JP2010032109A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2010032109A
JP2010032109A JP2008194277A JP2008194277A JP2010032109A JP 2010032109 A JP2010032109 A JP 2010032109A JP 2008194277 A JP2008194277 A JP 2008194277A JP 2008194277 A JP2008194277 A JP 2008194277A JP 2010032109 A JP2010032109 A JP 2010032109A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
gas
pipe
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008194277A
Other languages
Japanese (ja)
Inventor
Shoji Takaku
昭二 高久
Kenji Nagoshi
健二 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008194277A priority Critical patent/JP2010032109A/en
Publication of JP2010032109A publication Critical patent/JP2010032109A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner having a dehumidification valve in the middle of piping of an indoor heat exchanger, reducing refrigerant pressure loss within piping of an outdoor heat exchanger, improving outdoor heat exchange performance during heating operation and having high energy efficiency. <P>SOLUTION: A gas-liquid separator 9 is provided in the middle of the refrigerant piping of the outdoor heat exchanger 6, and a bypass pipe 12 is provided to make separated gas refrigerant merge to outlet piping 10 of the outdoor heat exchanger 6 via a flow rate control valve 11. By performing control to adjust the opening of the flow rate control valve 11 in accordance with the rotational frequency of a compressor 1, pressure loss of a refrigerant made to flow within the outdoor heat exchanger 6 is reduced, so as to improve heating performance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はヒートポンプ式空気調和機用室外熱交換器において、暖房運転時の性能を向上させるのに好適な室外熱交換器を具備した空気調和機に係り、さらに除湿運転時に除湿性能を向上させる制御を備えた空気調和機に関する。   The present invention relates to an air conditioner equipped with an outdoor heat exchanger suitable for improving performance during heating operation in an outdoor heat exchanger for a heat pump type air conditioner, and further controls to improve dehumidification performance during dehumidification operation It is related with the air conditioner provided with.

一般家庭で多く使用されている空気調和機としては、室内機と室外機が別体で構成されており、室内機内には空気と冷媒を熱交換させるための熱交換器と空気を送り出す送風機が設置されており、室外機内には空気と冷媒を熱交換させるための熱交換器と送風機、冷媒を循環させる圧縮機および冷媒を減圧する減圧機等が設置されている。これらの室内機と室外機の間に接続配管を用いて冷媒流路を接続することで、室内機と室外機の間を冷媒が行き来して冷凍サイクルが成り立っている。   As an air conditioner that is often used in general households, an indoor unit and an outdoor unit are configured separately, and a heat exchanger for exchanging heat between the air and the refrigerant and a blower that sends out air are contained in the indoor unit. In the outdoor unit, a heat exchanger and a blower for exchanging heat between the air and the refrigerant, a compressor for circulating the refrigerant, a decompressor for depressurizing the refrigerant, and the like are installed. By connecting the refrigerant flow path between the indoor unit and the outdoor unit using a connection pipe, the refrigerant goes back and forth between the indoor unit and the outdoor unit to establish a refrigeration cycle.

この構成の空気調和機において、冷媒流路切替え弁等により冷媒の流れ方向を変えることにより冷房運転、暖房運転および除湿運転を行っており、これらの各運転条件に関して省エネルギー化を図るための研究が盛んに行われている。   In the air conditioner of this configuration, cooling operation, heating operation and dehumidification operation are performed by changing the flow direction of the refrigerant with a refrigerant flow path switching valve or the like, and research for energy saving regarding these operating conditions has been conducted. It is actively done.

省エネルギー化の有効な手段としては、熱交換器の大型化やファンの高風量化,配管内の冷媒圧力損失低減等があり、特に暖房能力の大きいタイプの空気調和機に関しては配管内冷媒の圧力損失を低減することで熱交換器を大型化することなく、性能を向上させる工夫がなされている。   Effective means of energy saving include increasing the size of the heat exchanger, increasing the fan air flow, and reducing refrigerant pressure loss in the piping. Especially for air conditioners with large heating capacity, the pressure of the refrigerant in the piping A device has been devised to improve the performance without reducing the size of the heat exchanger by reducing the loss.

冷媒配管内の冷媒の圧力損失を低減させる方式の有効な手段としては、冷媒流路を複数流路配列にして、配管内の冷媒流速を低減させる方式があるが、冷媒を分流させる際に生じる各流路の流量バランスを工夫する必要がある。   As an effective means of reducing the pressure loss of the refrigerant in the refrigerant pipe, there is a system in which a plurality of refrigerant flow paths are arranged to reduce the refrigerant flow velocity in the pipe, but this occurs when the refrigerant is divided. It is necessary to devise the flow rate balance of each flow path.

蒸発器内の冷媒圧力損失を小さくすると共に熱交換性能にほとんど寄与しないガス成分を熱交換器出口にバイパスさせ、性能を向上させる従来技術として、熱交換器に気液分離器を備えた構成で性能向上を図るものがある(例えば、特許文献1参照)。特許文献1では、熱交換器の入口から出口に至る冷媒配管途中に気液分離器を設け、ガス成分を抽出して熱交換器出口配管にバイパスさせることにより、蒸発器としての性能を向上させる。   As a conventional technology to improve the performance by reducing the refrigerant pressure loss in the evaporator and bypassing the gas component that hardly contributes to the heat exchange performance to the heat exchanger outlet, the heat exchanger is equipped with a gas-liquid separator There are some which improve performance (for example, refer to patent documents 1). In Patent Document 1, a gas-liquid separator is provided in the middle of the refrigerant pipe from the inlet to the outlet of the heat exchanger, and gas components are extracted and bypassed to the heat exchanger outlet pipe, thereby improving the performance as an evaporator. .

特開2002−372323号公報JP 2002-372323 A

しかしながら、特許文献1では、ガスバイパス配管に逆止弁を設けて、冷媒が逆に流れる状態、すなわち凝縮器として作用させた時の冷媒バイパスについての工夫はなされており、また一定の冷媒循環量、あるいは特定の冷媒の状態では熱交換器を有効に作用させることができるが、冷媒循環量や冷媒の状態が変わった場合の工夫がなされておらず、運転条件によっては液ガス混合でバイパスしてしまう場合や、ガスバイパス量が十分に確保することができなくなると共に各冷媒流路に分流する時に分流割合のアンバランスが生じて性能が悪化する可能性がある。   However, in Patent Document 1, a check valve is provided in the gas bypass pipe so that the refrigerant flows in the reverse direction, that is, the refrigerant bypass when acting as a condenser is devised, and a constant refrigerant circulation amount is provided. Alternatively, the heat exchanger can be effectively operated in the state of a specific refrigerant, but there is no contrivance when the refrigerant circulation amount or the refrigerant state changes, and depending on the operating conditions, it is bypassed by liquid-gas mixing. In such a case, the gas bypass amount cannot be sufficiently secured, and the flow rate may be unbalanced when the refrigerant flow is diverted to deteriorate the performance.

