JP2008188637A - Method of manufacturing steel bar excellent in forgeability - Google Patents

Method of manufacturing steel bar excellent in forgeability Download PDF

Info

Publication number
JP2008188637A
JP2008188637A JP2007025936A JP2007025936A JP2008188637A JP 2008188637 A JP2008188637 A JP 2008188637A JP 2007025936 A JP2007025936 A JP 2007025936A JP 2007025936 A JP2007025936 A JP 2007025936A JP 2008188637 A JP2008188637 A JP 2008188637A
Authority
JP
Japan
Prior art keywords
steel
steel bar
inspection
scraping
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007025936A
Other languages
Japanese (ja)
Inventor
Shinichi Yasuki
真一 安木
Norio Okochi
則夫 大河内
Daizo Hayashi
大蔵 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007025936A priority Critical patent/JP2008188637A/en
Publication of JP2008188637A publication Critical patent/JP2008188637A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a steel bar excellent in forgeability while preventing occurrence of crack during forging. <P>SOLUTION: When the steel bar obtained by hot-rolling a billet is inspected by combining the surface inspection and the inspection with an ultrasonic flaw detecting device, flaws caused by inclusions which are present in the part under the surface of the steel bar and press-bonding-like flaws are detected by angle beam flaw inspection method of the ultrasonic flaw detecting device. When these flaws are detected, the steel bar with these flaws is discarded, so that the steel bar with less flaws (defects) is obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、機械構造用鋼部品の製造に用いられる鍛造用棒鋼の製造方法に関し、特に鍛造時に割れが発生しない鍛造用棒鋼の製造方法に関する。   The present invention relates to a method for manufacturing a steel bar for forging used in the manufacture of machine structural steel parts, and more particularly to a method for manufacturing a steel bar for forging that does not generate cracks during forging.

機械構造用部品、例えば等速ジョイントは、熱間圧延された棒鋼(圧延材)から熱間鍛造にて製造されている。また、最近では、自動車の差動装置に使用される歯車は、歩留向上などの観点から冷間鍛造にて(あるいは熱間鍛造後に冷間鍛造を実施して)製造されている。ところが、熱間圧延後の棒鋼(圧延材)の表面や内部に疵が存在すると鍛造時に割れが発生しやすくなるため、疵のない棒鋼(圧延材)が求められている。   Machine structural parts such as constant velocity joints are manufactured by hot forging from hot-rolled steel bars (rolled material). Recently, gears used in automobile differentials are manufactured by cold forging (or by performing cold forging after hot forging) from the viewpoint of improving yield. However, if there are defects on the surface or inside of the steel bar (rolled material) after hot rolling, cracks are likely to occur during forging, and therefore there is a need for a bar steel (rolled material) free from defects.

棒鋼の検査は、熱間圧延前(すなわち、棒鋼に加工する前)の鋼片段階(素材段階)と、熱間圧延後(すなわち、棒鋼に加工された後)の棒鋼段階の両方で行い、これらの検査で発見した表面疵のみを除去し、内部疵(内部欠陥)を発見した場合は、その鋼片ないし棒鋼を廃棄することが行われている。   The steel bars are inspected both at the slab stage (material stage) before hot rolling (ie before being processed into steel bars) and at the steel bar stage after hot rolling (ie after being processed into steel bars) When only surface flaws found by these inspections are removed and internal flaws (internal defects) are found, the steel pieces or steel bars are discarded.

表面疵については、例えば、磁粉探傷法による自動検査装置にて自動検査して比較的大きな疵を検出し、これをグラインディング等にて自動的に除去した後、再度磁粉探傷法を用いて目視にて小さな疵を発見し除去することが行われている(例えば、特許文献1、2参照)。   For surface wrinkles, for example, a relatively large wrinkle is detected by automatic inspection with an automatic inspection device using a magnetic particle inspection method, and after this is automatically removed by grinding or the like, it is visually checked again using a magnetic particle inspection method. A small wrinkle is found and removed at (see, for example, Patent Documents 1 and 2).

一方、内部疵(内部欠陥)については、超音波探傷装置を用いて検出するのが一般的であり、鋼片の中心部および中間部に存在する内部疵に対しては垂直探傷法が用いられ、鋼片の皮下部に多く存在する介在物に起因する疵に対しては斜角探傷法が用いられている(例えば、特許文献3参照)。   On the other hand, internal flaws (internal defects) are generally detected using an ultrasonic flaw detector, and the vertical flaw detection method is used for internal flaws present at the center and middle of a steel piece. An oblique flaw detection method is used for wrinkles caused by inclusions present in the subcutaneous part of a steel piece (see, for example, Patent Document 3).

さらに、熱間圧延後の棒鋼の表面疵を高効率かつ高精度に検知するため、漏洩磁束探傷法による検査法が提案され、実用化が進んでいる(例えば、特許文献4参照)。   Furthermore, in order to detect the surface defects of the steel bar after hot rolling with high efficiency and high accuracy, an inspection method using a leakage magnetic flux flaw detection method has been proposed and is in practical use (for example, see Patent Document 4).

そして、上記複数の探傷法を適宜組み合わせて用いることにより、鋼片(素材)段階および棒鋼段階の両方で表面および内部に存在する疵を効率的に、かつ、できるだけ精度良く発見し除去することが行われている。   And, by using a combination of the above-mentioned flaw detection methods as appropriate, it is possible to efficiently detect and remove the flaws existing on the surface and inside at both the steel slab (material) stage and the bar steel stage as accurately as possible. Has been done.

上述したように、超音波斜角探傷法は、鋼片の皮下部に多く存在する介在物に起因する疵の検出に非常に有効な手段であり、当該方法を他の探傷法と併用することで、製品である棒鋼の品質向上に大いに寄与してきたものであるが、近年、鋼片加工の前段階である製鋼、鋳造段階における鋼の清浄化技術が急速に進歩したことにより、鋼片中の介在物は小型化し介在物に起因する欠陥(疵)は大幅に低減されてきている。それにもかかわらず、製品である棒鋼には、部品製造のために鍛造する際に割れが発生するものが一定割合で存在しており、棒鋼品質のさらなる改善が求められていた。
特開2003−136135号公報 特開2005−138168号公報 特開昭59−148860号公報 特開2006−159260号公報
As described above, the ultrasonic oblique angle flaw detection method is a very effective means for detecting wrinkles caused by inclusions existing in the subcutaneous part of a steel piece, and this method should be used in combination with other flaw detection methods. However, in recent years, the rapid progress of steel cleaning technology in the steelmaking and casting stages, which is the previous stage of slab processing, Inclusions have been reduced in size, and defects (wrinkles) resulting from the inclusions have been greatly reduced. Nevertheless, there is a certain percentage of steel bars that are cracked when forging for manufacturing parts, and further improvements in the quality of the steel bars have been demanded.
JP 2003-136135 A JP 2005-138168 A JP 59-148860 A JP 2006-159260 A

そこで本発明の目的は、鍛造時に割れが発生しない鍛造性に優れた棒鋼の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a method for producing a steel bar having excellent forgeability in which cracking does not occur during forging.

