JP2008189519A - Hydrogen production apparatus and fuel cell power generation system - Google Patents

Hydrogen production apparatus and fuel cell power generation system Download PDF

Info

Publication number
JP2008189519A
JP2008189519A JP2007025987A JP2007025987A JP2008189519A JP 2008189519 A JP2008189519 A JP 2008189519A JP 2007025987 A JP2007025987 A JP 2007025987A JP 2007025987 A JP2007025987 A JP 2007025987A JP 2008189519 A JP2008189519 A JP 2008189519A
Authority
JP
Japan
Prior art keywords
temperature
catalyst layer
reforming catalyst
reformed gas
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007025987A
Other languages
Japanese (ja)
Inventor
Naoki Muro
室  直樹
Kiyoshi Taguchi
清 田口
Yoshihisa Tamura
佳央 田村
Hideo Obara
英夫 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd, Matsushita Electric Works Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007025987A priority Critical patent/JP2008189519A/en
Publication of JP2008189519A publication Critical patent/JP2008189519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen production apparatus capable of accurately measuring the temperature of a refining catalyst layer from the detection temperature of a refining gas, and also of accurately obtaining the catalyst layer temperature even when restarting an operation by re-combustion in a heating means after operation stop. <P>SOLUTION: The hydrogen production apparatus is provided with: a refining catalyst layer 3 for generating a hydrogen-rich refined gas from a raw material and moisture; a refined gas concentration part 5 which is provided at the downstream side of the refined gas flow from the refining catalyst layer 3 and concentrates such gas flow; and a temperature detection means 6 for detecting the temperature of the refined gas passing through the concentration part 5. The apparatus is further provided with: a data storage part 7 for storing the relation data of the observed temperature value of the refining catalyst layer 3 corresponding to the detection temperature value of the refined gas in the concentration part 5 which is detected by the temperature detection means 6 when the temperature of the catalyst layer 3 is at the observed value; and a calculation part 8 for calculating the temperature of the catalyst layer 3 from that detected by the temperature detection means 6 on the basis of the above corresponding relation data stored in the data storage part 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化水素等の原料を水蒸気改質反応させて水素リッチな改質ガスを生成する水素製造装置及び、水素製造装置で生成された改質ガスを用いて発電する燃料電池発電システムに関するものである。   The present invention relates to a hydrogen production apparatus that generates a hydrogen-rich reformed gas by subjecting a raw material such as hydrocarbon to a steam reforming reaction, and a fuel cell power generation system that generates electric power using the reformed gas generated by the hydrogen production apparatus. Is.

固体高分子型燃料電池発電システムなどにおいて、天然ガスや都市ガスといった炭化水素等を原料として使用し、この原料を水蒸気改質反応させることによって、水素を主成分とする改質ガスを生成する水素製造装置が使用されている。   Hydrogen that produces a reformed gas mainly composed of hydrogen by using hydrocarbons such as natural gas and city gas as raw materials in a polymer electrolyte fuel cell power generation system and the like, and subjecting the raw materials to a steam reforming reaction Manufacturing equipment is in use.

このような水素製造装置Aの一例を図4に示す。図4において3は改質触媒層であり、粒状や円柱状の改質触媒を充填して円筒形状に形成してある。改質触媒層3の上流側には蒸発部2が設けてあり、原料・水供給部1から原料と水が蒸発部2に供給されるようにしてある。改質触媒層3の下流側には改質ガスが通過する改質ガス通過部15が設けてあり、改質ガス通過部15の一箇所に改質ガス集合部5が設けてある。改質触媒層3と蒸発部2の内側には加熱手段4が設けてある。加熱手段4は燃料を燃焼させるバーナ16を備えて形成されるものであり、改質触媒層3と蒸発部2を加熱するようにしてある。上記の改質ガス集合部5に温度検知手段6が設けてあり、この温度検知手段6は制御手段17に接続してあって、バーナ16に燃料を供給する燃料供給部18やバーナ16に空気を送風するファン19を制御手段17で制御するようにしてある(特許文献1参照)。   An example of such a hydrogen production apparatus A is shown in FIG. In FIG. 4, 3 is a reforming catalyst layer, which is formed into a cylindrical shape by filling a granular or columnar reforming catalyst. An evaporation unit 2 is provided on the upstream side of the reforming catalyst layer 3, and the raw material and water are supplied from the raw material / water supply unit 1 to the evaporation unit 2. A reformed gas passage portion 15 through which the reformed gas passes is provided downstream of the reforming catalyst layer 3, and a reformed gas assembly portion 5 is provided at one location of the reformed gas passage portion 15. Heating means 4 is provided inside the reforming catalyst layer 3 and the evaporation unit 2. The heating means 4 is formed with a burner 16 that burns fuel, and heats the reforming catalyst layer 3 and the evaporation unit 2. A temperature detecting means 6 is provided in the reformed gas collecting section 5. The temperature detecting means 6 is connected to a control means 17, and air is supplied to the fuel supply section 18 for supplying fuel to the burner 16 and the burner 16. Is controlled by the control means 17 (see Patent Document 1).

この水素製造装置Aにあって、原料・水供給部1から原料と水が蒸発部2に供給されると、加熱手段4による加熱によって、水は水蒸気となり、この水蒸気と原料は改質触媒層3に供給される。そして原料と水蒸気とが加熱手段4で加熱された改質触媒層3に供給されると、原料と水蒸気が水蒸気改質反応して水素リッチな改質ガスが生成される。生成された改質ガスは改質触媒層3から改質ガス通過部15に流れ、さらに改質ガス集合部5に集められた後に、水素製造装置Aから送り出される。   In this hydrogen production apparatus A, when the raw material and water are supplied from the raw material / water supply unit 1 to the evaporation unit 2, the water is converted into water vapor by the heating by the heating means 4, and the water vapor and the raw material are converted into the reforming catalyst layer. 3 is supplied. When the raw material and steam are supplied to the reforming catalyst layer 3 heated by the heating means 4, the raw material and steam undergo a steam reforming reaction to generate hydrogen-rich reformed gas. The generated reformed gas flows from the reforming catalyst layer 3 to the reformed gas passage 15 and is further collected in the reformed gas collecting unit 5 and then sent out from the hydrogen production apparatus A.

このとき、改質ガス集合部5を流れる改質ガスの温度が温度検知手段6で検知されており、この検知温度に基づいて、燃料供給部18からバーナ16に供給する燃料の量や、ファン19でバーナ16に送風する空気量を制御手段17で制御することによって、加熱手段4による改質触媒層3の加熱温度を、水蒸気改質反応に適した700℃前後の温度に制御するようにしてある。   At this time, the temperature of the reformed gas flowing through the reformed gas collecting unit 5 is detected by the temperature detecting means 6, and based on this detected temperature, the amount of fuel supplied from the fuel supply unit 18 to the burner 16 and the fan 19, the amount of air blown to the burner 16 is controlled by the control means 17, so that the heating temperature of the reforming catalyst layer 3 by the heating means 4 is controlled to a temperature around 700 ° C. suitable for the steam reforming reaction. It is.

ここで、改質触媒層3で生じる水蒸気改質反応は吸熱反応であり、また改質触媒層3は容積が大きく、吸熱反応の分布の不均一や、改質ガスの流れの不均一のために、改質触媒層3内での温度分布は不均一になり易い。このため、改質触媒層3の温度を直接、計測する場合には、改質触媒層3の複数個所に熱電対などを配置し、改質触媒層3の複数個所の温度を計測して、その平均値をとるなどが必要であり、装置構成が複雑になりメンテナンスも面倒になる。   Here, the steam reforming reaction that occurs in the reforming catalyst layer 3 is an endothermic reaction, and the reforming catalyst layer 3 has a large volume, resulting in non-uniform endothermic reaction distribution and reformed gas flow. In addition, the temperature distribution in the reforming catalyst layer 3 tends to be uneven. Therefore, when the temperature of the reforming catalyst layer 3 is directly measured, thermocouples or the like are arranged at a plurality of locations of the reforming catalyst layer 3, and the temperatures of the reforming catalyst layers 3 are measured, It is necessary to take the average value, and the configuration of the apparatus becomes complicated and the maintenance becomes troublesome.