そこで本発明は上記事情を考慮したものであり、圧縮機,四方弁,室内熱交換器,膨張弁,室外熱交換器等を備え、おのおのを冷媒配管等で接続して冷媒回路を形成し、冷媒を循環させることにより、冷房,暖房及び除湿運転を行うことのできる空気調和機で、前記室内熱交換器は冷媒配管経路の途中に弁を絞ることにより冷媒を減圧することのできる除湿弁を設け、冷房運転時の冷媒流方向にて前記除湿弁上流側の室内熱交換器は第1室内熱交換器、下流側の室内熱交換器は第2室内熱交換器という具合に前記除湿弁を挟んで2つに分割され、前記除湿弁にて減圧することにより、一方を凝縮器、他方を蒸発器とすることのできる空気調和機で、請求項1では、暖房運転時の冷媒流方向に対して前記室外熱交換器の冷媒配管入口近傍にて複数流路に分流させた後、前記室外熱交換器の冷媒入口配管から冷媒出口配管に至るまでの冷媒配管経路の概ね中間地点で一旦冷媒を合流させ、その下流側に気液分離器を設け、前記気液分離器上流側を第1室外熱交換器、下流側を第2室外熱交換器とし、分離したガス冷媒を流量調整弁を介して室外熱交換器の冷媒出口配管に合流するようにバイパス配管を設け、前記圧縮機の回転数に応じて前記流量調整弁の開度を調整する制御を備えることを特徴とする。   Therefore, the present invention takes the above circumstances into consideration, and includes a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, etc., each connected by a refrigerant pipe or the like to form a refrigerant circuit, An air conditioner that can perform cooling, heating, and dehumidifying operation by circulating the refrigerant, and the indoor heat exchanger includes a dehumidifying valve that can depressurize the refrigerant by constricting the valve in the middle of the refrigerant piping path. The dehumidifying valve is installed in the refrigerant flow direction during the cooling operation, such that the indoor heat exchanger upstream of the dehumidifying valve is a first indoor heat exchanger, the downstream indoor heat exchanger is a second indoor heat exchanger, and so on. An air conditioner that is divided into two and is depressurized by the dehumidifying valve so that one is a condenser and the other is an evaporator. In claim 1, in the refrigerant flow direction during heating operation In contrast, in the vicinity of the refrigerant pipe inlet of the outdoor heat exchanger. After diverting to the flow path, the refrigerant is once merged at approximately the midpoint of the refrigerant pipe path from the refrigerant inlet pipe to the refrigerant outlet pipe of the outdoor heat exchanger, and a gas-liquid separator is provided downstream thereof, The gas-liquid separator upstream side is the first outdoor heat exchanger, the downstream side is the second outdoor heat exchanger, and the separated gas refrigerant is joined to the refrigerant outlet pipe of the outdoor heat exchanger via the flow rate adjusting valve. A bypass pipe is provided, and control for adjusting the opening of the flow rate adjusting valve according to the rotational speed of the compressor is provided.

また、請求項2では前記第2室外熱交換器の冷媒流路配管径を前記第1室外熱交換器の冷媒流路配管径よりも細径化するとともに、細径管を使用した場合の圧力損失が前記第1室外熱交換器と同じ冷媒流路配管径を使用した場合に対して小さくなるように、冷媒流路の分流数を設定したことを特徴とする。   According to a second aspect of the present invention, the refrigerant channel pipe diameter of the second outdoor heat exchanger is made smaller than the refrigerant channel pipe diameter of the first outdoor heat exchanger, and the pressure when a small diameter tube is used. The number of diversions of the refrigerant flow path is set so that the loss is smaller than when the same refrigerant flow path pipe diameter as that of the first outdoor heat exchanger is used.

請求項3では、前記した発明に加え、暖房運転時の冷媒の流れ方向で気液分離を作用させた場合、前記気液分離器に接続する配管を
(流入配管の断面積)≒(ガス冷媒流出配管の断面積)+(液冷媒流出配管の断面積)
(ガス冷媒流出配管の断面積)<(液冷媒流出配管の断面積)
の条件を満たす気液分離器を有することを特徴とする。
In claim 3, in addition to the above-described invention, when gas-liquid separation is applied in the refrigerant flow direction during heating operation, the pipe connected to the gas-liquid separator is (cross-sectional area of the inflow pipe) ≈ (gas refrigerant) Cross-sectional area of outflow piping) + (cross-sectional area of outflow piping of liquid refrigerant)
(Cross sectional area of gas refrigerant outflow pipe) <(Cross sectional area of liquid refrigerant outflow pipe)
It has the gas-liquid separator which satisfy | fills these conditions.

請求項4では、前記した発明に加え、前記気液分離器から流出する概ね液冷媒となった冷媒配管を複数流路に分流する際に前記第2室外熱交換器での各冷媒流路の熱交換能力に応じて、前記複数流路に分流する際の各流路の前記第2室外熱交換器入口冷媒配管径を異径にしたことを特徴とする。   According to a fourth aspect of the present invention, in addition to the above-described invention, each refrigerant flow path in the second outdoor heat exchanger is divided when the refrigerant pipe that is substantially liquid refrigerant flowing out from the gas-liquid separator is divided into a plurality of flow paths. The second outdoor heat exchanger inlet refrigerant pipe diameter of each flow path when the flow is divided into the plurality of flow paths is made different depending on the heat exchange capability.

請求項5では、前記気液分離器から流出する概ね液冷媒となった冷媒配管を複数流路に分流する際に前記第2室外熱交換器での各流路の熱交換能力に応じて、各流路の冷媒出口までの長さを調節したことを特徴とする。   In claim 5, according to the heat exchange capacity of each flow path in the second outdoor heat exchanger when the refrigerant pipe that is substantially liquid refrigerant flowing out from the gas-liquid separator is divided into a plurality of flow paths, The length to the refrigerant | coolant exit of each flow path was adjusted, It is characterized by the above-mentioned.

請求項6では請求項1乃至5の何れかの空気調和機において、除湿運転の際に冷房運転と同じ冷媒流方向にて前記除湿弁を絞ると同時に、前記気液分離器の前記バイパス配管経路途中に設置した流量調整弁を開口する制御を備えたことを特徴とする。   In the air conditioner according to any one of claims 1 to 5, the dehumidifying valve is throttled in the same refrigerant flow direction as in the cooling operation during the dehumidifying operation, and at the same time, the bypass piping path of the gas-liquid separator It is characterized by having a control for opening a flow rate adjusting valve installed on the way.

請求項7では気液分離器の形状を円柱形状とし、その内径を35mm以上に設定したことを特徴とする。   According to a seventh aspect of the present invention, the gas-liquid separator has a cylindrical shape and an inner diameter of 35 mm or more.

