JP2008188548A - Method for suppressing generation of sludge in aerobic wastewater treatment - Google Patents

Method for suppressing generation of sludge in aerobic wastewater treatment Download PDF

Info

Publication number
JP2008188548A
JP2008188548A JP2007027383A JP2007027383A JP2008188548A JP 2008188548 A JP2008188548 A JP 2008188548A JP 2007027383 A JP2007027383 A JP 2007027383A JP 2007027383 A JP2007027383 A JP 2007027383A JP 2008188548 A JP2008188548 A JP 2008188548A
Authority
JP
Japan
Prior art keywords
sludge
concentration
aeration tank
dissolved oxygen
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007027383A
Other languages
Japanese (ja)
Inventor
Koji Takewaki
幸治 竹脇
Kenji Sato
健治 佐藤
Michitomo Sakai
通友 酒井
Toshi Otsuki
利 大月
Makoto Kitano
誠 北野
Koichi Mogi
浩一 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007027383A priority Critical patent/JP2008188548A/en
Publication of JP2008188548A publication Critical patent/JP2008188548A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for suppressing the generation of sludge in an aerobic wastewater treatment which can suppress the generation of excess sludge. <P>SOLUTION: The method comprises the step of blowing air or oxygen into an aeration tank 10 so that a dissolved oxygen concentration (DO) in wastewater in the aeration tank 10 may reach 5 mg/L or higher, detecting the dissolved oxygen concentration (DO) and also adjusting the dissolved oxygen concentration (DO) so that an activated sludge concentration (X) in the wastewater in the aeration tank 10 may reach not more than a set value when the wastewater containing an organic substance is introduced into the aeration tank 10 and its wastewater is subjected to the aerobic treatment by activated sludge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、産業排水や生活排水をばっ気処理する好気性排水処理に係り、特に活性汚泥の発生を抑制できる好気性排水処理における汚泥発生の抑制法に関するものである。   The present invention relates to aerobic wastewater treatment for aeration of industrial wastewater and domestic wastewater, and more particularly to a method for suppressing sludge generation in aerobic wastewater treatment that can suppress the generation of activated sludge.

好気的に排水を浄化する場合、排水中の汚濁物質(有機物)の約半分は、二酸化炭素と水に分解されるが、残りの半分は、汚泥(微生物)増殖に使われる。好気性処理の代表例である活性汚泥法では、汚泥濃度を一定に保つ必要があるため、一般的には増殖した汚泥は系外に引き抜き、脱水・焼却・埋め立てなどの処理が行われる。また、一部のプラントでは増殖した汚泥を高温高圧下で液状化させ、再び活性汚泥に戻して処理する方法もある。   When the wastewater is purified aerobically, about half of the pollutants (organic matter) in the wastewater is decomposed into carbon dioxide and water, while the other half is used for sludge (microorganism) growth. In the activated sludge method, which is a typical example of the aerobic treatment, it is necessary to keep the sludge concentration constant. Generally, the grown sludge is drawn out of the system and subjected to treatment such as dehydration, incineration, and landfill. Also, in some plants, there is a method in which the sludge that has been grown is liquefied under high temperature and high pressure and then returned to activated sludge for treatment.

一般的な方法では、汚泥処分費がランニングコストを引き上げている上、埋め立て処分場の逼迫などの問題を抱えている。高温高圧処理する方法は、運転が不安定であり、開発途上の方法である。   In general methods, sludge disposal costs raise running costs and have problems such as tight landfill sites. The method of high-temperature and high-pressure treatment is an unstable process and is under development.

一般には、活性汚泥による処理能力を高めるために、特許文献1〜3に示されるようにばっ気槽内の溶存酸素濃度を上げるべく、純酸素を吹き込んだり、ばっ気槽を加圧槽として空気を吹き込むことが提案されている。   In general, in order to increase the treatment capacity by activated sludge, pure oxygen is blown or air is used as a pressurized tank in order to increase the dissolved oxygen concentration in the aerated tank as shown in Patent Documents 1 to 3. It has been proposed to infuse.

特開昭54−81660号公報JP 54-81660 A 特開昭56−100695号公報JP-A-56-100695 特開2002−23957号公報JP 2002-23957 A

しかしながら、好気性処理能力を上げるべく、単純に溶存酸素濃度を上げても、その分、活性汚泥の発生量も増えてしまう問題がある。   However, even if the dissolved oxygen concentration is simply increased in order to increase the aerobic treatment capacity, there is a problem that the amount of activated sludge generated increases accordingly.

すなわち、溶存酸素濃度を上げれば、活性汚泥の活性が高まり、活性汚泥が増殖するが、これは、ばっ気槽内に流入する排水のBOD濃度にも関係し、例えば、BOD濃度が低ければ溶存酸素濃度を上げても、ばっ気槽内の汚泥濃度は下がり、また逆にBOD濃度が高ければ、汚泥濃度は上がってしまい、その分、余剰汚泥も発生してしまう関係にあり、従って、ばっ気槽内を適正な溶存酸素濃度に保つことは困難である。   That is, if the dissolved oxygen concentration is increased, the activated sludge becomes more active and the activated sludge grows. This is also related to the BOD concentration of the wastewater flowing into the aeration tank. For example, if the BOD concentration is low, the dissolved sludge is dissolved. Even if the oxygen concentration is increased, the sludge concentration in the aeration tank decreases, and conversely, if the BOD concentration is high, the sludge concentration increases, and excess sludge is generated accordingly. It is difficult to maintain an appropriate dissolved oxygen concentration in the air tank.

また、仮にばっ気槽内の汚泥濃度と溶存酸素濃度を適正に保って運転しても、ばっ気槽内に流入する原水のBOD濃度は、常に変動するため、適正な運転条件も変動してしまう。   Even if the sludge concentration and dissolved oxygen concentration in the aeration tank are maintained properly, the BOD concentration of the raw water flowing into the aeration tank always fluctuates, so the appropriate operating conditions also fluctuate. End up.