そこで図4の水素製造装置Aでは、改質触媒層3内に温度検知手段6を設けるのではなく、改質触媒層3から出てくる改質ガスが流れる改質ガス集合部5に温度検知手段6を設けるようにしている。改質ガス集合部5には改質触媒層3を通過した改質ガスが集合して流れるので、改質ガス集合部5での改質ガスの温度は、改質触媒層3を通過する改質ガスの温度の平均値になっているものであり、改質ガス集合部5の一箇所に温度検知手段6を設けるだけで、改質触媒層3の吸熱反応の分布の不均一や、改質ガスの流れの不均一に影響されることなく、温度検知を行なうことができるのである。
特開2002−201003号公報
Therefore, in the hydrogen production apparatus A of FIG. 4, the temperature detection means 6 is not provided in the reforming catalyst layer 3, but the temperature is detected in the reformed gas assembly portion 5 through which the reformed gas exiting the reforming catalyst layer 3 flows. Means 6 are provided. Since the reformed gas that has passed through the reforming catalyst layer 3 gathers and flows in the reformed gas collecting section 5, the temperature of the reformed gas in the reformed gas collecting section 5 is improved by passing through the reforming catalyst layer 3. This is an average value of the temperature of the quality gas, and by simply providing the temperature detecting means 6 at one location of the reformed gas collecting portion 5, the endothermic reaction distribution of the reformed catalyst layer 3 is uneven or improved. The temperature can be detected without being affected by the non-uniform flow of the quality gas.
JP 2002-201003 A

しかし、改質ガス集合部5の改質ガスは改質触媒層3から流れ出た後のものであるので、温度検知手段6によって検知される改質ガスの温度は一般的に改質触媒層3の温度よりも低くなっており、温度検知手段6で検知された温度は改質触媒層3の正確な温度ではない。従って、温度検知手段6で検知された温度に基づいて、制御手段17で加熱手段4を制御する場合、改質触媒層3を水蒸気改質反応に適した温度に正確に制御することが難しいという問題があった。   However, since the reformed gas in the reformed gas collecting section 5 is after flowing out of the reformed catalyst layer 3, the temperature of the reformed gas detected by the temperature detecting means 6 is generally the reformed catalyst layer 3 The temperature detected by the temperature detecting means 6 is not an accurate temperature of the reforming catalyst layer 3. Therefore, when the heating unit 4 is controlled by the control unit 17 based on the temperature detected by the temperature detection unit 6, it is difficult to accurately control the reforming catalyst layer 3 to a temperature suitable for the steam reforming reaction. There was a problem.

特に問題になるのは、水素製造装置Aを運転して改質触媒層3で改質ガスを生成している途中で、加熱手段4のバーナ16の燃焼を停止し、改質ガスの生成を停止させた後に、温度検知手段6で検知される温度が200〜500℃程度の中温度の状態で、加熱手段4のバーナ16の燃焼を再度開始して、水素製造装置の運転を再開する場合、改質触媒層3の実際の温度が不明確であるため、原料・水供給部1から原料と水の供給を開始する時期を誤り易いことである。すなわち、加熱手段4のバーナ16の燃焼を再度開始してから、原料と水の供給を開始する時期が早いと、改質触媒層3の温度がまだ低く、水蒸気の作用で改質触媒層3の触媒が劣化するおそれがあり、また加熱手段4のバーナ16の燃焼を再度開始してから、原料と水の供給を開始する時期が遅いと、改質触媒層3の温度が高くなり過ぎて、原料の炭化水素から炭素が触媒の表面に析出し、触媒作用が阻害されるおそれがある。   Particularly problematic is that the combustion of the burner 16 of the heating means 4 is stopped while the hydrogen production apparatus A is in operation and the reforming catalyst layer 3 is generating the reformed gas, and the reformed gas is generated. When stopping the combustion of the burner 16 of the heating unit 4 again and restarting the operation of the hydrogen production apparatus in a state where the temperature detected by the temperature detection unit 6 is a medium temperature of about 200 to 500 ° C. Since the actual temperature of the reforming catalyst layer 3 is unclear, the timing for starting the supply of the raw material and water from the raw material / water supply unit 1 is likely to be erroneous. That is, if the combustion of the burner 16 of the heating means 4 is started again and the supply of raw material and water is started earlier, the temperature of the reforming catalyst layer 3 is still low, and the reforming catalyst layer 3 is activated by the action of water vapor. If the timing of starting the supply of the raw material and water is too late after the combustion of the burner 16 of the heating means 4 is started again, the temperature of the reforming catalyst layer 3 becomes too high. Further, carbon may be precipitated from the raw material hydrocarbon on the surface of the catalyst, and the catalytic action may be hindered.

本発明は上記の点に鑑みてなされたものであり、改質ガスの検知温度から改質触媒層の温度を正確に求めることができ、また運転停止後に加熱手段を再度燃焼させて運転を再開する際にも、改質触媒層の温度を正確に求めることができる水素製造装置及び燃料電池を提供することを目的とするものである。   The present invention has been made in view of the above points, and can accurately determine the temperature of the reforming catalyst layer from the detected temperature of the reformed gas, and restart the operation by burning the heating means again after stopping the operation. It is an object of the present invention to provide a hydrogen production apparatus and a fuel cell that can accurately determine the temperature of the reforming catalyst layer.

本発明の請求項1に係る水素製造装置は、原料と水を供給する原料・水供給部1と、原料・水供給部1から原料と水が供給され、水を蒸発させて水蒸気を生成する蒸発部2と、蒸発部2から原料と水蒸気が供給され、原料と水蒸気から水素リッチな改質ガスを生成する改質触媒層3と、燃料を燃焼させることによって蒸発部2と改質触媒層3を加熱する加熱手段4と、改質触媒層3より改質ガスの流れの下流側に設けられ、改質ガスの流れを集合させる改質ガス集合部5と、改質ガス集合部5を通過する改質ガスの温度を検知する温度検知手段6と、改質触媒層3の実測温度値と、改質触媒層3がこの温度のときに温度検知手段6で検知される改質ガス集合部5の改質ガスの検知温度値との対応関係のデータを保存するデータ保存部7と、データ保存部7に保存されたこの対応関係データに基づいて、温度検知手段6で検知された温度から改質触媒層3の温度を演算して推定する演算部8と、を備えて成ることを特徴とする。   A hydrogen production apparatus according to claim 1 of the present invention is provided with a raw material / water supply unit 1 for supplying raw material and water, and a raw material and water are supplied from the raw material / water supply unit 1, and water is evaporated to generate water vapor. The evaporation unit 2, the raw material and water vapor are supplied from the evaporation unit 2, the reforming catalyst layer 3 that generates hydrogen-rich reformed gas from the raw material and water vapor, and the evaporation unit 2 and the reforming catalyst layer by burning fuel A heating means 4 for heating 3, a reformed gas collecting portion 5 provided downstream of the reforming catalyst layer 3 in the flow of the reformed gas and collecting the reformed gas flow, and a reformed gas collecting portion 5 The temperature detection means 6 for detecting the temperature of the reformed gas passing through, the measured temperature value of the reforming catalyst layer 3, and the reformed gas assembly detected by the temperature detection means 6 when the reforming catalyst layer 3 is at this temperature A data storage unit 7 for storing data of correspondence relationship with the detected temperature value of the reformed gas in the unit 5; And a calculation unit 8 for calculating and estimating the temperature of the reforming catalyst layer 3 from the temperature detected by the temperature detection means 6 based on the correspondence data stored in the data storage unit 7. Features.