本発明に係る請求項1記載の効果は、圧縮機,四方弁,室内熱交換器,膨張弁,室外熱交換器等を備え、おのおのを冷媒配管等で接続して冷媒回路を形成し、冷媒を循環させることにより、冷房,暖房及び除湿運転を行うことのできる空気調和機で、前記室内熱交換器は冷媒配管経路の途中に弁を絞ることにより冷媒を減圧することのできる除湿弁を設け、冷房運転時の冷媒流方向にて前記除湿弁上流側の室内熱交換器は第1室内熱交換器、下流側の室内熱交換器は第2室内熱交換器という具合に前記除湿弁を挟んで2つに分割され、前記除湿弁にて減圧することにより、一方を凝縮器、他方を蒸発器とすることのできる空気調和機で、暖房運転時の冷媒流方向に対して前記室外熱交換器の冷媒配管入口近傍にて複数流路に分流させた後、前記室外熱交換器の冷媒入口配管から冷媒出口配管に至るまでの冷媒配管経路の概ね中間地点で一旦冷媒を合流させ、その下流側に気液分離器を設け、前記気液分離器上流側を第1室外熱交換器、下流側を第2室外熱交換器とし、分離したガス冷媒を流量調整弁を介して室外熱交換器の冷媒出口配管に合流するようにバイパス配管を設けると共に、前記圧縮機の回転数に応じて前記流量調整弁の開度を調整する制御を備え、前記気液分離器を通過させることによりガス成分を概ね除去した冷媒を再度複数流路に分流する構成をなす空気調和機において、ガス冷媒をバイパスすることで、従来生じていた気液混合冷媒状態で複数流路に分流させるときの冷媒分配のアンバランスを解消することができ、かつ、蒸発器として熱交換性能にほとんど寄与しないガス成分を適宜バイパスし、蒸発器としての性能を向上させることができる。   According to the first aspect of the present invention, there is provided a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, etc., each connected by a refrigerant pipe or the like to form a refrigerant circuit. Is an air conditioner that can perform cooling, heating, and dehumidifying operations, and the indoor heat exchanger is provided with a dehumidifying valve that can depressurize the refrigerant by constricting the valve in the middle of the refrigerant piping path. The indoor heat exchanger on the upstream side of the dehumidifying valve in the refrigerant flow direction during the cooling operation sandwiches the dehumidifying valve so that the indoor heat exchanger on the downstream side is called the second indoor heat exchanger. Is an air conditioner that can be divided into two by depressurizing with the dehumidifying valve and using one as a condenser and the other as an evaporator. The outdoor heat exchange with respect to the direction of refrigerant flow during heating operation After diverting to multiple flow paths near the refrigerant piping inlet Refrigerants are temporarily joined at approximately the midpoint of the refrigerant piping path from the refrigerant inlet pipe to the refrigerant outlet pipe of the outdoor heat exchanger, and a gas-liquid separator is provided on the downstream side, and the upstream side of the gas-liquid separator is connected to the first side. 1 outdoor heat exchanger, the downstream side is a second outdoor heat exchanger, and a bypass pipe is provided so that the separated gas refrigerant merges with the refrigerant outlet pipe of the outdoor heat exchanger via the flow rate adjusting valve, and the compressor An air conditioner comprising a control for adjusting the opening degree of the flow rate adjusting valve in accordance with the number of rotations of the refrigerant, and a configuration in which the refrigerant from which gas components are substantially removed by passing through the gas-liquid separator is again divided into a plurality of flow paths. By bypassing the gas refrigerant in the machine, it is possible to eliminate the imbalance in refrigerant distribution when diverting into multiple flow paths in the gas-liquid mixed refrigerant state that has occurred in the past, and to improve the heat exchange performance as an evaporator Almost Was not gas components appropriately bypassing, it is possible to improve the performance of the evaporator.

また、請求項2の効果は、前記第2室外熱交換器の冷媒流路配管径を前記第1室外熱交換器の冷媒流路配管径よりも細径化するとともに、細径管を使用した場合の圧力損失が前記第1室外熱交換器と同じ冷媒流路配管径を使用した場合に対して小さくなるように、冷媒流路の分流数を設定することにより、熱交換器として細径管を使用することでの管内の冷媒の濡れぶち長さを増加することによる伝熱性能向上と、複数に分流させることにより蒸発器として作用させた場合の圧力損失を低減することができ、熱交換器を凝縮器として使った場合も含めて総合的に評価した場合、熱交換器の性能を向上させることができる。   The effect of claim 2 is that the refrigerant channel pipe diameter of the second outdoor heat exchanger is made smaller than the refrigerant channel pipe diameter of the first outdoor heat exchanger, and a thin pipe is used. By setting the number of diversions of the refrigerant flow path so that the pressure loss in this case becomes smaller than when the same refrigerant flow path pipe diameter as that of the first outdoor heat exchanger is used, a small diameter pipe as a heat exchanger The heat transfer performance can be improved by increasing the wetting tab length of the refrigerant in the tube, and the pressure loss when acting as an evaporator can be reduced by dividing the refrigerant into multiple heat exchanges. The performance of the heat exchanger can be improved when it is comprehensively evaluated including the case where the condenser is used as a condenser.

また請求項3の効果は、暖房運転時の冷媒の流れ方向で気液分離を作用させた場合、前記気液分離器に接続する配管を
(流入配管の断面積)≒(ガス冷媒流出配管の断面積)+(液冷媒流出配管の断面積)
(ガス冷媒流出配管の断面積)<(液冷媒流出配管の断面積)
の条件を満たす気液分離器を有することで、二相流で流入する冷媒がガス冷媒と液冷媒に分離し易くなり、熱交換器としての性能を促進することができる。
The effect of claim 3 is that when gas-liquid separation is applied in the refrigerant flow direction during heating operation, the pipe connected to the gas-liquid separator is (the cross-sectional area of the inflow pipe) ≈ (the gas refrigerant outflow pipe (Cross sectional area) + (Cross sectional area of liquid refrigerant outflow piping)
(Cross sectional area of gas refrigerant outflow pipe) <(Cross sectional area of liquid refrigerant outflow pipe)
By having the gas-liquid separator that satisfies the above condition, the refrigerant flowing in the two-phase flow can be easily separated into the gas refrigerant and the liquid refrigerant, and the performance as a heat exchanger can be promoted.

また、請求項4の効果として、前記気液分離器から流出する概ね液冷媒となった冷媒を複数流路に分流する際に、前記第2室外熱交換器での各冷媒流路の熱交換能力、すなわち風速分布等を考慮し、各流路の熱交換器出口温度が概ね等しい冷媒温度になるように、複数流路に分流する際の各流路の入口配管径を異径に設定することで、分流割合を調節でき、各流路に分流した後の熱交換割合を最適に設定することができる。   According to the fourth aspect of the present invention, when the refrigerant that has become substantially liquid refrigerant flowing out of the gas-liquid separator is divided into a plurality of flow paths, heat exchange of each refrigerant flow path in the second outdoor heat exchanger is performed. In consideration of capacity, that is, wind speed distribution, etc., the inlet pipe diameter of each flow path is set to a different diameter so that the heat exchanger outlet temperature of each flow path becomes substantially the same refrigerant temperature. Thus, the diversion ratio can be adjusted, and the heat exchange ratio after diversion to each flow path can be set optimally.

また、請求項5の効果として、前記気液分離器から流出する概ね液冷媒となった冷媒を複数流路に分流する際に、前記第2室外熱交換器での各冷媒流路の熱交換能力、すなわち風速分布等を考慮し、各流路の熱交換器出口温度が概ね等しい冷媒温度になるように、各冷媒流路の入口から出口までの冷媒配管長さを設定することで、請求項4で得られた効果と同様の効果が得られる。   In addition, as an effect of claim 5, when the refrigerant that has become substantially liquid refrigerant flowing out of the gas-liquid separator is divided into a plurality of flow paths, heat exchange of each refrigerant flow path in the second outdoor heat exchanger By considering the capacity, that is, the wind speed distribution, etc., the refrigerant pipe length from the inlet to the outlet of each refrigerant flow path is set so that the heat exchanger outlet temperature of each flow path becomes substantially the same refrigerant temperature. The same effect as that obtained in item 4 is obtained.