このように、ばっ気槽から排出される余剰汚泥を抑制しつつ、ばっ気槽内の溶存酸素濃度を適正に保つ技術は開発されていない。   Thus, the technique which maintains the dissolved oxygen concentration in an aeration tank appropriately is suppressed, suppressing the excess sludge discharged | emitted from an aeration tank.

そこで、本発明の目的は、上記課題を解決し、好気性排水処理を行う際に、余剰汚泥の発生を抑制できる好気性排水処理における汚泥発生の抑制法を提供することにある。   Then, the objective of this invention is providing the suppression method of the sludge generation | occurrence | production in the aerobic waste water treatment which can suppress generation | occurrence | production of excess sludge when solving the said subject and performing aerobic waste water treatment.

上記目的を達成するために請求項1の発明は、有機物を含んだ排水をばっ気槽内に導入し、その排水を活性汚泥にて好気性処理するに際して、ばっ気槽内の排水中の溶存酸素濃度が、5mg/L以上となるようばっ気槽内に空気又は酸素を吹き込むと共にその溶存酸素濃度を検出し、かつばっ気槽内の排水の活性汚泥濃度が設定値以下となるように溶存酸素濃度を調整することを特徴とする好気性排水処理における汚泥発生の抑制法である。   In order to achieve the above object, the invention of claim 1 is directed to the introduction of wastewater containing organic matter into an aeration tank, and when the wastewater is aerobically treated with activated sludge, dissolved in the wastewater in the aeration tank. Air or oxygen is blown into the aeration tank so that the oxygen concentration is 5 mg / L or more, the dissolved oxygen concentration is detected, and dissolved so that the activated sludge concentration in the aeration tank is below the set value. This is a method for suppressing sludge generation in aerobic wastewater treatment, characterized by adjusting the oxygen concentration.

請求項2の発明は、BOD汚泥変換率をa、汚泥の自己分解速度係数をbとしたときのb/aを、排水の処理量、ばっ気槽の容積、導入する排水のBOD濃度、ばっ気槽内の汚泥濃度、ばっ気槽内BOD濃度から算出すると共に、これらから求めたb/aのデータをもとに、溶存酸素濃度に基づくb/aを算出し、他方ばっ気槽内の汚泥濃度を検出し、その汚泥濃度が設定値以下となるb/aを求めると共に、そのb/aとなるように溶存酸素濃度を制御する請求項1記載の好気性排水処理における汚泥発生の抑制法である。   The invention of claim 2 is such that b / a when the conversion rate of BOD sludge is a and the self-decomposition rate coefficient of sludge is b is the wastewater treatment amount, the volume of the aeration tank, the BOD concentration of the wastewater to be introduced, While calculating from the sludge concentration in the tank and the BOD concentration in the aeration tank, the b / a based on the dissolved oxygen concentration is calculated based on the b / a data obtained from these, and the inside of the aeration tank is calculated. The sludge generation is detected in the aerobic wastewater treatment according to claim 1, wherein the sludge concentration is detected, b / a at which the sludge concentration is not more than a set value is obtained, and the dissolved oxygen concentration is controlled to be the b / a. Is the law.

請求項3の発明は、上記b/aが、0.15以上となるように溶存酸素濃度を制御する請求項2記載の好気性排水処理における汚泥発生の抑制法である。   The invention of claim 3 is the method for suppressing sludge generation in the aerobic wastewater treatment according to claim 2, wherein the dissolved oxygen concentration is controlled so that the b / a is 0.15 or more.

請求項4の発明は、ばっ気槽内のばっ気管から吹き込むガス量が一定となるよう、空気等のガスに純酸素又は酸素富化空気を混入して酸素濃度を制御する請求項1〜3のいずれかに記載の好気性排水処理における汚泥発生の抑制法である。   The invention of claim 4 controls oxygen concentration by mixing pure oxygen or oxygen-enriched air into a gas such as air so that the amount of gas blown from the aeration tube in the aeration tank is constant. The method for suppressing the generation of sludge in the aerobic wastewater treatment according to any one of the above.

請求項5の発明は、ばっ気槽が加圧型であり、ばっ気管から圧縮空気を供給し、その圧縮空気にばっ気槽から排出されたガスを混合して、ばっ気管から吹き込むガス量が一定となるよう制御しつつ酸素濃度を制御する請求項1〜3のいずれかに記載の好気性排水処理における汚泥発生の抑制法である。   In the invention of claim 5, the aeration tank is of a pressurized type, the compressed air is supplied from the aeration pipe, the gas discharged from the aeration tank is mixed with the compressed air, and the amount of gas blown from the aeration pipe is constant. The method for suppressing the generation of sludge in the aerobic wastewater treatment according to any one of claims 1 to 3, wherein the oxygen concentration is controlled while being controlled.

本発明によれば、ばっ気槽内の排水の活性汚泥濃度が設定値以下となるように溶存酸素濃度を調整することで、余剰汚泥を抑制することができるという優れた効果を発揮するものである。   According to the present invention, by adjusting the dissolved oxygen concentration so that the activated sludge concentration of the wastewater in the aeration tank is equal to or lower than the set value, an excellent effect that excess sludge can be suppressed is exhibited. is there.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

先ず、図1を用いて標準活性汚泥法を説明する。   First, the standard activated sludge method will be described with reference to FIG.

ばっ気槽10には、排水ライン11から有機物を含んだ排水(廃水)が導入され、ばっ気槽10の底部に設けたばっ気管12から空気又は酸素17が供給されて好気性処理がなされ、そのばっ気後の処理水がライン13から沈殿槽14に導入され、そこで固液分離され、上澄み液が処理水として処理水ライン15から排出される。   Wastewater (waste water) containing organic substances is introduced into the aeration tank 10 from the drainage line 11, and air or oxygen 17 is supplied from the aeration pipe 12 provided at the bottom of the aeration tank 10, and aerobic treatment is performed. The treated water after the aeration is introduced into the sedimentation tank 14 from the line 13, where it is separated into solid and liquid, and the supernatant is discharged from the treated water line 15 as treated water.