本発明によれば、試験装置などで予め得られている、改質触媒層3の実測温度値と、温度検知手段6で検知される改質ガス集合部5の改質ガスの検知温度値との対応関係のデータに基づいて、温度検知手段6で検知された温度から改質触媒層3の温度を演算して推定することによって、改質触媒層3の実際の温度を正確に求めることができるものである。   According to the present invention, the actually measured temperature value of the reforming catalyst layer 3 and the detected temperature value of the reformed gas of the reformed gas collecting unit 5 detected by the temperature detecting means 6 obtained in advance by a test apparatus or the like. The actual temperature of the reforming catalyst layer 3 can be accurately obtained by calculating and estimating the temperature of the reforming catalyst layer 3 from the temperature detected by the temperature detecting means 6 based on the correspondence data of It can be done.

また請求項2の発明は、請求項1において、上記データ保存部7に保存される、改質触媒層3の実測温度値と温度検知手段6による検知温度値との対応関係データは、加熱手段4で燃料を燃焼し始めるときの、改質触媒層3の異なる複数の実測温度値とこの各実測温度値に対応する温度検知手段6による検知温度値を起点とする、複数の対応関係データのデータ群からなるものであり、上記演算部8は、加熱手段4で燃料を燃焼し始めるときに温度検知手段6で検知された温度に相応する検知温度値を起点とする対応関係データをデータ群から選択して、この対応関係データに基づいて、温度検知手段6で検知された温度から改質触媒層3の温度を演算して推定するものであることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the correspondence data stored in the data storage unit 7 between the actually measured temperature value of the reforming catalyst layer 3 and the temperature value detected by the temperature detecting means 6 is the heating means. 4, when the fuel starts to burn at 4, a plurality of different measured temperature values of the reforming catalyst layer 3 and a plurality of correspondence data starting from detected temperature values by the temperature detecting means 6 corresponding to the measured temperature values. The calculation unit 8 includes correspondence data starting from a detected temperature value corresponding to the temperature detected by the temperature detecting means 6 when the heating means 4 starts to burn the fuel. And the temperature of the reforming catalyst layer 3 is calculated and estimated from the temperature detected by the temperature detecting means 6 based on the correspondence data.

この発明によれば、運転停止後に加熱手段4を再度燃焼させて運転を再開する際に、運転再開時での温度検知手段6による検知温度を起点とする対応関係データをデータ群から選択して、改質触媒層3の温度を演算して推定することができ、改質触媒層3の実際の温度を正確に求めることができるものである。   According to the present invention, when the heating means 4 is burned again after the operation is stopped and the operation is resumed, the correspondence data starting from the temperature detected by the temperature detecting means 6 at the time of resuming the operation is selected from the data group. Thus, the temperature of the reforming catalyst layer 3 can be calculated and estimated, and the actual temperature of the reforming catalyst layer 3 can be accurately obtained.

また請求項3の発明は、請求項1又は2において、温度検知手段6によって検知された温度を基に演算部8で推定された改質触媒層3の温度に基づいて、原料・水供給部1からの原料と水の供給の開始時期を制御する制御部9を備えて成ることを特徴とする。   The invention according to claim 3 is the raw material / water supply unit according to claim 1 or 2 based on the temperature of the reforming catalyst layer 3 estimated by the calculation unit 8 based on the temperature detected by the temperature detection means 6. It is characterized by comprising a control unit 9 for controlling the start timing of the supply of the raw material and water from 1.

この発明によれば、運転停止後に加熱手段4を再度燃焼させて運転を再開する際に、運転再開時での温度検知手段6による検知温度を基に正確に求められた改質触媒層3の温度に応じて、原料・水供給部1から原料と水の供給を開始することができ、改質触媒層3が劣化したり改質触媒層3に炭素が析出したりすることを防ぐことができるものである。   According to the present invention, when the heating means 4 is combusted again after the operation is stopped and the operation is resumed, the reforming catalyst layer 3 accurately obtained based on the temperature detected by the temperature detection means 6 at the time of the operation restart. Depending on the temperature, the supply of the raw material and water can be started from the raw material / water supply unit 1, and it is possible to prevent the reforming catalyst layer 3 from deteriorating or carbon from being deposited on the reforming catalyst layer 3. It can be done.

本発明の請求項4に係る燃料電池発電システムは、請求項1乃至3のいずれかに記載の水素製造装置と、この水素製造装置から供給される改質ガスを用いて発電する燃料電池とを備えて成ることを特徴とする。   According to a fourth aspect of the present invention, there is provided a fuel cell power generation system comprising: the hydrogen production apparatus according to any one of the first to third aspects; and a fuel cell that generates electric power using a reformed gas supplied from the hydrogen production apparatus. It is characterized by comprising.

この発明によれば、改質触媒層3の温度を正確に制御して効率良く生成された水素製造装置Aの改質ガスを用いて、効率の良い発電を行なうことができるものである。   According to the present invention, efficient power generation can be performed using the reformed gas of the hydrogen production apparatus A generated efficiently by accurately controlling the temperature of the reforming catalyst layer 3.

本発明によれば、改質触媒層3の実測温度値と、温度検知手段6で検知される改質ガス集合部5の改質ガスの検知温度値との対応関係のデータに基づいて、温度検知手段6で検知された温度から改質触媒層3の温度を演算して推定することができ、温度検知手段6で検知される改質ガス集合部5の改質ガスの温度から、改質触媒層3の実際の温度を正確に求めることができるものである。   According to the present invention, based on the data of the correspondence relationship between the measured temperature value of the reforming catalyst layer 3 and the detected temperature value of the reformed gas of the reformed gas assembly 5 detected by the temperature detecting means 6, The temperature of the reforming catalyst layer 3 can be calculated and estimated from the temperature detected by the detection means 6, and the reforming gas can be estimated from the temperature of the reformed gas in the reformed gas assembly 5 detected by the temperature detection means 6. The actual temperature of the catalyst layer 3 can be obtained accurately.

また、運転停止後に加熱手段4を再度燃焼させて運転を再開する際に、運転再開時での温度検知手段6による検知温度を起点とする対応関係データをデータ群から選択して、改質触媒層3の温度を演算して推定することができ、改質触媒層3の実際の温度を正確に求めることができるものである。   Further, when the heating means 4 is burned again after the operation is stopped and the operation is restarted, correspondence data starting from the temperature detected by the temperature detection means 6 at the time of restarting operation is selected from the data group, and the reforming catalyst is selected. The temperature of the layer 3 can be calculated and estimated, and the actual temperature of the reforming catalyst layer 3 can be accurately obtained.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は水素製造装置Aと燃料電池Bを備えた本発明に係る燃料電池発電システムを示すものである。   FIG. 1 shows a fuel cell power generation system according to the present invention provided with a hydrogen production apparatus A and a fuel cell B.

