JP2008185496A - Bearing apparatus for wheel with sensor - Google Patents

Bearing apparatus for wheel with sensor Download PDF

Info

Publication number
JP2008185496A
JP2008185496A JP2007020376A JP2007020376A JP2008185496A JP 2008185496 A JP2008185496 A JP 2008185496A JP 2007020376 A JP2007020376 A JP 2007020376A JP 2007020376 A JP2007020376 A JP 2007020376A JP 2008185496 A JP2008185496 A JP 2008185496A
Authority
JP
Japan
Prior art keywords
sensor
strain
bearing device
output
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007020376A
Other languages
Japanese (ja)
Other versions
JP4919827B2 (en
Inventor
Toru Takahashi
亨 高橋
Kentaro Nishikawa
健太郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007020376A priority Critical patent/JP4919827B2/en
Priority to PCT/JP2008/000072 priority patent/WO2008093491A1/en
Publication of JP2008185496A publication Critical patent/JP2008185496A/en
Application granted granted Critical
Publication of JP4919827B2 publication Critical patent/JP4919827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing apparatus for wheels with sensors capable of easily and accurately detecting the state of load of bearings. <P>SOLUTION: In the bearing apparatus for wheels in which double-row rolling elements are interposed between an outer member and an inner member, a distortion sensor 21 and a processing circuit 40 are mounted to a fixed-side member among the outer member and the inner member. The distortion sensor 21 includes both a distortion generating member fixed to the fixed-side member and a sensor element 23 for distortion measurement mounted to the distortion generating member. The processing circuit 40 processes distortion signals output from the sensor element 23 of the distortion sensor 21. The processing circuit 40 has an offset regulating means 42 for regulating offset of output of the sensor element 23. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付き車輪用軸受装置に関する。   The present invention relates to a sensor-equipped wheel bearing device incorporating a load sensor for detecting a load applied to a bearing portion of the wheel.

従来、自動車の安全走行のために、各車輪の回転速度を検出するセンサを車輪用軸受に設けたものがある。従来の一般的な自動車の走行安全性確保対策は、各部の車輪の回転速度を検出することで行われているが、車輪の回転速度だけでは十分でなく、その他のセンサ信号を用いてさらに安全面の制御が可能なことが求められている。   2. Description of the Related Art Conventionally, there is a wheel bearing provided with a sensor for detecting the rotational speed of each wheel for safe driving of an automobile. Conventional measures to ensure driving safety of general automobiles are performed by detecting the rotational speed of the wheels of each part, but the rotational speed of the wheels is not sufficient, and it is further safer by using other sensor signals. It is required that the surface can be controlled.

そこで、車両走行時に各車輪に作用する荷重から姿勢制御を図ることも考えられる。例えばコーナリングにおいては外側車輪に大きな荷重がかかり、また左右傾斜面走行では片側車輪に、ブレーキングにおいては前輪にそれぞれ荷重が片寄るなど、各車輪にかかる荷重は均等ではない。また、積載荷重不均等の場合にも各車輪にかかる荷重は不均等になる。このため、車輪にかかる荷重を随時検出できれば、その検出結果に基づき、事前にサスペンション等を制御することで、車両走行時の姿勢制御(コーナリング時のローリング防止、ブレーキング時の前輪沈み込み防止、積載荷重不均等による沈み込み防止等)を行うことが可能となる。しかし、車輪に作用する荷重を検出するセンサの適切な設置場所がなく、荷重検出による姿勢制御の実現が難しい。   Therefore, it is conceivable to control the posture from the load acting on each wheel during vehicle travel. For example, a large load is applied to the outer wheel in cornering, and the load applied to each wheel is not uniform. In addition, even when the load is uneven, the load applied to each wheel is uneven. For this reason, if the load applied to the wheel can be detected at any time, the suspension control etc. is controlled in advance based on the detection result, thereby controlling the attitude during vehicle travel (preventing rolling during cornering, preventing the front wheel from sinking during braking, It is possible to prevent subsidence due to uneven load capacity. However, there is no appropriate installation location of a sensor that detects a load acting on the wheel, and it is difficult to realize posture control by load detection.