本発明者らは、棒鋼内部に存在する疵のうち、従来の超音波探傷にては十分に検出されない疵があるものと考え、先ず、棒鋼の断面を目視および顕微鏡にて観察することにより棒鋼内部の疵発生の状況を調査した。その結果、棒鋼の皮下部に図4に示すような、介在物に起因する疵とは異なる圧着状の疵(以下、「圧着状疵」という。)が発生しているものが多数認められた。この圧着状疵は、鋳片(ブルーム)の連続鋳造時に発生した熱応力割れが分塊圧延時に圧着されて皮下部に線状に形成されたものと想定される。この圧着状疵は、鋼片および棒鋼の表面には開口していないため、磁粉探傷にては検出できず、また、超音波探傷にては、その発生箇所が皮下部であることからして斜角探傷法にて検出されるべきものであるが、従来は介在物に起因する疵に注目してエコー高さの閾値を設定しており、圧着状疵を検出するのには適切な閾値となっていなかったものと考えられる。   The present inventors consider that there are wrinkles that are not sufficiently detected by conventional ultrasonic flaws among the wrinkles present inside the steel bar, and first, by observing the cross section of the bar steel visually and with a microscope, Investigated the state of internal soot generation. As a result, a large number of crimped wrinkles (hereinafter referred to as “crimped wrinkles”) different from wrinkles caused by inclusions as shown in FIG. . This crimped wrinkle is assumed to be formed in a linear shape in the subcutaneous part, with the thermal stress cracks generated during continuous casting of the slab (bloom) being crimped during the partial rolling. Since this crimped scissors are not open on the surface of the steel slab and steel bar, it cannot be detected by magnetic particle flaw detection. Also, in ultrasonic flaw detection, the occurrence location is in the subcutaneous part. Although it should be detected by the oblique flaw detection method, in the past, an echo height threshold was set focusing on wrinkles caused by inclusions, and an appropriate threshold for detecting crimped wrinkles. It is thought that it was not.

そこで、発明者らは、超音波斜角探傷法においてエコー高さの閾値を適正に設定することで、介在物に起因する疵だけでなく圧着状疵をも感度良く検出し、介在物に起因する疵ないし圧着状疵(以下、「圧着状疵等」と総称する。)が検出された場合は当該棒鋼を廃棄することによって、棒鋼中に疵が残存することをさらに確実に防止しうると考え、さらに検討を進め、以下の発明を完成するに至った。   Therefore, the inventors have appropriately set not only the wrinkles caused by inclusions but also crimped wrinkles by appropriately setting the echo height threshold value in the ultrasonic oblique flaw detection method, and are caused by the inclusions. When a wrinkle or a crimped wrinkle (hereinafter collectively referred to as “crimped wrinkle” or the like) is detected, it is possible to more reliably prevent the wrinkle from remaining in the steel bar by discarding the steel bar. We have considered and further studied, and have completed the following invention.

請求項1に記載の発明は、(1)鋳片を分塊圧延して鋼片とする分塊工程と、(2)分塊圧延された鋼片を検査し疵取りを行う鋼片検査工程と、(3)疵取り後の鋼片を熱間圧延して棒鋼に加工する棒鋼圧延工程と、(4)熱間圧延後の棒鋼を検査し疵取りを行う棒鋼検査工程と、を備えた線材の製造方法であって、上記(2)の鋼片検査工程が、(2A)分塊圧延された鋼片をショットブラストにて表面の酸化スケールを除去する鋼片デスケーリング工程と、(2B)上記スケール除去後の鋼片を表面自動検査装置にて自動検査する鋼片表面自動検査工程と、(2C)引き続き、超音波探傷装置にて鋼片内部の疵を自動検査する鋼片内部自動検査工程と、(2D)上記(2B)の鋼片表面自動検査工程で検出された表面疵を自動疵取装置にて自動疵取りを行う鋼片自動疵取り工程と、を有するとともに、上記(4)の棒鋼検査工程が、(4A)熱間圧延された棒鋼の曲がりを矯正する棒鋼矯正工程と、(4B)曲がり矯正された棒鋼を漏洩磁束探傷装置にて検査する棒鋼表面検査工程と、(4C)上記(4B)の棒鋼表面検査工程で検出された表面疵を手作業にて疵取りを行う棒鋼手動疵取り工程と、(4D)引き続き、上記(2C)の鋼片内部自動検査工程において用いる超音波探傷装置とは別の超音波探傷装置にて棒鋼内部の疵を自動検査する棒鋼内部自動検査工程と、を有し、さらに、上記(4D)の棒鋼内部自動検査工程において、超音波探傷装置にて超音波斜角探傷法により棒鋼の皮下部に存在する介在物に起因する疵および圧着状疵(以下、「圧着状疵等」と総称する。)を検出し、圧着状疵等が検出された場合は当該棒鋼を廃棄することを特徴とする鍛造性に優れた棒鋼の製造方法である。   The invention described in claim 1 includes (1) a bundling process in which a slab is rolled into a steel slab, and (2) a steel slab inspection process for inspecting and scraping the slab that has been subjected to the batch rolling. And (3) a steel bar rolling process for hot rolling the steel pieces after cutting and processing into steel bars, and (4) a steel bar inspection process for inspecting the steel bars after hot rolling and scooping. A method of manufacturing a wire, wherein the steel slab inspection step of (2) includes (2A) a steel slab descaling step of removing the oxide scale on the surface of the slab after being rolled into pieces by shot blasting, and (2B ) The steel slab surface automatic inspection process that automatically inspects the steel slab after the scale removal with the automatic surface inspection device, and (2C) The steel slab internal automatic that automatically inspects the flaw inside the steel slab with the ultrasonic flaw detector. In the inspection process and (2D) the surface flaws detected in the steel piece surface automatic inspection process of (2B) above to the automatic scraping device A steel strip automatic scraping process for performing automatic scraping, and the steel bar inspection process of (4) above includes (4A) a steel bar straightening process for correcting the bending of hot-rolled steel bars, and (4B) bending. Steel bar surface inspection process in which the corrected steel bar is inspected with a leakage magnetic flux flaw detector, and (4C) manual steel bar scraping in which the surface defects detected in the steel bar surface inspection process in (4B) above are manually removed. And (4D) a steel bar internal automatic inspection process for automatically inspecting a bar in the steel bar with an ultrasonic flaw detector different from the ultrasonic flaw detector used in the steel piece internal automatic inspection process of (2C) above, Furthermore, in the steel bar internal automatic inspection process of (4D) above, wrinkles caused by inclusions existing in the subcutaneous part of the steel bar by an ultrasonic flaw detection method using an ultrasonic flaw detector and a crimped wrinkle (hereinafter referred to as a bar) , Collectively referred to as “crimp-shaped scissors” .) Detects, when the crimping form scratches or the like is detected is an excellent method for producing a steel bar forgeability, characterized by discarding the steel bars.