沈殿槽14の底部に沈殿した活性汚泥は、一部返送汚泥として戻しライン15を介してばっ気槽10に戻され、残りは余剰汚泥として汚泥ライン16から排出される。   The activated sludge that has settled at the bottom of the settling tank 14 is returned to the aeration tank 10 via the return line 15 as a partially returned sludge, and the remainder is discharged from the sludge line 16 as surplus sludge.

この標準活性汚泥法における汚泥発生量を説明する。   The amount of sludge generated in this standard activated sludge method will be described.

排水の処理量をF[m3 /d]、流入原水BOD濃度をS0 [mg/L]とし、ばっ気槽10の容積をV[m3 ]、汚泥濃度(MLSS)をX[mg/L]、ばっ気槽内BOD濃度をS[mg/L]、溶存酸素濃度をDO[mg/L]とし、沈殿槽での濃縮率をc、汚泥返送率をα、余剰汚泥排出速度Fexを[m3 /d]とすると、
余剰汚泥(FexcX)発生量は、
excX=aF(S0 −S)−bXV
但し、
a:BOD汚泥変換率(=YX/S
b:汚泥の自己分解速度係数
である。
The wastewater treatment amount is F [m 3 / d], the inflow raw water BOD concentration is S 0 [mg / L], the volume of the aeration tank 10 is V [m 3 ], and the sludge concentration (MLSS) is X [mg / L]. L], the BOD concentration in the aeration tank is S [mg / L], the dissolved oxygen concentration is DO [mg / L], the concentration rate in the sedimentation tank is c, the sludge return rate is α, the excess sludge discharge rate F ex Is [m 3 / d],
The amount of surplus sludge (F ex cX) generated is
F ex cX = aF (S 0 −S) −bXV
However,
a: BOD sludge conversion rate (= Y X / S )
b: Self-decomposition rate coefficient of sludge.

ここで、汚泥引き抜きのない系では、
excX=aF(S0 −S)−bXV=0 …(1)
であり、式(1)の右の2項より、汚泥の自己分解速度係数bは、
b=(1/X)(F/V)(S0 −S)a …(2)
であり、汚泥発生を示すパラメータをb/aとすると、
b/a=(1/X)(F/V)(S0 −S) …(3)
となる。
Here, in the system without sludge extraction,
F ex cX = aF (S 0 −S) −bXV = 0 (1)
From the two terms on the right side of Equation (1), the sludge self-decomposition rate coefficient b is
b = (1 / X) (F / V) (S 0 −S) a (2)
When the parameter indicating sludge generation is b / a,
b / a = (1 / X) (F / V) (S 0 −S) (3)
It becomes.

ここで、ばっ気槽に、空気と純酸素を吹き込んで好気性処理したときの試験例を示すと、
空気 純酸素
溶存酸素濃度(DO)[mg/L] 2 19
原水(流入)BOD濃度S0 [mg/L] 250 250
BOD除去率[%] 93.6 92.4
処理水中のBOD濃度S[mg/L] 16 19
ばっ気槽容積V[L] 3 6
処理量F[L/d] 6 6
汚泥濃度(MLSS)X[mg/L] 3,500 2,000
となり、
b/aは、(3)式から、空気を引き込んだ溶存酸素濃度DO=2では、0.13、純酸素を吹き込んだDO=19では、0.23となる。
Here, when an aerobic treatment is performed by blowing air and pure oxygen into an aeration tank,
Air Pure oxygen Dissolved oxygen concentration (DO) [mg / L] 2 19
Raw water (inflow) BOD concentration S 0 [mg / L] 250 250
BOD removal rate [%] 93.6 92.4
BOD concentration in treated water S [mg / L] 16 19
Aeration tank volume V [L] 3 6
Processing amount F [L / d] 6 6
Sludge concentration (MLSS) X [mg / L] 3,500 2,000
And
From the equation (3), b / a is 0.13 when the dissolved oxygen concentration DO = 2 in which air is drawn in, and 0.23 when DO = 19 where pure oxygen is blown in.

一般的な活性汚泥のBOD汚泥変換率aは、a=0.5〜0.8で一定であり、空気を吹き込んだときと、純酸素を吹き込んだときの汚泥発生を示すパラメータb/aは、変換率を最小と仮定して、a=0.5とした場合、
空気では、b/a=0.0065
純酸素では、b/a=0.115
また、変換率を最大と仮定して、a=0.8とした場合には、
空気では、b/a=0.104
純酸素では、b/a=0.184
となり、汚泥発生のパラメータに溶存酸素濃度(DO)が影響していることが判る。
The BOD sludge conversion rate a of general activated sludge is constant at a = 0.5 to 0.8, and the parameter b / a indicating sludge generation when air is blown and when pure oxygen is blown is Assuming that the conversion rate is minimum and a = 0.5,
For air, b / a = 0.0065
For pure oxygen, b / a = 0.115
Also, assuming that the conversion rate is maximum and a = 0.8,
For air, b / a = 0.104
For pure oxygen, b / a = 0.184
Thus, it can be seen that the dissolved oxygen concentration (DO) affects the sludge generation parameters.

上記(3)式は、ばっ気槽の容積Vや処理水のBOD濃度S、汚泥濃度(MLSS)Xのパラメータを含んでおり、汚泥濃度Xも溶存酸素濃度(DO)も変化しているため、b/aを求めるのが難しくなる。   The above equation (3) includes parameters of the volume V of the aeration tank, the BOD concentration S of the treated water, and the sludge concentration (MLSS) X, and both the sludge concentration X and the dissolved oxygen concentration (DO) change. , B / a is difficult to obtain.

そこで、汚泥濃度(MLSS)X、溶存酸素濃度(DO)が安定している下記のデータ(1)〜(4)からb/aを求めた結果を下表と図4に示す。   Therefore, the table below and FIG. 4 show the results of obtaining b / a from the following data (1) to (4) in which the sludge concentration (MLSS) X and the dissolved oxygen concentration (DO) are stable.

