ない損失係数で、前記熱交換された高圧冷媒を通過させる。   In the air conditioning system 11 of this embodiment, during the cooling operation, the plate member 18 provided on the inner surface of the header member 13g located on the downstream side of the high-pressure side passage 13a has the cooling operation as shown in FIG. The heat-exchanged high-pressure refrigerant is allowed to pass through the convex burring hole 18c with a small loss coefficient toward the downstream side in the refrigerant flow direction (arrow a direction in FIG. 3).

このため、前記内部熱交換器13の高圧側通路13aのうち、上下に位置する上側通路13c及び下側通路13dには、全域に渡り、前記冷媒が流れて、隣接配置される低圧側通路13bの上側通路13e及び下側通路13fとの間で、熱交換が十分に行える。   For this reason, among the high-pressure side passages 13a of the internal heat exchanger 13, the upper-side passage 13c and the lower-side passage 13d positioned above and below the low-pressure side passages 13b that are arranged adjacent to each other through the refrigerant flowing over the entire area. Heat exchange can be sufficiently performed between the upper passage 13e and the lower passage 13f.

従って、冷房運転時の冷房効率は、前記プレート部材18が存在しない場合と略同等に保持される。   Therefore, the cooling efficiency during the cooling operation is maintained substantially equal to the case where the plate member 18 is not present.

また、暖房運転時では、図2に示すように、前記圧縮機1の吐出開口部1b側が、前記室内熱交換器16に連通されると共に、前記室外熱交換器2から送られてくる冷媒が、前記アキュムレータ5に戻るように接続される。   Further, during the heating operation, as shown in FIG. 2, the discharge opening 1 b side of the compressor 1 communicates with the indoor heat exchanger 16, and the refrigerant sent from the outdoor heat exchanger 2 flows. , Connected to return to the accumulator 5.

更に、前記第2絞り弁15を開放すると共に、第1絞り弁14を絞る。   Further, the second throttle valve 15 is opened and the first throttle valve 14 is throttled.

そして、前記圧縮機1から吐出されて、内部熱交換器13の高圧側通路13aを、前記冷房運転時とは、逆方向に流れる高圧冷媒が、減圧されることにより、低温低圧の気液2相状態の炭酸ガスが、室外空気から吸熱し、室外熱交換器2内で、蒸発される。   The high-pressure refrigerant discharged from the compressor 1 and flowing in the high-pressure side passage 13a of the internal heat exchanger 13 in the opposite direction to that during the cooling operation is decompressed, whereby the low-temperature and low-pressure gas-liquid 2 The phase-state carbon dioxide gas absorbs heat from the outdoor air and is evaporated in the outdoor heat exchanger 2.

このため、室外空気から吸熱された熱は、室内熱交換器3にて、車室内空気中に放熱される。   For this reason, the heat absorbed from the outdoor air is radiated into the passenger compartment air by the indoor heat exchanger 3.

この際、前記内部熱交換器13の高圧側通路13a内の上流側に位置するヘッダ部材13gの内側面に設けられた前記プレート部材18が、図4に示すように、暖房運転時の冷媒の流れ方向(図4中矢印b方向)に向けて、流入しようとするが、前記バーリング孔部18cが、比較的多い損失係数を有しているので、前記冷媒を殆ど通過させない。   At this time, the plate member 18 provided on the inner surface of the header member 13g located on the upstream side in the high-pressure side passage 13a of the internal heat exchanger 13, as shown in FIG. Although it tends to flow in the flow direction (arrow b direction in FIG. 4), since the burring hole 18c has a relatively large loss coefficient, the refrigerant hardly passes.

このため、高圧側通路13a内を通過する多くの冷媒は、下側通路13d内を通過して、隣接配置される低圧側通路13bの下側通路13f内を通過する冷媒との間で熱交換が行われ、高圧側通路13aの上側通路13cと、低圧側通路13bの上側通路13eとの間では、熱交換量が少なくなるため、前記暖房運転時の内部熱交換器13の熱交換量を、減少させて、最適化出来る。   Therefore, most of the refrigerant that passes through the high-pressure passage 13a exchanges heat with the refrigerant that passes through the lower passage 13d and passes through the lower passage 13f of the adjacent low-pressure passage 13b. Since the amount of heat exchange between the upper passage 13c of the high pressure side passage 13a and the upper passage 13e of the low pressure side passage 13b is reduced, the heat exchange amount of the internal heat exchanger 13 during the heating operation is reduced. Can be reduced and optimized.

