JP2005236069A - Mn-Zn FERRITE - Google Patents

Mn-Zn FERRITE Download PDF

Info

Publication number
JP2005236069A
JP2005236069A JP2004043927A JP2004043927A JP2005236069A JP 2005236069 A JP2005236069 A JP 2005236069A JP 2004043927 A JP2004043927 A JP 2004043927A JP 2004043927 A JP2004043927 A JP 2004043927A JP 2005236069 A JP2005236069 A JP 2005236069A
Authority
JP
Japan
Prior art keywords
flux density
weight
magnetic flux
ferrite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004043927A
Other languages
Japanese (ja)
Inventor
Sukeyuki Shoko
祐之 昌子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2004043927A priority Critical patent/JP2005236069A/en
Publication of JP2005236069A publication Critical patent/JP2005236069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide Mn-Zn ferrite where the initial permeability at 23°C is 3000 or more, the rate of change of the initial permeability is small in the wide temperature span (-20°C to 150°C) and the saturation magnetic flux density is 540mT or more at 23°C. <P>SOLUTION: The Mn-Zn ferrite is provided with main ingredients consisting of Fe<SB>2</SB>O<SB>3</SB>, ZnO and MnO, and accessary ingredients comprising SiO<SB>2</SB>(0.005-0.01% by weight), CaO (0.03-0.06% by weight) and Nb<SB>2</SB>O<SB>5</SB>(0.01-0.03% by weight). The main ingredients consist of 53.7-54.4mol% Fe<SB>2</SB>O<SB>3</SB>, 8.0-10.0mol% ZnO, and remainder MnO; and the accessory ingredients comprise simultaneously V<SB>2</SB>O<SB>5</SB>0.01-0.06% by weight and CoO 0.05-0.60% by weight, other than the above-mentioned. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、広い温度範囲で初透磁率(以下、μiと称す)の変化率が小さく、飽和磁束密度の高いフェライト焼成体、及び通信機器用トランス、デジタルアンプ用出力フィルタに適したMn−Znフェライトに関するものである。   The present invention has a small rate of change in initial permeability (hereinafter referred to as μi) over a wide temperature range and a ferrite sintered body having a high saturation magnetic flux density, Mn-Zn suitable for a transformer for communication equipment and an output filter for a digital amplifier. It relates to ferrite.

通信機器用トランスやデジタルアンプ用出力フィルタに用いられるMn−Znフェライトには、高初透磁率、高飽和磁束密度、低損失等の磁気特性であることが要求される。最近では、電子部品の小型化、高集積化にともなう発熱による回路周辺の温度変化、環境温度の変化に対して安定した磁気特性を得るため、温度特性の変化が大きい一般高透磁率材料よりも、広い温度範囲で磁気特性の変化が小さい高透磁率材料であることが重要視されている。特にデジタルアンプ用出力フィルタに用いた場合、温度変化での磁気特性の変化によってフィルタの周波数特性が変化してしまい音質に悪影響を与えてしまう問題があった。   The Mn—Zn ferrite used in communication equipment transformers and digital amplifier output filters is required to have magnetic properties such as high initial permeability, high saturation magnetic flux density, and low loss. Recently, in order to obtain stable magnetic characteristics against changes in temperature around the circuit due to heat generation due to downsizing and high integration of electronic components and changes in environmental temperature, compared to general high permeability materials with large temperature characteristics change It is important to be a high magnetic permeability material with a small change in magnetic properties over a wide temperature range. In particular, when used in an output filter for a digital amplifier, there is a problem in that the frequency characteristics of the filter change due to changes in magnetic characteristics due to temperature changes, which adversely affects sound quality.

また、小型化のためには磁束密度が飽和しない範囲で使用するコアの大きさを決める必要があるため、より高い飽和磁束密度を有する材料が望まれている。

特開昭58−114401
Moreover, since it is necessary to determine the size of the core to be used in a range where the magnetic flux density is not saturated for miniaturization, a material having a higher saturation magnetic flux density is desired.