また、今後ステアバイワイヤが導入されて、車軸とステアリングが機械的に結合しないシステムになってくると、車軸方向荷重を検出して運転手が握るハンドルに路面情報を伝達することが求められる。   In addition, when steer-by-wire is introduced in the future and the system becomes a system in which the axle and the steering are not mechanically coupled, it is required to detect the axle direction load and transmit the road surface information to the handle held by the driver.

このような要請に応えるものとして、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受が提案されている(例えば特許文献1)。
特表2003−530565号公報
As a response to such a demand, a wheel bearing has been proposed in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 1).
Special table 2003-530565 gazette

車輪用軸受の外輪は、転走面を有し、強度が求められる部品であって、塑性加工や、旋削加工、熱処理、研削加工などの複雑な工程を経て生産される軸受部品であるため、特許文献1のように外輪に歪みゲージを貼り付けるのでは、生産性が悪く、量産時のコストが高くなるという問題点がある。また、外輪の歪みを感度良く検出することが難しく、その検出結果を車両走行時の姿勢制御に利用した場合、制御の精度が問題となる。   The outer ring of the wheel bearing is a part that has a rolling surface and requires strength, and is a bearing part that is produced through complicated processes such as plastic working, turning, heat treatment, and grinding. When a strain gauge is attached to the outer ring as in Patent Document 1, there is a problem that productivity is poor and the cost for mass production is high. In addition, it is difficult to detect the distortion of the outer ring with high sensitivity, and when the detection result is used for attitude control during vehicle travel, the accuracy of control becomes a problem.

そこで、歪み発生部材に歪み測定用のセンサ素子を取付けて歪みセンサとし、この歪みセンサを外輪の周面に取付けることを試みた。試行錯誤の結果、外輪歪みの検出感度を向上させるためには、歪み発生部材は外輪に対して2箇所の接触固定部を有するものであって、これら接触固定部のうち片方の接触固定部を外輪のフランジ面に固定し、もう片方の接触固定部を外輪の外周面に固定するのが良いことが分かった。   Therefore, an attempt was made to attach a strain measuring sensor element to the strain generating member to form a strain sensor, and to attach the strain sensor to the outer ring. As a result of trial and error, in order to improve the detection sensitivity of the outer ring distortion, the strain generating member has two contact fixing parts with respect to the outer ring, and one of these contact fixing parts is provided with one of the contact fixing parts. It has been found that it is better to fix to the flange surface of the outer ring and fix the other contact fixing part to the outer peripheral surface of the outer ring.

しかし、このような構成とした場合にも、以下に挙げるような問題がある。
・ 歪みセンサを外輪等にボルト等で固定すると、その力によってセンサ部材に変形が生じ、センサ信号のオフセットが取り付け状態によって変化してしまう。
・ センサ素子が厚膜抵抗体などからなる場合、製造上のばらつきによるオフセットもあり、軸受に歪みセンサを取り付けた状態での出力ばらつきを抑えられない。
・ 歪みセンサで検出したい軸受荷重による歪み量は軸受の剛性が高いため非常に小さく、上記理由により発生するオフセットを増幅前のセンサ信号から取り除いておく必要がある。
However, even with such a configuration, there are the following problems.
-When the strain sensor is fixed to the outer ring or the like with a bolt or the like, the force causes deformation of the sensor member, and the offset of the sensor signal changes depending on the mounting state.
• When the sensor element is made of a thick film resistor, etc., there is an offset due to manufacturing variations, and output variations with a strain sensor attached to the bearing cannot be suppressed.
The amount of strain due to the bearing load that is to be detected by the strain sensor is very small due to the high rigidity of the bearing, and it is necessary to remove the offset generated for the above reasons from the sensor signal before amplification.

この発明の目的は、軸受の荷重状態を簡単で正確に検出できるセンサ付き車輪用軸受装置を提供することである。   An object of the present invention is to provide a wheel bearing device with a sensor that can easily and accurately detect a load state of a bearing.