例えば、前記暖房運転時の熱交換量を、減少させて、前記圧縮機1の吸入開口部1aの温度及び吐出開口部1bの温度を低下させることにより、冷媒が高温になることによる圧縮機1の破損を防止できる。   For example, the amount of heat exchange during the heating operation is decreased, and the temperature of the suction opening 1a and the temperature of the discharge opening 1b of the compressor 1 is reduced, thereby causing the compressor 1 due to the refrigerant to become hot. Can be prevented from being damaged.

このように、この実施の形態の空調システムの内部熱交換器構造では、流れ方向に応じて、抵抗量が異なる流量制御手段としてのプレート部材18が、前記内部熱交換器13の高圧側通路13aに設けられている。   Thus, in the internal heat exchanger structure of the air conditioning system of this embodiment, the plate member 18 as the flow rate control means having a different resistance amount according to the flow direction is provided on the high-pressure side passage 13a of the internal heat exchanger 13. Is provided.

このため、暖房運転時にヒートポンプ化するため、前記切換弁12の切換により、高圧側通路13aの流れを逆転させると、内部熱交換器13の高圧側上側通路13cと、高圧側下側通路13dの冷媒の流量比が変更されて、この内部熱交換器13で、熱交換される熱量が、冷房運転時と暖房運転時とで、可変可能である。   For this reason, when the flow of the high-pressure side passage 13a is reversed by switching the switching valve 12 in order to make a heat pump during heating operation, the high-pressure side upper passage 13c and the high-pressure side lower passage 13d of the internal heat exchanger 13 are switched. The flow rate ratio of the refrigerant is changed, and the amount of heat exchanged by the internal heat exchanger 13 can be varied between the cooling operation and the heating operation.

従って、圧縮機1の吸入開口部1aに至る冷媒の温度を最適化して、冷房運転時の冷房効率を維持しつつ、暖房運転時に、余分な熱交換を行わせないように設定できる。   Accordingly, it is possible to optimize the temperature of the refrigerant reaching the suction opening 1a of the compressor 1 and maintain the cooling efficiency during the cooling operation while preventing excessive heat exchange during the heating operation.

また、前記流量制限手段としてのプレート部材18が、前記高圧側通路13aを構成するヘッダ部材13gのスリット17,17に、係止片18a,18aが、係止されることにより、このヘッダ部材13gの通路内に位置するように装着されている。   Further, the plate member 18 as the flow rate restricting means is engaged with the slits 17 and 17 of the header member 13g constituting the high-pressure side passage 13a so that the locking pieces 18a and 18a are locked. It is mounted so as to be located in the passage.

このプレート部材18が、冷房運転時の冷媒の流れ方向下流側に向けて、凸状のバーリング孔部18cが貫通形成されている。   A convex burring hole 18c is formed through the plate member 18 toward the downstream side in the refrigerant flow direction during the cooling operation.

このため、図3に示す冷房運転時の冷媒の流れ方向aでは、プレート部材18のバーリング孔部18cを通過する冷媒の抵抗量が少なく、そして、暖房運転時に、前記切換弁12を切り換えて、図4に示すこの高圧側通路13aの流れを、流れ方向bとなるように逆転させると、冷媒の抵抗量が、増大する。   Therefore, in the refrigerant flow direction a during the cooling operation shown in FIG. 3, the resistance of the refrigerant passing through the burring hole 18c of the plate member 18 is small, and during the heating operation, the switching valve 12 is switched, When the flow of the high-pressure side passage 13a shown in FIG. 4 is reversed so as to be in the flow direction b, the resistance of the refrigerant increases.

従って、暖房運転時にヒートポンプ化するために必要とする熱量だけを、この内部熱交換器13で熱交換出来、圧縮機1に吸入される冷媒の温度が、上昇しすぎる虞が無い。   Accordingly, only the amount of heat necessary for heat pumping during heating operation can be exchanged by the internal heat exchanger 13, and there is no possibility that the temperature of the refrigerant sucked into the compressor 1 will rise too much.

