JP2008187428A - Flexible board with microstrip line, and optical module using the same - Google Patents

Flexible board with microstrip line, and optical module using the same Download PDF

Info

Publication number
JP2008187428A
JP2008187428A JP2007018859A JP2007018859A JP2008187428A JP 2008187428 A JP2008187428 A JP 2008187428A JP 2007018859 A JP2007018859 A JP 2007018859A JP 2007018859 A JP2007018859 A JP 2007018859A JP 2008187428 A JP2008187428 A JP 2008187428A
Authority
JP
Japan
Prior art keywords
conductor
flexible substrate
electrode
via hole
microstrip line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007018859A
Other languages
Japanese (ja)
Inventor
Tsuneo Hamaguchi
恒夫 濱口
Atsushi Sugidachi
厚志 杉立
Yasunori Nishimura
靖典 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007018859A priority Critical patent/JP2008187428A/en
Publication of JP2008187428A publication Critical patent/JP2008187428A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Waveguides (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)
  • Structure Of Printed Boards (AREA)
  • Semiconductor Lasers (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and surely solder a flexible board with a microstrip line to a rigid wiring board. <P>SOLUTION: First conductors 12 and a second conductor 13 are formed on mutually opposed first surface 11a and second surface 11b of a flexible resin film 11, respectively, while an electrode 14 is fitted at a place separate from the first conductors 12 on the first surface 11a. The electrode 14 and the second conductor 13, formed on the second surface 11b, are connected via a conductor 16 in a via hole 15. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロストリップ線路を有するフレキシブル基板、およびこれを用いた光モジュールに関する。   The present invention relates to a flexible substrate having a microstrip line and an optical module using the same.

一般に、高周波信号を伝送する場合には、同軸ケーブルが広く使用されているが、このような同軸ケーブルは、嵩張って小型化が難しい。そこで、従来技術では、同軸ケーブルに代わるものとしてマイクロストリップ線路を形成したフレキシブル基板が提案されている(例えば、特許文献1参照)。   Generally, when transmitting a high frequency signal, a coaxial cable is widely used. However, such a coaxial cable is bulky and difficult to downsize. Therefore, in the prior art, a flexible substrate in which a microstrip line is formed has been proposed as an alternative to a coaxial cable (see, for example, Patent Document 1).

すなわち、上記の特許文献1記載のフレキシブル基板は、ポリイミドやポリエステル等の可撓性の樹脂フィルムの互いに対向する一方側の表面に信号伝送路なる信号導体を、他方側の表面に接地用となるグランド導体をそれぞれ形成して構成されている。このようなフレキシブル基板を用いれば、小型化が図れるとともに、伝送特性を劣化させずに高周波信号伝送が可能になる。   That is, the flexible substrate described in Patent Document 1 has a signal conductor serving as a signal transmission path on one surface of a flexible resin film such as polyimide or polyester, and a grounding surface on the other surface. Each is formed by forming a ground conductor. By using such a flexible substrate, it is possible to reduce the size and to transmit a high frequency signal without degrading the transmission characteristics.

特開平9−139610号公報JP-A-9-139610

ところで、特許文献1に記載されているようなフレキシブル基板をリジッドな配線基板に電気的に接続する場合、従来より導電性エポキシ樹脂などの導電性接着剤や半田を用いて接合するようにしている。   By the way, when electrically connecting a flexible substrate as described in Patent Document 1 to a rigid wiring substrate, it is conventionally joined using a conductive adhesive such as a conductive epoxy resin or solder. .

しかしながら、フレキシブル基板とリジッドな配線基板との接続に導電性接着剤を用いると、半田付けする場合に比べて接続抵抗が大きくなり、信号伝送特性が劣化し、また、接着剤による固定なので長期の接合信頼性が低いという問題がある。   However, if a conductive adhesive is used to connect the flexible board to the rigid wiring board, the connection resistance will be larger than when soldering, the signal transmission characteristics will deteriorate, and it will be fixed for a long time due to the adhesive. There is a problem that bonding reliability is low.