この発明のセンサ付き車輪用軸受装置は、複列の転走面が内周に形成された外方部材と、前記各転走面に対向する転走面を外周に有する内方部材と、各列の転走面間に介在した複列の転走面を有する転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置において、
前記外方部材および内方部材のうちの固定側部材に固定された歪み発生部材、およびこの歪み発生部材に取付けられた歪み測定用のセンサ素子を含む歪みセンサと、この歪みセンサの前記センサ素子の出力する歪み信号を処理する処理回路とを備え、
この処理回路は、前記センサ素子の出力のオフセットを調整するオフセット調整手段を有することを特徴とする。
この構成によると、歪みセンサにおけるセンサ素子の出力のオフセットを処理回路のオフセット調整手段で調整するようにされているので、センサ付き車輪用軸受装置の組立完成状態でセンサ出力を、例えばゼロ点調整できる。これにより、センサ付き車輪用軸受装置の単体で荷重が印加されていない状態でのセンサ出力値を正確に把握できる。また、センサ素子の特性ばらつきと、歪みセンサの取り付け歪みとを合わせて補正することができる。その結果、軸受装置で検出した荷重信号が適正に校正された状態で出力され、信号を利用する車体側では軸受の荷重状態を簡単で正確に得ることができる。
The sensor-equipped wheel bearing device according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the respective rolling surfaces on the outer periphery, In a wheel bearing device comprising a rolling element having a double-row rolling surface interposed between the rolling surfaces of the row, and rotatably supporting the wheel with respect to the vehicle body,
A strain generating member including a strain generating member fixed to a fixed side member of the outer member and the inner member, a strain measuring sensor element attached to the strain generating member, and the sensor element of the strain sensor And a processing circuit for processing the distortion signal output from
This processing circuit has an offset adjusting means for adjusting an offset of the output of the sensor element.
According to this configuration, since the offset of the output of the sensor element in the strain sensor is adjusted by the offset adjusting means of the processing circuit, the sensor output can be adjusted, for example, by zero adjustment in the assembled state of the wheel bearing device with sensor. it can. Thereby, the sensor output value in the state where the load is not applied with the single-piece | unit of the wheel bearing apparatus with a sensor can be grasped | ascertained correctly. In addition, it is possible to correct the sensor element characteristic variation and the strain sensor mounting distortion together. As a result, the load signal detected by the bearing device is output in a properly calibrated state, and the load state of the bearing can be obtained easily and accurately on the vehicle body side using the signal.

この発明において、前記オフセット調整手段が、可変抵抗器、またはレーザトリミング抵抗素子を有する回路、またはオフセット調整する設定値の記憶機能を有するマイクロコンピュータのうちのいずれかであっても良い。オフセット調整手段が上記のいずれかである場合、簡単な構成で精度良くオフセット調整することができる。   In the present invention, the offset adjusting means may be any one of a variable resistor, a circuit having a laser trimming resistor element, or a microcomputer having a setting value storage function for offset adjustment. When the offset adjusting means is any one of the above, the offset adjustment can be performed with a simple configuration with high accuracy.

この発明において、前記固定側部材が外方部材であって、前記歪み発生部材が外方部材に取付けられたものでも良い。外方部材の場合は環状の部材となるため、内方部材に比べて取付箇所が得易い。   In this invention, the fixed side member may be an outer member, and the strain generating member may be attached to the outer member. In the case of an outer member, since it becomes an annular member, an attachment location is easy to obtain compared with an inner member.