JP 58-114401 A

上記のような理由により、通信機器用トランスやデジタルアンプ用出力フィルタに用いられるMn−Znフェライトには温度変化に対する磁気特性の安定が望まれている。温度変化に対してμiの安定した材料を得るために酸化コバルトを添加する方法は従来から試みられてきた。しかし、μiが1000以下であるものが多く、高いものでも2000程度であった。また、μiが低いと必要なインダクタンスを得るために巻き線数を増やす必要があり、銅損が増えてしまう問題があった。   For the reasons described above, Mn—Zn ferrite used in a transformer for communication equipment and an output filter for digital amplifier is desired to have stable magnetic characteristics against temperature changes. Conventionally, a method of adding cobalt oxide has been attempted to obtain a material having a stable μi against temperature change. However, there are many cases where μi is 1000 or less, and even high ones are about 2000. Further, if μi is low, it is necessary to increase the number of windings in order to obtain a required inductance, and there is a problem that copper loss increases.

また、高飽和磁束密度を得るためには、基本組成であるFeの含有量を多くすること、又はフェライトを高密度化することが知られている。しかし、これらの方法では電力損失の極小値となる温度が低温側へ移動したり、100℃程度の高温での飽和磁束密度が低下するなどの問題があり実用的ではない。 In order to obtain a high saturation magnetic flux density, it is known to increase the content of Fe 2 O 3 which is a basic composition or to increase the density of ferrite. However, these methods are not practical because there are problems that the temperature at which the power loss becomes a minimum value moves to the low temperature side and the saturation magnetic flux density at a high temperature of about 100 ° C. decreases.

本発明は上記問題点を解決し、広い温度範囲でμiの変化率が小さく、高飽和磁束密度であるMn−Znフェライトを提供しようとするものである。
The present invention is intended to solve the above problems and to provide a Mn—Zn ferrite having a small change rate of μi in a wide temperature range and a high saturation magnetic flux density.

本発明は、主成分組成がFe、ZnO、MnOからなり、副成分としてSiO(0.005〜0.01重量%)、CaO(0.03〜0.06重量%)、Nb(0.01〜0.03重量%)を含むフェライトにおいて、主成分組成が53.7〜54.4mol%Fe、8.0〜10.0mol%ZnO、残部MnOからなり、副成分として上記のほかにV 0.01〜0.06重量%、CoO 0.05〜0.60重量%を同時に含有し、23℃での初透磁率が3000以上で、23℃の初透磁率を基準とした−20℃〜150℃における初透磁率の最大変化率が15%以下であり、23℃の飽和磁束密度が540mT以上であることを特徴とするMn−Znフェライトを提供する。 In the present invention, the main component composition is composed of Fe 2 O 3 , ZnO, and MnO, and as subcomponents, SiO 2 (0.005 to 0.01 wt%), CaO (0.03 to 0.06 wt%), Nb In ferrite containing 2 O 5 (0.01 to 0.03% by weight), the main component composition consists of 53.7 to 54.4 mol% Fe 2 O 3 , 8.0 to 10.0 mol% ZnO, and the balance MnO. In addition to the above, V 2 O 5 0.01 to 0.06 wt% and CoO 0.05 to 0.60 wt% are simultaneously contained as subcomponents, and the initial permeability at 23 ° C. is 3000 or more. Mn—Zn ferrite characterized in that the maximum rate of change of initial permeability at −20 ° C. to 150 ° C. is 15% or less and the saturation magnetic flux density at 23 ° C. is 540 mT or more, based on the initial permeability at 0 ° C. I will provide a.