また請求項6の効果として、除湿運転の際に冷房運転と同じ冷媒流方向にて前記除湿弁を絞ると同時に、前記気液分離器の前記バイパス配管経路途中に設置した流量調整弁を開口する制御を備えたことにより、従来生じていた除湿運転時での室外熱交換器内の液溜まりによる冷媒不足現象を解消することができ、除湿性能を向上させることができる。   Further, as an effect of the sixth aspect, the dehumidifying valve is throttled in the same refrigerant flow direction as in the cooling operation during the dehumidifying operation, and at the same time, the flow rate adjusting valve installed in the middle of the bypass piping path of the gas-liquid separator is opened. By providing the control, it is possible to eliminate the refrigerant shortage phenomenon caused by the liquid pool in the outdoor heat exchanger during the dehumidifying operation, which has occurred in the past, and to improve the dehumidifying performance.

また、請求項7の効果として、前記気液分離器は円柱の形状を成し、少なくともその内径を約35mm以上に設定することにより、気液二相流で気液分離器に流入する冷媒をガス冷媒と液冷媒に分離させるときの分離性能を向上させることができ、気液分離器を有する空気調和機の性能を向上させることができる。   Further, as an effect of claim 7, the gas-liquid separator has a cylindrical shape, and at least its inner diameter is set to about 35 mm or more, so that the refrigerant flowing into the gas-liquid separator in a gas-liquid two-phase flow can be obtained. Separation performance when separating into gas refrigerant and liquid refrigerant can be improved, and the performance of an air conditioner having a gas-liquid separator can be improved.

圧縮機,四方弁,室内熱交換器,膨張弁,室外熱交換器等を備え、おのおのを冷媒配管等で接続して冷媒回路を形成し、冷媒を循環させることにより、冷房,暖房及び除湿運転を行うことのできる空気調和機で、前記室内熱交換器は冷媒配管経路の途中に弁を絞ることにより冷媒を減圧することのできる除湿弁を設け、冷房運転時の冷媒流方向にて前記除湿弁上流側の室内熱交換器は第1室内熱交換器、下流側の室内熱交換器は第2室内熱交換器という具合に前記除湿弁を挟んで2つに分割され、前記除湿弁にて減圧することにより、一方を凝縮器、他方を蒸発器とすることのできる空気調和機で、暖房運転時の冷媒流方向に対して前記室外熱交換器の冷媒配管入口近傍にて複数流路に分流させた後、前記室外熱交換器の冷媒入口配管から冷媒出口配管に至るまでの冷媒配管経路の概ね中間地点で一旦冷媒を合流させ、その下流側に気液分離器を設け、前記気液分離器上流側を第1室外熱交換器、下流側を第2室外熱交換器とし、分離したガス冷媒を流量調整弁を介して室外熱交換器の冷媒出口配管に合流するようにバイパス配管を設け、前記圧縮機の回転数に応じて前記流量調整弁の開度を調整する制御を備えることにより、室外熱交換器を蒸発器として使用した場合の冷媒分配性能を向上させると共に、冷媒の圧力損失を低減することができるため、特に暖房性能を向上させるという目的を実現した。   Equipped with a compressor, four-way valve, indoor heat exchanger, expansion valve, outdoor heat exchanger, etc., connected to each other by refrigerant piping, etc. to form a refrigerant circuit and circulate the refrigerant for cooling, heating and dehumidifying operation The indoor heat exchanger is provided with a dehumidifying valve that can depressurize the refrigerant by constricting the valve in the middle of the refrigerant piping path, and the dehumidifying valve in the refrigerant flow direction during cooling operation. The indoor heat exchanger on the upstream side of the valve is divided into two, with the dehumidifying valve sandwiched between the first indoor heat exchanger, the downstream indoor heat exchanger, and the second indoor heat exchanger. By reducing the pressure, an air conditioner that can be used as a condenser and the other as an evaporator, with multiple flow paths in the vicinity of the refrigerant pipe inlet of the outdoor heat exchanger with respect to the refrigerant flow direction during heating operation. After diversion, the refrigerant is cooled from the refrigerant inlet pipe of the outdoor heat exchanger. The refrigerant is once merged at approximately the midpoint of the refrigerant piping path up to the outlet pipe, and a gas-liquid separator is provided on the downstream side. The upstream side of the gas-liquid separator is the first outdoor heat exchanger, and the downstream side is the first outdoor heat exchanger. A two-way outdoor heat exchanger is provided, and a bypass pipe is provided so that the separated gas refrigerant merges with the refrigerant outlet pipe of the outdoor heat exchanger via the flow rate adjusting valve, and the flow rate adjusting valve of the flow rate adjusting valve is adjusted according to the rotational speed of the compressor. By providing the control to adjust the opening degree, it is possible to improve the refrigerant distribution performance when the outdoor heat exchanger is used as an evaporator, and to reduce the pressure loss of the refrigerant. Realized the purpose.

図1は本発明に係る空気調和機のサイクル構成図である。暖房運転時の冷媒の流れで説明すると、圧縮機1にて高温・高圧ガスにされた冷媒は四方弁2を介して室内熱交換器3に流入し、室内熱交換器3において室内送風ファン4により送られる空気と熱交換し液冷媒に凝縮され、膨張弁5により低温・低圧二相流冷媒になる。そして,低温・低圧となった二相流冷媒は室外熱交換器6に流入し、室外送風ファン7により送られる空気と熱交換した後、四方弁2を介して再び圧縮機1に戻る。   FIG. 1 is a cycle configuration diagram of an air conditioner according to the present invention. If it demonstrates with the flow of the refrigerant | coolant at the time of heating operation, the refrigerant | coolant made into high temperature and high pressure gas by the compressor 1 will flow in into the indoor heat exchanger 3 via the four-way valve 2, and the indoor ventilation fan 4 in the indoor heat exchanger 3 will be described. The air is exchanged with the air to be condensed into liquid refrigerant, and becomes a low-temperature, low-pressure two-phase flow refrigerant by the expansion valve 5. Then, the two-phase flow refrigerant having a low temperature and a low pressure flows into the outdoor heat exchanger 6, exchanges heat with the air sent by the outdoor blower fan 7, and then returns to the compressor 1 again through the four-way valve 2.