上記のように固定側部材が外方部材であって、歪み発生部材が外方部材に取付けられたものである場合に、前記固定側部材の車体への取り付け力を前記センサの出力で検出する車体取付力検出手段と、この車体取付力検出手段により検出された取り付け力が設定範囲内であるか否かを判定して設定範囲外であるとアラーム信号を出力する取付異常判定手段を設けても良い。
固定側部材の車体への取り付け力が変化すると、固定側部材に固定された歪み発生部材の歪みが変化する。そのため固定側部材の車体への取り付け力を前記センサの出力で検出することができる。このように取り付け力が検出でき、固定側部材が異常な取り付け力で車体に取り付けられると、取付異常判定手段からアラーム信号が出力されるので、そのアラーム信号によって取り付け状態の異常を知ることができる。また、取付異常判定手段の判定をセンサ状態の品質管理基準として利用できる。さらに、センサ付き車輪用軸受装置の車体への取付状態を管理することができるので、より正確な荷重測定が可能となる。
As described above, when the fixed side member is an outer member and the strain generating member is attached to the outer member, the mounting force of the fixed side member to the vehicle body is detected by the output of the sensor. There is provided a vehicle body attachment force detecting means and an attachment abnormality determining means for determining whether or not the attachment force detected by the vehicle body attachment force detection means is within a set range and outputting an alarm signal if it is outside the set range. Also good.
When the attachment force of the stationary member to the vehicle body changes, the strain of the strain generating member fixed to the stationary member changes. Therefore, the attachment force of the stationary member to the vehicle body can be detected by the output of the sensor. In this way, the attachment force can be detected, and when the stationary member is attached to the vehicle body with an abnormal attachment force, an alarm signal is output from the attachment abnormality determination means, so the abnormality in the attachment state can be known by the alarm signal. . Further, the determination of the attachment abnormality determination means can be used as a quality control reference for the sensor state. Furthermore, since the mounting state of the sensor-equipped wheel bearing device to the vehicle body can be managed, more accurate load measurement is possible.

この発明のセンサ付き車輪用軸受装置は、複列の転走面が内周に形成された外方部材と、前記各転走面に対向する転走面を外周に有する内方部材と、各列の転走面間に介在した複列の転走面を有する転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置において、前記外方部材および内方部材のうちの固定側部材に固定された歪み発生部材、およびこの歪み発生部材に取付けられた歪み測定用のセンサ素子を含む歪みセンサと、この歪みセンサの前記センサ素子の出力する歪み信号を処理する処理回路とを備え、この処理回路は、前記センサ素子の出力のオフセットを調整するオフセット調整手段を有するものとしたため、軸受で検出した荷重信号が処理回路により適正に校正された状態で出力され、信号を利用する車体側で軸受の荷重状態を簡単で正確に得ることができる。   The sensor-equipped wheel bearing device according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the respective rolling surfaces on the outer periphery, And a rolling element having a double-row rolling surface interposed between the rolling surfaces of the row, wherein the wheel bearing device supports the wheel rotatably with respect to the vehicle body. A strain generating member fixed to the fixed side member of the sensor, a strain sensor including a sensor element for strain measurement attached to the strain generating member, and a processing circuit for processing a strain signal output from the sensor element of the strain sensor The processing circuit has offset adjusting means for adjusting the offset of the output of the sensor element, so that the load signal detected by the bearing is output after being properly calibrated by the processing circuit. Body to use In can be obtained accurately and simply load condition of the bearing.

この発明の実施形態を図1ないし図13と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付き車輪用軸受装置における軸受装置は、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受装置は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が外向きとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、密封装置7,8によりそれぞれ密封されている。   The bearing device in this sensor-equipped wheel bearing device includes an outer member 1 in which double-row rolling surfaces 3 are formed on the inner periphery, and an inner member in which rolling surfaces 4 that face the respective rolling surfaces 3 are formed. 2 and double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the outer member 1 and the inner member 2. This wheel bearing device is a double-row angular ball bearing type, and the rolling elements 5 are formed of balls, and are held by a cage 6 for each row. The rolling surfaces 3 and 4 are arc-shaped in cross section, and each rolling surface 3 and 4 is formed so that the contact angle is outward. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by sealing devices 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックルに取付けるフランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所に車体取付孔14が設けられている。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、ホイールおよび制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a flange 1a attached to the knuckle in the suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with vehicle body mounting holes 14 at a plurality of locations in the circumferential direction.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a brake component (not shown) protrudes toward the outboard side.

固定側部材である外方部材1の外周部には、歪みセンサ21と、センサ信号処理回路を有するセンサ信号処理回路ユニット25とが設けられている。歪みセンサ21は、歪み発生部材22に、この歪み発生部材22の歪みを測定するセンサ素子23等を取付けたものである。   A strain sensor 21 and a sensor signal processing circuit unit 25 having a sensor signal processing circuit are provided on the outer peripheral portion of the outer member 1 which is a fixed side member. The strain sensor 21 is obtained by attaching a sensor element 23 or the like for measuring the strain of the strain generating member 22 to the strain generating member 22.