また、フレキシブル基板とリジッドな配線基板とを半田付けする場合、フレキシブル基板と配線基板との間に半田を介在させた状態で、フレキシブル基板上からヒートツールにて加熱する方法が一般に採用される。このような方法で半田付けする場合、フレキシブル基板の樹脂フィルムは、熱伝導率の極めて低いポリイミド等の有機材料からなるため、従来構造のものでは、信号導体側の表面を加熱しても、グランド導体側の表面にまで十分な熱が伝導されず、フレキシブル基板と配線基板との間に介在された半田が溶融しにくいという問題が生じる。   Further, when soldering a flexible substrate and a rigid wiring substrate, a method of heating with a heat tool from the flexible substrate in a state where solder is interposed between the flexible substrate and the wiring substrate is generally employed. When soldering by such a method, the resin film of the flexible substrate is made of an organic material such as polyimide having extremely low thermal conductivity. Therefore, in the conventional structure, even if the surface on the signal conductor side is heated, There is a problem that sufficient heat is not conducted to the surface on the conductor side, and the solder interposed between the flexible substrate and the wiring substrate is difficult to melt.

本発明は、上記の課題を解決するためになされたもので、リジッドな配線基板に容易かつ確実に半田付けすることができるマイクロストリップ線路を有するフレキシブル基板を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a flexible substrate having a microstrip line that can be easily and reliably soldered to a rigid wiring substrate.

上記の目的を達成するために、本発明のマイクロストリップ線路を有するフレキシブル基板(以下、単にフレキシブル基板と称する)は、可撓性の樹脂フィルムの互いに対向する第1と第2の面上にそれぞれ第1導体と第2導体が形成され、上記第1の面には、上記第1導体と分離した位置に電極が設けられ、この電極と上記第2の面に形成された第2導体とがバイアホール内の導体を介して接続されていることを特徴としている。   In order to achieve the above object, a flexible substrate (hereinafter simply referred to as a flexible substrate) having a microstrip line according to the present invention is respectively formed on first and second surfaces of a flexible resin film facing each other. A first conductor and a second conductor are formed, and an electrode is provided on the first surface at a position separated from the first conductor, and the electrode and the second conductor formed on the second surface include It is characterized by being connected via a conductor in the via hole.

本発明によれば、フレキシブル基板とリジッドな配線基板とを、フレキシブル基板上からヒートツールにて加熱して半田付けする場合、第1導体と共に形成されている電極が加熱されて、その熱が電極からバイアホール内の導体を経由して第2導体に効率良く伝導される。このため、第2導体を配線基板に容易かつ確実に半田付けすることができる。しかも、基本的には半田付けにより両者を接続するため、導電性接着剤を用いる場合よりも接続抵抗が小さく良好に特性を維持できるとともに、長期信頼性を確保することができる。   According to the present invention, when a flexible substrate and a rigid wiring substrate are soldered by heating from above the flexible substrate with a heat tool, the electrode formed with the first conductor is heated, and the heat is transferred to the electrode. Is efficiently conducted to the second conductor via the conductor in the via hole. For this reason, the second conductor can be easily and reliably soldered to the wiring board. Moreover, since the two are basically connected by soldering, the connection resistance is smaller than when a conductive adhesive is used, and the characteristics can be maintained well, and long-term reliability can be ensured.

実施の形態1.
図1は本発明の実施の形態1におけるフレキシブル基板をリジッドな配線基板に接続した状態を示す斜視図、図2は図1のA−A線に沿う断面図である。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a state in which a flexible board in Embodiment 1 of the present invention is connected to a rigid wiring board, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

この実施の形態1のフレキシブル基板1は、ポリイミドやポリエステル等の有機材料からなる可撓性で絶縁性の樹脂フィルム11を有し、この樹脂フィルム11の互いに対向する第1、第2の面11a,11bの内、第1の面11aに第1導体としての左右一対の信号導体12が、第2の面に第2導体としてのグランド導体13がそれぞれ形成されている。そして、信号導体12とグランド導体13は、例えば銅などの金属を用いて写真製版とめっき、またはスパッタなどのドライプロセスによりパターン形成されたもので、両者でマイクロストリップ線路が構成されている。   The flexible substrate 1 of the first embodiment has a flexible and insulating resin film 11 made of an organic material such as polyimide or polyester, and the first and second surfaces 11a of the resin film 11 facing each other. 11b, a pair of left and right signal conductors 12 as the first conductor is formed on the first surface 11a, and a ground conductor 13 as the second conductor is formed on the second surface. The signal conductor 12 and the ground conductor 13 are formed by patterning by a dry process such as photoengraving and plating or sputtering using a metal such as copper, and both form a microstrip line.