水素製造装置Aは同心円筒状の内筒22と外筒23を備えて形成されるものであり、外筒23の外周を熱損失を緩和するための断熱材24で覆ってある。内筒22と外筒23の間の中段部には粒状や円柱状の改質触媒を充填して、円筒形状の改質触媒層3が形成してあり、改質触媒層3の上側において内筒22と外筒23の間に円筒状空間部として蒸発部2が、改質触媒層3の下側において内筒22と外筒23の間に円筒状空間部として改質ガス通過部15がそれぞれ形成してある。蒸発部2には、ブタンガス等の炭化水素ガスなど原料と水とを蒸発部2に供給する原料・水供給部1が接続してある。   The hydrogen production apparatus A is formed with a concentric cylindrical inner cylinder 22 and an outer cylinder 23, and the outer periphery of the outer cylinder 23 is covered with a heat insulating material 24 for reducing heat loss. A middle stage portion between the inner cylinder 22 and the outer cylinder 23 is filled with a granular or columnar reforming catalyst to form a cylindrical reforming catalyst layer 3. The evaporator 2 is a cylindrical space between the cylinder 22 and the outer cylinder 23, and the reformed gas passage 15 is a cylindrical space between the inner cylinder 22 and the outer cylinder 23 below the reforming catalyst layer 3. Each is formed. The evaporation unit 2 is connected to a raw material / water supply unit 1 that supplies a raw material such as hydrocarbon gas such as butane gas and water to the evaporation unit 2.

また改質ガス通過部15の外周には改質ガス集合部5が突設してあり、改質ガス通過部15の一箇所を改質ガス集合部5内と連通させてある。改質ガス集合部5には改質ガス供給路25が接続してあり、改質ガス供給路25は燃料電池Bに接続してある。図1の実施の形態では、改質ガス集合部5を改質ガス供給路25で燃料電池Bに直接接続するようにしたが、COシフト反応部やCO選択酸化反応部などの一酸化炭素除去部を介して改質ガス集合部5を燃料電池Bに接続するようにしてもよいのはいうまでもない。   Further, the reformed gas collecting portion 5 protrudes from the outer periphery of the reformed gas passage portion 15, and one portion of the reformed gas passage portion 15 communicates with the inside of the reformed gas gathering portion 5. A reformed gas supply path 25 is connected to the reformed gas collecting section 5, and the reformed gas supply path 25 is connected to the fuel cell B. In the embodiment of FIG. 1, the reformed gas collecting unit 5 is directly connected to the fuel cell B through the reformed gas supply path 25, but carbon monoxide removal such as a CO shift reaction unit and a CO selective oxidation reaction unit is performed. Needless to say, the reformed gas collecting part 5 may be connected to the fuel cell B via the part.

内筒22の内周は燃焼ガス流路27として形成されるものであり、内筒22の下端部に加熱手段4が設けてある。加熱手段4はバーナ16を備えて形成されるものであり、バーナ16には燃料を供給する燃料供給部18を接続し、燃焼用空気を送風するファン19が設けてある。燃料供給部18からバーナ16に供給される燃料としては、上記の炭化水素ガスなどの原料を用いることができ、また燃料電池Bで消費されなかった水素を含む改質ガスを返送して用いることもできる。   The inner circumference of the inner cylinder 22 is formed as a combustion gas flow path 27, and the heating means 4 is provided at the lower end portion of the inner cylinder 22. The heating means 4 is formed with a burner 16, and the burner 16 is connected with a fuel supply unit 18 for supplying fuel, and provided with a fan 19 for blowing combustion air. As the fuel supplied from the fuel supply unit 18 to the burner 16, raw materials such as the above-described hydrocarbon gas can be used, and the reformed gas containing hydrogen that has not been consumed in the fuel cell B is returned and used. You can also.

上記の改質ガス集合部5内には熱電対などで形成される温度検知手段6が設けてある。この温度検知手段6は改質ガス集合部5内の温度を検知するものであり、制御手段17に電気的に接続してある。また制御手段17は加熱手段4の燃料供給部18やファン19に電気的に接続してあり、燃料供給部18からバーナ16への燃料の供給や、ファン19からバーナ16への燃焼用空気の供給を制御手段17で制御することができるようにしてある。制御手段17はさらに原料・水供給部1に電気的に接続してあり、原料・水供給部1からの原料や水の供給を制御することができるようにしてある。   A temperature detection means 6 formed of a thermocouple or the like is provided in the reformed gas collecting unit 5. This temperature detecting means 6 detects the temperature in the reformed gas collecting section 5 and is electrically connected to the control means 17. The control unit 17 is electrically connected to the fuel supply unit 18 and the fan 19 of the heating unit 4, and supplies fuel from the fuel supply unit 18 to the burner 16 and combustion air from the fan 19 to the burner 16. The supply can be controlled by the control means 17. The control means 17 is further electrically connected to the raw material / water supply unit 1 so that the supply of the raw material and water from the raw material / water supply unit 1 can be controlled.

上記のように形成される水素製造装置Aにあって、ファン19から燃焼用空気を送風しつつ燃料供給部18から燃料を供給し、スパーク等の点火源で点火してバーナ16を燃焼させると、バーナ16の燃焼で発生した燃焼ガスは燃焼ガス流路27を通過した後に、燃焼ガス流路27の上端の排気口28から排気される。このように燃焼ガスが燃焼ガス流路27を通過する際に、蒸発部2や改質触媒層3が熱交換により加熱される。そして原料・水供給部1から原料と水が蒸発部2に供給されると、水は蒸発部2内で加熱されて水蒸気となり、原料ガスと水蒸気とが混合した混合ガスが生成される。この混合ガスは蒸発部2から改質触媒層3へと流れ、混合ガスが改質触媒層3内を通過する際に、改質触媒層3の触媒作用で、混合ガスの原料と水蒸気とが水蒸気改質反応し、水素リッチな改質ガスが生成される。   In the hydrogen production apparatus A formed as described above, when the combustion air is blown from the fan 19 and the fuel is supplied from the fuel supply unit 18 and ignited by an ignition source such as a spark, the burner 16 is burned. The combustion gas generated by the combustion of the burner 16 passes through the combustion gas passage 27 and is then exhausted from the exhaust port 28 at the upper end of the combustion gas passage 27. As described above, when the combustion gas passes through the combustion gas flow path 27, the evaporator 2 and the reforming catalyst layer 3 are heated by heat exchange. When the raw material and water are supplied from the raw material / water supply unit 1 to the evaporation unit 2, the water is heated in the evaporation unit 2 to become water vapor, and a mixed gas in which the raw material gas and the water vapor are mixed is generated. This mixed gas flows from the evaporation unit 2 to the reforming catalyst layer 3, and when the mixed gas passes through the reforming catalyst layer 3, the raw material of the mixed gas and water vapor are separated by the catalytic action of the reforming catalyst layer 3. Steam reforming reaction is performed, and hydrogen-rich reformed gas is generated.

改質触媒層3内で生成された改質ガスは、改質触媒層3から改質ガス通過部15へと流れ、改質ガス通過部15を流れる改質ガスは改質ガス集合部5で集合した後に、改質ガス集合部5から改質ガス供給路25を通して燃料電池Bに供給される。このように水素製造装置Aで生成された水素リッチな改質ガスを燃料電池Bに供給して、改質ガス中の水素と空気中の酸素を燃料電池Bで電気化学的に反応させることによって、発電をすることができるものである。   The reformed gas generated in the reforming catalyst layer 3 flows from the reforming catalyst layer 3 to the reformed gas passage 15, and the reformed gas flowing through the reformed gas passage 15 is generated in the reformed gas assembly 5. After the assembly, the fuel is supplied from the reformed gas collecting unit 5 to the fuel cell B through the reformed gas supply path 25. By supplying the hydrogen-rich reformed gas thus generated in the hydrogen production apparatus A to the fuel cell B and causing the fuel cell B to electrochemically react hydrogen in the reformed gas and oxygen in the air. It can generate electricity.