室外熱交換器6内では、冷媒入口配管近傍にて冷媒を分流させた後、室外熱交換器6にて途中まで熱交換させ、その後冷媒を一旦合流させると共にその下流側に気液分離器9を設置し、このときの気液分離器上流側を第1室外熱交換器6A、下流側を第2室外熱交換器6Bとした場合、気液分離器9に流入した冷媒はガスと液に分離され、液冷媒は第2室外熱交換器6Bに、ガス冷媒は流量調整弁11を介してバイパスする回路12により第2室外熱交換器6Bの出口配管10に導かれ合流する。この時、圧縮機1の回転数に応じて流量調整弁11の開度を調整する制御を行う。   In the outdoor heat exchanger 6, after the refrigerant is divided in the vicinity of the refrigerant inlet pipe, heat is exchanged partway in the outdoor heat exchanger 6, and then the refrigerant is once merged and the gas-liquid separator 9 is arranged downstream thereof. When the upstream side of the gas-liquid separator is the first outdoor heat exchanger 6A and the downstream side is the second outdoor heat exchanger 6B, the refrigerant flowing into the gas-liquid separator 9 is converted into gas and liquid. Separated, the liquid refrigerant is led to the second outdoor heat exchanger 6B, and the gas refrigerant is led to the outlet pipe 10 of the second outdoor heat exchanger 6B by the circuit 12 that bypasses the flow regulating valve 11, and merges. At this time, control is performed to adjust the opening of the flow rate adjusting valve 11 in accordance with the rotational speed of the compressor 1.

このような経路を設けることにより、次の性能向上効果が期待できる。(1)流速の速いガス冷媒をバイパスすることにより、図1−2のモリエル線図に示すように実線で示す通常のサイクルに対して、気液分離器を作用させることで破線で示すようなサイクル形態、すなわち、蒸発過程における冷媒圧力損失の低減。(2)室外熱交換器6の途中で冷媒を一旦合流させ気液分離させることで、概ね液状態にした冷媒を分流させることでパスバランスの最適化が図れる。但し、圧縮機1の回転数が高回転の時は気液分離性能が低下し、液ガス混合冷媒がバイパスするため、流量調整弁11を閉じ気味に設定することで性能を低下させることなく第2室内熱交換器6Bを有効に使うことができる。   By providing such a route, the following performance improvement effect can be expected. (1) By bypassing a gas refrigerant having a high flow rate, a gas-liquid separator is applied to a normal cycle shown by a solid line as shown in the Mollier diagram of FIG. Cycle form, ie, reduced refrigerant pressure loss during the evaporation process. (2) By combining the refrigerant once in the middle of the outdoor heat exchanger 6 and performing gas-liquid separation, it is possible to optimize the path balance by diverting the refrigerant almost in a liquid state. However, when the rotational speed of the compressor 1 is high, the gas-liquid separation performance is reduced, and the liquid-gas mixed refrigerant bypasses. The two indoor heat exchanger 6B can be used effectively.

あるいは、この流量調整弁11の最適開度を調節するために、例えば圧縮機冷媒吐出温度センサ13をつけ、流量調整弁11を徐々に開いていき、急激に圧縮機冷媒吐出温度が低下した場合は液冷媒もバイパスしているものとみなし、流量調整弁11の開度を閉じていく制御を取り入れることでガスバイパス量を最適にし、性能向上を図ることができる。   Alternatively, in order to adjust the optimum opening degree of the flow rate adjustment valve 11, for example, the compressor refrigerant discharge temperature sensor 13 is attached, and the flow rate adjustment valve 11 is gradually opened, and the compressor refrigerant discharge temperature is suddenly lowered. It is considered that the liquid refrigerant is also bypassed, and by incorporating the control for closing the opening of the flow rate adjusting valve 11, the gas bypass amount can be optimized and the performance can be improved.

また、冷房運転時は気液分離の効果が得られないことから、流量調整弁を閉じて冷媒がバイパスしないようにする。   Further, since the effect of gas-liquid separation cannot be obtained during the cooling operation, the flow rate adjustment valve is closed to prevent the refrigerant from bypassing.

図2は本発明にかかる第2の実施例であり、第2室外熱交換器6Bの冷媒流路配管径を第1室外熱交換器6Aの配管径d1よりも細径化d2にするとともに、細径管径d2を使用した場合の圧力損失ΔP2が第1室外熱交換器6Aの配管径d1の圧力損失ΔP1よりも小さくなるように冷媒分流数を設定する。 Figure 2 is a second embodiment according to the present invention, to reduce the diameter of d 2 than the pipe diameter d 1 of the refrigerant flow path pipe diameter of the second outdoor heat exchanger 6B first outdoor heat exchanger 6A together, the pressure loss ΔP2 when using small diameter tube diameter d 2 to set the number of refrigerant flow so as to be smaller than the pressure loss ΔP1 of the pipe diameter d 1 of the first outdoor heat exchanger 6A.

具体的に数値で評価すると例えば、
第1熱交換器と同じ配管 直径d1=7mm、冷媒パス数を2パスとし、圧力損失をΔP1
細径管 直径d2=5mm、冷媒パス数を4パスとし、圧力損失をΔP2
にした場合のケースを概算してみる、代表的な圧力損失は以下の式により導くこととする。
When specifically evaluating with numerical values, for example,
Same piping as the first heat exchanger Diameter d 1 = 7mm, 2 refrigerant paths, pressure loss ΔP1
Small pipe diameter d 2 = 5mm, 4 refrigerant paths, pressure loss ΔP2
Approximate the case of the case, the typical pressure loss will be derived by the following formula.

ΔP=(128μ(l/冷媒パス数)×(Q/冷媒パス数))/(πd4) 〔Pa〕
d:配管直径〔m〕
μ:粘性係数〔Pa・s〕
l:配管長さ〔m〕(→パス数に依存)
Q:流量〔m3/s〕(→パス数に依存)
上記の計算式において、流量Q〔m3/s〕,配管長さl〔m〕,粘性係数μ〔Pa・s〕は固定の数値とすると、
ΔP1=(128μ(l/2×Q/2))/(π(7×10-3)4) 〔Pa〕
ΔP2=(128μ(l/4×Q/4))/(π(5×10-3)4) 〔Pa〕
ΔP2/ΔP1=(1/4×1/4)/(1/2×1/2)/(54/74)=0.96
となる。したがって、第1室外熱交換器配管径の2パスに対して細径管の4パスの圧力損失は約4%低減できる試算となるため、この場合の細径管のパス数は4パス以上に設定することで圧力損失を低減できる。また細径管を使用した場合、管内の液冷媒と管壁の接触面積(濡れぶち長さ)が増加することによる配管内の伝熱性能向上が期待できる。
ΔP = (128 μ (l / refrigerant pass number) × (Q / refrigerant pass number)) / (πd 4 ) [Pa]
d: Pipe diameter [m]
μ: Viscosity coefficient [Pa · s]
l: Pipe length [m] (→ Depends on the number of passes)
Q: Flow rate [m 3 / s] (→ depends on the number of passes)
In the above formula, if the flow rate Q [m 3 / s], the pipe length l [m], and the viscosity coefficient μ [Pa · s] are fixed values,
ΔP1 = (128 μ (l / 2 × Q / 2)) / (π (7 × 10 −3 ) 4 ) [Pa]
ΔP2 = (128 μ (l / 4 × Q / 4)) / (π (5 × 10 −3 ) 4 ) [Pa]
ΔP2 / ΔP1 = (1/4 × 1/4) / (1/2 × 1/2) / (5 4/7 4) = 0.96
It becomes. Therefore, since the pressure loss of the four passes of the small diameter pipe can be reduced by about 4% with respect to the two paths of the pipe diameter of the first outdoor heat exchanger, the number of passes of the small diameter pipe in this case should be 4 passes or more. By setting, pressure loss can be reduced. In addition, when a small-diameter pipe is used, an improvement in heat transfer performance in the pipe can be expected by increasing the contact area (wetting edge length) between the liquid refrigerant in the pipe and the pipe wall.