また、この実施の形態では、前記プレート部材18のバーリング孔部18cの形状を変更したり、或いは、前記ヘッダ部材13gのスリット17,17の形成位置を変更することにより、容易に、高圧側通路13a内を流通する冷媒の量を変更できる。   In this embodiment, the shape of the burring hole 18c of the plate member 18 is changed, or the formation positions of the slits 17 and 17 of the header member 13g are changed, so that the high-pressure side passage can be easily formed. The amount of the refrigerant circulating in 13a can be changed.

この際、前記内部熱交換器13の高圧側通路13a及び低圧側通路13bの多孔管形状等、熱交換を行う部分の構造を変更することなく、ヘッダ部材13gの内部のプレート部材18の係止される位置や或いは、形状のみを変更すればよいので、容易に、暖房時の圧縮機1の吸入温度及び吐出温度の調整を行うことが出来る。   At this time, the plate member 18 inside the header member 13g can be locked without changing the structure of the portion that performs heat exchange, such as the porous tube shapes of the high-pressure side passage 13a and the low-pressure side passage 13b of the internal heat exchanger 13. Since it is only necessary to change the position or the shape, the suction temperature and the discharge temperature of the compressor 1 during heating can be easily adjusted.

図8は、この発明の空調システムの内部熱交換器構造に用いられて、流れ方向に応じて、抵抗量が異なる流量制限手段としてのプレート部材28を、高圧側通路のヘッダ部材13gの内部構造に適用したものを示している。   FIG. 8 shows the internal structure of the header member 13g of the high-pressure side passage, which is used in the internal heat exchanger structure of the air-conditioning system of the present invention. Shows what was applied.

なお、前記実施の形態と同一乃至均等な部分については、同一符号を付して説明する。   Note that portions that are the same as or equivalent to those in the above-described embodiment are described with the same reference numerals.

この実施例1の空調システムの内部熱交換器構造では、前記プレート部材28が、平面視略環状を呈して略平坦な円環部28bの略中央に、冷房運転時の冷媒の流れ方向(図3中矢印a方向)下流側に向けて、凸状のバーリング孔部28cが、円筒状に周縁の立壁部28dを立設させて、貫通形成されている。   In the internal heat exchanger structure of the air conditioning system according to the first embodiment, the plate member 28 has a substantially annular shape in a plan view and is substantially in the center of a substantially circular ring portion 28b. 3 (in the direction of arrow a in FIG. 3) A convex burring hole 28c is formed in a cylindrical shape by penetrating a peripheral wall 28d upright.

この立壁部28dの下端側外周面には、テーパ面部28eが、周状に形成されている。   A tapered surface portion 28e is formed in a circumferential shape on the outer peripheral surface on the lower end side of the standing wall portion 28d.

次に、この実施例1の空調システムの内部熱交換器構造の作用効果について説明する。   Next, the effect of the internal heat exchanger structure of the air conditioning system of the first embodiment will be described.

このように構成された実施例1記載の空調システムの内部熱交換器構造では、前記実施の形態の作用効果に加えて、更に、テーパ面部28eの形成角度等の形状を変更することにより、前記実施の形態の図4に示すような暖房運転時には、このテーパ面部28eに沿わせて冷媒の流れ方向を変えて、前記バーリング孔部28cを通過する流量を変更出来る。 このため、更に、容易に、暖房時の圧縮機1の吸入温度及び吐出温度の調整を行うことが出来る。   In the internal heat exchanger structure of the air conditioning system according to Example 1 configured as described above, in addition to the function and effect of the above embodiment, the shape of the tapered surface portion 28e is further changed to change the shape. In the heating operation as shown in FIG. 4 of the embodiment, the flow rate of the refrigerant passing through the burring hole 28c can be changed by changing the flow direction of the refrigerant along the tapered surface 28e. For this reason, the suction temperature and the discharge temperature of the compressor 1 during heating can be easily adjusted.

以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes that do not depart from the gist of the present invention are not limited to this embodiment. Included in the invention.

即ち、前記実施の形態では、前記ヘッダ部材13gの内部に、一枚の流量制限手段としてのプレート部材18が、内蔵されているが、特にこれに限らず、このプレート部材18を2枚若しくは、3枚以上の複数枚としても良く、プレート部材18の形状、数量及び材質が、特に限定されるものではない。   That is, in the embodiment, the plate member 18 as one flow rate restricting means is built in the header member 13g. However, the present invention is not limited to this, and two plate members 18 or Three or more sheets may be provided, and the shape, quantity, and material of the plate member 18 are not particularly limited.