上記のように改質触媒層3内で生成された改質ガスが改質ガス集合部5内を流れる際に、改質ガス集合部5内に設けられた温度検知手段6で改質ガスの温度が検知されるものである。そして、温度検知手段6によるこの検知温度を基にして、制御手段17で、燃料供給部18からバーナ16への燃料の供給や、ファン19からバーナ16への燃焼用空気の供給を制御することによって、バーナ16の燃焼量や燃焼温度を制御し、改質触媒層3の温度を水蒸気改質反応に適した温度に保つようにしてある。改質ガス集合部5内を流れる改質ガスは改質触媒層3から流出する改質ガスが集合して混合されたものであるため、改質触媒層3を通過する改質ガスの温度の平均値になっているものであり、改質ガス集合部5の一箇所に温度検知手段6を設けるだけで、改質触媒層3の吸熱反応の分布の不均一や、改質ガスの流れの不均一に影響されることなく、温度検知を行なうことができるのである。   As described above, when the reformed gas generated in the reforming catalyst layer 3 flows in the reformed gas assembly 5, the temperature detection means 6 provided in the reformed gas assembly 5 detects the reformed gas. The temperature is to be detected. Based on the temperature detected by the temperature detector 6, the controller 17 controls the supply of fuel from the fuel supply unit 18 to the burner 16 and the supply of combustion air from the fan 19 to the burner 16. Thus, the combustion amount and combustion temperature of the burner 16 are controlled to keep the temperature of the reforming catalyst layer 3 at a temperature suitable for the steam reforming reaction. Since the reformed gas flowing in the reformed gas assembly 5 is a mixture of reformed gases flowing out from the reformed catalyst layer 3, the temperature of the reformed gas passing through the reformed catalyst layer 3 is reduced. The average value is obtained, and by simply providing the temperature detecting means 6 at one location of the reformed gas collecting section 5, the endothermic reaction distribution of the reformed catalyst layer 3 is uneven and the flow of the reformed gas is reduced. The temperature can be detected without being affected unevenly.

ここで、上記のように、改質ガス集合部5を通過する改質ガスは改質触媒層3から流れ出た後のものであるので、温度検知手段6によって検知される改質ガスの温度は一般的に改質触媒層3の温度よりも低くなっており、温度検知手段6で検知された温度は改質触媒層3の正確な温度ではない。そこで本発明では、予め試験装置で、改質触媒層3の実測温度値と、改質触媒層3がこの温度のときに温度検知手段6で検知される改質ガス集合部5の改質ガスの検知温度値との対応関係のデータをとっておき、この対応関係データに基づいて、実機の水素製造装置Aにおいて温度検知手段6で検知された改質ガス集合部5の改質ガスの温度から、改質触媒層3の温度を演算して推定することによって、改質触媒層3の実際の正確な温度を求めるようにしたものである。   Here, as described above, the reformed gas passing through the reformed gas assembly 5 is after flowing out of the reforming catalyst layer 3, so the temperature of the reformed gas detected by the temperature detecting means 6 is Generally, the temperature is lower than the temperature of the reforming catalyst layer 3, and the temperature detected by the temperature detecting means 6 is not an accurate temperature of the reforming catalyst layer 3. Therefore, in the present invention, the measured temperature value of the reforming catalyst layer 3 and the reformed gas of the reformed gas collecting unit 5 detected by the temperature detecting means 6 when the reforming catalyst layer 3 is at this temperature in advance by a test apparatus. Data of the corresponding relationship with the detected temperature value of the gas, and based on this correspondence data, from the reformed gas temperature of the reformed gas assembly 5 detected by the temperature detecting means 6 in the actual hydrogen production apparatus A, The actual and accurate temperature of the reforming catalyst layer 3 is obtained by calculating and estimating the temperature of the reforming catalyst layer 3.

図2は試験装置Cを示すものであり、全体の構造は図1に示す実機の水素製造装置Aと同じものであるが、試験装置Cには改質触媒層3内に熱電対などの改質触媒温度検知手段30を設け、改質触媒層3の温度を実測することができるようにしてある。改質触媒温度検知手段30を改質触媒層3の複数個所に設け、改質触媒層3の平均温度を測定するようにしてもよい。そして試験装置Cにおいて、上記と同様に、加熱手段4のバーナ16を燃焼させ、原料・水供給部1から原料と水を供給し、改質触媒層3で水蒸気改質反応をさせて改質ガスを生成させる運転を行なう。   2 shows the test apparatus C, and the entire structure is the same as the actual hydrogen production apparatus A shown in FIG. 1, but the test apparatus C includes a modified thermocouple in the reforming catalyst layer 3. A quality catalyst temperature detecting means 30 is provided so that the temperature of the reforming catalyst layer 3 can be measured. The reforming catalyst temperature detecting means 30 may be provided at a plurality of locations on the reforming catalyst layer 3 to measure the average temperature of the reforming catalyst layer 3. Then, in the test apparatus C, the burner 16 of the heating means 4 is combusted in the same manner as described above, the raw material and water are supplied from the raw material / water supply unit 1, and the reforming catalyst layer 3 performs the steam reforming reaction to reform. An operation to generate gas is performed.

このように試験装置Cで改質ガスを生成する運転を行なう際に、改質触媒層3内の温度を改質触媒温度検知手段30で実測すると共に、この実測した時点での改質ガス集合部5内の温度を温度検知手段6で検知する。このように改質触媒温度検知手段30による改質触媒層3の実測温度値と、温度検知手段6による改質ガス集合部5内の検知温度値とを、図3のように、横軸に温度検知手段6による改質ガス集合部5内の検知温度値を、縦軸に改質触媒温度検知手段30による改質触媒層3の実測温度値をとって、プロットすることによって、改質触媒層3の実測温度値と、改質触媒層3がこの温度のときに温度検知手段6で検知される改質ガス集合部5の検知温度値とが対応する関係の曲線として、対応関係データが得られる。   As described above, when the test apparatus C is operated to generate the reformed gas, the temperature in the reforming catalyst layer 3 is measured by the reforming catalyst temperature detecting means 30, and the reformed gas assembly at this measured time is measured. The temperature in the unit 5 is detected by the temperature detection means 6. Thus, the measured temperature value of the reforming catalyst layer 3 by the reforming catalyst temperature detecting means 30 and the detected temperature value in the reformed gas assembly 5 by the temperature detecting means 6 are plotted on the horizontal axis as shown in FIG. By plotting the detected temperature value in the reformed gas collecting section 5 by the temperature detecting means 6 and plotting the measured temperature value of the reforming catalyst layer 3 by the reforming catalyst temperature detecting means 30 on the vertical axis, it is plotted. Corresponding relationship data is obtained as a curve of the relationship between the actually measured temperature value of the layer 3 and the detected temperature value of the reformed gas assembly 5 detected by the temperature detecting means 6 when the reforming catalyst layer 3 is at this temperature. can get.