DO MLSS 原水BOD BOD除去率 b/a
(1) 4.0 2500 250 85 0.17
(2) 10.0 2000 300 85 0.255
(3) 30.0 1600 400 95 0.475
(4) 18.0 1500 350 90 0.42
この表と図4から、溶存酸素濃度(DO)を高くすると汚泥濃度(MLSS)は下がり、またBOD除去率は、一定もしくは上昇することがわかる。しかし図4より溶存酸素濃度を20[mg/L]から30[mg/L]に高くしても汚泥濃度(MLSS)には変化がない、このことは、排水(原水)のBOD濃度に対して、過剰に溶存酸素濃度を上げても、除去率は、一定もしくは上がるものの、酸素などを無駄に供給することになりランニングコストの上昇を招くものといえる。
DO MLSS Raw water BOD BOD removal rate b / a
(1) 4.0 2500 250 85 0.17
(2) 10.0 2000 300 85 0.255
(3) 30.0 1600 400 95 0.475
(4) 18.0 1500 350 90 0.42
It can be seen from this table and FIG. 4 that when the dissolved oxygen concentration (DO) is increased, the sludge concentration (MLSS) is decreased and the BOD removal rate is constant or increased. However, from FIG. 4, even if the dissolved oxygen concentration is increased from 20 [mg / L] to 30 [mg / L], the sludge concentration (MLSS) does not change. This is relative to the BOD concentration of the wastewater (raw water). Even if the dissolved oxygen concentration is excessively increased, the removal rate is constant or increased, but oxygen or the like is wasted and the running cost is increased.

次に、このデータ(1)〜(4)に基づき、溶存酸素濃度(DO)に対するb/aの変化をミカエリス−メンテの式で近似して表すと、
b/a=(b/a)max ×{DO/(Kb/a +DO) …(4)
となる。
Next, based on the data (1) to (4), the change in b / a with respect to the dissolved oxygen concentration (DO) is approximated by the Michaelis-Mainte equation.
b / a = (b / a) max * {DO / ( Kb / a + DO) (4)
It becomes.

但し、(b/a)max は、排水の最大溶存酸素濃度のときのb/aの最大値、Kb/a は、溶存酸素の飽和定数である。 However, (b / a) max is the maximum value of b / a at the maximum dissolved oxygen concentration of waste water, and K b / a is the saturation constant of dissolved oxygen.

図5は、上記データ(1)〜(4)のDOとb/aの逆数を取ってプロット(ラインウィーバプロット)した結果を示したもので、この図5よりDO-1をx、b/a-1をyとすると、 y=17.422+1.661
の近似式が得られる。
FIG. 5 shows the result of taking the inverse of DO and b / a in the above data (1) to (4) and plotting it (line weaver plot). From FIG. 5, DO −1 is expressed as x, b. / A -1 is y, y = 17.422 + 1.661
The approximate expression is obtained.

これをもとに、(b/a)max と、Kb/a を求めると、
(b/a)max は、0.602、Kb/a は、10.49が求まる。
Based on this, when (b / a) max and K b / a are obtained,
(B / a) max is 0.602, and K b / a is 10.49.

この(4)の近似式で求めたDO、b/aの計算結果と、データ(1)〜(4)のDOとb/aの値の結果を図6を示した。   FIG. 6 shows the DO and b / a calculation results obtained by the approximate expression (4) and the DO and b / a values of the data (1) to (4).

図6中で、点線の領域Rで示した部分が、空気吹き込みによる一般的活性汚泥法で行われている制御領域であり、本願発明では、この領域外、すなわち、b/aが、0.15以上で、溶存酸素濃度(DO)が5[mg/L]以上で、かつ、適正な溶存酸素濃度で運転すれば、余剰活性汚泥を抑制しながら好気性処理が行えることを見出した。   In FIG. 6, a portion indicated by a dotted region R is a control region performed by a general activated sludge method by air blowing. In the present invention, outside this region, that is, b / a is 0.00. It was found that if the dissolved oxygen concentration (DO) is 5 [mg / L] or more at 15 or more and is operated at an appropriate dissolved oxygen concentration, aerobic treatment can be performed while suppressing excess activated sludge.

実際の制御においては、先ず図1に示した標準活性汚泥法で、溶存酸素濃度(DO)が5[mg/L]以上となるように、また処理する原水(排水)の平均的なBOD濃度S0 に応じて、ばっ気槽10内の汚泥濃度(MLSS)X0 を設定し、それに基づいて、空気或いは酸素の供給量を設定して好気性処理を行う。 In actual control, first, the standard activated sludge method shown in FIG. 1 is used so that the dissolved oxygen concentration (DO) is 5 [mg / L] or more, and the average BOD concentration of the raw water (drainage) to be treated. In accordance with S 0 , the sludge concentration (MLSS) X 0 in the aeration tank 10 is set, and based on this, the supply amount of air or oxygen is set to perform the aerobic treatment.

この好気性処理において、ばっ気槽10に、溶存酸素計20を設置して溶存酸素濃度(DO)を検出し、その検出した溶存酸素濃度(DO)から図6に示したb/aの値を求める。   In this aerobic treatment, the dissolved oxygen meter 20 is installed in the aeration tank 10 to detect the dissolved oxygen concentration (DO), and the value of b / a shown in FIG. 6 from the detected dissolved oxygen concentration (DO). Ask for.

この図6から得られたb/aの値は、実際の溶存酸素濃度(DO)から、上記(4)式で求められる値であり、このb/aの値を、上記(3)式に代入すれば、汚泥濃度X(MLSS)が求まり、また逆に、ばっ気槽10内に流入するBOD濃度S0 と処理水のBOD濃度Sを求め、さらに汚泥濃度X(MLSS)を、サンプリングにて直接或いは光学式計測器で測定すれば、(3)式よりa/bが求まる。 The b / a value obtained from FIG. 6 is a value obtained from the actual dissolved oxygen concentration (DO) by the above equation (4), and this b / a value is expressed by the above equation (3). If substituted, the sludge concentration X (MLSS) is obtained, and conversely, the BOD concentration S 0 flowing into the aeration tank 10 and the BOD concentration S of the treated water are obtained, and the sludge concentration X (MLSS) is further sampled. If measured directly or with an optical measuring instrument, a / b can be obtained from equation (3).