本発明が提供するMn−Znフェライトは、23℃での初透磁率が3000以上で、23℃の初透磁率を基準とした−20℃〜150℃における初透磁率の最大変化率が15%以下であり、23℃の飽和磁束密度が540mT以上の高飽和磁束密度を有することが可能となり、回路周辺の温度変化、環境温度変化に対して安定した性能を発揮できる通信機器用トランス、デジタルアンプ用出力フィルタを供給する事が可能となった。   The Mn—Zn ferrite provided by the present invention has an initial permeability of 3000 or more at 23 ° C., and a maximum change rate of initial permeability at −20 ° C. to 150 ° C. based on the initial permeability at 23 ° C. is 15%. The following is a transformer for communication equipment and a digital amplifier that can have a high saturation magnetic flux density of 540 mT or higher at a saturation magnetic flux density of 23 ° C. and can exhibit stable performance against temperature changes around the circuit and environmental temperatures. It became possible to supply the output filter.

Fe:54.1mol%、ZnO:8.8mol%残部MnOとなるように高純度の酸化鉄、酸化亜鉛、酸化マンガンを計量・混合し、大気中950℃×2時間仮焼を行った。この仮焼原料に本発明の請求項範囲内でSiO 0.005重量%、CaO 0.04重量%、Nb 0.02重量%、V 0.05重量%となるように添加し、表1に示す分量含有するようにCoOを添加し、アトライターで粉砕粒径が1.5μmとなるまで粉砕した。この粉砕粉にポリビニルアルコールを加え造粒し、得られた造粒顆粒を外形24mm、内径19mm、高さ10mmのトロイダル状に成形した。その後、本焼成においてピーク温度の酸素分圧をコントロールしながら、1300℃×5時間保持した後、降温することにより焼結サンプルを得た。このようにして得られた試料を、LCRメーター(HP社製4284A)にて、μiの変化率を測定した。また、同試料をB−H/Zアナライザー(HP社製E5060A)にて、最大磁界800A/mにおける飽和磁束密度を測定した。表1に23℃におけるμi、23℃のμiを基準とした−20℃〜150℃におけるμiの最大変化率、および23℃における飽和磁束密度を示す。また、μiの温度特性を図1に示す。 Fe 2 O 3 : 54.1 mol%, ZnO: 8.8 mol% High-purity iron oxide, zinc oxide, and manganese oxide are weighed and mixed so that the balance is MnO, and calcined in the atmosphere at 950 ° C for 2 hours. It was. SiO 2 0.005 wt% in the claims scope of the present invention in the calcined material, CaO 0.04 wt%, Nb 2 O 5 0.02 wt%, V 2 O 5 0.05% by weight so as CoO was added so as to contain the amount shown in Table 1, and pulverized with an attritor until the pulverized particle size became 1.5 μm. Polyvinyl alcohol was added to the pulverized powder and granulated, and the resulting granulated granules were formed into a toroidal shape having an outer diameter of 24 mm, an inner diameter of 19 mm, and a height of 10 mm. Thereafter, while maintaining the oxygen partial pressure at the peak temperature in the main firing, the temperature was maintained at 1300 ° C. for 5 hours, and then the temperature was lowered to obtain a sintered sample. The rate of change in μi of the thus obtained sample was measured with an LCR meter (HP 4284A). Moreover, the saturation magnetic flux density in the maximum magnetic field 800A / m was measured for the sample with the BH / Z analyzer (E5060A by HP company). Table 1 shows the maximum change rate of μi at −20 ° C. to 150 ° C. and the saturation magnetic flux density at 23 ° C. based on μi at 23 ° C., μi at 23 ° C. Also, the temperature characteristics of μi are shown in FIG.

Figure 2005236069
Figure 2005236069

表1、図1より、適合例1〜3のCoOを含有する添加範囲では、23℃におけるμiが3000以上、−20℃〜150℃でのμi変化率が15%以下であり、23℃における飽和磁束密度が540mT以上得られている。中でも適合例2の場合が最良の形態である。   From Table 1 and FIG. 1, in the addition range containing CoO of the conformity examples 1 to 3, the μi at 23 ° C. is 3000 or more, the μi change rate at −20 ° C. to 150 ° C. is 15% or less, and at 23 ° C. A saturation magnetic flux density of 540 mT or more is obtained. Among them, the case of the adaptation example 2 is the best mode.