図3において曲線aは、外気温度が常温付近において、試験装置Cを起動して運転を開始したときの対応関係データを示すものであり、この運転開始時には加熱手段4による加熱は行なわれていないので、曲線aの起点の、改質触媒層3の実測温度値と、温度検知手段6による検知温度値は、それぞれ常温付近の約30℃である。そしてバーナ16を燃焼させて加熱手段4で加熱を開始すると、初期は改質触媒層3に混合ガスは供給されていないので、加熱手段4からの伝熱で加熱されて改質触媒層3の実測温度値が大きく上昇するが、改質ガス集合部5に改質ガスは供給されないので、温度検知手段6による検知温度値の上昇は小さい。次に改質触媒層3の実測温度値が300〜400℃の範囲で、原料・水供給部1から原料と水の供給が開始され、改質触媒層3で改質ガスが生成されて、改質ガス集合部5に改質ガスが供給されるようになると、改質触媒層3の実測温度値と、温度検知手段6による検知温度値の上昇速度はほぼ等しくなり、この結果、曲線aのような挙動の対応関係データを得ることができる。   A curve a in FIG. 3 shows correspondence data when the test apparatus C is started and the operation is started when the outside air temperature is around room temperature. At the start of the operation, the heating means 4 is not heated. Therefore, the measured temperature value of the reforming catalyst layer 3 and the detected temperature value by the temperature detecting means 6 at the starting point of the curve a are each about 30 ° C. near normal temperature. When the burner 16 is burned and heating is started by the heating means 4, since the mixed gas is not supplied to the reforming catalyst layer 3 in the initial stage, it is heated by heat transfer from the heating means 4 and the reforming catalyst layer 3 is heated. Although the actually measured temperature value is greatly increased, since the reformed gas is not supplied to the reformed gas collecting section 5, the increase in the detected temperature value by the temperature detecting means 6 is small. Next, when the measured temperature value of the reforming catalyst layer 3 is in the range of 300 to 400 ° C., the feed of raw material and water is started from the raw material / water supply unit 1, and reformed gas is generated in the reforming catalyst layer 3. When the reformed gas is supplied to the reformed gas collecting section 5, the actually measured temperature value of the reforming catalyst layer 3 and the rising speed of the detected temperature value by the temperature detecting means 6 become substantially equal, and as a result, the curve a It is possible to obtain correspondence data of behaviors such as

また図3において曲線b、c、dは、試験装置Cで改質ガスを生成させる運転を行なっている途中で、加熱手段4のバーナ16の燃焼を停止し、改質ガスを生成する運転を停止させた後に、加熱手段4のバーナ16の燃焼を再度開始して運転を再開したときの、対応関係データを示すものである。試験装置Cの運転を停止して加熱手段4のバーナ16の燃焼を停止すると、改質触媒層3は加熱手段4から熱量が加えられない状態になり、またファン19からの送風によって改質触媒層3が冷却され、改質触媒層3の温度は下がり易い。一方、改質ガス集合部5内では改質ガスが滞留しているために温度が下がり難い。また改質触媒層3と改質ガス集合部5との間の熱伝導によって、改質触媒層3の実測温度値と、温度検知手段6による検知温度値はほぼ同じ値になる。例えば曲線bの起点の、改質触媒層3の実測温度値と、温度検知手段6による検知温度値は、それぞれ約170℃、曲線cの起点の、改質触媒層3の実測温度値と、温度検知手段6による検知温度値は、それぞれ約300℃、曲線dの起点の、改質触媒層3の実測温度値と、温度検知手段6による検知温度値は、それぞれ約400℃である。そしてバーナ16の燃焼を再開して加熱手段4による加熱を再開させると、上記の曲線aと同様に、初期は、改質触媒層3の実測温度値の上昇は大きく、温度検知手段6による検知温度値の上昇は小さく、改質触媒層3から改質ガス集合部5に改質ガスが供給されるようになると、改質触媒層3の実測温度値と、温度検知手段6による検知温度値の上昇速度はほぼ等しくなり、それぞれ曲線b,c,dのような挙動の対応関係データを得ることができる。   3, curves b, c, and d indicate the operation of stopping the combustion of the burner 16 of the heating means 4 and generating the reformed gas while the test apparatus C is generating the reformed gas. The correspondence data when the combustion of the burner 16 of the heating means 4 is restarted and the operation is restarted after stopping is shown. When the operation of the test apparatus C is stopped and the combustion of the burner 16 of the heating means 4 is stopped, the reforming catalyst layer 3 becomes in a state where no heat is applied from the heating means 4, and the reforming catalyst is blown by blowing from the fan 19. The layer 3 is cooled, and the temperature of the reforming catalyst layer 3 tends to decrease. On the other hand, since the reformed gas stays in the reformed gas collecting portion 5, the temperature is hardly lowered. Further, due to the heat conduction between the reforming catalyst layer 3 and the reformed gas collecting portion 5, the actually measured temperature value of the reforming catalyst layer 3 and the detected temperature value by the temperature detecting means 6 become substantially the same value. For example, the measured temperature value of the reforming catalyst layer 3 at the starting point of the curve b and the detected temperature value by the temperature detecting means 6 are about 170 ° C., the measured temperature value of the reforming catalyst layer 3 at the starting point of the curve c, and The detected temperature value by the temperature detecting means 6 is about 300 ° C., the measured temperature value of the reforming catalyst layer 3 at the starting point of the curve d, and the detected temperature value by the temperature detecting means 6 are about 400 ° C., respectively. When the combustion of the burner 16 is resumed and the heating by the heating means 4 is resumed, the measured temperature value of the reforming catalyst layer 3 is greatly increased initially and detected by the temperature detection means 6 as in the case of the curve a. The rise in temperature value is small, and when reformed gas is supplied from the reforming catalyst layer 3 to the reformed gas assembly 5, the measured temperature value of the reforming catalyst layer 3 and the temperature value detected by the temperature detecting means 6 are detected. Ascending speeds are substantially equal to each other, and behavioral correspondence data such as curves b, c, and d can be obtained.

このように、加熱手段4のバーナ16の燃焼を開始して運転を起動、あるいは再開する起点では、改質触媒層3の実測温度値と、温度検知手段6による検知温度値はほぼ等しく、図3の改質触媒層3の実測温度値と、温度検知手段6による検知温度値が1:1で比例する線L上に起点が存在し、初期では温度上昇の対応関係の挙動がそれぞれ異なり、600℃を超える高温領域になると一致する、曲線a〜dのような対応関係データのデータ群を得ることができる。   As described above, at the starting point where the combustion of the burner 16 of the heating unit 4 is started and the operation is started or restarted, the actually measured temperature value of the reforming catalyst layer 3 and the detected temperature value by the temperature detecting unit 6 are substantially equal. 3 has a starting point on a line L in which the actually measured temperature value of the reforming catalyst layer 3 and the detected temperature value by the temperature detecting means 6 are proportional to 1: 1, and the behavior of the correspondence relationship of the temperature rise is different in the initial stage. A data group of correspondence data such as curves a to d that coincide with a high temperature region exceeding 600 ° C. can be obtained.

そしてこのようにして試験装置Cで得られた対応関係データのデータ群は、図1の実機の水素製造装置Aの制御手段17のデータ保存部7に保存されている。図1の制御手段17はCPUやROM、RAM等を備えて形成されるものであり、このデータ保存部7と、演算部8と、制御部9を有して構成されているものである。   A data group of correspondence data obtained in this way by the test apparatus C is stored in the data storage unit 7 of the control means 17 of the actual hydrogen production apparatus A in FIG. The control means 17 shown in FIG. 1 includes a CPU, ROM, RAM, and the like, and includes the data storage unit 7, the calculation unit 8, and the control unit 9.

次に、図1の実機の水素製造装置Aにおいて、データ保存部7に保存されている改質触媒層3の実測温度値と温度検知手段6による検知温度値との対応関係データを用いて、改質触媒層3の温度を推定する方法を説明する。   Next, in the actual hydrogen production apparatus A of FIG. 1, using the correspondence data between the measured temperature value of the reforming catalyst layer 3 stored in the data storage unit 7 and the detected temperature value by the temperature detecting means 6, A method for estimating the temperature of the reforming catalyst layer 3 will be described.