前記歪みセンサ21の一構成例を図4に示す。この歪みセンサ21において、歪み発生部材22は、外方部材1のフランジ1aにおける車体取付孔14の近傍のフランジ面に接触固定される第1の接触固定部22aと、外方部材1の外周面に接触固定される第2の接触固定部22bとを有している。また、歪み発生部材22は、前記第1の接触固定部22aを含む径方向に沿った径方向部位22cと、前記第2の接触固定部22bを含む軸方向に沿った軸方向部位22dとでL字の形状に構成されている。径方向部位22cは、軸方向部位22dに比べ、剛性が低くなるよう肉厚を薄くしてある。歪み測定用センサ素子23は、この剛性の低い径方向部位22cに取り付けられている。   One structural example of the strain sensor 21 is shown in FIG. In the strain sensor 21, the strain generating member 22 includes a first contact fixing portion 22 a that is fixed to the flange surface of the flange 1 a of the outer member 1 in the vicinity of the vehicle body mounting hole 14, and an outer peripheral surface of the outer member 1. And a second contact fixing portion 22b fixed to the contact. The strain generating member 22 includes a radial portion 22c along the radial direction including the first contact fixing portion 22a and an axial portion 22d along the axial direction including the second contact fixing portion 22b. It is configured in an L shape. The radial portion 22c is thinned so as to be less rigid than the axial portion 22d. The strain measuring sensor element 23 is attached to the low-rigidity radial portion 22c.

上記歪みセンサ21は、図1および図2に示すように、歪み発生部材22の第1および第2の接触固定部22a,22bにより、両接触固定部22a,22bが外方部材1の周方向に対して同位相の位置となるように、外方部材1の外周部に固定される。第1および第2の接触固定部22a,22bを周方向において同位相とすると、歪み発生部材22の長さを短くすることができるため、歪みセンサ21の設置が容易である。歪み測定用センサ素子23は、歪み発生部材22に例えば接着剤を用いて固定される。   As shown in FIGS. 1 and 2, the strain sensor 21 includes the first and second contact fixing portions 22 a and 22 b of the strain generating member 22 so that both contact fixing portions 22 a and 22 b are in the circumferential direction of the outer member 1. Are fixed to the outer peripheral portion of the outer member 1 so as to be in the same phase. When the first and second contact fixing portions 22a and 22b are in the same phase in the circumferential direction, the strain generating member 22 can be shortened, so that the strain sensor 21 can be easily installed. The strain measuring sensor element 23 is fixed to the strain generating member 22 using, for example, an adhesive.

歪み発生部材22は、外方部材1への固定により塑性変形を起こさない形状や材質とされている。また、歪み発生部材22は、車輪用軸受装置に予想される最大の荷重が印加された場合でも、塑性変形を起こさない形状とする必要がある。上記の想定される最大の力は、車両故障につながらない走行において想定される最大の力である。歪み発生部材22に塑性変形が生じると、外方部材1の変形が歪み発生部材22に正確に伝わらず、歪みの測定に影響を及ぼすためである。   The strain generating member 22 has a shape or material that does not cause plastic deformation by being fixed to the outer member 1. Further, the strain generating member 22 needs to have a shape that does not cause plastic deformation even when the maximum expected load is applied to the wheel bearing device. The above assumed maximum force is the maximum force assumed in traveling that does not lead to vehicle failure. This is because, when plastic deformation occurs in the strain generating member 22, the deformation of the outer member 1 is not accurately transmitted to the strain generating member 22 and affects the measurement of strain.