さらに、この実施の形態1の特徴として、フレキシブル基板1の端部の第1の面11aには、一対の信号導体12で挟まれた位置に電極14が設けられている。この電極14は、信号導体12とは分離して形成されていて電気的に絶縁された状態となっている。また、樹脂フィルム11、電極14およびグランド導体13を上下に貫通してバイアホール15が形成されており、このバイアホール15内に設けられた導体16によって電極14とグランド導体13とが接続されている。なお、バイアホール15は、フレキシブル基板1の製造過程において、例えば電極14とグランド導体13をエッチングして開口部を形成してからその開口部の形成箇所に位置する樹脂フィルム11をレーザ加工により削除して形成することができる。   Further, as a feature of the first embodiment, an electrode 14 is provided on the first surface 11 a at the end of the flexible substrate 1 at a position sandwiched between a pair of signal conductors 12. The electrode 14 is formed separately from the signal conductor 12 and is electrically insulated. A via hole 15 is formed through the resin film 11, the electrode 14, and the ground conductor 13 in the vertical direction, and the electrode 14 and the ground conductor 13 are connected by a conductor 16 provided in the via hole 15. Yes. In the manufacturing process of the flexible substrate 1, the via hole 15 is formed by, for example, etching the electrode 14 and the ground conductor 13 to form an opening, and then removing the resin film 11 located at the position where the opening is formed by laser processing. Can be formed.

そして、このフレキシブル基板1の端部のグランド導体13は、例えば光モジュールなどを構成するためのリジッドな配線基板2の端子電極22に半田3により接合されている。   The ground conductor 13 at the end of the flexible substrate 1 is joined by solder 3 to a terminal electrode 22 of a rigid wiring substrate 2 for constituting an optical module, for example.

ここで、フレキシブル基板1を配線基板2に半田3で接合する際には、半田3をグランド導体13と配線基板2の端子電極22との間に配置した状態で、信号導体12と電極14に加熱ツール(図示せず)を接触させて加熱、加圧する。その際、電極14とグランド導体13とはバイアホール15内の導体16でつながっているので、熱は電極14からバイアホール15内の導体16およびグランド導体13を経由して半田3に効率良く伝導される。この場合、半田3の融点(例えばSnAgCuの場合は218℃)以上で、かつフレキシブル基板1の基材である樹脂フィルム11の耐熱温度以下の状態で温度を伝えることができるため、半田3をバイアホール15直下のみでなく、その周りも均一に溶融することができ、グランド導体13を配線基板2の端子電極21に容易かつ確実に半田付けすることが可能となる。   Here, when the flexible substrate 1 is joined to the wiring substrate 2 with the solder 3, the signal conductor 12 and the electrode 14 are connected with the solder 3 disposed between the ground conductor 13 and the terminal electrode 22 of the wiring substrate 2. A heating tool (not shown) is contacted to heat and pressurize. At this time, since the electrode 14 and the ground conductor 13 are connected by the conductor 16 in the via hole 15, heat is efficiently conducted from the electrode 14 to the solder 3 via the conductor 16 in the via hole 15 and the ground conductor 13. Is done. In this case, since the temperature can be transmitted in a state that is higher than the melting point of the solder 3 (for example, 218 ° C. in the case of SnAgCu) and lower than the heat resistance temperature of the resin film 11 that is the base material of the flexible substrate 1, Not only directly below the hole 15 but also the periphery thereof can be melted uniformly, and the ground conductor 13 can be easily and reliably soldered to the terminal electrode 21 of the wiring board 2.

また、この実施の形態1では、グランド導体13を貫通してバイアホール15が形成されているので、熔融した半田3がバイアホール15内を充填する。このため、半田3はバイアホール15内で突起を形成することになり、半田3とフレキシブル基板1との接触面積が増える。その結果、半田付けによる機械的強度を向上させることができ、長期信頼性を確保することができる。   In the first embodiment, since the via hole 15 is formed through the ground conductor 13, the melted solder 3 fills the via hole 15. For this reason, the solder 3 forms protrusions in the via hole 15, and the contact area between the solder 3 and the flexible substrate 1 increases. As a result, the mechanical strength by soldering can be improved, and long-term reliability can be ensured.

実施の形態2.
図3は本発明の実施の形態2におけるフレキシブル基板をリジッドな配線基板に接続した状態を示す斜視図、図4は図3のB−B線に沿う断面図である。なお、図1および図2に示した実施の形態1と対応する構成部分には同一の符号を付す。
Embodiment 2. FIG.
3 is a perspective view showing a state in which the flexible substrate in Embodiment 2 of the present invention is connected to a rigid wiring substrate, and FIG. 4 is a cross-sectional view taken along line BB in FIG. Components corresponding to those in the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals.