図3は気液分離器11について、気液分離を作用させた時に
(流入配管14の断面積)≒(ガス冷媒流出配管15aの断面積)+(液冷媒流出配 管15の断面積)
(ガス冷媒流出配管15aの断面積)<(液冷媒流出配管15の断面積)
の条件を満たすと共に、流量調整弁11でガス冷媒の流出割合を最適にした場合に、冷媒配管15から流出する冷媒を概ね液冷媒にすることができ、蒸発器としての性能を向上させることができる。例えば、流入配管14の直径をφ9.52にした場合、液冷媒流出配管15をφ7とガス冷媒配管15aをφ6.35にすることで前記の条件を満たすことができる。
FIG. 3 shows that when gas-liquid separation is applied to the gas-liquid separator 11 (cross-sectional area of the inflow pipe 14) ≈ (cross-sectional area of the gas refrigerant outflow pipe 15a) + (cross-sectional area of the liquid refrigerant outflow pipe 15)
(Cross sectional area of gas refrigerant outflow pipe 15a) <(Cross sectional area of liquid refrigerant outflow pipe 15)
When the flow rate adjusting valve 11 optimizes the outflow rate of the gas refrigerant, the refrigerant flowing out of the refrigerant pipe 15 can be made almost liquid refrigerant, and the performance as an evaporator can be improved. it can. For example, when the diameter of the inflow pipe 14 is φ9.52, the above condition can be satisfied by setting the liquid refrigerant outflow pipe 15 to φ7 and the gas refrigerant pipe 15a to φ6.35.

図4は本発明に係る第4の実施例を表した図であり、前記気液分離器9から流出する概ね液冷媒となった冷媒配管を複数流路に分流する際に第2室外熱交換器6Bでの各流路の熱交換割合に応じて、前記複数流路に分流する際の各流路の配管径を異径にすることにより熱交換器を有効に使用することができる。例えば第2室外熱交換器6Bに流入する空気の風速分布16が図4のようになっている場合、空気側の風速の遅いパスA,パスDの分岐管出口径17を細くし、風速の速いパスB,パスCの分岐管出口径18を太くすることで冷媒の分流比を調節し室外熱交換器6の配管出口近傍において、各流路とも概ね等しい温度になるように構成することにより熱交換器を有効に使用することができる。   FIG. 4 is a view showing a fourth embodiment according to the present invention, in which the second outdoor heat exchange is performed when the refrigerant pipe which has become substantially liquid refrigerant flowing out of the gas-liquid separator 9 is divided into a plurality of flow paths. Depending on the heat exchange rate of each flow path in the vessel 6B, the heat exchanger can be used effectively by making the pipe diameter of each flow path different from each other when diverting to the plurality of flow paths. For example, when the wind speed distribution 16 of the air flowing into the second outdoor heat exchanger 6B is as shown in FIG. 4, the branch pipe outlet diameter 17 of the slow path A and the path D on the air side is narrowed to reduce the wind speed. By making the branch pipe outlet diameter 18 of the fast path B and the path C thick, the refrigerant diversion ratio is adjusted so that the temperature of each flow path is approximately equal in the vicinity of the pipe outlet of the outdoor heat exchanger 6. A heat exchanger can be used effectively.

図5は本発明に係る第5の実施例を表した図であり、前記気液分離器から流出する概ね液冷媒となった冷媒配管を複数流路に分流する際に各流路の熱交換能力に応じて、各流路の冷媒長さを調節することにより、熱交換器を有効に使用することができる。   FIG. 5 is a diagram showing a fifth embodiment according to the present invention, and heat exchange of each flow path is performed when the refrigerant pipe which is substantially liquid refrigerant flowing out from the gas-liquid separator is divided into a plurality of flow paths. The heat exchanger can be used effectively by adjusting the refrigerant length of each flow path according to the capacity.

例えば図5のように第2室外熱交換器6Bに流入する空気の風速分布16があった場合、空気側の風速の遅いパスA,パスDの分流後の配管長さを長くし、風速分布の速いパスB,パスC配管長さを短くするようにし、各パスの入口から出口までの配管長さを適切に調節することで第2室外熱交換器6Bの各流路の熱交換を有効に促進することができる。   For example, when there is a wind speed distribution 16 of the air flowing into the second outdoor heat exchanger 6B as shown in FIG. 5, the pipe length after the diversion of the path A and the path D having a slow wind speed on the air side is lengthened, and the wind speed distribution is obtained. The path B and path C of the fast path are shortened, and the heat exchange of each flow path of the second outdoor heat exchanger 6B is effective by appropriately adjusting the pipe length from the inlet to the outlet of each path. Can be promoted.

図6は本発明に係る実施例を表した図であり、本発明のサイクル構成で除湿運転をした場合を表したものである。通常除湿運転をする場合の冷媒の流れは、凝縮器となる室外熱交換器6を通過して室内熱交換器3に流入し、室内熱交換器3の熱交換器途中に設けた除湿弁8を絞ることにより、冷媒の流れ方向で除湿弁8前の熱交換器が凝縮器となり、除湿弁8後の熱交換器が蒸発器となる。この方式により、室内の温度を下げることなく除湿運転ができる。この時、室外熱交換器6には凝縮した冷媒が溜まることで冷媒不足のサイクルになる。そこで、除湿運転時に流量調整弁11を開口することで、冷媒が第2室外熱交換器6Bを通過することなくバイパスすることができ、冷媒不足を回収することができる。   FIG. 6 is a diagram showing an embodiment according to the present invention, and shows a case where a dehumidifying operation is performed with the cycle configuration of the present invention. In the normal dehumidifying operation, the refrigerant flow passes through the outdoor heat exchanger 6 serving as a condenser and flows into the indoor heat exchanger 3, and the dehumidifying valve 8 provided in the middle of the heat exchanger of the indoor heat exchanger 3. By narrowing down, the heat exchanger before the dehumidifying valve 8 becomes a condenser in the flow direction of the refrigerant, and the heat exchanger after the dehumidifying valve 8 becomes an evaporator. By this method, dehumidifying operation can be performed without lowering the indoor temperature. At this time, the condensed refrigerant accumulates in the outdoor heat exchanger 6, resulting in a refrigerant shortage cycle. Therefore, by opening the flow rate adjustment valve 11 during the dehumidifying operation, the refrigerant can be bypassed without passing through the second outdoor heat exchanger 6B, and the refrigerant shortage can be recovered.