請求項2に記載の発明は、さらに、上記(2C)の鋼片内部自動検査工程において、超音波探傷装置にて超音波斜角探傷法により鋼片の皮下部に存在する圧着状疵等を検出し、圧着状疵等が検出された場合は当該鋼片を廃棄するか、上記(2D)の鋼片自動疵取り工程で表面疵とともに上記圧着状疵等を除去する請求項1に記載の鍛造性に優れた棒鋼の製造方法である。   The invention according to claim 2 further includes a crimped scissors or the like present in the subcutaneous part of the steel piece by an ultrasonic oblique flaw detection method using an ultrasonic flaw detector in the steel piece internal automatic inspection step of (2C) above. 2. The detection according to claim 1, wherein, when a crimped wrinkle or the like is detected, the steel piece is discarded, or the crimped wrinkle or the like is removed together with the surface flaw in the steel piece automatic scraping process of (2D). This is a method of manufacturing a steel bar having excellent forgeability.

請求項3に記載の発明は、上記超音波斜角探傷法において、15dB以上のエコー高さのものを上記圧着状疵等とする請求項1または2に記載の鍛造性に優れた棒鋼の製造方法である。   The invention according to claim 3 is the manufacturing of the steel bar with excellent forgeability according to claim 1 or 2, wherein, in the ultrasonic oblique flaw detection method, the one having an echo height of 15 dB or more is used as the crimped barb or the like. Is the method.

請求項4に記載の発明は、上記(4C)の棒鋼手動疵取り工程の後であって、上記(4D)の棒鋼内部自動検査工程の前に、(4C−1)上記(4C)の棒鋼手動疵取り工程にて疵取りが行われた部位を目視検査し、残存疵が検出された場合は、その残存疵を手作業にて疵取りを行う棒鋼疵取り部検査・疵取り工程を設けた請求項1〜3のいずれか1項に記載の鍛造性に優れた棒鋼の製造方法である。   The invention according to claim 4 is the steel bar of (4C) above (4C) after the steel bar manual scraping process of (4C) and before the steel bar internal automatic inspection process of (4D). A bar steel scooping part inspection / scraping process is provided, in which the part that has been scraped in the manual scraping process is visually inspected and if residual scrap is detected, the remaining scrap is manually scraped. It is a manufacturing method of the steel bar excellent in forgeability of any one of Claims 1-3.

請求項5に記載の発明は、上記(2)の鋼片検査工程において、上記(2D)の鋼片自動疵取り工程の後に、(2E)磁粉探傷装置により鋼片表面を目視検査し、表面疵が検出された場合は、その表面疵を手作業にて疵取りを行う鋼片表面目視検査・手動疵取り工程、を設けた請求項1〜4のいずれか1項に記載の鍛造性に優れた棒鋼の製造方法である。   The invention according to claim 5 is the above-described (2) billet inspection step, after the (2D) billet automatic scraping step, (2E) the surface of the billet is visually inspected by a magnetic particle flaw detector, The forgeability according to any one of claims 1 to 4, wherein when a flaw is detected, a steel piece surface visual inspection / manual fraying step for manually removing the surface flaw is performed. It is an excellent method for producing steel bars.

本発明の製造方法によれば、超音波斜角探傷法にて棒鋼の皮下部に存在する介在物に起因する疵だけでなく圧着状疵をも感度良く検出し、圧着状疵等が検知された棒鋼の廃棄を行うことで、より疵(欠陥)の少ない棒鋼が確実に得られるようになった。この結果、鍛造時に棒鋼に割れが発生することがさらに抑制され、鍛造性に優れた棒鋼を提供することが可能になった。   According to the manufacturing method of the present invention, not only wrinkles caused by inclusions existing in the subcutaneous portion of the steel bar but also crimped wrinkles are detected with high sensitivity by ultrasonic oblique flaw detection. By disposing of the steel bars, steel bars with fewer defects (defects) can be reliably obtained. As a result, the occurrence of cracks in the steel bar during forging is further suppressed, and a steel bar having excellent forgeability can be provided.

〔実施形態〕
図1は、本発明の一実施形態に係る、鋳片から鋼片を経て棒鋼を製造するまでの工程を示すフロー図である。以下、各工程をそのフローに沿って詳細に説明する。
Embodiment
FIG. 1 is a flow diagram showing steps from manufacturing a steel bar through a steel piece to a steel bar according to an embodiment of the present invention. Hereinafter, each process is demonstrated in detail along the flow.

〔製造工程〕
(1)分塊工程
成分調整された溶鋼から連続鋳造機または造塊鋳型にて鋳造された鋳片(ブルームまたはインゴット)を、次工程で使用できる形状まで圧延して鋼片(ビレット)を作製する。
〔Manufacturing process〕
(1) Bundling process A slab (bloom or ingot) cast from a component-adjusted molten steel with a continuous casting machine or ingot casting mold is rolled into a shape that can be used in the next process to produce a billet. To do.

(2)鋼片検査工程
次いで、分塊圧延された鋼片(ビレット)を、下記(2A)〜(2D)の工程で、検査し疵取り(手入れ)を行う。なお、図1においては、下記(2A)〜(2D)の各工程の「鋼片○○工程」の表記は、単に「○○工程」と略記した。
(2) Billet inspection step Next, the billet (billet) that has been rolled in pieces is inspected and scraped (care) in the following steps (2A) to (2D). In FIG. 1, the notation of “steel XX process” in each of the following steps (2A) to (2D) is simply abbreviated as “XX process”.

(2A)鋼片デスケーリング工程
先ず、表面の疵を検出しやすくするため、分塊圧延された鋼片をショットブラストにて表面の酸化スケールを除去しておく。
(2A) Steel slab descaling step First, in order to make it easy to detect surface wrinkles, the surface oxidized scale is removed by shot blasting for the steel slab that has been rolled in pieces.

(2B)鋼片表面自動検査工程
そして、スケール除去後の鋼片を表面自動検査装置にて自動検査する。具体的には、スケール除去後の鋼片を磁化し、その表面に蛍光磁粉を振り掛け、鋼片表面の磁粉模様をカメラで撮影し画像解析することで、鋳造時の粒界割れに起因して生成した開口疵、分塊圧延時に発生したヘゲ疵など、例えば深さ0.3mm以上、長さ50mm以上の表面疵を自動的に検出することができる。
(2B) Steel slab surface automatic inspection process And the steel slab after scale removal is automatically inspected with a surface automatic inspection device. Specifically, the steel piece after scale removal is magnetized, and the surface is sprinkled with fluorescent magnetic powder, and the magnetic powder pattern on the surface of the steel piece is photographed with a camera and analyzed for images, resulting in grain boundary cracking during casting. For example, surface flaws having a depth of 0.3 mm or more and a length of 50 mm or more can be automatically detected, such as the generated flaws and the bald wrinkles generated during the batch rolling.

(2C)鋼片内部自動検査工程
引き続き、超音波探傷装置にて鋼片内部の疵を自動検査する。具体的には、超音波探傷装置としては、垂直探傷法を用いて、有害な例えば500μm以上の疵を検出できるようにエコー高さの閾値を調整しておく。そして、鋼片内部に有害な疵が検出された場合は、当該鋼片を廃棄処分とする。
(2C) Steel piece inside automatic inspection process Subsequently, the flaw inside the steel piece is automatically inspected by an ultrasonic flaw detector. Specifically, the ultrasonic flaw detection apparatus uses the vertical flaw detection method to adjust the threshold of the echo height so as to detect harmful wrinkles of, for example, 500 μm or more. If harmful flaws are detected inside the billet, the billet is discarded.