温度検知手段6で検知された改質ガス集合部5の温度のデータは演算部8に入力されるものであり、このように演算部8に温度検知手段6で検知された温度データが入力されると、データ保存部7に保存された対応関係データに基づいて、温度検知手段6で検知された温度データに対応する改質触媒層3の温度を演算して求めることができる。例えば、加熱手段4のバーナ16の燃焼を開始する時点での、温度検知手段6による検知温度が170℃であると、起点が170℃である図3の曲線bの対応関係データが選択され、曲線bの対応関係データに基づいて温度検知手段6による検知温度から改質触媒層3の温度を演算して、改質触媒層3の温度を推定することができるものである。この演算部8で推定された改質触媒層3の温度は、実測温度値に基づくものであるため、改質触媒層3の正確な温度である。例えば、温度検知手段6によって検知される温度が200℃になると、改質触媒層3の温度は260℃であると推定することができる。   The temperature data of the reformed gas collecting unit 5 detected by the temperature detecting unit 6 is input to the calculating unit 8, and thus the temperature data detected by the temperature detecting unit 6 is input to the calculating unit 8. Then, based on the correspondence data stored in the data storage unit 7, the temperature of the reforming catalyst layer 3 corresponding to the temperature data detected by the temperature detection means 6 can be calculated and obtained. For example, when the temperature detected by the temperature detecting means 6 at the time of starting the combustion of the burner 16 of the heating means 4 is 170 ° C., the correspondence data of the curve b in FIG. The temperature of the reforming catalyst layer 3 can be estimated by calculating the temperature of the reforming catalyst layer 3 from the temperature detected by the temperature detecting means 6 based on the correspondence relationship data of the curve b. Since the temperature of the reforming catalyst layer 3 estimated by the calculation unit 8 is based on the actually measured temperature value, it is an accurate temperature of the reforming catalyst layer 3. For example, when the temperature detected by the temperature detecting means 6 reaches 200 ° C., it can be estimated that the temperature of the reforming catalyst layer 3 is 260 ° C.

そして、改質触媒層3の温度が300〜400℃の範囲で原料・水供給部1から原料と水の供給を開始することによって、改質触媒層3の触媒劣化や炭素析出を防ぐことができるので、温度検知手段6によって検知される温度が、改質触媒層3の温度が300℃を超えると推定される230℃を超える時点と、改質触媒層3の温度が400℃以下であると推定される検知温度が290℃以下の時点の間に達すると、例えば温度検知手段6による検知温度が260℃に達すると、制御手段17の制御部9によって、原料・水供給部1を制御し、原料と水の供給を開始するものである。また、温度検知手段6による検知温度を基に演算して推定される改質触媒層3の温度が、水蒸気改質反応に適した700℃前後になると、制御手段17の制御部9によって、加熱手段4の燃料供給部18やファン19を制御して、燃料供給部18からバーナ16への燃料の供給や、ファン19からバーナ16への燃焼用空気の供給を制御し、加熱手段4による加熱温度を制御することによって、改質触媒層3をこの温度に保つようにすることができるものである。   Then, by starting the supply of the raw material and water from the raw material / water supply unit 1 in the range of the temperature of the reforming catalyst layer 3 of 300 to 400 ° C., it is possible to prevent catalyst deterioration and carbon deposition of the reforming catalyst layer 3. Therefore, when the temperature detected by the temperature detecting means 6 exceeds 230 ° C. where the temperature of the reforming catalyst layer 3 is estimated to exceed 300 ° C., the temperature of the reforming catalyst layer 3 is 400 ° C. or less. When the detected temperature estimated to be 290 ° C. or less reaches, for example, when the temperature detected by the temperature detecting means 6 reaches 260 ° C., the control section 9 of the control means 17 controls the raw material / water supply section 1. Then, the supply of raw materials and water is started. Further, when the temperature of the reforming catalyst layer 3 estimated by calculation based on the temperature detected by the temperature detecting means 6 reaches around 700 ° C. suitable for the steam reforming reaction, the controller 9 of the control means 17 The fuel supply unit 18 and the fan 19 of the means 4 are controlled to control the supply of fuel from the fuel supply unit 18 to the burner 16 and the supply of combustion air from the fan 19 to the burner 16. The reforming catalyst layer 3 can be kept at this temperature by controlling the temperature.

また、加熱手段4のバーナ16の燃焼を開始する時点での、温度検知手段6による検知温度が、図3の曲線a〜dの起点の温度と一致しない場合は、演算部8において、温度検知手段6による検知温度に近い起点の温度を有する2つの曲線を選択し、この2つの曲線の間に、温度検知手段6による検知温度を起点とすると共にこれらの曲線と相関を有する曲線を設定し、この設定された曲線の対応関係データに基づいて、上記と同様にして改質触媒層3の温度を推定するものである。   If the temperature detected by the temperature detecting means 6 at the time when the burner 16 of the heating means 4 starts to burn does not coincide with the temperature at the starting point of the curves a to d in FIG. Two curves having starting temperatures close to the temperature detected by the means 6 are selected, and between these two curves, a curve starting from the temperature detected by the temperature detecting means 6 and having a correlation with these curves is set. The temperature of the reforming catalyst layer 3 is estimated in the same manner as described above based on the correspondence relationship data of the set curve.

すなわち、線L上において曲線a〜bのエリア、曲線b〜cのエリア、曲線c〜dのエリアに区分けし、加熱手段4のバーナ16の燃焼を開始する時点での、温度検知手段6による検知温度が存在するエリアの2つの曲線を選択する。そして温度検知手段6による検知温度と2つの曲線の各起点の温度との差を求め、2つの曲線の間にこの温度差に応じた関係の曲線を設定する。例えば温度検知手段6による検知温度が200℃であるとすると、曲線bと曲線cが選択される。曲線bの起点の温度は170℃、曲線cの起点の温度は300℃であり、温度検知手段6による検知温度との温度差は、曲線bは30℃、曲線cは100℃であるので、起点を200℃とすると共に曲線b,cに対してこの温度差に応じた相関関係を有する曲線が設定される。そしてこのように設定された曲線の対応関係データに基づいて、改質触媒層3の温度を推定することができるものである。   That is, on the line L, it is divided into areas of curves a to b, areas of curves b to c, and areas of curves c to d, and the temperature detection means 6 at the time when the burner 16 of the heating means 4 starts to burn. Two curves in the area where the detected temperature exists are selected. Then, the difference between the temperature detected by the temperature detecting means 6 and the temperature at each starting point of the two curves is obtained, and a curve having a relationship corresponding to this temperature difference is set between the two curves. For example, assuming that the temperature detected by the temperature detecting means 6 is 200 ° C., the curve b and the curve c are selected. The temperature at the starting point of the curve b is 170 ° C., the temperature at the starting point of the curve c is 300 ° C., and the temperature difference from the temperature detected by the temperature detecting means 6 is 30 ° C. for the curve b and 100 ° C. for the curve c. A curve having a starting point of 200 ° C. and a correlation corresponding to the temperature difference with respect to the curves b and c is set. The temperature of the reforming catalyst layer 3 can be estimated based on the correspondence data of the curves set in this way.

上記のように、改質ガス集合部5を流れる改質ガスの温度を温度検知手段6で検知することによって、この検知温度を基に改質触媒層3の正確な温度を演算して推定することができるものであり、そしてこの正確に推定された改質触媒層3の温度に応じて、原料・水供給部1からの原料と水の供給の開始を制御することができ、また加熱手段4による改質触媒層3の加熱温度を制御することができるものであり、改質触媒層3に劣化等が生じることなく、効率高く改質ガスを生成することができるものである。   As described above, the temperature of the reformed gas flowing through the reformed gas assembly 5 is detected by the temperature detecting means 6, and the accurate temperature of the reforming catalyst layer 3 is calculated and estimated based on this detected temperature. The start of the supply of the raw material and water from the raw material / water supply unit 1 can be controlled in accordance with the accurately estimated temperature of the reforming catalyst layer 3, and the heating means can be controlled. The heating temperature of the reforming catalyst layer 3 by 4 can be controlled, and the reforming catalyst layer 3 can be efficiently generated without causing deterioration or the like.