従って、(4)式で求めたb/aの値をもとに、(3)式に基づいて、汚泥濃度Xを求め、これと実際に測定した汚泥濃度を比較すれば、その汚泥濃度の余剰分がわかり、また逆に、実際に測定した汚泥濃度Xから(3)式で、a/bの値を求め、その値をもとに、(4)式により溶存酸素濃度(DO)を求めれば、酸素濃度の過不足がわかることとなる。   Therefore, if the sludge concentration X is obtained based on the equation (3) based on the value of b / a obtained by the equation (4), and this is compared with the actually measured sludge concentration, the sludge concentration The surplus is known, and conversely, the value of a / b is calculated from the actually measured sludge concentration X by the equation (3), and the dissolved oxygen concentration (DO) is calculated by the equation (4) based on the value. If it asks for, it will know the excess and deficiency of oxygen concentration.

従って、溶存酸素濃度(DO)と、実際に測定した汚泥濃度Xのデータと、上記(3)、(4)で、a/bと汚泥濃度をそれぞれ求めれば、設定した汚泥濃度X0 に対して、ばっ気槽10内の汚泥濃度Xが適正であるかが判り、またその測定した汚泥濃度Xに応じて、b/aの値が適正となる溶存酸素濃度(DO)を求めることができ、これにより、ばっき槽10内が適正な溶存酸素濃度となるように、酸素供給量を制御することで、余剰汚泥の発生を抑制した運転が行える。 Thus, the dissolved oxygen concentration (DO), the actual measured sludge concentration X data, in the above (3), (4), by obtaining a / b and the sludge concentration, respectively, with respect to the sludge concentration X 0 set Thus, it is possible to determine whether the sludge concentration X in the aeration tank 10 is appropriate, and according to the measured sludge concentration X, the dissolved oxygen concentration (DO) at which the b / a value is appropriate can be obtained. Thus, by controlling the oxygen supply amount so that the inside of the flash tank 10 has an appropriate dissolved oxygen concentration, an operation in which the generation of excess sludge is suppressed can be performed.

このように、本発明は、溶存酸素濃度(DO)の高い条件で微生物を培養し、増殖に対する自己分解の比率を大きくすることで、微生物の増殖量を制限することができることに着目し、最適な溶存酸素濃度で運転を行えば、余剰汚泥の発生を抑制できることを見出したものである。   Thus, the present invention focuses on the ability to limit the growth amount of microorganisms by culturing microorganisms under conditions of high dissolved oxygen concentration (DO) and increasing the ratio of autolysis to growth. It has been found that if operation is performed with a high dissolved oxygen concentration, the generation of excess sludge can be suppressed.

すなわち、本発明は、溶存酸素濃度(DO)を検出し、そのDOでb/aを求めると共に、測定した汚泥濃度(MLSS)に応じて適正な酸素濃度にすることで、高いBOD除去率を維持しつつ、余剰活性汚泥の発生を抑制することができる。   That is, the present invention detects a dissolved oxygen concentration (DO), obtains b / a by the DO, and attains a high BOD removal rate by setting an appropriate oxygen concentration according to the measured sludge concentration (MLSS). Generation | occurrence | production of the excess activated sludge can be suppressed, maintaining.

一般に活性汚泥法では、溶存酸素を高くしても微生物活性が低下することがないため、処理性能を維持しつつ余剰汚泥発生量を削減でき、従来の沈殿槽等の処理設備も不要(機器点数減少)となり、ランニングコストの低減が可能となる。   In general, the activated sludge method does not reduce the microbial activity even if the dissolved oxygen is increased, so it is possible to reduce the amount of excess sludge generated while maintaining the treatment performance, and there is no need for conventional treatment equipment such as a sedimentation tank. The running cost can be reduced.

好気性処理設備において、空気吹き込みでは、溶存酸素濃度は、4[mg/L]程度しか上げられないため、溶存酸素濃度(DO)を上げるには、純酸素や酸素富化空気を用いるか、或いは、設備全体を耐圧容器とし、加圧型とし、圧縮空気を吹き込む方法がある。   In an aerobic treatment facility, since the dissolved oxygen concentration can be increased only by about 4 mg / L when air is blown, pure oxygen or oxygen-enriched air is used to increase the dissolved oxygen concentration (DO). Alternatively, there is a method in which the entire equipment is a pressure vessel, a pressure type, and compressed air is blown.

本発明においては、酸素供給、或いは加圧して供給することで、溶存酸素濃度を5〜40[mg/L]の範囲で、適正な溶存酸素濃度に制御することで、微生物の活性を低下させることなく、増殖できない環境を整えることが可能となり、これにより余剰汚泥の発生を抑制できるものである。   In the present invention, by supplying oxygen or pressurizing it, the dissolved oxygen concentration is controlled to an appropriate dissolved oxygen concentration in the range of 5 to 40 [mg / L], thereby reducing the activity of microorganisms. Therefore, it is possible to prepare an environment incapable of breeding, thereby suppressing the generation of excess sludge.

次に、本発明の装置例を図2、図3により説明する。   Next, an example of the apparatus of the present invention will be described with reference to FIGS.

図2は、常圧型の装置構成を示し、上部開放型のばっ気槽10の底部に排水ライン11を接続し、上部に処理水ライン15を接続する。   FIG. 2 shows a normal pressure type apparatus configuration, in which a drain line 11 is connected to the bottom of the upper open type aeration tank 10 and a treated water line 15 is connected to the top.

このばっき槽10には、処理する排水の有機物に応じて所定の汚泥濃度となるように活性汚泥が直接充填、或いは活性汚泥を担体に担持させた状態で充填される。   The flash tank 10 is directly filled with activated sludge so as to have a predetermined sludge concentration according to the organic matter in the wastewater to be treated, or filled with activated sludge supported on a carrier.