(2D)鋼片自動疵取り工程
上記(2B)の鋼片表面自動検査工程で検出された表面疵を自動疵取装置にて自動疵取りを行う。自動疵取装置としては、フライスカッタやグラインダを用いればよい。
(2D) Steel piece automatic picking process The surface picking detected in the steel piece surface automatic inspection process of the above (2B) is automatically picked up by an automatic picking device. A milling cutter or a grinder may be used as the automatic harvesting device.

(3)棒鋼圧延工程
上記のようにして疵取りされた後の鋼片を熱間圧延して棒鋼に加工する。具体的には、鋼片は加熱炉で所定温度に加熱した後、複数段の圧延機列にて順次圧下して所定径まで減面することで、目的とする棒鋼に加工される。
(3) Steel bar rolling step The steel piece after being scraped as described above is hot-rolled and processed into a steel bar. Specifically, after the steel slab is heated to a predetermined temperature in a heating furnace, the steel slab is processed into a target steel bar by sequentially reducing and reducing the surface to a predetermined diameter in a plurality of rolling mill rows.

(4)棒鋼検査工程
次いで、熱間圧延された棒鋼を、下記(4A)〜(4D)の工程で、検査し疵取り(手入れ)を行う。なお、図1においては、下記(4A)〜(4D)の各工程の「棒鋼○○工程」の表記は、単に「○○工程」と略記した。
(4) Steel Bar Inspection Step Next, the hot-rolled steel bar is inspected and scraped (care) in the following steps (4A) to (4D). In FIG. 1, the notation of “steel bar XX process” in each of the following steps (4A) to (4D) is simply abbreviated as “XX process”.

(4A)棒鋼矯正工程
熱間圧延された棒鋼の曲がりを矯正して所定の寸法精度を確保するとともに、矯正により棒鋼の表面スケールが剥離脱落することを利用して、以後の検査における表面疵の発見を容易にすることができる。
(4A) Steel bar straightening process The curvature of the hot rolled steel bar is corrected to ensure a predetermined dimensional accuracy, and the surface scale of the steel bar in the subsequent inspection is removed by using the fact that the surface scale of the steel bar is peeled off by the correction. Discovery can be facilitated.

(4B)棒鋼表面検査工程
曲がり矯正され、表面スケールが除去された棒鋼を、漏洩磁束探傷装置を用いて表面疵の有無を検査する(例えば、上記特許文献4の段落[0004]参照)。
(4B) Steel Bar Surface Inspection Step The steel bar whose curvature has been corrected and whose surface scale has been removed is inspected for the presence of surface defects using a leakage magnetic flux flaw detector (see, for example, paragraph [0004] of Patent Document 4 above).

(4C)棒鋼手動疵取り工程
上記(4B)の棒鋼表面検査工程で検出された表面疵を手作業、すなわち、例えばチッピング、グラインダ、ホットスカーフィング等にて疵取りを行う。
(4C) Steel bar manual scraping process The surface crack detected in the steel bar surface inspection process of (4B) above is manually scraped, for example, by chipping, grinder, hot scarfing or the like.

(4D)棒鋼内部自動検査工程
引き続き、上記(2C)の鋼片内部自動検査工程において用いる超音波探傷装置とは別の超音波探傷装置にて棒鋼内部の疵を自動検査する。具体的には、本工程における超音波探傷装置は、垂直探傷法と斜角探傷法とを組み合わせ、前者で鋼片の中心部および中間部を、後者で鋼片の皮下部を、それぞれ検査するように構成することで、鋼片の内部全体を漏れなく検査することができる。そして、垂直探傷法においては、上記(2C)の鋼片内部自動検査工程において用いる超音波探傷装置と同様、有害な例えば500μm以上の疵を検出できるようにエコー高さの閾値を調整しておく。一方、斜角探傷法では、圧着状疵を感度良く検出できるように、エコー高さの閾値を例えば15dBとし、15dB以上のエコーを圧着状疵等とするとよい(後記実施例、図3参照)。圧着状疵等が検出された場合は、当該棒鋼を廃棄処分とする。
(4D) Bar steel internal automatic inspection process Subsequently, the bar in the bar steel is automatically inspected by an ultrasonic flaw detection apparatus different from the ultrasonic flaw detection apparatus used in the steel piece internal automatic inspection process of (2C). Specifically, the ultrasonic flaw detection apparatus in this process combines the vertical flaw detection method and the oblique flaw detection method, and inspects the central part and the middle part of the steel piece in the former and the subcutaneous part of the steel piece in the latter, respectively. By comprising in this way, the whole inside of a steel piece can be test | inspected without a leak. In the vertical flaw detection method, the echo height threshold is adjusted so that harmful flaws of, for example, 500 μm or more can be detected in the same manner as in the ultrasonic flaw detection device used in the steel piece internal automatic inspection step (2C). . On the other hand, in the oblique flaw detection method, the threshold of the echo height is set to 15 dB, for example, so that the crimped wrinkle can be detected with high sensitivity, and an echo of 15 dB or more may be used as the crimped wrinkle or the like (see an example described later, FIG. 3) . If crimped wrinkles etc. are detected, the steel bar will be disposed of.

このようにして製造された棒鋼は、表面疵および内部疵(圧着状疵を含めて)が十分に除去されているので、部品への鍛造時に割れが発生することを効果的に抑止でき、鍛造性に優れた棒鋼を製造できることとなる。   Since the steel bar manufactured in this way has sufficiently removed the surface defects and internal defects (including crimped defects), it can effectively prevent cracks from occurring during forging of parts. It is possible to manufacture a steel bar having excellent properties.

(変形例)
上記実施形態では、上記(2C)の鋼片内部自動検査工程での超音波探傷装置において、垂直探傷法のみを用いる例を示したが、上記(4D)の棒鋼内部自動検査工程での超音波探傷装置と同様に、垂直探傷法と斜角探傷法とを組み合わせ、前者で鋼片の中心部および中間部を、後者で鋼片の皮下部を、それぞれ検査するように構成してもよい。これにより、鋼片の内部全体をより精密に検査することができる。本工程での斜角探傷法においても、上記(4C)の棒鋼段階での検査工程と同様、圧着状疵を感度良く検出できるように、エコー高さの閾値を例えば15dBとし、15dB以上のエコーを圧着状疵等とするとよい。そして、圧着状疵等が検出された場合は、原則当該鋼片を廃棄処分とするが、除去可能であれば、上記(2D)の鋼片自動疵取り工程で表面疵とともに圧着状疵等を除去し、棒鋼加工用の素材に含めてもよい。これにより、熱間圧延される鋼片は、予め表面疵だけでなく内部疵(圧着状疵を含めて)も十分に除去されているので、より高歩留で鍛造性に優れた棒鋼を製造できることとなる。
(Modification)
In the said embodiment, although the example which uses only a vertical flaw detection method was shown in the ultrasonic flaw detection apparatus in the steel piece inside automatic inspection process of said (2C), the ultrasonic wave in the said steel bar internal automatic inspection process of said (4D) Similarly to the flaw detection apparatus, the vertical flaw detection method and the oblique flaw detection method may be combined to inspect the center portion and the middle portion of the steel piece with the former and the subcutaneous portion of the steel piece with the latter. Thereby, the whole inside of a steel piece can be test | inspected more precisely. Also in the oblique angle flaw detection method in this step, the echo height threshold is set to 15 dB, for example, so that the crimped wrinkle can be detected with high sensitivity in the same manner as the inspection process in the steel bar stage of (4C) above. Is preferably a crimped ridge or the like. If a crimped wrinkle or the like is detected, the steel slab is disposed of in principle, but if it can be removed, the crimped wrinkle or the like is removed together with the surface flaw in the above-described (2D) steel slab automatic cutting process. It may be removed and included in the material for bar steel processing. As a result, the hot-rolled steel slab has been sufficiently removed not only the surface defects but also the internal defects (including the crimped defects) in advance, producing a steel bar with higher yield and superior forgeability. It will be possible.