請求項の範囲外にある比較例では、CoOが少ない方に外れると、CoOの効果が乏しく、μiの変化率が大きくなり、23℃におけるμiも低下することが分かる。また、CoOが請求項の範囲よりも多い方に外れると、23℃でのμiが大きく低下し、−20℃〜150℃の範囲での変化率が大きくなることが分かる。   In the comparative example outside the scope of the claims, it can be seen that if the CoO is deviated to a smaller extent, the effect of CoO is poor, the rate of change of μi increases, and μi at 23 ° C. also decreases. It can also be seen that when CoO deviates from the range of claims, μi at 23 ° C. is greatly reduced and the rate of change in the range of −20 ° C. to 150 ° C. is increased.

表2に示した組成となるように高純度の酸化鉄、酸化マンガン、酸化亜鉛を計量・混合し、大気中で950℃×2時間仮焼を行った。この仮焼原料に本発明請求項範囲内でSiO 0.005重量%、CaO 0.04重量%、Nb 0.02重量%、V 0.05重量%、CoO 0.30重量%となるように添加した。その後、発明を実施するための最良の形態と同様にサンプルの作製、評価を行った。表2に各組成のμi温度特性のセカンダリーピーク温度(以下、Tsと称す)、23℃におけるμi、23℃のμiを基準とした−20〜150℃におけるμiの最大変化率、および23℃における飽和磁束密度を示す。また、μiの温度特性を図2に示す。 High purity iron oxide, manganese oxide, and zinc oxide were weighed and mixed so as to have the composition shown in Table 2, and calcined at 950 ° C. for 2 hours in the atmosphere. SiO 2 0.005 wt% in the present invention according to claim scope to the calcined material, CaO 0.04 wt%, Nb 2 O 5 0.02 wt%, V 2 O 5 0.05% by weight, CoO 0. It added so that it might become 30 weight%. Thereafter, samples were prepared and evaluated in the same manner as in the best mode for carrying out the invention. Table 2 shows the secondary peak temperature (hereinafter referred to as Ts) of the μi temperature characteristics of each composition, μi at 23 ° C., the maximum change rate of μi at −20 to 150 ° C. based on μi at 23 ° C., and at 23 ° C. The saturation magnetic flux density is shown. Further, the temperature characteristics of μi are shown in FIG.

Figure 2005236069
Figure 2005236069

表2、図2より、適合例4〜7の組成ではTsが10℃〜50℃の範囲にあり、23℃におけるμiが3000以上、−20℃〜150℃でのμi変化率が15%以下であり、23℃における飽和磁束密度が540mT以上得られている。   From Table 2 and FIG. 2, in the compositions of the conforming examples 4 to 7, Ts is in the range of 10 ° C. to 50 ° C., μi at 23 ° C. is 3000 or more, and μi change rate at −20 ° C. to 150 ° C. is 15% or less. A saturation magnetic flux density at 23 ° C. of 540 mT or more is obtained.

請求項の範囲外にある組成の比較例では、23℃におけるμiの低下や、μiの変化率が大きくなる事が分かる。   In the comparative example of the composition outside the scope of the claims, it can be seen that the decrease in μi at 23 ° C. and the rate of change in μi increase.

主成分組成は、53.7〜54.4mol%Fe、8.0〜10.0mol%ZnO、残部MnOの範囲に限定した。その理由は請求項範囲内の添加物を同時に含有する場合に、Tsが10℃〜50℃に設定され、かつ23℃のμiが3000以上得られること、また23℃での飽和磁束密度が540mT以上得られることを十分検討し上記の主成分組成に決定した。 The main component composition, 53.7~54.4mol% Fe 2 O 3, 8.0~10.0mol% ZnO, is limited to a range of balance MnO. The reason is that Ts is set to 10 ° C. to 50 ° C. and μi of 23 ° C. is obtained 3000 or more, and the saturation magnetic flux density at 23 ° C. is 540 mT. The above-mentioned main component composition was determined by sufficiently examining what can be obtained.