この実施の形態2のフレキシブル基板1の特徴は、バイアホール15がグランド導体13と樹脂フィルム11を共に貫通しているが電極14までは貫通しておらず、第1の面11aにおいて電極14がバイアホール15を覆って形成されていることである。なお、バイアホール15は、フレキシブル基板1の製造過程において、例えばグランド導体13の一部をエッチングして開口部を形成してからその開口部の形成箇所に位置する樹脂フィルム11をレーザ加工により削除して形成することができる。   The characteristic of the flexible substrate 1 of the second embodiment is that the via hole 15 penetrates both the ground conductor 13 and the resin film 11 but does not penetrate to the electrode 14, and the electrode 14 is formed on the first surface 11 a. It is formed so as to cover the via hole 15. In the manufacturing process of the flexible substrate 1, the via hole 15 is formed, for example, by etching a part of the ground conductor 13 to form an opening, and then removing the resin film 11 located at the position where the opening is formed by laser processing. Can be formed.

したがって、この実施の形態2では、電極14はバイアホール15による開口部を有しないため、半田付けの際、溶融した半田3がバイアホール15を経由して第1の面11aまで這い上がってくるのを防止することができる。これにより、一対の信号導体12がバイアホール15を経由してはい上がってきた半田によって短絡するおそれがなくなり、信頼性をさらに向上させることができる。
その他の構成および作用効果は、実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。
Therefore, in the second embodiment, since the electrode 14 does not have an opening by the via hole 15, the molten solder 3 crawls up to the first surface 11a via the via hole 15 during soldering. Can be prevented. As a result, there is no possibility that the pair of signal conductors 12 will be short-circuited by the solder that has risen through the via hole 15, and the reliability can be further improved.
Other configurations and operational effects are the same as those in the first embodiment, and thus detailed description thereof is omitted here.

実施の形態3.
図5は本発明の実施の形態3におけるフレキシブル基板をリジッドな配線基板に接続した状態を示す斜視図、図6は同フレキシブル基板の半田付け端部の第2の面を示す平面図である。なお、図3および図4に示した実施の形態2と対応する構成部分には同一の符号を付す。
Embodiment 3 FIG.
FIG. 5 is a perspective view showing a state in which the flexible substrate according to Embodiment 3 of the present invention is connected to a rigid wiring substrate, and FIG. 6 is a plan view showing a second surface of the soldering end portion of the flexible substrate. Components corresponding to those in the second embodiment shown in FIGS. 3 and 4 are denoted by the same reference numerals.

この実施の形態3のフレキシブル基板1の特徴は、バイアホール15の断面形状が楕円形に形成されていることである。また、実施の形態2の場合と同様、第1の面11aにおいて電極14がバイアホール15を覆って形成されている。このように、バイアホール15の断面形状が楕円形に形成されることにより、実施の形態2の場合よりも配線基板2に対する接合強度を向上させることができる。
その他の構成および作用効果は、実施の形態2の場合と同様であるから、ここでは詳しい説明は省略する。
A feature of the flexible substrate 1 of the third embodiment is that the cross-sectional shape of the via hole 15 is formed in an elliptical shape. Further, as in the case of the second embodiment, the electrode 14 is formed so as to cover the via hole 15 on the first surface 11a. Thus, by forming the via hole 15 to have an elliptical cross-sectional shape, the bonding strength to the wiring board 2 can be improved as compared with the second embodiment.
Other configurations and operational effects are the same as those in the second embodiment, and thus detailed description thereof is omitted here.

実施の形態4.
図7は本発明の実施の形態4におけるフレキシブル基板を用いた光モジュールの平面図、図8は図7のC−C線に沿う断面図である。なお、図3および図4に示した実施の形態2と対応する構成部分には同一の符号を付す。
Embodiment 4 FIG.
FIG. 7 is a plan view of an optical module using a flexible substrate according to Embodiment 4 of the present invention, and FIG. 8 is a cross-sectional view taken along the line CC of FIG. Components corresponding to those in the second embodiment shown in FIGS. 3 and 4 are denoted by the same reference numerals.