本発明の実施の形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of embodiment of this invention. 試験装置の水素製造装置を示す概略断面図である。It is a schematic sectional drawing which shows the hydrogen production apparatus of a test apparatus. 改質触媒層の実測温度値と温度検知手段による検知温度値との対応関係データを示すグラフであるIt is a graph which shows the correspondence data of the actual temperature value of a reforming catalyst layer, and the detected temperature value by a temperature detection means. 従来例の概略断面図である。It is a schematic sectional drawing of a prior art example.

符号の説明Explanation of symbols

1 原料・水供給部
2 蒸発部
3 改質触媒層
4 加熱手段
5 改質ガス集合部
6 温度検知手段
7 データ保存部
8 演算部
9 制御部
A 水素製造装置
B 燃料電池
DESCRIPTION OF SYMBOLS 1 Raw material / water supply part 2 Evaporation part 3 Reforming catalyst layer 4 Heating means 5 Reformed gas collection part 6 Temperature detection means 7 Data storage part 8 Calculation part 9 Control part A Hydrogen production apparatus B Fuel cell

Claims (4)

原料と水を供給する原料・水供給部と、原料・水供給部から原料と水が供給され、水を蒸発させて水蒸気を生成する蒸発部と、蒸発部から原料と水蒸気が供給され、原料と水蒸気から水素リッチな改質ガスを生成する改質触媒層と、燃料を燃焼させることによって蒸発部と改質触媒層を加熱する加熱手段と、改質触媒層より改質ガスの流れの下流側に設けられ、改質ガスの流れを集合させる改質ガス集合部と、改質ガス集合部を通過する改質ガスの温度を検知する温度検知手段と、改質触媒層の実測温度値と、改質触媒層がこの温度のときに温度検知手段で検知される改質ガス集合部の改質ガスの検知温度値との対応関係のデータを保存するデータ保存部と、データ保存部に保存されたこの対応関係データに基づいて、温度検知手段で検知された温度から改質触媒層の温度を演算して推定する演算部と、を備えて成ることを特徴とする水素製造装置。   A raw material / water supply unit that supplies raw material and water, a raw material and water are supplied from the raw material / water supply unit, an evaporation unit that evaporates water to generate water vapor, and a raw material and water vapor are supplied from the evaporation unit, A reforming catalyst layer that generates hydrogen-rich reformed gas from water and steam, heating means for heating the evaporation section and the reforming catalyst layer by burning fuel, and downstream of the reformed gas flow from the reforming catalyst layer A reformed gas collecting portion that collects the flow of the reformed gas, temperature detecting means for detecting the temperature of the reformed gas passing through the reformed gas collecting portion, and an actual measured temperature value of the reforming catalyst layer, , A data storage unit for storing correspondence data with the detected temperature value of the reformed gas in the reformed gas collecting unit detected by the temperature detection means when the reforming catalyst layer is at this temperature, and stored in the data storage unit Based on the correspondence data thus detected, the temperature detection means Hydrogen producing device comprising a calculation section for estimating and calculating the temperature of the reforming catalyst layer from the temperature, in that it comprises an. 上記データ保存部に保存される、改質触媒層の実測温度値と温度検知手段による検知温度値との対応関係データは、加熱手段で燃料を燃焼し始めるときの、改質触媒層の異なる複数の実測温度値とこの各実測温度値に対応する温度検知手段による検知温度値を起点とする、複数の対応関係データのデータ群からなるものであり、上記演算部は、加熱手段で燃料を燃焼し始めるときに温度検知手段で検知された温度に相応する検知温度値を起点とする対応関係データをデータ群から選択して、この対応関係データに基づいて、温度検知手段で検知された温度から改質触媒層の温度を演算して推定するものであることを特徴とする請求項1に記載の水素製造装置。   Correspondence data between the actually measured temperature value of the reforming catalyst layer and the temperature value detected by the temperature detection means stored in the data storage unit is a plurality of different reforming catalyst layers when the heating means starts to burn the fuel. And a data group of a plurality of correspondence data starting from the temperature values detected by the temperature detecting means corresponding to each of the actually measured temperature values. The arithmetic unit burns fuel by the heating means. Correspondence data starting from the detected temperature value corresponding to the temperature detected by the temperature detecting means when starting the operation is selected from the data group, and based on the correspondence data, the temperature detected by the temperature detecting means is used. 2. The hydrogen production apparatus according to claim 1, wherein the temperature of the reforming catalyst layer is calculated and estimated. 温度検知手段によって検知された温度を基に演算部で推定された改質触媒層の温度に基づいて、原料・水供給部からの原料と水の供給の開始時期を制御する制御部を備えて成ることを特徴とする請求項1又は2に記載の水素製造装置。   A control unit is provided for controlling the start timing of the supply of the raw material and water from the raw material / water supply unit based on the temperature of the reforming catalyst layer estimated by the calculation unit based on the temperature detected by the temperature detection means. The hydrogen production apparatus according to claim 1, wherein the hydrogen production apparatus is configured. 請求項1乃至3のいずれかに記載の水素製造装置と、この水素製造装置から供給される改質ガスを用いて発電する燃料電池とを備えて成ることを特徴とする燃料電池発電システム。   A fuel cell power generation system comprising: the hydrogen production apparatus according to any one of claims 1 to 3; and a fuel cell that generates electric power using the reformed gas supplied from the hydrogen production apparatus.
JP2007025987A 2007-02-05 2007-02-05 Hydrogen production apparatus and fuel cell power generation system Pending JP2008189519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025987A JP2008189519A (en) 2007-02-05 2007-02-05 Hydrogen production apparatus and fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025987A JP2008189519A (en) 2007-02-05 2007-02-05 Hydrogen production apparatus and fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2008189519A true JP2008189519A (en) 2008-08-21

Family

ID=39749990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025987A Pending JP2008189519A (en) 2007-02-05 2007-02-05 Hydrogen production apparatus and fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2008189519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053005A (en) * 2008-08-29 2010-03-11 Aisin Seiki Co Ltd Reforming apparatus and fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053005A (en) * 2008-08-29 2010-03-11 Aisin Seiki Co Ltd Reforming apparatus and fuel cell system

Similar Documents

Publication Publication Date Title
US20090246569A1 (en) Method for regenerating a reformer
WO2007111123A1 (en) Reforming apparatus
JP6138378B2 (en) Fuel cell system
JPWO2006088018A1 (en) Hydrogen generator, operating method thereof, and fuel cell system
RU2011129306A (en) HYDROGEN GENERATOR AND METHOD OF ITS WORK
JP4912742B2 (en) Hydrogen generator and fuel cell system
JP2005170784A (en) Hydrogen generator, method of operating hydrogen generator and fuel cell power system
JP2008273763A (en) Reformer and fuel cell system
JP5121080B2 (en) Fuel cell system
JP5213345B2 (en) Fuel cell device
JP5173019B2 (en) Fuel cell system
JP2005200260A (en) Hydrogen production apparatus and fuel cell power generation system
JP2008189519A (en) Hydrogen production apparatus and fuel cell power generation system
JP2009539749A (en) Method for regenerating a reformer
JP2006169068A5 (en)
JP5121079B2 (en) Fuel cell system
JP2008269887A (en) Fuel cell system
JP2018055944A (en) Fuel cell device
JP5818456B2 (en) Fuel cell device
JP6424492B2 (en) Fuel cell system
JP2012142112A (en) Fuel cell device
US10833339B2 (en) Fuel cell system and method of running fuel cell system
JP2016138016A (en) Hydrogen generator, and operational method of hydrogen generator
JP5309799B2 (en) Reformer and fuel cell system
JP7478987B2 (en) Method for operating fuel processor, computer program, recording medium, and fuel processor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090507