また、前記高圧側通路13aを、上側通路13c及び下側通路13dとして、上下2本に分割しているが、特にこれに限らず、例えば、単数本若しくは、3本以上の複数本等、設けても良く、隣接配置される低圧側通路13bと共に、この高圧側通路13aの形状、数量及び材質が特に限定されるものではない。   Further, the high-pressure side passage 13a is divided into two upper and lower portions as an upper passage 13c and a lower passage 13d. However, the present invention is not limited to this. For example, a single piece or a plurality of three pieces or more are provided. The shape, quantity, and material of the high-pressure side passage 13a are not particularly limited as well as the adjacent low-pressure side passage 13b.

更に、前記実施例1では、前記内部熱交換器13の高圧側通路13aには、前記上下側通路13c,13dが並列に複数有り、流れ方向に応じて、これらの上下側通路13c,13dの抵抗量が、前記ヘッダ部材13gに内蔵されるプレート部材18により、異なるように構成されているが、特にこれに限らず、前記各上下側通路13c,13dに各々流量制限手段としてのプレート部材18…を設けて、暖房運転時に、冷媒が、これらのプレート部材18…を全て通過するようにしてもよい。   Further, in the first embodiment, the high-pressure side passage 13a of the internal heat exchanger 13 has a plurality of the upper and lower side passages 13c and 13d in parallel, and depending on the flow direction, the upper and lower side passages 13c and 13d The amount of resistance is configured to be different depending on the plate member 18 built in the header member 13g. However, the resistance is not limited to this, and the plate member 18 serving as a flow rate restricting means is not limited to this. May be provided so that the refrigerant passes through all of the plate members 18 during the heating operation.

すなわち、前記内部熱交換器13の高圧側通路13a内の抵抗量を大きくすると、出口に位置する前記上側開口部13mの圧力が低下する。   That is, when the amount of resistance in the high-pressure side passage 13a of the internal heat exchanger 13 is increased, the pressure of the upper opening 13m located at the outlet decreases.

このため、抵抗量が小さい場合に比して、このような抵抗量が大きい場合には、比エンタルピも大きくなり、内部熱交換器13の熱交換量が小さくなる。   For this reason, when such a resistance amount is large, the specific enthalpy increases and the heat exchange amount of the internal heat exchanger 13 decreases as compared with the case where the resistance amount is small.

この場合は、暖房運転時の内部熱交換器13の入口側であるヘッダ部材13g内、若しくは、上下側通路13c,13dと、このヘッダ部材13gとの接続部分近傍に、流量制限手段を内蔵すればよい。   In this case, a flow rate restricting means is incorporated in the header member 13g on the inlet side of the internal heat exchanger 13 during the heating operation or in the vicinity of the connecting portion between the upper and lower passages 13c and 13d and the header member 13g. That's fine.

内蔵する流量制限手段としては、前記実施例1と同様に、冷房運転時の冷媒の流れ方向の下流側に向けて凸状のバーリング孔部18cを貫通形成したプレート部材18を通路の内側面形状に適用させて構成する等、どのような形状、数量及び材質のものを用いてもよい。   As a built-in flow restricting means, as in the first embodiment, the plate member 18 formed so as to penetrate the convex burring hole portion 18c toward the downstream side in the refrigerant flow direction during the cooling operation is formed as the inner side surface shape of the passage. Any shape, quantity and material may be used, such as applying to the above.