また、上記実施形態では、上記(4C)の棒鋼手動疵取り工程の後、直ちに上記(4D)の棒鋼内部自動検査工程を行う例を示したが、上記(4C)の棒鋼手動疵取り工程の後であって、上記(4D)の棒鋼内部自動検査工程の前に、上記(4C)の棒鋼手動疵取り工程にて疵取りが行われた部位を目視検査し、残存疵が検出された場合は、その残存疵を手作業にて疵取りを行う棒鋼疵取り部検査・疵取り工程[(4C−1)の工程]を設けてもよい。   Moreover, in the said embodiment, although the example which performs the steel bar internal automatic inspection process of said (4D) immediately after the steel bar manual scraping process of said (4C) was shown, the steel bar manual scraping process of said (4C) is shown. After the above (4D) steel bar internal automatic inspection process, when the steel bar manual scraping process of (4C) above is visually inspected and residual scissors are detected May be provided with a steel bar scraping part inspection / scoring step [(4C-1) step] in which the residual scrap is manually scraped.

また、上記(2)の鋼片検査工程において、上記(2D)の鋼片自動疵取り工程の後に、磁粉探傷装置により鋼片表面を目視検査し、表面疵が検出された場合は、その表面疵を手作業にて疵取りを行う鋼片表面目視検査・手動疵取り工程[(2E)の工程]を設けてもよい。すなわち、上記(2B)の鋼片表面自動検査工程の表面自動検査装置にては検出できない、浅く短い表面疵は、別の磁粉探傷装置を用いて鋼片表面を目視検査し検出を行うのが推奨される。具体的には、上記(2E)の工程において、鋼片を磁化した後、その表面に蛍光磁粉を振り掛け、暗室内で磁粉模様を目視観察し、検出された表面疵にマーキングを施しておき、マーキングされた表面疵を手作業、すなわち、例えばチッピング、グラインダ、ホットスカーフィング等にて疵取りを行うとよい。   In the steel piece inspection step (2) above, the surface of the steel piece is visually inspected by a magnetic particle flaw detector after the steel piece automatic scraping step (2D), and if surface flaws are detected, You may provide the steel piece surface visual inspection and manual scooping process [(2E) process] which scissors a scissors manually. That is, shallow and short surface defects that cannot be detected by the surface automatic inspection device in the steel piece surface automatic inspection process of (2B) above are detected by visually inspecting the surface of the steel piece using another magnetic particle flaw detector. Recommended. Specifically, in the step (2E), after magnetizing the steel slab, sprinkle fluorescent magnetic powder on the surface, visually observe the magnetic powder pattern in the dark room, and mark the detected surface defects, The marked surface defects may be manually removed, that is, chipped, grindered, hot scarfed, or the like.

〔棒鋼の成分組成〕
本発明が適用される棒鋼の成分組成としては、例えば、質量%で、C:1.5%以下(0%は含まず)、Si:3.0%以下(0%は含まず)、Mn:0.2〜3.0%、P:0.030%以下(0%は含まず)、S:0.06%以下(0%は含まず)、残部Feおよび不可避的不純物よりなる鉄合金が推奨される。以下に上記各成分の限定理由を述べる。
[Component composition of steel bars]
The component composition of the steel bar to which the present invention is applied includes, for example, mass%, C: 1.5% or less (0% is not included), Si: 3.0% or less (0% is not included), Mn : Iron alloy consisting of 0.2 to 3.0%, P: 0.030% or less (excluding 0%), S: 0.06% or less (not including 0%), balance Fe and inevitable impurities Is recommended. The reasons for limiting the above components will be described below.

C:1.5%以下(0%は含まず)
Cは機械構造用部品としての硬さを確保するのに必要な元素であるが、多すぎると靭性が低下するので、1.5%以下に抑えるのが好ましい。
C: 1.5% or less (excluding 0%)
C is an element necessary for ensuring the hardness as a machine structural component, but if it is too much, the toughness decreases, so it is preferable to keep it to 1.5% or less.

Si:3.0%以下(0%は含まず)
Siは鋼の溶製時に脱酸性元素として有効に作用する他、耐磨耗性、耐チッピング性にも有効に作用するが、多すぎると鍛造時の変形抵抗を高め、金型寿命を低下させるので、3.0%以下に抑えるのが好ましい。
Si: 3.0% or less (excluding 0%)
Si acts effectively as a deoxidizing element when steel is melted, and also acts effectively on wear resistance and chipping resistance, but if it is too much, it will increase the deformation resistance during forging and reduce the die life. Therefore, it is preferable to suppress it to 3.0% or less.

Mn:0.2〜3.0%
Mnは脱酸・脱硫剤および焼入れ性向上元素として働くため0.2%以上含有させるとよいが、多すぎると鍛造時の変形抵抗を高め、金型寿命を低下させるので、3.0%以下に抑えるのが好ましい。
Mn: 0.2 to 3.0%
Since Mn works as a deoxidizing / desulfurizing agent and a hardenability improving element, it should be contained in an amount of 0.2% or more. However, if it is too much, the deformation resistance during forging is increased and the die life is shortened, so 3.0% or less. It is preferable to suppress to

P:0.030%以下(0%は含まず)
Pは粒界偏析や中心偏析を起こし、靭性を低下させるので、0.030%以下に抑えるのが好ましい。
P: 0.030% or less (excluding 0%)
P causes grain boundary segregation and center segregation and lowers toughness. Therefore, P is preferably suppressed to 0.030% or less.

S:0.06%以下(0%は含まず)
Sは被削性を向上させる元素であり添加してもよいが、過剰な添加ではMnと反応して形成されるMnS介在物が増加して靭性が低下するので、0.06%以下に抑えるのが好ましい。
S: 0.06% or less (excluding 0%)
S is an element that improves machinability and may be added. However, excessive addition increases MnS inclusions formed by reaction with Mn and decreases toughness, so it is suppressed to 0.06% or less. Is preferred.