ばっ気槽10の底部には、ばっ気管12を設置し、ばっ気槽10内にエアリフトのための内筒21を設け、その内筒21の上部に逆ロート状のガス収集部材22を設置する。これにより、排水ライン11からの有機物を含む排水は、ばっ気管12から吹き込まれた純酸素、酸素富化空気により、内筒21内を上昇し、酸素は、ガス収集部材22より収集されてばっ気槽10から排気される。   An aeration tube 12 is installed at the bottom of the aeration tank 10, an inner cylinder 21 for air lift is provided in the aeration tank 10, and a reverse funnel-shaped gas collecting member 22 is installed on the upper part of the inner cylinder 21. . As a result, the wastewater containing organic matter from the drainage line 11 rises in the inner cylinder 21 by pure oxygen and oxygen-enriched air blown from the aeration pipe 12, and oxygen is collected from the gas collecting member 22. The air is exhausted from the air tank 10.

他方、有機物と活性汚泥を含んだ排水は、ガス収集部材22で図示の矢印24のように反転して、内筒21の外周で下降流となって再度内筒21に流れて循環する。またガス収集部材22を酸素と共に上昇した液分は、ガス収集部材22の上端からオーバーフローし、そこで固形分が矢印25のように沈降して固液分離がなされ、矢印24のように反転して下降流となった液と共に内筒21で再度循環される。また固液分離された処理水は処理水ライン15から排水される。   On the other hand, the waste water containing the organic matter and the activated sludge is reversed as shown by the arrow 24 in the gas collecting member 22, flows down to the outer periphery of the inner cylinder 21, and flows again to the inner cylinder 21 for circulation. In addition, the liquid component that has risen together with oxygen from the gas collecting member 22 overflows from the upper end of the gas collecting member 22, where the solid content settles as indicated by the arrow 25 and is separated into solid and liquid, and is inverted as indicated by the arrow 24. It is circulated again in the inner cylinder 21 together with the liquid that has become the downward flow. The treated water that has been subjected to solid-liquid separation is drained from the treated water line 15.

この図2の装置において、固液分離部となるばっ気槽10の液面上部に溶存酸素計20を設け、この検出値をばっ気管12に酸素を供給する酸素供給ライン26に接続した酸素供給制御装置27に入力する。   In the apparatus shown in FIG. 2, a dissolved oxygen meter 20 is provided above the liquid surface of the aeration tank 10 serving as a solid-liquid separation unit, and this detected value is connected to an oxygen supply line 26 for supplying oxygen to the aeration tube 12. Input to the control device 27.

酸素供給制御装置27は、溶存酸素濃度計20から入力された溶存酸素濃度が適正となるように、ばっ気管12から吹き込む酸素量を制御する。この場合、酸素供給制御装置27は、内筒21による液の内部循環量を一定にするために、ばっ気管12から吹き込むガス量を一定とし、そのガスに混入する酸素濃度を変えることで酸素量を制御するようにする。具体的には、空気に純酸素や酸素富化空気を混ぜて、酸素濃度が所定になるように、或いは図には示していないが、ばっ気槽10を密閉型とし、そのばっ気槽10から排気される二酸化炭素等を含むガスを酸素供給制御装置27に戻し、そのガスに酸素を混合するようにしてもよい。   The oxygen supply control device 27 controls the amount of oxygen blown from the aeration tube 12 so that the dissolved oxygen concentration input from the dissolved oxygen concentration meter 20 is appropriate. In this case, the oxygen supply control device 27 makes the amount of oxygen blown from the aeration tube 12 constant and changes the oxygen concentration mixed in the gas in order to make the internal circulation amount of the liquid by the inner cylinder 21 constant. To control. Specifically, pure oxygen or oxygen-enriched air is mixed with air so that the oxygen concentration becomes a predetermined value, or although not shown in the figure, the aeration tank 10 is a sealed type, and the aeration tank 10 A gas containing carbon dioxide or the like exhausted from the gas may be returned to the oxygen supply control device 27, and oxygen may be mixed with the gas.

酸素供給制御装置27は、上述したように、排水ライン11からの原水のBOD濃度、ばっ気槽10内の汚泥濃度、処理水ライン15から排出される処理水のBOD濃度の検出値が入力されており、これらをもとに最適な酸素濃度を設定して、ばっ気槽10内がその設定の溶存酸素濃度となるようにばっ気管12から吹き込むことで、余剰汚泥を抑制しつつBOD除去率の高い好気性処理が行えることとなる。   As described above, the oxygen supply control device 27 receives the detected values of the BOD concentration of the raw water from the drain line 11, the sludge concentration in the aeration tank 10, and the BOD concentration of the treated water discharged from the treated water line 15. The optimal oxygen concentration is set based on these, and the BOD removal rate is suppressed while surplus sludge is suppressed by blowing from the aeration pipe 12 so that the inside of the aeration tank 10 has the set dissolved oxygen concentration. High aerobic treatment can be performed.

図3は、ばっ気槽30を加圧型としたものであり、ばっ気槽30が圧力容器で形成される他は、ばっ気槽30内の内部構造は同じであり、底部にばっ気管12、内部に内筒21とガス収集部材22が同様に設置されると共に、溶存酸素濃度計20が設けられている。   FIG. 3 shows the aeration tank 30 as a pressurized type, and the internal structure in the aeration tank 30 is the same except that the aeration tank 30 is formed of a pressure vessel. An inner cylinder 21 and a gas collecting member 22 are similarly installed inside, and a dissolved oxygen concentration meter 20 is provided.