本発明においてμi温度特性のTsを10〜50℃に設定する理由は、Tsが上記範囲を外れると、μi温特カーブがうねりを生じてしまい、23℃でのμiの低下や、広い温度範囲でのμiの変化率が大きくなり、望ましくないからである。

In the present invention, the reason why the Ts of the μi temperature characteristic is set to 10 to 50 ° C. is that if the Ts is out of the above range, the μi temperature characteristic curve will swell, the μi will decrease at 23 ° C., and the wide temperature range. This is because the rate of change of μi at a large value is undesirable.

上記基本組成に加え、副成分としてSiO、CaO、V、Nb、CoOを同時に添加している。SiO、CaOは互いに共存することによって粒界の比抵抗を高め、渦電流損失の低減に寄与しており、インピーダンス特性の改善にも効果がある。NbはSiO、CaOと共に粒界に析出し、高抵抗相を形成し電力損失を低減させるほか、残留磁束密度の低減にも寄与する。VはNbが共存する場合、Nbによって誘起される粒内気孔や異常粒成長の発生を抑制し、結晶組成を粒径が微細で均一な組成となるように安定化して電力損失の悪化を押さえ、飽和磁束密度の向上と残留磁束密度の低減に効果がある。CoOはMn−ZnフェライトにCo2+を導入する事により、Co2+による正の磁気異方性とFe2+による負の磁気異方性が相殺しあい、結果的に絶対値および温度変化の小さい磁気異方性が発生し、低温から高温まで広い温度範囲にわたって温度特性の変動を減少させる効果がある。これらの副成分は、焼成後酸化物となりうるものであれば、添加時の構造は問わない。また、その添加は本焼成前において含有されていればどの工程で行っても差し支えない。 In addition to the basic composition, SiO 2 , CaO, V 2 O 5 , Nb 2 O 5 , and CoO are added simultaneously as subcomponents. By coexisting with each other, SiO 2 and CaO increase the specific resistance of the grain boundary, contribute to the reduction of eddy current loss, and are effective in improving the impedance characteristics. Nb 2 O 5 precipitates at the grain boundaries together with SiO 2 and CaO, forms a high resistance phase and reduces power loss, and also contributes to a reduction in residual magnetic flux density. When Nb 2 O 5 coexists, V 2 O 5 suppresses the occurrence of intragranular pores and abnormal grain growth induced by Nb 2 O 5 , so that the crystal composition has a fine and uniform grain size. It stabilizes and suppresses the deterioration of power loss, and is effective in improving the saturation magnetic flux density and reducing the residual magnetic flux density. CoO introduces Co 2+ into Mn—Zn ferrite, so that the positive magnetic anisotropy due to Co 2+ and the negative magnetic anisotropy due to Fe 2+ cancel each other, and as a result, a magnetic difference with a small absolute value and temperature change is obtained. Anisotropy occurs, and has the effect of reducing fluctuations in temperature characteristics over a wide temperature range from low to high. As long as these subcomponents can become oxides after firing, the structure at the time of addition is not limited. Moreover, the addition may be performed in any process as long as it is contained before the main firing.

本発明にかかるCoO含有量の違いによる適合例および比較例のμiの温度特性を示す図である。It is a figure which shows the temperature characteristic of (mu) i of the adaptation example by the difference in CoO content concerning this invention, and a comparative example.

本発明にかかる主成分組成の違いによる適合例および比較例のμiの温度特性を示す図である。It is a figure which shows the temperature characteristic of (mu) i of the adaptation example by the difference in the main component composition concerning this invention, and a comparative example.

