JP2008189534A - Mn-Zn FERRITE - Google Patents

Mn-Zn FERRITE Download PDF

Info

Publication number
JP2008189534A
JP2008189534A JP2007028246A JP2007028246A JP2008189534A JP 2008189534 A JP2008189534 A JP 2008189534A JP 2007028246 A JP2007028246 A JP 2007028246A JP 2007028246 A JP2007028246 A JP 2007028246A JP 2008189534 A JP2008189534 A JP 2008189534A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
ferrite
saturation magnetic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007028246A
Other languages
Japanese (ja)
Inventor
Kenji Tanaka
賢司 田中
Kazuyuki Yoneda
和之 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2007028246A priority Critical patent/JP2008189534A/en
Publication of JP2008189534A publication Critical patent/JP2008189534A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Mn-Zn ferrite which exhibits a low deterioration of direct current superimposing characteristic, and exhibits both of a high saturation flux density and a low loss at high temperature in combination. <P>SOLUTION: The Mn-Zn ferrite is composed of 54.0-56.0 mol% Fe<SB>2</SB>O<SB>3</SB>, 6.0-8.0 mol% ZnO and the remainder being MnO as a fundamental composition, and 0.002-0.01 wt.% SiO<SB>2</SB>, 0.01-0.1 wt.% CaO, 0.01-0.1 wt.% V<SB>2</SB>O<SB>5</SB>, 0.01-0.1 wt.% Nb<SB>2</SB>O<SB>5</SB>, 0.1-1.1 wt.% NiO and 0.05-0.2 wt.% Sb<SB>2</SB>O<SB>3</SB>are simultaneously incorporated as sub-components. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高温度域(100℃近傍)において高飽和磁束密度でかつ、低損失を有し、直流重畳特性の劣化が小さいフェライト焼成体、およびこれを用いたスイッチング電源用トランス、チョークコイル等に適したMn−Znフェライトに関するものである。   The present invention relates to a ferrite sintered body having a high saturation magnetic flux density and a low loss in a high temperature range (near 100 ° C.) and a small deterioration of DC superimposition characteristics, a transformer for switching power supply using the same, a choke coil, and the like The present invention relates to a Mn—Zn ferrite suitable for the above.

近年、電子機器の小型軽量化、高集積化に伴い、電力を供給する電源ラインにも高パワーが要求されると共に、回路の高効率化は欠かせないものになっている。例えば、スイッチング電源を小型化するためには磁束密度が飽和しない範囲でトランスに使用するコアの大きさを決める必要があるため、より高い飽和磁束密度を有する材料が望まれている。また、部品の集積化と回路に供給する電流の大電流化による回路周辺の発熱は大きくなるため、電源に用いられるトランス、チョークコイルは所定の性能を保つことが重要である。特に最近は電源ラインの使用環境温度(100℃近傍)において高飽和磁束密度かつ、低損失である材料が要求されている。このような材料は初磁化曲線の直線性がよく直流重畳特性が良好である。   In recent years, along with the reduction in size, weight and integration of electronic devices, power supply lines for supplying power are required to have high power, and circuit efficiency is indispensable. For example, in order to reduce the size of the switching power supply, it is necessary to determine the size of the core used for the transformer within a range where the magnetic flux density is not saturated. Therefore, a material having a higher saturation magnetic flux density is desired. Further, since heat generation around the circuit due to integration of components and increase in current supplied to the circuit increases, it is important to maintain a predetermined performance for the transformer and choke coil used for the power supply. In particular, recently, a material having a high saturation magnetic flux density and a low loss at the use environment temperature of the power supply line (around 100 ° C.) has been demanded. Such a material has good linearity of the initial magnetization curve and good DC superposition characteristics.

例えば、特開2004−137112公報ではFe、MnO、ZnOの主組成域の選定、副成分としてSiO、CaO、V、Nbを添加することにより100℃近傍において高飽和磁束密度かつ低損失化を実現し直流重畳の劣化を改善している。

特開2004−137112公報
For example, in Japanese Patent Application Laid-Open No. 2004-137112, selection of the main composition range of Fe 2 O 3 , MnO, ZnO, and addition of SiO 2 , CaO, V 2 O 5 , Nb 2 O 5 as subcomponents in the vicinity of 100 ° C. High saturation magnetic flux density and low loss are realized to improve the degradation of DC superposition.