この発明の最良の実施の形態の空調システムの内部熱交換器構造で、冷房運転時を示し、全体の構成を説明する空調システムの模式的な回路構成図である。1 is a schematic circuit configuration diagram of an air-conditioning system illustrating an overall configuration in an internal heat exchanger structure of an air-conditioning system according to a best embodiment of the present invention, showing a cooling operation. 実施の形態の空調システムの内部熱交換器構造で、ヒートポンプサイクル暖房運転時を示す全体の模式的な回路構成図である。It is an internal heat exchanger structure of the air-conditioning system of an embodiment, and is the whole typical circuit lineblock diagram showing the time at the time of heat pump cycle heating operation. 実施の形態の空調システムの内部熱交換器構造で、冷房運転時の冷媒流れ方向を、内部熱交換器の構成と共に説明する一部断面正面図である。It is a partial cross section front view explaining the refrigerant | coolant flow direction at the time of air_conditionaing | cooling operation with the structure of an internal heat exchanger by the internal heat exchanger structure of the air conditioning system of embodiment. 実施の形態の空調システムの内部熱交換器構造で、暖房運転時の冷媒流れ方向を、内部熱交換器の構成と共に説明する一部断面正面図である。It is a partial cross section front view explaining the refrigerant | coolant flow direction at the time of heating operation with the structure of an internal heat exchanger by the internal heat exchanger structure of the air conditioning system of embodiment. 実施の形態の空調システムの内部熱交換器構造で、内部熱交換器の上面図である。It is an internal heat exchanger structure of the air conditioning system of an embodiment, and is a top view of an internal heat exchanger. 実施の形態の空調システムの内部熱交換器構造で、内部熱交換器のヘッダ部材の構成を説明する分解斜視図である。It is an internal heat exchanger structure of the air conditioning system of an embodiment, and is an exploded perspective view explaining composition of a header member of an internal heat exchanger. 実施の形態の空調システムの内部熱交換器構造で、プレート部材が装着されている部分近傍のヘッダ部材内の縦断面図である。It is an internal heat exchanger structure of the air-conditioning system of embodiment, and is a longitudinal cross-sectional view in the header member of the part vicinity where the plate member is mounted | worn. 実施の形態の実施例1の空調システムの内部熱交換器構造で、プレート部材が装着されている部分近傍のヘッダ部材内の縦断面図である。It is an internal heat exchanger structure of the air-conditioning system of Example 1 of an embodiment, and is a longitudinal section in a header member near a portion to which a plate member is attached. 従来例の空調システムで、全体の構成を説明する模式的な回路図である。It is a typical circuit diagram explaining the whole structure with the air conditioning system of a prior art example. 従来例の空調システムのモリエル線図である。It is a Mollier diagram of an air conditioning system of a conventional example.

符号の説明Explanation of symbols

1 圧縮機
1a 吸入開口部
11 空調システム
13 内部熱交換器
13a 高圧側通路
13b 低圧側通路
16 室内熱交換器
18,28 プレート部材(流量制限手段)
18c,28c
バーリング孔部
DESCRIPTION OF SYMBOLS 1 Compressor 1a Suction opening 11 Air conditioning system 13 Internal heat exchanger 13a High pressure side passage 13b Low pressure side passage 16 Indoor heat exchangers 18, 28 Plate member (flow rate restricting means)
18c, 28c
Burring hole

Claims (4)