この例においては、酸素供給制御装置37は、圧縮空気をばっ気管12に供給することで、ばっ気槽10内の排水の溶存酸素濃度を上昇させるようにし、また、内筒21による液循環量を一定にするため、ばっ気槽30から排気されるガスの一部を、戻しライン32からブロア33を介して酸素供給制御装置37に戻すことで、ばっ気槽30内の圧力を一定にしたまま溶存酸素量を制御することができる。   In this example, the oxygen supply control device 37 supplies the compressed air to the aeration tube 12 so as to increase the dissolved oxygen concentration of the waste water in the aeration tank 10, and the amount of liquid circulation by the inner cylinder 21. In order to keep the pressure constant, the pressure in the aeration tank 30 is made constant by returning a part of the gas exhausted from the aeration tank 30 from the return line 32 to the oxygen supply control device 37 via the blower 33. The amount of dissolved oxygen can be controlled as it is.

通常、ばっ気槽30内に、5気圧程度の圧縮空気を吹き込むと共にばっ気槽30内の圧力をその圧縮空気圧力に保つことで、水温20℃では溶存酸素濃度を最大で40mg/Lにすることができ、これに戻しライン32からのガスを混合することで、5〜40mg/Lの範囲に溶存酸素濃度を制御できる。   Normally, by blowing compressed air of about 5 atm into the aeration tank 30 and keeping the pressure in the aeration tank 30 at the compressed air pressure, the dissolved oxygen concentration is 40 mg / L at the maximum at a water temperature of 20 ° C. It is possible to control the dissolved oxygen concentration in the range of 5 to 40 mg / L by mixing the gas from the return line 32.

本例では、図2と違って純酸素を吹き込むのに比して、圧縮空気を吹き込むため、ランニングコストを低減することが可能となる。   In this example, unlike FIG. 2, since compressed air is blown compared to blowing pure oxygen, the running cost can be reduced.

本発明において、ばっ気槽内での汚泥発生を説明するための、バランスシートを示す図である。In this invention, it is a figure which shows the balance sheet for demonstrating sludge generation | occurrence | production in an aeration tank. 本発明の方法を実施する装置例を示す図である。It is a figure which shows the example of an apparatus which implements the method of this invention. 本発明の方法を実施する他の装置例を示す図である。It is a figure which shows the other example of an apparatus which enforces the method of this invention. 本発明において、好気性処理したときの溶存酸素濃度とばっ気槽内の汚泥濃度及びBOD除去率の結果を示す図である。In this invention, it is a figure which shows the result of the dissolved oxygen density | concentration when carrying out an aerobic process, the sludge density | concentration in an aeration tank, and a BOD removal rate. 図4の結果から、b/aを溶存酸素濃度で求めるための近似式作成のための図である。FIG. 5 is a diagram for creating an approximate expression for obtaining b / a by the dissolved oxygen concentration from the result of FIG. 4. 本発明において、図4の結果と図5の近似式から溶存酸素濃度とb/aの関係を示した図である。In this invention, it is the figure which showed the relationship between dissolved oxygen concentration and b / a from the result of FIG. 4, and the approximate expression of FIG.

符号の説明Explanation of symbols

10 ばっ気槽
11 排水ライン
12 ばっ気管
10 Aeration tank 11 Drainage line 12 Aeration pipe

Claims (5)

有機物を含んだ排水をばっ気槽内に導入し、その排水を活性汚泥にて好気性処理するに際して、ばっ気槽内の排水中の溶存酸素濃度が、5mg/L以上となるようばっ気槽内に空気又は酸素を吹き込むと共にその溶存酸素濃度を検出し、かつばっ気槽内の排水の活性汚泥濃度が設定値以下となるように溶存酸素濃度を調整することを特徴とする好気性排水処理における汚泥発生の抑制法。   When introducing wastewater containing organic substances into the aeration tank and aerobic treatment of the wastewater with activated sludge, the aeration tank is set so that the dissolved oxygen concentration in the wastewater in the aeration tank is 5 mg / L or more. Aerobic wastewater treatment characterized by injecting air or oxygen into the interior and detecting the dissolved oxygen concentration and adjusting the dissolved oxygen concentration so that the activated sludge concentration of the wastewater in the aeration tank is lower than the set value Of sludge generation in Japan. BOD汚泥変換率をa、汚泥の自己分解速度係数をbとしたときのb/aを、排水の処理量、ばっ気槽の容積、導入する排水のBOD濃度、ばっ気槽内の汚泥濃度、ばっ気槽内BOD濃度から算出すると共に、これらから求めたb/aのデータをもとに、溶存酸素濃度に基づくb/aを算出し、他方ばっ気槽内の汚泥濃度を検出し、その汚泥濃度が設定値以下となるb/aを求めると共に、そのb/aとなるように溶存酸素濃度を制御する請求項1記載の好気性排水処理における汚泥発生の抑制法。   B / a, where BOD sludge conversion rate is a and sludge self-decomposition rate coefficient is b, wastewater treatment volume, aeration tank volume, BOD concentration of wastewater to be introduced, sludge concentration in the aeration tank, Calculate from the BOD concentration in the aeration tank, calculate b / a based on the dissolved oxygen concentration based on the b / a data obtained from these, and detect the sludge concentration in the aeration tank. The method for suppressing sludge generation in aerobic wastewater treatment according to claim 1, wherein the b / a at which the sludge concentration is not more than a set value is obtained, and the dissolved oxygen concentration is controlled so as to be b / a. 上記b/aが、0.15以上となるように溶存酸素濃度を制御する請求項2記載の好気性排水処理における汚泥発生の抑制法。   The method for suppressing sludge generation in aerobic wastewater treatment according to claim 2, wherein the dissolved oxygen concentration is controlled so that the b / a is 0.15 or more. ばっ気槽内のばっ気管から吹き込むガス量が一定となるよう、空気等のガスに純酸素又は酸素富化空気を混入して酸素濃度を制御する請求項1〜3のいずれかに記載の好気性排水処理における汚泥発生の抑制法。   4. The oxygen concentration according to claim 1, wherein the oxygen concentration is controlled by mixing pure oxygen or oxygen-enriched air into a gas such as air so that the amount of gas blown from the aeration tube in the aeration tank is constant. Suppression method of sludge generation in aerobic wastewater treatment. ばっ気槽が加圧型であり、ばっ気管から圧縮空気を供給し、その圧縮空気にばっ気槽から排出されたガスを混合して、ばっ気管から吹き込むガス量が一定となるよう制御しつつ酸素濃度を制御する請求項1〜3のいずれかに記載の好気性排水処理における汚泥発生の抑制法。   The aeration tank is a pressurized type, supplying compressed air from the aeration pipe, mixing the gas discharged from the aeration tank with the compressed air, and controlling the amount of gas blown from the aeration pipe to be constant The method for suppressing sludge generation in aerobic wastewater treatment according to any one of claims 1 to 3, wherein the concentration is controlled.
JP2007027383A 2007-02-06 2007-02-06 Method for suppressing generation of sludge in aerobic wastewater treatment Pending JP2008188548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027383A JP2008188548A (en) 2007-02-06 2007-02-06 Method for suppressing generation of sludge in aerobic wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027383A JP2008188548A (en) 2007-02-06 2007-02-06 Method for suppressing generation of sludge in aerobic wastewater treatment