JP 2004-137112 A


上記のような理由により、電源に用いられるトランス、チョークコイルは高温において安定した性能を保つことが要求されている。特に高温度で直流重畳特性の劣化を小さくするためには、さらに高飽和磁束密度かつ低損失化が要求される。

For the reasons described above, transformers and choke coils used for power supplies are required to maintain stable performance at high temperatures. In particular, in order to reduce the deterioration of the DC superimposition characteristics at a high temperature, a higher saturation magnetic flux density and lower loss are required.

本発明は上記問題点を解決し、100℃程度の高温においても高飽和磁束密度かつ低損失であり、直流重畳特性が良好なMn−Znフェライトを提供しようというものである。   The present invention has been made to solve the above problems, and to provide a Mn—Zn ferrite having a high saturation magnetic flux density and a low loss even at a high temperature of about 100 ° C. and having good DC superposition characteristics.

本発明は基本組成としてFe:54.0〜56.0、ZnO:6.0〜8.0mol%、残部MnOからなり、副成分としてSiO:0.002〜0.01wt%、CaO:0.01〜0.1wt%、V:0.01〜0.1wt%、Nb:0.01〜0.1wt%、NiO:0.1〜1.1wt%、Sb:0.05〜0.2wt%を同時に添加することを特徴とするMn−Znフェライトである。
The present invention comprises Fe 2 O 3 : 54.0 to 56.0 as a basic composition, ZnO: 6.0 to 8.0 mol%, and the balance MnO, with SiO 2 : 0.002 to 0.01 wt% as a minor component, CaO: 0.01~0.1wt%, V 2 O 5: 0.01~0.1wt%, Nb 2 O 5: 0.01~0.1wt%, NiO: 0.1~1.1wt%, sb 2 O 3: a Mn-Zn ferrite, which comprises adding 0.05~0.2Wt% simultaneously.

本発明が提供するMn−Znフェライトは、100℃の高温度においても飽和磁束密度が450mT以上で、かつPcv minとなる温度が80℃以上にあり、そのときのPcvが330kW/m以下という低い損失をもつことを同時に可能とする。また、高温における直流重畳特性の劣化も小さいことから、電子機器の高集積化および大電流化における発熱の問題に対しても安定した特性を発揮することができるMn−Znフェライトを提供することが可能となった。 The Mn—Zn ferrite provided by the present invention has a saturation magnetic flux density of 450 mT or higher even at a high temperature of 100 ° C. and a temperature of Pcv min of 80 ° C. or higher, and the Pcv at that time is 330 kW / m 3 or lower. It is possible to have low loss at the same time. In addition, since the degradation of the DC superimposition characteristics at high temperatures is small, it is possible to provide a Mn—Zn ferrite that can exhibit stable characteristics against the problem of heat generation due to high integration and large current of electronic equipment. It has become possible.


表1に示した組成となるように高純度の酸化鉄、酸化マンガン、酸化亜鉛を計量・混合し、大気中で950℃×2時間仮焼を行った。この仮焼原料に本発明の請求項範囲内でSiO 0.005wt%、CaO 0.04wt%、V 0.025wt%、Nb 0.03wt%、NiO、Sbについては表1に示した添加量となるよう加え、アトライターで微粉粒径が1.5μmとなるまで粉砕した。この粉砕粉にポリビニルアルコールを加えて造粒し、得られた造粒顆粒を外径24mm、内径19mm、高さ10mmのトロイダル状に成形した。その後、本焼成においてピーク温度の酸素濃度をコントロールしながら1340℃×4時間保持した後、降温することにより焼結サンプルを得た。このようにして得られた試料に巻線(一次3Ts、二次3Ts)を施し、B−H/Zアナライザー(HP社製5060A)にて電力損失(周波数100kHz、最大磁束密度200mT、測定温度域25〜120℃)を測定した。また、最大磁界1194A/mにおける飽和磁束密度も測定した。また適合例8、比較例2についてはこの原料を用いてチョークコイルを作製し、100℃の直流重畳特性の測定を行い、直流バイアス(以下Idcと称す)0mA時のインダクタンス(L0)に対する変化率を求めた。測定は1kHz、10mA、巻線100Tsの条件におけるIdc=0mAのインダクタンスおよび、Idc印加時のインダクタンスをLCRメーター(HP社製4284A)で測定した。またインダクタンスの変化率は(Idc=0mA時のインダクタンス(L0)−Idc印加時のインダクタンス(L))/Idc=0mA時のインダクタンス(L0)×100[%]の式にて算出した。100℃での飽和磁束密度、Pcv minでの電力損失を表1に示す。図1は100℃における直流重畳特性においてLの変化率を表したものである。