図7は本発明に係る気液分離器9の内径と性能(COP向上割合)の関係を表した実験結果である。本実験では気液分離器の内径をパラメータにして、性能を測定した結果を表したものであり、本実験結果から気液分離器9の内径を概ねφ35mm以上にすることで性能向上を図ることができる。また、気液分離器11の内径がφ48mm程度で性能が収束しているため、気液分離器9の径Dはφ35mm≦D≦φ48mmにすることで必要以上に内径を大きくすることなく、性能向上を図ることができる。   FIG. 7 shows the experimental results showing the relationship between the inner diameter and the performance (COP improvement ratio) of the gas-liquid separator 9 according to the present invention. In this experiment, the result of measuring the performance with the inner diameter of the gas-liquid separator as a parameter is shown. From the result of this experiment, the inner diameter of the gas-liquid separator 9 is approximately 35 mm or more to improve the performance. Can do. In addition, since the performance is converged when the gas-liquid separator 11 has an inner diameter of about 48 mm, the diameter D of the gas-liquid separator 9 is set to 35 mm ≦ D ≦ φ48 mm without increasing the inner diameter more than necessary. Improvements can be made.

本発明に係る空気調和機の全体の概要を示した説明図である。It is explanatory drawing which showed the outline | summary of the whole air conditioner concerning this invention. 本発明に係る空気調和機のモリエル線図を示した説明図である。It is explanatory drawing which showed the Mollier diagram of the air conditioner which concerns on this invention. 本発明に係る空気調和機の実施方法を示した説明図である。(実施例2)It is explanatory drawing which showed the implementation method of the air conditioner which concerns on this invention. (Example 2) 本発明に係る空気調和機の実施方法を示した説明図である。(実施例3)It is explanatory drawing which showed the implementation method of the air conditioner which concerns on this invention. (Example 3) 本発明に係る空気調和機の実施方法を示した説明図である。(実施例4)It is explanatory drawing which showed the implementation method of the air conditioner which concerns on this invention. Example 4 本発明に係る空気調和機の実施方法を示した説明図である。(実施例5)It is explanatory drawing which showed the implementation method of the air conditioner which concerns on this invention. (Example 5) 本発明に係る空気調和機の実施方法を示した説明図である。(実施例6)It is explanatory drawing which showed the implementation method of the air conditioner which concerns on this invention. (Example 6) 本発明に係る空気調和機の実施方法を示した説明図である。(実施例7)It is explanatory drawing which showed the implementation method of the air conditioner which concerns on this invention. (Example 7)

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 室内熱交換器
4 室内送風ファン
5 膨張弁
6 室外熱交換器
6A 第1室外熱交換器
6B 第2室外熱交換器
7 室外送風ファン
8 除湿弁
9 気液分離器
10 出口配管
11 流量調整弁
12 バイパス回路
13 圧縮機吐出冷媒温度センサ
14 流入配管
15,15a 流出配管
16 風速分布
17 パスA,Dの分岐管出口径
18 パスB,Cの分岐管出口径
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Indoor heat exchanger 4 Indoor ventilation fan 5 Expansion valve 6 Outdoor heat exchanger 6A 1st outdoor heat exchanger 6B 2nd outdoor heat exchanger 7 Outdoor ventilation fan 8 Dehumidification valve 9 Gas-liquid separator 10 Outlet piping 11 Flow control valve 12 Bypass circuit 13 Compressor discharge refrigerant temperature sensor 14 Inflow piping 15, 15a Outflow piping 16 Wind speed distribution 17 Branch pipe outlet diameter of paths A and D 18 Branch pipe outlet diameter of paths B and C

Claims (7)

圧縮機,四方弁,室内熱交換器,膨張弁、及び室外熱交換器を冷媒配管で接続して形成された冷媒回路に冷媒を循環させることにより、冷房,暖房及び除湿運転を行う空気調和機において、
前記室内熱交換器は冷媒流路配管の途中に弁を絞ることにより冷媒を減圧する除湿弁を備え、前記除湿弁を挟んで、冷房運転時の冷媒流方向にて、前記除湿弁の上流側の室内熱交換器が第1室内熱交換器、前記除湿弁の下流側の室内熱交換器が第2室内熱交換器として分割され、前記除湿弁にて減圧することにより、第1室内熱交換器を凝縮器、第2室内熱交換器を蒸発器とし、
暖房運転時の冷媒流方向に対して前記室外熱交換器の冷媒配管入口近傍にて複数流路に分流させた後、前記室外熱交換器の冷媒入口配管から冷媒出口配管に至るまでの冷媒配管経路において冷媒を合流させ、その下流側に気液分離器を設け、前記気液分離器の上流側を第1室外熱交換器、下流側を第2室外熱交換器とし、分離したガス冷媒を流量調整弁を介して室外熱交換器の冷媒出口配管に合流するようにバイパス配管を設け、
前記圧縮機の回転数に応じて前記流量調整弁の開度を調整することを特徴とする空気調和機。
An air conditioner that performs cooling, heating, and dehumidifying operations by circulating a refrigerant in a refrigerant circuit formed by connecting a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger with refrigerant piping. In
The indoor heat exchanger includes a dehumidifying valve that depressurizes the refrigerant by constricting the valve in the middle of the refrigerant flow pipe, and sandwiches the dehumidifying valve and is located upstream of the dehumidifying valve in a refrigerant flow direction during cooling operation. The indoor heat exchanger is divided into a first indoor heat exchanger, an indoor heat exchanger downstream of the dehumidifying valve is divided as a second indoor heat exchanger, and the dehumidifying valve depressurizes the first indoor heat exchanger. The condenser is the condenser, the second indoor heat exchanger is the evaporator,
Refrigerant piping from the refrigerant inlet piping to the refrigerant outlet piping of the outdoor heat exchanger after being divided into a plurality of flow paths in the vicinity of the refrigerant piping inlet of the outdoor heat exchanger with respect to the refrigerant flow direction during heating operation The refrigerant is combined in the path, and a gas-liquid separator is provided on the downstream side thereof. The upstream side of the gas-liquid separator is the first outdoor heat exchanger, the downstream side is the second outdoor heat exchanger, and the separated gas refrigerant is A bypass pipe is provided so as to join the refrigerant outlet pipe of the outdoor heat exchanger via the flow rate adjustment valve,
An air conditioner that adjusts an opening degree of the flow rate adjusting valve in accordance with a rotation speed of the compressor.
請求項1において、前記第2室内熱交換器の冷媒流路配管径を前記第1室内熱交換器の冷媒流路配管径よりも細径化するとともに、前記第2室内熱交換器の圧力損失が前記第1室内熱交換器と同じ冷媒流路配管径を使用した場合に対して小さくなるように冷媒流路の分流数を設定したことを特徴とする空気調和機。   The pressure loss of the second indoor heat exchanger according to claim 1, wherein the diameter of the refrigerant channel pipe of the second indoor heat exchanger is made smaller than the diameter of the refrigerant channel pipe of the first indoor heat exchanger. The air conditioner is characterized in that the number of diversions of the refrigerant flow path is set so as to be smaller than when the same refrigerant flow path pipe diameter as that of the first indoor heat exchanger is used. 請求項1又は2において、暖房運転時の冷媒の流れ方向で気液分離を作用させた場合、前記気液分離器に接続する配管を、
(流入配管の断面積)≒(ガス冷媒流出配管の断面積)+(液冷媒流出配管の断面積)
(ガス冷媒流出配管の断面積)<(液冷媒流出配管の断面積)
の条件を満たす気液分離器を有することを特徴とする空気調和機。
In Claim 1 or 2, when gas-liquid separation is made to act in the flow direction of the refrigerant during heating operation, piping connected to the gas-liquid separator,
(Cross sectional area of inflow piping) ≒ (Cross sectional area of gas refrigerant outflow piping) + (Cross sectional area of liquid refrigerant outflow piping)
(Cross sectional area of gas refrigerant outflow pipe) <(Cross sectional area of liquid refrigerant outflow pipe)
An air conditioner comprising a gas-liquid separator that satisfies the following conditions.
請求項1乃至3の何れかにおいて、前記気液分離器から流出する液冷媒となった冷媒を複数流路に分流する際に、前記第2室内熱交換器での各冷媒流路における風速分布等を考慮し、各流路の熱交換器出口温度が等しい冷媒温度になるように、複数流路に分流する際の各流路の入口配管径を異径に設定したことを特徴とする空気調和機。   4. The wind speed distribution in each refrigerant flow path in the second indoor heat exchanger when the refrigerant that has become liquid refrigerant flowing out of the gas-liquid separator is divided into a plurality of flow paths in any one of claims 1 to 3. In consideration of the above, etc., the air pipe is characterized in that the inlet pipe diameter of each flow path is set to a different diameter so that the heat exchanger outlet temperature of each flow path becomes the same refrigerant temperature. Harmony machine. 請求項1乃至3の何れかにおいて、前記気液分離器から流出する液冷媒となった冷媒を複数流路に分流する際に、前記第2室外熱交換器での各冷媒流路の熱交換能力を考慮し、各流路の熱交換器出口温度が等しい冷媒温度になるように、各冷媒流路の入口から出口までの冷媒流路配管長さを設定したことを特徴とする空気調和機。   4. The heat exchange of each refrigerant flow path in the second outdoor heat exchanger according to any one of claims 1 to 3, when the refrigerant that has become liquid refrigerant flowing out of the gas-liquid separator is divided into a plurality of flow paths. In consideration of capacity, the air conditioner is characterized in that the refrigerant channel pipe length from the inlet to the outlet of each refrigerant channel is set so that the heat exchanger outlet temperature of each channel is equal to the refrigerant temperature. . 請求項1乃至5の何れかにおいて、除湿運転の際に冷房運転と同じ冷媒流方向にて前記除湿弁を絞ると同時に、前記気液分離器の前記バイパス配管経路途中に設置した流量調整弁を開口することを特徴とする空気調和機。   6. In any one of Claims 1 thru | or 5, the said flow control valve installed in the said bypass piping path | route of the said gas-liquid separator simultaneously with restrict | squeezing the said dehumidification valve in the same refrigerant | coolant flow direction as a cooling operation in the dehumidification operation | movement. An air conditioner characterized by opening. 請求項1乃至6の何れかにおいて、前記気液分離器は円柱の形状を成し、その内径を35mm以上としてことを特徴とする空気調和機。   7. The air conditioner according to claim 1, wherein the gas-liquid separator has a cylindrical shape and an inner diameter of 35 mm or more.
JP2008194277A 2008-07-29 2008-07-29 Air conditioner Withdrawn JP2010032109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194277A JP2010032109A (en) 2008-07-29 2008-07-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194277A JP2010032109A (en) 2008-07-29 2008-07-29 Air conditioner