この歪みセンサ21の歪み発生部材22は、例えば鋼材等の金属材から、プレス加工により製作することができる。歪み発生部材22をプレス加工品とすると、コストダウンが可能になる。
また、歪み発生部材22は、金属粉末射出成形による焼結金属品としてもよい。金属粉末射出成形は、金属、金属間化合物等の成形技術の一つであり、金属粉末をバインダーと混練する工程、この混練物を用いて射出成型する工程、成形体の脱脂処理を行なう工程、成形体の焼結を行なう工程を含む。この金属粉末射出成形によれば、一般の粉末冶金に比べて焼結密度の高い焼結体が得られ、焼結金属品を高い寸法精度で製作することができ、また機械的強度も高いという利点がある。
The strain generating member 22 of the strain sensor 21 can be manufactured from a metal material such as a steel material, for example, by pressing. If the strain generating member 22 is a press-processed product, the cost can be reduced.
Further, the strain generating member 22 may be a sintered metal product by metal powder injection molding. Metal powder injection molding is one of the molding techniques for metals, intermetallic compounds, etc., a step of kneading metal powder with a binder, a step of injection molding using this kneaded product, a step of degreasing the molded body, Including a step of sintering the compact. According to this metal powder injection molding, a sintered body having a higher sintering density than that of general powder metallurgy can be obtained, and sintered metal products can be manufactured with high dimensional accuracy, and mechanical strength is also high. There are advantages.

歪み測定用センサ素子23としては、種々のものを使用することができる。例えば、歪み測定用センサ素子23が金属箔ストレインゲージで構成されている場合、この金属箔ストレインゲージの耐久性を考慮すると、車輪用軸受装置に予想される最大の荷重が印加された場合でも、歪み発生部材22における歪み測定用センサ素子23の取り付け部分の歪み量が1500マイクロストレイン以下であることが好ましい。同様の理由から、歪み測定用センサ素子23が半導体ストレインゲージで構成されている場合は、同歪み量が1000マイクロストレイン以下であることが好ましい。また、歪み測定用センサ素子23が厚膜式センサで構成されている場合は、同歪み量が1500マイクロストレイン以下であることが好ましい。   As the strain measuring sensor element 23, various elements can be used. For example, when the strain measuring sensor element 23 is composed of a metal foil strain gauge, considering the durability of the metal foil strain gauge, even when the maximum expected load is applied to the wheel bearing device, It is preferable that the strain amount of the attachment portion of the strain measuring sensor element 23 in the strain generating member 22 is 1500 microstrain or less. For the same reason, when the strain measuring sensor element 23 is composed of a semiconductor strain gauge, the strain amount is preferably 1000 microstrain or less. Further, when the strain measuring sensor element 23 is constituted by a thick film type sensor, the amount of strain is preferably 1500 microstrain or less.

図5は、歪みセンサ21の他の構成例を示す。この歪みセンサ21では、板材をL字状に折り曲げて歪み発生部材22が形成され、その径方向片22Aおよび軸方向片22Bのそれぞれにボルト挿通孔31,32が形成されている。歪み測定用センサ素子23は径方向片22Aの片面に固定される。この歪み発生部材22は、図6に示すように、2つの接触固定部材33,34を介して外方部材1の外周部に、ボルト39で締結される。すなわち、径方向片22Aのボルト挿通孔31から第1の接触固定部材33のボルト挿通孔35に挿通させたボルト39を、外方部材1のフランジ1aにおける車体取付孔14の近傍のフランジ面に設けられねじ孔37に螺合させ、軸方向片22Bのボルト挿通孔32から第2の接触固定部材34のボルト挿通孔36に挿通させたボルト39を、外方部材1の外周面に設けられたねじ孔38に螺合させることで、歪み発生部材22が外方部材1に締結される。   FIG. 5 shows another configuration example of the strain sensor 21. In the strain sensor 21, a plate member is bent into an L shape to form a strain generating member 22, and bolt insertion holes 31 and 32 are formed in the radial piece 22A and the axial piece 22B, respectively. The strain measuring sensor element 23 is fixed to one surface of the radial piece 22A. As shown in FIG. 6, the strain generating member 22 is fastened to the outer peripheral portion of the outer member 1 with bolts 39 via two contact fixing members 33 and 34. That is, the bolt 39 inserted from the bolt insertion hole 31 of the radial piece 22A into the bolt insertion hole 35 of the first contact fixing member 33 is applied to the flange surface in the vicinity of the vehicle body mounting hole 14 in the flange 1a of the outer member 1. A bolt 39 is provided on the outer peripheral surface of the outer member 1 and is screwed into the screw hole 37 and inserted into the bolt insertion hole 36 of the second contact fixing member 34 from the bolt insertion hole 32 of the axial piece 22B. The strain generating member 22 is fastened to the outer member 1 by being screwed into the screw hole 38.