また、本発明が適用される棒鋼の成分組成には、上記成分に加えて、さらに下記(1)〜(5)に示す成分のうち1種以上を含有させることができる。   Moreover, in addition to the said component, 1 or more types in the component shown to following (1)-(5) can be contained in the component composition of the steel bar to which this invention is applied.

(1)Al:0.001〜0.10%、Nb:0.001〜0.05%、Ti:0.001〜0.20%、V:0.01〜0.35%、N:0.001〜0.025%のうち1種以上
Al、Nb、Ti、Vは微細な窒化物を形成し結晶粒を微細化する効果があるため添加してもよいが、少ない添加では効果が得られず、過剰な添加では窒化物が粗大化するので、それぞれ上下限の範囲内の添加量とするのが好ましい。
(1) Al: 0.001 to 0.10%, Nb: 0.001 to 0.05%, Ti: 0.001 to 0.20%, V: 0.01 to 0.35%, N: 0 One or more of 0.001 to 0.025% Al, Nb, Ti, and V may be added because they have the effect of forming fine nitrides and refining crystal grains. However, since the nitride is coarsened by excessive addition, the addition amount is preferably within the upper and lower limits.

(2)O:0.0020%以下(0%は含まず)
OはAlと反応してAl介在物を形成し靭性を低下させるので、0.0020%以下に抑えるのが好ましい。
(2) O: 0.0020% or less (excluding 0%)
Since O reacts with Al to form Al 2 O 3 inclusions and lowers toughness, it is preferably suppressed to 0.0020% or less.

(3)Cu:2.5%以下、Ni:2.5%以下、Cr:3.0%以下、Mo:1.0%以下のうち1種以上(ただし、いずれの元素も0%は含まず)
Cu、Ni、Cr、Moは機械構造用部品である例えば歯車での強度の向上効果があるため添加してもよいが、過剰な添加では介在物が多量に生成し靭性が低下するので、それぞれ上限以下に抑えるのが好ましい。
(3) One or more of Cu: 2.5% or less, Ni: 2.5% or less, Cr: 3.0% or less, Mo: 1.0% or less (however, each element includes 0%) )
Cu, Ni, Cr, Mo are mechanical structural parts, for example, may be added because of the effect of improving the strength of gears, but excessive addition generates a large amount of inclusions and decreases toughness. It is preferable to keep it below the upper limit.

(4)B:0.001〜0.03%
Bは、上記Cu、Ni、Cr、Moと同様、機械構造用部品である例えば歯車での強度の向上効果があるため0.001%以上添加するとよいが、過剰な添加では介在物が多量に生成し靭性が低下するので、0.03%以下に抑えるのが好ましい。
(4) B: 0.001 to 0.03%
B, like Cu, Ni, Cr, and Mo, may be added in an amount of 0.001% or more because it has an effect of improving the strength of mechanical structural parts such as gears. However, excessive addition causes a large amount of inclusions. Since it produces | generates and toughness falls, it is preferable to restrain to 0.03% or less.

(5)Pb:0.20%以下、Ca:0.02%以下、Mg:0.050%以下、Bi:0.10%以下、Li:0.10%以下のうち1種以上(ただし、いずれの元素も0%は含まず)
Pb、Ca、Mg、Bi、Liは被削性を向上させる元素であるので添加してもよいが、過剰な添加では介在物が多量に生成し靭性が低下するので、それぞれ上限以下に抑えるのが好ましい。
(5) Pb: 0.20% or less, Ca: 0.02% or less, Mg: 0.050% or less, Bi: 0.10% or less, Li: 0.10% or less (however, (Neither element contains 0%)
Pb, Ca, Mg, Bi, and Li may be added because they are elements that improve machinability. However, excessive addition generates a large amount of inclusions and lowers the toughness. Is preferred.

本発明の効果を確証するため、以下の実証試験を実施した。   In order to confirm the effect of the present invention, the following verification test was conducted.

表1に示す成分組成の鋼種A〜Fをそれぞれブルーム連続鋳造機で断面300mm×430mmの鋳片を鋳造した後、分塊圧延により断面155mm角の鋼片を各10本作製した。そして、表2に示す試験条件で、各鋼種ごとに、鋼片検査を行った後、熱間圧延により50mm径の棒鋼を製造し、さらに棒鋼検査を実施した。

Figure 2008188637
Each steel type A to F having the composition shown in Table 1 was cast on a slab having a cross section of 300 mm × 430 mm with a Bloom continuous casting machine, and 10 steel slabs having a cross section of 155 mm square were produced by ingot rolling. And after performing the steel piece inspection for each steel type under the test conditions shown in Table 2, a steel bar having a diameter of 50 mm was manufactured by hot rolling, and further the steel bar inspection was performed.
Figure 2008188637

ここで、鋼片検査または棒鋼検査において超音波斜角探傷を実施する場合は、鋼片検査および棒鋼検査のいずれの検査段階においても、超音波斜角探傷の条件として、先ずG型標準試験片を用いて2mm径の欠陥のエコー高さを30dBに較正しておき、その後、各鋼片または各棒鋼について測定を行い、エコー高さの閾値を15dBとし、15dB以上のエコー高さが発生した部位を圧着状疵等と判定した。そして、鋼片検査段階では、圧着状疵等が検出された鋼片は原則廃却処分とし、可能な場合のみ次工程である(2D)の鋼片自動疵取り工程にて疵取りを行った。一方、棒鋼検査段階では、圧着状疵等が検出された鋼片はすべて廃却処分とした。   Here, when performing ultrasonic oblique flaw detection in steel slab inspection or steel bar inspection, the G-type standard test specimen is first used as a condition for ultrasonic oblique flaw detection in both inspection stages of steel slab inspection and steel bar inspection. The echo height of a defect with a diameter of 2 mm was calibrated to 30 dB using a slab, and then each steel slab or each steel bar was measured. The echo height threshold was set to 15 dB, and an echo height of 15 dB or more was generated. The part was determined to be a crimped wrinkle or the like. And in the billet inspection stage, billets that have been detected to have crimped defects etc. are basically disposed of and scraped in the billet automatic scraping process (2D), which is the next step only when possible. . On the other hand, in the steel bar inspection stage, all the steel slabs in which crimped defects were detected were discarded.

そして、鋼種A、B、Cについては、棒鋼検査後の棒鋼を所定長さに切断し、図1に示す加工工程で熱間鍛造して等速ジョイントをそれぞれ500個製造した。一方、鋼種D、E、Fについては、棒鋼検査後の棒鋼を熱処理し、所定長さに切断した後、さらに酸洗し皮膜処理を施した後、上記の鋼種A、B、Cと同様、図1に示す加工工程で熱間鍛造して等速ジョイントをそれぞれ500個製造した。そして、全等速ジョイントについて割れの有無を調査し、割れのあるものを不良品としてカウントし、不良率(不良品数/全数×100%)を求めた。   And about steel types A, B, and C, the bar steel after a bar steel test | inspection was cut | disconnected to predetermined length, and it hot-forged in the manufacturing process shown in FIG. 1, and manufactured 500 constant velocity joints, respectively. On the other hand, for steel types D, E, and F, after heat-treating the steel bar after the steel bar inspection, cutting it to a predetermined length, and further performing pickling and film treatment, the same as steel types A, B, and C described above, 500 constant velocity joints were manufactured by hot forging in the processing step shown in FIG. Then, all constant velocity joints were examined for cracks, and those with cracks were counted as defective products, and the defect rate (number of defective products / total number × 100%) was determined.