Publications (1)

Publication Number Publication Date
JP2010032109A true JP2010032109A (en) 2010-02-12

Family

ID=41736795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194277A Withdrawn JP2010032109A (en) 2008-07-29 2008-07-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2010032109A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063083A (en) * 2010-09-16 2012-03-29 Daikin Industries Ltd Heat source unit
JP2013195034A (en) * 2012-03-22 2013-09-30 Fujitsu General Ltd Refrigeration cycle apparatus
CN103868291A (en) * 2012-12-14 2014-06-18 美的集团股份有限公司 Liquid storage pot for heat exchange system and heat exchange system and air conditioner having same
CN104634000A (en) * 2013-11-14 2015-05-20 美的集团股份有限公司 Heat exchanger assembly, heat exchange system and air conditioner
CN104634001A (en) * 2013-11-14 2015-05-20 美的集团股份有限公司 Heat exchanger component and heat exchanging system and air-conditioner with the heat exchanger component
CN114992920A (en) * 2022-04-22 2022-09-02 美的集团武汉暖通设备有限公司 Gas-liquid separator, air conditioner, control method of air conditioner and storage medium
CN115183404A (en) * 2022-07-11 2022-10-14 青岛海尔空调电子有限公司 Air conditioning system and control method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063083A (en) * 2010-09-16 2012-03-29 Daikin Industries Ltd Heat source unit
JP2013195034A (en) * 2012-03-22 2013-09-30 Fujitsu General Ltd Refrigeration cycle apparatus
CN103868291A (en) * 2012-12-14 2014-06-18 美的集团股份有限公司 Liquid storage pot for heat exchange system and heat exchange system and air conditioner having same
CN103868291B (en) * 2012-12-14 2016-05-18 美的集团股份有限公司 For the fluid reservoir of heat-exchange system and there is its heat-exchange system and air-conditioner
CN104634000A (en) * 2013-11-14 2015-05-20 美的集团股份有限公司 Heat exchanger assembly, heat exchange system and air conditioner
CN104634001A (en) * 2013-11-14 2015-05-20 美的集团股份有限公司 Heat exchanger component and heat exchanging system and air-conditioner with the heat exchanger component
CN114992920A (en) * 2022-04-22 2022-09-02 美的集团武汉暖通设备有限公司 Gas-liquid separator, air conditioner, control method of air conditioner and storage medium
CN114992920B (en) * 2022-04-22 2023-11-28 美的集团武汉暖通设备有限公司 Gas-liquid separator, air conditioner, control method of air conditioner and storage medium
CN115183404A (en) * 2022-07-11 2022-10-14 青岛海尔空调电子有限公司 Air conditioning system and control method thereof

Similar Documents

Publication Publication Date Title
EP2722616B1 (en) Air conditioner
JP6644154B2 (en) Air conditioner
WO2016051606A1 (en) Air conditioning device
WO2018002983A1 (en) Refrigeration cycle device
JP2010032109A (en) Air conditioner
KR101146460B1 (en) A refrigerant system
JP2008180422A (en) Air conditioner
KR100589913B1 (en) Air conditioning apparatus
JP2006071137A (en) Refrigeration unit
JP2017101855A (en) Air conditioning system
JP2008170063A (en) Multiple type air conditioner
JP4303032B2 (en) Air conditioner
JP2006275435A (en) Gas-liquid separator and air-conditioner
JP2017015299A (en) Cooling device
JP2009156496A (en) Air conditioner
JP2017101854A (en) Air conditioning system
JP2007032857A (en) Refrigerating device
JP2010032106A (en) Air conditioner
JP5645413B2 (en) Air conditioner
JP2010032105A (en) Air conditioner
JP2005273923A (en) Air conditioner
JP2014109416A (en) Air conditioner
JP2018059673A (en) Heat exchanger and heat pump device using the same
KR102122510B1 (en) An air conditioning system
JP2008051464A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004