図5の歪みセンサ21において、歪み発生部材22の径方向片22Aには4つの歪み測定用センサ素子23が配置される。この場合の歪み発生部材22の歪みは、固定部分から折れ曲がり角部22Cに向けて大きくなる傾向にあり、できるだけ折れ曲がり角部22Cに近い位置に歪み測定用センサ素子23を配置するのが望ましい。計算による結果を図7にグラフで示すように、歪み発生部材22の板厚をtとして、折れ曲がり角部22Cからのセンサ素子配置位置までの距離xを、x<3tの範囲とすると、効率良く歪みを検出できることが分かっている。   In the strain sensor 21 of FIG. 5, four strain measuring sensor elements 23 are arranged on the radial piece 22 </ b> A of the strain generating member 22. In this case, the distortion of the distortion generating member 22 tends to increase from the fixed portion toward the bent corner portion 22C, and it is desirable to dispose the strain measuring sensor element 23 as close to the bent corner portion 22C as possible. As shown in the graph of FIG. 7 as a result of the calculation, when the thickness x of the strain generating member 22 is t, and the distance x from the bent corner portion 22C to the sensor element arrangement position is in the range of x <3t, it is efficient. It has been found that distortion can be detected.

そこで、この歪みセンサ21では、歪み発生部材22の径方向片22Aにおける歪みを受ける部分(折れ曲がり角部22Cに近い部分)に2つの歪み測定用センサ素子23を配置し、さらに歪みの影響を受けない部分(折れ曲がり角部22Cから遠い部分)に他の2つの歪み測定用センサ素子23を配置している。   In view of this, in the strain sensor 21, two strain measurement sensor elements 23 are disposed in a portion of the strain generating member 22 that receives the strain in the radial piece 22A (portion close to the bent corner portion 22C), and is further affected by the strain. The other two strain measuring sensor elements 23 are arranged in a portion (a portion far from the bent corner portion 22C) that is not present.

図8は、歪みセンサ21のさらに他の構成例を示す。この歪みセンサ21では、図5の歪みセンサ21において、歪み発生部材22の径方向片22Aにおける歪みを受ける部分(折れ曲がり角部22Cに近い部分)に、同じ特性、または特性の異なる2つの歪み測定用センサ素子23を配置し、歪みの影響を受けない部分(折れ曲がり角部22Cから遠い部分)には歪み測定用センサ素子23を配置していない。その他の構成は図5の歪みセンサ21の場合と同様である。   FIG. 8 shows still another configuration example of the strain sensor 21. In the strain sensor 21, in the strain sensor 21 of FIG. 5, two strain measurements having the same characteristics or different characteristics are applied to a portion (a portion close to the bent corner portion 22 </ b> C) that receives the strain in the radial piece 22 </ b> A. The sensor element 23 for distortion is arranged, and the sensor element 23 for distortion measurement is not arranged in a part not affected by the distortion (a part far from the bent corner part 22C). Other configurations are the same as those of the strain sensor 21 of FIG.

センサ信号処理回路ユニット25は、図3に示すように、樹脂等で製作されたハウジング26内に、ガラスエポキシ等で製作された回路基板27を有し、その回路基板27上には、前記歪み測定用センサ素子23の出力信号を処理する処理回路40(図9)の回路構成部品であるオペアンプ、抵抗、マイコン等や、歪み測定用センサ素子23等を駆動する電源用の電気・電子部品28が配置されている。また、歪み測定用センサ素子23等の配線と回路基板27とを接合する接合部29を有している。また、外部からの電源供給や外部へ処理回路40によって処理された出力信号を出力するケーブル30を有している。   As shown in FIG. 3, the sensor signal processing circuit unit 25 has a circuit board 27 made of glass epoxy or the like in a housing 26 made of resin or the like. An operational amplifier, a resistor, a microcomputer, etc., which are circuit components of the processing circuit 40 (FIG. 9) for processing the output signal of the measurement sensor element 23, and an electric / electronic component 28 for power supply that drives the strain measurement sensor element 23, etc. Is arranged. Further, a joint portion 29 is provided for joining the wiring such as the strain measuring sensor element 23 and the circuit board 27. In addition, it has a cable 30 for supplying power from the outside and outputting an output signal processed by the processing circuit 40 to the outside.