調査結果を、表2に試験条件とともに併記する。なお、同表においては、ショットブラストおよび曲がり矯正についての記載を省略したが、全試験において、鋼片検査段階での表面自動検査の前に鋼片にショットブラストを施すとともに、棒鋼検査段階での表面検査の前に棒鋼に曲がり矯正を施した。

Figure 2008188637
The survey results are shown in Table 2 together with the test conditions. In the same table, the description of shot blasting and bending correction was omitted, but in all tests, shot blasting was performed on the slab before the surface automatic inspection at the slab inspection stage, and at the steel bar inspection stage. Prior to surface inspection, the steel bars were bent and straightened.
Figure 2008188637

試験No.1、2、5、6、9、10、13、14、17、18、21、22(発明例)は、本発明(請求項1に係る発明)の要件を満足しており、鍛造時の不良率はいずれも0.5%未満となった。   Test No. 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22 (invention examples) satisfy the requirements of the present invention (the invention according to claim 1), and The defect rates were all less than 0.5%.

これに対し、試験No.3、4、7、8、11、12、15、16、19、20、23,24(比較例)は、棒鋼検査段階での超音波斜角探傷を実施していないため、圧着状疵等に起因する鍛造割れが認められ、不良率はいずれも1.0%以上となった。   In contrast, test no. 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24 (comparative examples) are not subjected to ultrasonic oblique flaw detection at the stage of steel bar inspection. Forging cracks resulting from the above were observed, and the defect rate was 1.0% or more.

ここで、棒鋼検査段階での超音波斜角探傷を実施した全発明例において、エコー高さが15dB以上の欠陥を発見し廃棄処分とした棒鋼全数について、各欠陥部位を断面観察して圧着状疵であるか、介在物に起因する疵であるかを特定し、欠陥エコー高さと各疵の発生頻度との関係を図3に示した。   Here, in all invention examples in which ultrasonic oblique flaw detection was carried out at the bar inspection stage, the defect height of 15 dB or more was found and the total number of steel bars that were discarded was subjected to a cross-sectional observation of each defect site to form a crimp. FIG. 3 shows the relationship between the height of the defect echo and the frequency of occurrence of each wrinkle by identifying whether it is a wrinkle or a wrinkle caused by inclusions.

同図から明らかなように、エコー高さ31dB以上で介在物に起因する疵が1例だけ発見されたが、その他の11例はいずれも圧着状疵であり、エコー高さの閾値を15dBとし、15dB以上のものを廃棄することで、圧着状疵に起因する棒鋼の鍛造時における割れを効果的に防止できることが確認できた。   As is clear from the figure, only one wrinkle caused by inclusions was found at an echo height of 31 dB or higher, but the other 11 cases were all crimped wrinkles, and the echo height threshold was set to 15 dB. It has been confirmed that the cracking of the steel bar due to the crimped rod can be effectively prevented by discarding 15 dB or more.

本発明の一実施形態に係る、鋳片から鋼片を経て棒鋼を製造するまでの工程を示すフロー図である。It is a flowchart which shows the process until it manufactures a steel bar from a slab through a steel slab according to an embodiment of the present invention. 棒鋼から等速ジョイントを製造する加工工程を示す図である。It is a figure which shows the manufacturing process which manufactures a constant velocity joint from steel bar. 棒鋼の超音波斜角探傷における、欠陥エコー高さと疵の発生頻度との関係を示すグラフ図である。It is a graph which shows the relationship between the defect echo height and the generation | occurrence | production frequency of a flaw in the ultrasonic oblique angle flaw detection of a steel bar. 棒鋼の皮下部に存在する圧着状疵の様子を示す断面図である。It is sectional drawing which shows the mode of the crimp-shaped wrinkle which exists in the subcutaneous part of steel bar.

Claims (5)