この実施の形態4の光モジュール4は、ケース5内に光電変換用の光素子6、配線基板としてのモジュール端子2、およびフレキシブル基板1が収納され、また、ケース5を内外に貫通して外部信号端子7が設けられている。そして、モジュール端子2の上に光素子6が搭載されるとともに、フレキシブル基板1のグランド導体13がモジュール端子2の端子電極22に半田3で接合されている。また、光素子6とフレキシブル基板1の各信号導体12の一端がリードワイヤ8を介してそれぞれ電気的に接続され、各信号導体12の他端側は外部信号端子7に接続されている。   In the optical module 4 according to the fourth embodiment, an optical element 6 for photoelectric conversion, a module terminal 2 as a wiring board, and a flexible substrate 1 are housed in a case 5, and the case 5 penetrates the inside and outside of the case 5 to the outside. A signal terminal 7 is provided. The optical element 6 is mounted on the module terminal 2, and the ground conductor 13 of the flexible substrate 1 is joined to the terminal electrode 22 of the module terminal 2 with the solder 3. Further, one end of each signal conductor 12 of the optical element 6 and the flexible substrate 1 is electrically connected via the lead wire 8, and the other end side of each signal conductor 12 is connected to the external signal terminal 7.

この実施の形態4のように、光素子6と外部信号端子7とを電気的に接続する線路としてこのようなフレキシブル基板1を用いれば、微細配線が形成できるために光モジュール4を小型化できるという利点が得られる。しかも、このフレキシブル基板1の基材となる樹脂フィルム11は熱伝導率が低いので、ケース5の外部から光素子6への熱流入を抑えることができる。このため、光素子6の特性劣化を有効に防止することができる。   If such a flexible substrate 1 is used as a line for electrically connecting the optical element 6 and the external signal terminal 7 as in the fourth embodiment, the optical module 4 can be miniaturized because fine wiring can be formed. The advantage is obtained. Moreover, since the resin film 11 serving as the base material of the flexible substrate 1 has low thermal conductivity, heat inflow from the outside of the case 5 to the optical element 6 can be suppressed. For this reason, the characteristic deterioration of the optical element 6 can be effectively prevented.

なお、上記の実施の形態1〜3では、グランド導体13が半田3でリジッドな配線基板2に接続された構成について説明したが、これに限定されるものではなく、例えば樹脂フィルム11の第1の面11aにグランド導体13を、第2の面11bに信号導体12をそれぞれ形成し、信号導体12を半田3で配線基板2に接続する構成であっても、本発明を適用することが可能である。   In the first to third embodiments, the configuration in which the ground conductor 13 is connected to the rigid wiring board 2 with the solder 3 has been described. However, the present invention is not limited to this, and for example, the first of the resin film 11 is used. Even if the ground conductor 13 is formed on the first surface 11a and the signal conductor 12 is formed on the second surface 11b, and the signal conductor 12 is connected to the wiring board 2 with the solder 3, the present invention can be applied. It is.

本発明の実施の形態1におけるフレキシブル基板をリジッドな配線基板に接続した状態を示す斜視図である。It is a perspective view which shows the state which connected the flexible substrate in Embodiment 1 of this invention to the rigid wiring board. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 本発明の実施の形態2におけるフレキシブル基板をリジッドな配線基板に接続した状態を示す斜視図である。It is a perspective view which shows the state which connected the flexible substrate in Embodiment 2 of this invention to the rigid wiring board. 図3のB−B線に沿う断面図である。It is sectional drawing which follows the BB line of FIG. 本発明の実施の形態3におけるフレキシブル基板をリジッドな配線基板に接続した状態を示す斜視図である。It is a perspective view which shows the state which connected the flexible substrate in Embodiment 3 of this invention to the rigid wiring board. 同フレキシブル基板の半田付け端部における第2の面を示す平面図である。It is a top view which shows the 2nd surface in the soldering end part of the flexible substrate. 本発明の実施の形態4におけるフレキシブル基板を用いた光モジュールの平面図である。It is a top view of the optical module using the flexible substrate in Embodiment 4 of this invention. 図7のC−C線に沿う断面図である。It is sectional drawing which follows the CC line of FIG.

符号の説明Explanation of symbols

1 フレキシブル基板、2 配線基板、3 半田、4 光モジュール、6 光素子、
11 樹脂フィルム、11a 第1の面、11b 第2の面、
12 信号導体(第1導体)、13 グランド導体(第2導体)、14 電極、
15 バイアホール、16 導体。
1 Flexible board, 2 Wiring board, 3 Solder, 4 Optical module, 6 Optical element,
11 resin film, 11a first surface, 11b second surface,
12 signal conductor (first conductor), 13 ground conductor (second conductor), 14 electrodes,
15 via holes, 16 conductors.