Publications (1)

Publication Number Publication Date
JP2008188548A true JP2008188548A (en) 2008-08-21

Family

ID=39749158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027383A Pending JP2008188548A (en) 2007-02-06 2007-02-06 Method for suppressing generation of sludge in aerobic wastewater treatment

Country Status (1)

Country Link
JP (1) JP2008188548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056410A (en) * 2009-09-10 2011-03-24 Panasonic Corp Method for treating organic wastewater and method for suppressing generation of excess sludge
JP2012143748A (en) * 2010-12-24 2012-08-02 Panasonic Corp Method for suppressing generation of surplus sludge, method for treating organic waste water, and method for producing reformed activated sludge

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086848A (en) * 1973-12-08 1975-07-12
JPS58112091A (en) * 1981-12-25 1983-07-04 Hitachi Plant Eng & Constr Co Ltd Highly-efficient activated sludge processing method
JPS60125295A (en) * 1983-12-10 1985-07-04 Showa Denko Kk Activated sludge treatment due to improvement in sludge substrate
JPH03229694A (en) * 1990-02-06 1991-10-11 Kurita Water Ind Ltd Biological treatment of waste water
JPH04171093A (en) * 1990-11-01 1992-06-18 Kaiyo Kagaku Gijutsu Center Waste liquid purifying device
JPH0523689A (en) * 1991-07-18 1993-02-02 Mitsubishi Kakoki Kaisha Ltd Aerator
JPH05253597A (en) * 1992-03-10 1993-10-05 Meidensha Corp Nitrification reaction control device in activated sludge treatment
JPH1099889A (en) * 1996-09-25 1998-04-21 Akitane Kitajima Waste water treatment method by activated sludge method and apparatus therefor
JP2000312896A (en) * 1999-04-27 2000-11-14 Nippon Sanso Corp Waste water treatment apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086848A (en) * 1973-12-08 1975-07-12
JPS58112091A (en) * 1981-12-25 1983-07-04 Hitachi Plant Eng & Constr Co Ltd Highly-efficient activated sludge processing method
JPS60125295A (en) * 1983-12-10 1985-07-04 Showa Denko Kk Activated sludge treatment due to improvement in sludge substrate
JPH03229694A (en) * 1990-02-06 1991-10-11 Kurita Water Ind Ltd Biological treatment of waste water
JPH04171093A (en) * 1990-11-01 1992-06-18 Kaiyo Kagaku Gijutsu Center Waste liquid purifying device
JPH0523689A (en) * 1991-07-18 1993-02-02 Mitsubishi Kakoki Kaisha Ltd Aerator
JPH05253597A (en) * 1992-03-10 1993-10-05 Meidensha Corp Nitrification reaction control device in activated sludge treatment
JPH1099889A (en) * 1996-09-25 1998-04-21 Akitane Kitajima Waste water treatment method by activated sludge method and apparatus therefor
JP2000312896A (en) * 1999-04-27 2000-11-14 Nippon Sanso Corp Waste water treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056410A (en) * 2009-09-10 2011-03-24 Panasonic Corp Method for treating organic wastewater and method for suppressing generation of excess sludge
JP2012143748A (en) * 2010-12-24 2012-08-02 Panasonic Corp Method for suppressing generation of surplus sludge, method for treating organic waste water, and method for producing reformed activated sludge

Similar Documents

Publication Publication Date Title
EP2323954B1 (en) Methods for processing organic waste
US20140360933A1 (en) Methods and apparatus for nitrogen removal from wastewater
JP6081623B2 (en) Wastewater treatment system
JP6877255B2 (en) Wastewater treatment system and wastewater treatment method
JP2006289313A (en) Apparatus and method for treating organic waste water
WO2016103707A1 (en) Water treatment system and method for controlling aeration air quantity thereof
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
KR20140063454A (en) Apparatus and method for treatment wastewater
JP2008188548A (en) Method for suppressing generation of sludge in aerobic wastewater treatment
JP2012066186A (en) Water treatment apparatus
JP2011200767A (en) Wastewater treating method and wastewater treatment system
JP6533676B2 (en) Water treatment apparatus and water treatment method
JP6444574B1 (en) Water treatment system and water treatment method
JP2020081976A (en) Waste water treatment facility
JP2012035146A (en) Water treatment method
JP4190177B2 (en) Method and apparatus for adding organic carbon source in biological denitrification treatment
CN110526401A (en) A kind of landfill leachate short-cut nitrification and denitrification biological denitrification method
JPH07171592A (en) Automatic control device for inflow amount of raw water to anaerobic waste water treatment equipment
JP6396238B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program
JP5329499B2 (en) Biological wastewater treatment equipment
JP3690537B2 (en) Intermittent aeration
JP2005193158A (en) Carrier-method ntirogen removing system
JP2004025051A (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP5802426B2 (en) Biological water treatment equipment
JPH0515899A (en) Anaerobic methane fermentation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218