(1)鋳片を分塊圧延して鋼片とする分塊工程と、
(2)分塊圧延された鋼片を検査し疵取りを行う鋼片検査工程と、
(3)疵取り後の鋼片を熱間圧延して棒鋼に加工する棒鋼圧延工程と、
(4)熱間圧延後の棒鋼を検査し疵取りを行う棒鋼検査工程と、
を備えた線材の製造方法であって、
上記(2)の鋼片検査工程が、
(2A)分塊圧延された鋼片をショットブラストにて表面の酸化スケールを除去する鋼片デスケーリング工程と、
(2B)上記スケール除去後の鋼片を表面自動検査装置にて自動検査する鋼片表面自動検査工程と、
(2C)引き続き、超音波探傷装置にて鋼片内部の疵を自動検査する鋼片内部自動検査工程と、
(2D)上記(2B)の鋼片表面自動検査工程で検出された表面疵を自動疵取装置にて自動疵取りを行う鋼片自動疵取り工程と、
を有するとともに、
上記(4)の棒鋼検査工程が、
(4A)熱間圧延された棒鋼の曲がりを矯正する棒鋼矯正工程と、
(4B)曲がり矯正された棒鋼を漏洩磁束探傷装置にて検査する棒鋼表面検査工程と、
(4C)上記(4B)の棒鋼表面検査工程で検出された表面疵を手作業にて疵取りを行う棒鋼手動疵取り工程と、
(4D)引き続き、上記(2C)の鋼片内部自動検査工程において用いる超音波探傷装置とは別の超音波探傷装置にて棒鋼内部の疵を自動検査する棒鋼内部自動検査工程と、
を有し、
さらに、上記(4D)の棒鋼内部自動検査工程において、超音波探傷装置にて超音波斜角探傷法により棒鋼の皮下部に存在する介在物に起因する疵および圧着状疵(以下、「圧着状疵等」と総称する。)を検出し、圧着状疵等が検出された場合は当該棒鋼を廃棄することを特徴とする鍛造性に優れた棒鋼の製造方法。
(1) A bundling process in which the slab is rolled into a steel piece;
(2) A steel piece inspection process for inspecting and scraping the rolled steel pieces.
(3) a steel bar rolling process in which the steel pieces after shave are hot-rolled into a steel bar;
(4) A steel bar inspection process in which the steel bar after hot rolling is inspected and scraped,
A method of manufacturing a wire rod comprising:
The billet inspection process of (2) above
(2A) A steel piece descaling step of removing the oxide scale on the surface of the steel pieces that have been rolled in pieces by shot blasting;
(2B) a steel slab surface automatic inspection step of automatically inspecting the steel slab after the scale removal by a surface automatic inspection device;
(2C) Subsequently, a steel slab internal automatic inspection process for automatically inspecting wrinkles inside the steel slab with an ultrasonic flaw detector,
(2D) a steel slab automatic scraping step of automatically scraping the surface defects detected in the steel slab surface automatic inspection step of (2B) with an automatic scraping device;
And having
The steel bar inspection process of (4) above is
(4A) a steel bar straightening process for correcting the bending of the hot-rolled steel bar;
(4B) a steel bar surface inspection process for inspecting a steel bar whose curvature has been corrected with a leakage magnetic flux flaw detector;
(4C) A steel bar manual scraping process for manually scraping the surface defects detected in the steel bar surface inspection process of (4B) above;
(4D) Subsequently, the steel bar internal automatic inspection step of automatically inspecting the bar inside the steel bar with an ultrasonic flaw detection device different from the ultrasonic flaw detection device used in the steel piece internal automatic inspection step of (2C) above,
Have
Furthermore, in the steel bar internal automatic inspection process of (4D) above, wrinkles and crimped wrinkles (hereinafter referred to as “crimped shapes” caused by inclusions present in the subcutaneous portion of the steel bar by the ultrasonic oblique flaw detection method using an ultrasonic flaw detector. A method for producing a steel bar having excellent forgeability, characterized in that the steel bar is discarded when a crimped wrinkle or the like is detected.
さらに、上記(2C)の鋼片内部自動検査工程において、超音波探傷装置にて超音波斜角探傷法により鋼片の皮下部に存在する圧着状疵等を検出し、圧着状疵等が検出された場合は当該鋼片を廃棄するか、上記(2D)の鋼片自動疵取り工程で表面疵とともに上記圧着状疵等を除去する請求項1に記載の鍛造性に優れた棒鋼の製造方法。   Furthermore, in the steel piece internal automatic inspection process of (2C) above, a crimped wrinkle or the like existing in the subcutaneous part of the steel piece is detected by an ultrasonic flaw detection method using an ultrasonic flaw detector, and the crimped wrinkle is detected. 2. The method for producing a steel bar with excellent forgeability according to claim 1, wherein the steel slab is discarded, or the crimped slag and the like are removed together with the surface slag in the steel slab automatic scraping process of (2D). . 上記超音波斜角探傷法において、15dB以上のエコー高さのものを上記圧着状疵等とする請求項1または2に記載の鍛造性に優れた棒鋼の製造方法。   The method for producing a steel bar with excellent forgeability according to claim 1 or 2, wherein an ultrasonic wave having an echo height of 15 dB or more in the ultrasonic oblique flaw detection method is used as the crimped barb or the like. 上記(4C)の棒鋼手動疵取り工程の後であって、上記(4D)の棒鋼内部自動検査工程の前に、
(4C−1)上記(4C)の棒鋼手動疵取り工程にて疵取りが行われた部位を目視検査し、残存疵が検出された場合は、その残存疵を手作業にて疵取りを行う棒鋼疵取り部検査・疵取り工程
を設けた請求項1〜3のいずれか1項に記載の鍛造性に優れた棒鋼の製造方法。
After the steel bar manual scraping process of (4C) above and before the steel bar internal automatic inspection process of (4D) above,
(4C-1) Visual inspection of the part that has been scraped in the steel bar manual scraping process of (4C) above, and if residual scrap is detected, the remaining scrap is manually scraped. The manufacturing method of the steel bar excellent in forgeability of any one of Claims 1-3 which provided the steel bar scraping part inspection and scraping process.
上記(2)の鋼片検査工程において、
上記(2D)の鋼片自動疵取り工程の後に、
(2E)磁粉探傷装置により鋼片表面を目視検査し、表面疵が検出された場合は、その表面疵を手作業にて疵取りを行う鋼片表面目視検査・手動疵取り工程、
を設けた請求項1〜4のいずれか1項に記載の鍛造性に優れた棒鋼の製造方法。
In the billet inspection process of (2) above,
After the above-described (2D) billet automatic scraping process,
(2E) When the surface of the steel slab is visually inspected by a magnetic particle flaw detector, and surface flaws are detected, the steel piece surface visual inspection / manual chamfering process for manually scoring the surface flaws;
The manufacturing method of the steel bar excellent in forgeability of any one of Claims 1-4 which provided.
JP2007025936A 2007-02-05 2007-02-05 Method of manufacturing steel bar excellent in forgeability Withdrawn JP2008188637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025936A JP2008188637A (en) 2007-02-05 2007-02-05 Method of manufacturing steel bar excellent in forgeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025936A JP2008188637A (en) 2007-02-05 2007-02-05 Method of manufacturing steel bar excellent in forgeability

Publications (1)

Publication Number Publication Date
JP2008188637A true JP2008188637A (en) 2008-08-21

Family

ID=39749242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025936A Withdrawn JP2008188637A (en) 2007-02-05 2007-02-05 Method of manufacturing steel bar excellent in forgeability

Country Status (1)

Country Link
JP (1) JP2008188637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638313A (en) * 2020-06-10 2020-09-08 重庆齿轮箱有限责任公司 Method for detecting quality of steel ingot
CN113369412A (en) * 2021-06-24 2021-09-10 中铁十一局集团桥梁有限公司 Method, device and equipment for bending steel bar and readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638313A (en) * 2020-06-10 2020-09-08 重庆齿轮箱有限责任公司 Method for detecting quality of steel ingot
CN113369412A (en) * 2021-06-24 2021-09-10 中铁十一局集团桥梁有限公司 Method, device and equipment for bending steel bar and readable storage medium

Similar Documents

Publication Publication Date Title
JP4523579B2 (en) Manufacturing method of wire for cold forging
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JP6597901B2 (en) ERW steel pipe for boiler excellent in stress corrosion cracking resistance and its manufacturing method
JP4556952B2 (en) Martensitic stainless steel pipe for oil well
CN114096692A (en) Seamless steel pipe having excellent sulfuric acid dew point corrosion resistance and method for producing same
JP2009074123A (en) METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY
JP4514137B2 (en) Method for preventing rolling surface flaw of Ni-containing steel
JP5084206B2 (en) Manufacturing method of steel wire with excellent drawability
WO2021015141A1 (en) Martensitic stainless steel pipe, and method for manufacturing martensitic stainless steel pipe
JP2008188637A (en) Method of manufacturing steel bar excellent in forgeability
TWI643959B (en) Wire, steel wire and components
JP2005271000A (en) Method for producing high nickel alloy steel plate
JP5974678B2 (en) Steel member and method for manufacturing steel member
JP3485022B2 (en) Martensitic stainless steel with excellent hot workability
JP4770274B2 (en) Thick steel plate shearing method
JP2009120875A (en) High alloy seamless tube and manufacturing method therefor
JP2019111571A (en) Cold rolling method of ferrite stainless steel strip
JP7111092B2 (en) Seamless steel pipe rolling plug, method for manufacturing seamless steel pipe rolling plug, seamless steel pipe rolling plug mill, method for rolling seamless steel pipe, and method for manufacturing seamless steel pipe
JP7320936B2 (en) bar steel
JPH08174034A (en) Manufacture of cr stainless steel sheet
JP6152905B2 (en) Titanium slab for hot rolling
Peng et al. Study on Flakes of a Steel Roller
Cheng-Hong et al. Study on Flakes of a Steel Roller
JPH07204726A (en) Wire rod superior in mechanical descaling
JP2015214753A (en) Steel member and method of manufacturing steel member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110408

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110907