冷暖房切換可能なヒートポンプサイクルに用いられ、冷媒を吸入し、該吸入した冷媒を、圧縮する圧縮機と、室外空気及び冷媒間で熱交換を行う室外熱交換器と、室内に吹き出す室内空気と冷媒との間で熱交換を行う室内熱交換器と、前記室外熱交換器及び該室内熱交換器との間に設けられて、冷媒を減圧する減圧器と、冷房運転時には、前記減圧器にて減圧される前の高圧冷媒と、前記圧縮機に吸入される低圧冷媒とを各々高圧側通路及び低圧側通路に挿通して熱交換を行うことにより、前記室内熱交換器の入口側と出口側との比エンタルピ差を増大させる内部熱交換器とを有し、暖房運転時には、該内部熱交換器の高圧側通路の流れを逆転させることにより、ヒートポンプ化可能な空調システムの内部熱交換器構造であって、
前記内部熱交換器の高圧側通路には、流れに応じて抵抗量が異なる流量制限手段を内蔵したことを特徴とする空調システムの内部熱交換器構造。
Used in a heat pump cycle that can be switched between air conditioning and heating, sucks refrigerant, compresses the sucked refrigerant, an outdoor heat exchanger that exchanges heat between the outdoor air and the refrigerant, indoor air and refrigerant blown into the room Between the indoor heat exchanger that exchanges heat with the outdoor heat exchanger and the indoor heat exchanger, and a decompressor that decompresses the refrigerant, and during the cooling operation, the decompressor The high-pressure refrigerant before being decompressed and the low-pressure refrigerant sucked into the compressor are inserted into the high-pressure side passage and the low-pressure side passage, respectively, to perform heat exchange, whereby the inlet side and the outlet side of the indoor heat exchanger An internal heat exchanger that increases the specific enthalpy difference between the internal heat exchanger and the internal heat exchanger structure of an air conditioning system that can be converted into a heat pump by reversing the flow of the high-pressure side passage of the internal heat exchanger during heating operation Because
An internal heat exchanger structure for an air conditioning system, characterized in that a flow rate restricting means having a different resistance depending on the flow is incorporated in the high-pressure side passage of the internal heat exchanger.
前記内部熱交換器の高圧側通路が並列に複数あり、流れ方向に応じて各々の前記高圧側通路の抵抗量が異なるように、該高圧側通路に、前記流量制限手段を内蔵した請求項1記載の内部熱交換器構造。   The high-pressure side passage of the internal heat exchanger has a plurality of high-pressure side passages in parallel, and the flow rate restricting means is incorporated in the high-pressure side passage so that the resistance amount of each of the high-pressure side passages varies depending on the flow direction. The internal heat exchanger structure described. 前記流量制限手段は、前記高圧側通路内に装着されて、冷房運転時の冷媒の流れ方向下流側に向けて凸状のバーリング孔部を貫通形成したプレート部材を有することを特徴とする請求項1又は2記載の空調システムの内部熱交換器構造。   The flow rate restricting means includes a plate member that is mounted in the high-pressure side passage and has a burring hole that protrudes toward the downstream side in the refrigerant flow direction during cooling operation. The internal heat exchanger structure of the air conditioning system according to 1 or 2. 前記内部熱交換器は、前記高圧側通路を構成する一対の上側通路及び下側通路と、該上側通路及び下側通路の各左,右端部開口が、各々接続された略円筒形形状を呈するヘッダ部材とを有し、該ヘッダ部材の内側面に、前記流量制限手段が係止されて、装着されることを特徴とする請求項1乃至3のうち、いずれか一項記載の空調システムの内部熱交換器構造。   The internal heat exchanger has a substantially cylindrical shape in which a pair of upper and lower passages constituting the high-pressure side passage and left and right end openings of the upper and lower passages are connected to each other. 4. The air conditioning system according to claim 1, further comprising: a header member, wherein the flow restricting unit is locked and attached to an inner surface of the header member. 5. Internal heat exchanger structure.
JP2007024863A 2007-02-02 2007-02-02 Internal heat exchanger structure for air conditioning system Pending JP2008190763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024863A JP2008190763A (en) 2007-02-02 2007-02-02 Internal heat exchanger structure for air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024863A JP2008190763A (en) 2007-02-02 2007-02-02 Internal heat exchanger structure for air conditioning system

Publications (1)

Publication Number Publication Date
JP2008190763A true JP2008190763A (en) 2008-08-21

Family

ID=39751027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024863A Pending JP2008190763A (en) 2007-02-02 2007-02-02 Internal heat exchanger structure for air conditioning system

Country Status (1)

Country Link
JP (1) JP2008190763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179999B2 (en) 2015-08-04 2021-11-23 Denso Corporation Heat pump system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179999B2 (en) 2015-08-04 2021-11-23 Denso Corporation Heat pump system

Similar Documents

Publication Publication Date Title
JP4626531B2 (en) Ejector refrigeration cycle
US9156333B2 (en) System for the heating, ventilation, and/or air conditioning of a vehicle, comprising at least one heat exchanger through which a heat-transfer fluid flows
WO2009087733A1 (en) Refrigeration cycle device and four-way valve
JP2004507706A (en) Reversible vapor compression system
JP6580451B2 (en) Heat exchanger
CN109564070B (en) Heat exchanger and refrigeration system using the same
CN101500829A (en) Air conditioner for vehicle
JP6623962B2 (en) Refrigeration cycle device
JP2020122621A (en) Refrigeration cycle device
JP4952830B2 (en) Ejector refrigeration cycle
JP2006207980A (en) Refrigerating apparatus and refrigerator
EP2568247B1 (en) Air conditioner
JP2010032109A (en) Air conditioner
JP4930214B2 (en) Refrigeration cycle equipment
JP2008051474A (en) Supercritical refrigerating cycle device
JP2008190763A (en) Internal heat exchanger structure for air conditioning system
JP3088411B2 (en) Multi-type air conditioner
JP6537928B2 (en) Heat exchanger and heat pump system
JP2012245849A (en) Air conditioner for vehicle
JP2008190773A (en) Internal heat exchanger structure of air conditioning system
JP6891711B2 (en) Combined heat exchanger
JP2010127504A (en) Air conditioning device
JP2008157588A (en) Air conditioner
WO2022208727A1 (en) Refrigeration cycle device
JP6897478B2 (en) Heat exchanger