High-purity iron oxide, manganese oxide, and zinc oxide were weighed and mixed so as to have the composition shown in Table 1, and calcined in the atmosphere at 950 ° C. for 2 hours. Within the scope of claims of the present invention, this calcined raw material is within a range of SiO 2 0.005 wt%, CaO 0.04 wt%, V 2 O 5 0.025 wt%, Nb 2 O 5 0.03 wt%, NiO, Sb 2 O 3. Was added to the addition amount shown in Table 1, and pulverized with an attritor until the particle size of the fine powder became 1.5 μm. Polyvinyl alcohol was added to the pulverized powder and granulated, and the resulting granulated granules were formed into a toroidal shape having an outer diameter of 24 mm, an inner diameter of 19 mm, and a height of 10 mm. Then, after maintaining at 1340 ° C. for 4 hours while controlling the oxygen concentration at the peak temperature in the main firing, the temperature was lowered to obtain a sintered sample. Winding (primary 3Ts, secondary 3Ts) was applied to the sample thus obtained, and power loss (frequency 100 kHz, maximum magnetic flux density 200 mT, measurement temperature range) was measured with a BH / Z analyzer (HP, 5060A). 25-120 ° C). The saturation magnetic flux density at the maximum magnetic field of 1194 A / m was also measured. In addition, for the conforming example 8 and the comparative example 2, a choke coil is manufactured using this raw material, the DC superposition characteristic at 100 ° C. is measured, and the rate of change with respect to the inductance (L0) when the DC bias (hereinafter referred to as Idc) is 0 mA. Asked. In the measurement, an inductance of Idc = 0 mA under the conditions of 1 kHz, 10 mA, and winding 100 Ts, and an inductance when Idc was applied were measured with an LCR meter (4284A manufactured by HP). The rate of change in inductance was calculated by the equation: (Inductance at Idc = 0 mA (L0) −Inductance (L) at Idc application) / Inductance at Idc = 0 mA (L0) × 100 [%]. Table 1 shows the saturation magnetic flux density at 100 ° C. and the power loss at Pcv min. FIG. 1 shows the rate of change of L in the DC superposition characteristics at 100.degree.

Figure 2008189534
Figure 2008189534

表1より、適合例1〜9の組成ではPcv minとなる温度が80℃以上にあり、330kW/m以下という低い損失が得られている。また同時に100℃における飽和磁束密度は450mT以上と非常に高い値が得られている。 From Table 1, the temperature of Pcv min is 80 ° C. or more in the compositions of the conforming examples 1 to 9, and a low loss of 330 kW / m 3 or less is obtained. At the same time, the saturation magnetic flux density at 100 ° C. is a very high value of 450 mT or more.

請求項の範囲外である組成の比較例1、2では、損失の増大、100℃における飽和磁束密度の低下が認められる。また、比較例3、4の通り請求項の範囲外でSbを含有した場合においても損失の増大、飽和磁束密度の低下が認められる。 In Comparative Examples 1 and 2 having compositions outside the scope of the claims, an increase in loss and a decrease in saturation magnetic flux density at 100 ° C. are observed. Further, even when Sb 2 O 3 is contained outside the scope of the claims as in Comparative Examples 3 and 4, an increase in loss and a decrease in saturation magnetic flux density are observed.

基本組成はFe:54.0〜56.0、ZnO:6.0〜8.0mol%、残部MnOの範囲に限定した。その理由は、上記主組成域で副成分として所定のNiOを添加した場合にトランス、チョークコイルの実駆動温度以上(一般的に80℃以上)にPcv min温度に設定し、この温度範囲で損失が小さいこと、キュリー温度が十分に高いこと(200℃以上)、高温度条件下でも飽和磁束密度が450mT以上得られ、直流重畳特性の劣化が十分小さいことを検討し、上記の基本組成に決定した。 The basic composition was limited to the range of Fe 2 O 3 : 54.0 to 56.0, ZnO: 6.0 to 8.0 mol%, and the balance MnO. The reason is that when a predetermined NiO is added as a sub-component in the main composition range, the Pcv min temperature is set to a temperature higher than the actual driving temperature of the transformer and choke coil (generally 80 ° C. or higher), and the loss occurs in this temperature range. Is determined to be the above-mentioned basic composition, considering that the temperature is small, the Curie temperature is sufficiently high (200 ° C or higher), the saturation magnetic flux density is 450 mT or higher even under high temperature conditions, and the deterioration of the DC superimposition characteristics is sufficiently small did.