Claims (4)

可撓性の樹脂フィルムの互いに対向する第1と第2の面上にそれぞれ第1導体と第2導体が形成され、上記第1の面には、上記第1導体と分離した位置に電極が設けられ、この電極と上記第2の面に形成された第2導体とがバイアホール内の導体を介して接続されていることを特徴とするマイクロストリップ線路を有するフレキシブル基板。 A first conductor and a second conductor are respectively formed on the first and second surfaces of the flexible resin film facing each other, and electrodes are provided on the first surface at positions separated from the first conductor. A flexible substrate having a microstrip line, wherein the electrode is connected to a second conductor formed on the second surface via a conductor in a via hole. 上記電極は、上記第1の面においてバイアホールを覆って形成されていることを特徴とするマイクロストリップ線路を有するフレキシブル基板。 The flexible substrate having a microstrip line, wherein the electrode is formed so as to cover a via hole on the first surface. 上記バイアホールは断面形状が楕円形に形成されていることを特徴とする請求項1または請求項2に記載のマイクロストリップ線路を有するフレキシブル基板。 The flexible substrate having a microstrip line according to claim 1 or 2, wherein the via hole has an elliptical cross-sectional shape. 上記請求項1〜3のいずれか1項に記載のマイクロストリップ線路を有するフレキシブル基板を備えてなる光モジュール。 An optical module comprising a flexible substrate having the microstrip line according to any one of claims 1 to 3.
JP2007018859A 2007-01-30 2007-01-30 Flexible board with microstrip line, and optical module using the same Pending JP2008187428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007018859A JP2008187428A (en) 2007-01-30 2007-01-30 Flexible board with microstrip line, and optical module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007018859A JP2008187428A (en) 2007-01-30 2007-01-30 Flexible board with microstrip line, and optical module using the same

Publications (1)

Publication Number Publication Date
JP2008187428A true JP2008187428A (en) 2008-08-14

Family

ID=39730174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018859A Pending JP2008187428A (en) 2007-01-30 2007-01-30 Flexible board with microstrip line, and optical module using the same

Country Status (1)

Country Link
JP (1) JP2008187428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029912A1 (en) * 2010-09-03 2012-03-08 日亜化学工業株式会社 Light emitting device, and package array for light emitting device
JP7457497B2 (en) 2019-12-20 2024-03-28 CIG Photonics Japan株式会社 optical module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029912A1 (en) * 2010-09-03 2012-03-08 日亜化学工業株式会社 Light emitting device, and package array for light emitting device
CN103190009A (en) * 2010-09-03 2013-07-03 日亚化学工业株式会社 Light emitting device, and package array for light emitting device
JP5803926B2 (en) * 2010-09-03 2015-11-04 日亜化学工業株式会社 Light emitting device and light emitting device package array
US9461207B2 (en) 2010-09-03 2016-10-04 Nichia Corporation Light emitting device, and package array for light emitting device
JP7457497B2 (en) 2019-12-20 2024-03-28 CIG Photonics Japan株式会社 optical module

Similar Documents

Publication Publication Date Title
CN106680959B (en) Optical element package and optical element device
US9866738B2 (en) Manufacturing method of semiconductor apparatus, semiconductor apparatus, and endoscope
JP6068649B2 (en) Electronic device mounting substrate and electronic device
JP4527646B2 (en) Electronic equipment
JP4125570B2 (en) Electronic equipment
JP6430160B2 (en) Optical module and optical module manufacturing method
US11337597B2 (en) Imaging module and method of manufacturing the same
US9414502B2 (en) Flat cable assembly and method of assembling the same
JP6570976B2 (en) Optical module
JP7049500B2 (en) Substrate for mounting semiconductor devices and semiconductor devices
JP7063695B2 (en) Optical module
US9922918B2 (en) Substrate for stacked module, stacked module, and method for manufacturing stacked module
JP2008187428A (en) Flexible board with microstrip line, and optical module using the same
JP4903738B2 (en) Electronic component storage package and electronic device
JP2006253569A (en) Flexible wiring board and semiconductor device using the same
CN110658956B (en) Ultrasonic touch device and manufacturing method thereof
JP2005101026A (en) Junction structure of flexible substrate, manufacturing method thereof, and high-speed optical transmission module
JP2008306033A (en) Optical module
JP6144578B2 (en) Imaging device mounting substrate and imaging device
JP2006303086A (en) Semiconductor device
JP4127652B2 (en) Optical module
JP4842522B2 (en) Optical module
JP2005159125A (en) Wiring board
JP6001415B2 (en) Optical device substrate and optical device
JP3716199B2 (en) Semiconductor element storage package and semiconductor device