Claims (1)

主成分組成がFe、ZnO、MnOからなり、副成分としてSiO(0.005〜0.01重量%)、CaO(0.03〜0.06重量%)、Nb(0.01〜0.03重量%)を含むフェライトにおいて、主成分組成が53.7〜54.4mol%Fe、8.0〜10.0mol%ZnO、残部MnOからなり、副成分として上記のほかにV 0.01〜0.06重量%、CoO 0.05〜0.60重量%を同時に含有し、23℃での初透磁率が3000以上で、23℃の初透磁率を基準とした−20℃〜150℃における初透磁率の最大変化率が15%以下であり、23℃の飽和磁束密度が540mT以上であることを特徴とするMn−Znフェライト。 The main component composition is composed of Fe 2 O 3 , ZnO, and MnO, and SiO 2 (0.005 to 0.01 wt%), CaO (0.03 to 0.06 wt%), Nb 2 O 5 ( 0.01 to 0.03% by weight), the main component composition is composed of 53.7 to 54.4 mol% Fe 2 O 3 , 8.0 to 10.0 mol% ZnO, and the balance MnO. In addition to the above, V 2 O 5 0.01 to 0.06 wt% and CoO 0.05 to 0.60 wt% are simultaneously contained, the initial permeability at 23 ° C. is 3000 or more, and the initial permeability at 23 ° C. A Mn—Zn ferrite characterized in that the maximum change rate of initial permeability at −20 ° C. to 150 ° C. based on magnetic permeability is 15% or less and the saturation magnetic flux density at 23 ° C. is 540 mT or more.
JP2004043927A 2004-02-20 2004-02-20 Mn-Zn FERRITE Pending JP2005236069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043927A JP2005236069A (en) 2004-02-20 2004-02-20 Mn-Zn FERRITE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043927A JP2005236069A (en) 2004-02-20 2004-02-20 Mn-Zn FERRITE

Publications (1)

Publication Number Publication Date
JP2005236069A true JP2005236069A (en) 2005-09-02

Family

ID=35018698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043927A Pending JP2005236069A (en) 2004-02-20 2004-02-20 Mn-Zn FERRITE

Country Status (1)

Country Link
JP (1) JP2005236069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169072A (en) * 2007-01-11 2008-07-24 Nippon Ceramic Co Ltd Mn-Zn FERRITE
CN111362680A (en) * 2019-10-17 2020-07-03 横店集团东磁股份有限公司 High-frequency low-loss FeMnZnNi ferrite material and preparation method thereof
CN113277840A (en) * 2021-05-10 2021-08-20 天通控股股份有限公司 High-frequency high-working-flux-density low-loss manganese-zinc ferrite and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169072A (en) * 2007-01-11 2008-07-24 Nippon Ceramic Co Ltd Mn-Zn FERRITE
CN111362680A (en) * 2019-10-17 2020-07-03 横店集团东磁股份有限公司 High-frequency low-loss FeMnZnNi ferrite material and preparation method thereof
CN113277840A (en) * 2021-05-10 2021-08-20 天通控股股份有限公司 High-frequency high-working-flux-density low-loss manganese-zinc ferrite and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5181175B2 (en) Mn-Zn-Co ferrite
CN111116191A (en) High-permeability low-loss manganese-zinc soft magnetic ferrite material and preparation method thereof
JP4508626B2 (en) Mn-Co-Zn ferrite
JP4711897B2 (en) MnCoZn ferrite and transformer core
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2003321272A (en) Oxide magnetic material, ferrite core, and electronic component
JP2008169072A (en) Mn-Zn FERRITE
JP2004247370A (en) MnZn FERRITE
JP4813025B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2005236069A (en) Mn-Zn FERRITE
JP5560436B2 (en) MnZnNi ferrite
JP2004247371A (en) MnZn FERRITE
JP5458302B2 (en) Mn-Zn-Ni ferrite
JP4554965B2 (en) Mn-Co-Zn ferrite
JP6416808B2 (en) MnZnCo ferrite
JP5458298B2 (en) Mn-Zn ferrite material
JP2007031210A (en) Mn-Zn FERRITE
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JP2004035372A (en) Low loss ferrite material
JP4233083B2 (en) Mn-Zn ferrite
JP2005179098A (en) Mn-Ni-Zn BASED FERRITE
JP2008189534A (en) Mn-Zn FERRITE
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material
JP6454309B2 (en) MnZnCo ferrite
JP2004137112A (en) Manganese-zinc ferrite