上記基本組成に加え、副成分としてSiO、CaO、V、Nb、NiO、Sbを同時に添加している。SiO、CaOは互いに共存することによって粒界の比抵抗を高め、渦電流損失の低減に寄与する。NbはSiO、CaOと共に粒界に析出し、高抵抗相を形成し電力損失を低減させるほか、残留磁束密度の低減にも寄与する。VはNbが共存する場合、Nbによって誘起される粒内気孔や異常粒成長の発生を抑制し、結晶粒子を微細で均一となるように安定化させ電力損失の悪化を押さえ、飽和磁束密度の向上と残留磁束密度の低減に寄与する。NiOは飽和磁束密度の温度カーブを緩やかにし、高温度域の飽和磁束密度を向上させることができると同時に、Pcv min温度を高温側にシフトさせることによりトランス、チョークコイルの実駆動温度以上で低損失化を実現することができる。Sbは焼結性を著しく改善し、焼結密度を増大させることにより、飽和磁束密度を向上に寄与すると同時に、電力損失の改善にも効果がある。これらの副成分は、焼成後酸化物となりうるものであれば、添加時の構造は問わない。また、その添加は本焼成前において含有されていれば、どの工程で行っても差し支えない。
副成分を適切な範囲外で添加した場合には、損失の著しい増加、残留磁束密度の増加、焼結密度低下に伴う飽和磁束密度の低下を引き起こし、磁気特性を劣化させる。
In addition to the basic composition, SiO 2 , CaO, V 2 O 5 , Nb 2 O 5 , NiO, and Sb 2 O 3 are added simultaneously as subcomponents. SiO 2 and CaO coexist with each other to increase the specific resistance of the grain boundary and contribute to the reduction of eddy current loss. Nb 2 O 5 precipitates at the grain boundaries together with SiO 2 and CaO, forms a high resistance phase and reduces power loss, and also contributes to a reduction in residual magnetic flux density. When Nb 2 O 5 coexists, V 2 O 5 suppresses the generation of intragranular pores and abnormal grain growth induced by Nb 2 O 5 , stabilizes crystal grains to be fine and uniform, and reduces power loss. This contributes to the improvement of the saturation magnetic flux density and the reduction of the residual magnetic flux density. NiO can moderate the saturation magnetic flux density temperature curve and improve the saturation magnetic flux density in the high temperature range, and at the same time, the Pcv min temperature can be shifted to the high temperature side to reduce the temperature above the actual driving temperature of the transformer and choke coil. Loss can be realized. Sb 2 O 3 significantly improves the sinterability and increases the sintered density, thereby contributing to the improvement of the saturation magnetic flux density and at the same time improving the power loss. As long as these subcomponents can become oxides after firing, the structure at the time of addition is not limited. Moreover, the addition may be performed in any step as long as it is contained before the main firing.
When the auxiliary component is added outside the appropriate range, a significant increase in loss, an increase in residual magnetic flux density, and a decrease in saturation magnetic flux density accompanying a decrease in sintering density are caused, thereby deteriorating magnetic properties.

図1より、適合例では比較例に対して直流重畳特性の劣化が少なく、大電流を流すことが可能であることが判る。   From FIG. 1, it can be seen that the adaptation example has less degradation of the DC superimposition characteristics than the comparative example, and can pass a large current.


本発明に係る適応例および比較例の100℃における直流重畳特性を表す図である。It is a figure showing the direct current superimposition characteristic in 100 degreeC of the adaptation example which concerns on this invention, and a comparative example.

Claims (2)

基本組成としてFe:54.0〜56.0、ZnO:6.0〜8.0mol%、残部MnOからなり、副成分としてSiO:0.002〜0.01wt%、CaO:0.01〜0.1wt%、V:0.01〜0.1wt%、Nb:0.01〜0.1wt%、NiO:0.1〜1.1wt%、Sb:0.05〜0.2wt%を同時に添加することを特徴とするMn−Znフェライト。
It consists of Fe 2 O 3 : 54.0 to 56.0 as the basic composition, ZnO: 6.0 to 8.0 mol% and the balance MnO, and the subcomponents SiO 2 : 0.002 to 0.01 wt%, CaO: 0 .01~0.1wt%, V 2 O 5: 0.01~0.1wt%, Nb 2 O 5: 0.01~0.1wt%, NiO: 0.1~1.1wt%, Sb 2 O 3 : Mn-Zn ferrite characterized by adding 0.05 to 0.2 wt% simultaneously.
飽和磁束密度が100℃で450mT以上であり、かつ20〜120℃における損失の最小値(Pcv min)が80℃以上にあり、その値が330kW/m以下(100kHz−200mT)である請求項1に記載のMn−Znフェライト。 The saturation magnetic flux density is 450 mT or more at 100 ° C., the minimum loss (Pcv min) at 20 to 120 ° C. is 80 ° C. or more, and the value is 330 kW / m 3 or less (100 kHz−200 mT). The Mn—Zn ferrite according to 1.
JP2007028246A 2007-02-07 2007-02-07 Mn-Zn FERRITE Pending JP2008189534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028246A JP2008189534A (en) 2007-02-07 2007-02-07 Mn-Zn FERRITE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028246A JP2008189534A (en) 2007-02-07 2007-02-07 Mn-Zn FERRITE

Publications (1)

Publication Number Publication Date
JP2008189534A true JP2008189534A (en) 2008-08-21

Family

ID=39750004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028246A Pending JP2008189534A (en) 2007-02-07 2007-02-07 Mn-Zn FERRITE

Country Status (1)

Country Link
JP (1) JP2008189534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141602A (en) * 2015-02-03 2016-08-08 Fdk株式会社 NiMnZn-BASED FERRITE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118020A (en) * 1993-10-18 1995-05-09 Kawasaki Steel Corp Mn-zn ferrite
JPH11238617A (en) * 1997-12-19 1999-08-31 Tdk Corp Manganese-zinc based ferrite
JP2004137112A (en) * 2002-10-18 2004-05-13 Nippon Ceramic Co Ltd Manganese-zinc ferrite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118020A (en) * 1993-10-18 1995-05-09 Kawasaki Steel Corp Mn-zn ferrite
JPH11238617A (en) * 1997-12-19 1999-08-31 Tdk Corp Manganese-zinc based ferrite
JP2004137112A (en) * 2002-10-18 2004-05-13 Nippon Ceramic Co Ltd Manganese-zinc ferrite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141602A (en) * 2015-02-03 2016-08-08 Fdk株式会社 NiMnZn-BASED FERRITE

Similar Documents

Publication Publication Date Title
TWI699789B (en) Manufacturing method of manganese-zinc ferrite core and manganese-zinc ferrite core
JP6451742B2 (en) MnZn-based ferrite and method for producing the same
JP5578766B2 (en) MnZn ferrite and transformer core
WO2016104593A1 (en) Method for producing mnzn-based ferrite, and mnzn-based ferrite
JP5181175B2 (en) Mn-Zn-Co ferrite
JP2001110624A (en) NiMnZn-BASED FERRITE
JP4711897B2 (en) MnCoZn ferrite and transformer core
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
CN101381227A (en) Mn-Zn ferrite
JP2007311387A (en) Oxide magnetic material
JP2004247370A (en) MnZn FERRITE
JP5560436B2 (en) MnZnNi ferrite
JP2008169072A (en) Mn-Zn FERRITE
JP2008189534A (en) Mn-Zn FERRITE
JP2007031210A (en) Mn-Zn FERRITE
JP2007197246A (en) Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP5089923B2 (en) MnCoZn ferrite and transformer core
JP5458302B2 (en) Mn-Zn-Ni ferrite
JP2004247371A (en) MnZn FERRITE
JP6416808B2 (en) MnZnCo ferrite
JP5458298B2 (en) Mn-Zn ferrite material
JP2004035372A (en) Low loss ferrite material
JP2019006668A (en) MnZnNiCo-BASED FERRITE AND PRODUCTION METHOD THEREFOR
JP2005236069A (en) Mn-Zn FERRITE
JP2004137112A (en) Manganese-zinc ferrite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521