図9は、前記センサ信号処理回路ユニット25における処理回路40の一構成例を示すブロック図である。この処理回路40は、増幅回路41、オフセット調整回路42、記憶手段43、各種の補正回路44、外部インタフェース45、信号出力回路46、およびコントロール回路47を有する。コントロール回路47は、前記オフセット調整回路42、記憶手段43、補正回路44、および信号出力回路46のうちのいずれかを制御する制御回路である。   FIG. 9 is a block diagram showing a configuration example of the processing circuit 40 in the sensor signal processing circuit unit 25. The processing circuit 40 includes an amplifier circuit 41, an offset adjustment circuit 42, a storage unit 43, various correction circuits 44, an external interface 45, a signal output circuit 46, and a control circuit 47. The control circuit 47 is a control circuit that controls any of the offset adjustment circuit 42, the storage unit 43, the correction circuit 44, and the signal output circuit 46.

図10には、歪みセンサ21の検出回路と、その出力信号を増幅する増幅回路41との接続構成の一例を示す。この場合の歪みセンサ21は、図5および図6に示す構成例のものであって、その検出回路は、歪みを受ける位置の2つの歪み測定用センサ素子23(S1)と、歪みの影響を受けない位置の2つの歪み測定用センサ素子23(S2)とを、ブリッジ接続して構成される。増幅回路41はオペアンプからなる。なお、歪みの影響を受けない位置の2つの歪み測定用センサ素子23(S2)に代えて、固定抵抗を設けても良い。
このように、歪みを受ける位置の2つの歪み測定用センサ素子23(S1)と、歪みの影響を受けない位置の2つの歪み測定用センサ素子23(S2)とをブリッジ接続して検出回路を構成すると、歪み信号出力が2倍の振幅となり検出感度を高めることができる。基本的には、この歪み信号出力を増幅回路41で増幅した信号により、つまり、図9の回路におけるA部の構成だけで車輪用軸受装置にかかる荷重を検出することができる。
FIG. 10 shows an example of a connection configuration between the detection circuit of the strain sensor 21 and the amplification circuit 41 that amplifies the output signal. The strain sensor 21 in this case is of the configuration example shown in FIGS. 5 and 6, and the detection circuit has two strain measurement sensor elements 23 (S 1) at the position where the strain is received and the influence of the strain. Two strain measurement sensor elements 23 (S2) at positions not received are bridge-connected. The amplifier circuit 41 is composed of an operational amplifier. A fixed resistor may be provided in place of the two strain measuring sensor elements 23 (S2) at positions not affected by the strain.
In this way, the two strain measurement sensor elements 23 (S1) at the position where the distortion is received and the two strain measurement sensor elements 23 (S2) at the position where the distortion is not affected are bridge-connected to form a detection circuit. When configured, the distortion signal output has twice the amplitude and the detection sensitivity can be increased. Basically, the load applied to the wheel bearing device can be detected by a signal obtained by amplifying the distortion signal output by the amplifier circuit 41, that is, only by the configuration of the portion A in the circuit of FIG.

しかし、歪みセンサ21の歪み測定用センサ素子23が例えば厚膜抵抗体などからなる場合には製造上のばらつきがあるため、歪みセンサ21の出力信号には個体差による初期オフセットが生じる。また、歪みセンサ21が例えば図5ないし図8に示した構成のものであると、歪み発生部材22を車輪用軸受装置(ここでは外方部材1)に固定するときにボルト39で締結するため、締結に伴い印加される固定力による歪みが歪み発生部材22に加わり、その歪み分だけ歪みセンサ21の出力信号がさらに変化することになる。これらのオフセットは検出対象の軸受装置の歪み信号よりも大きくなるのが通常である。そこで、歪みセンサ21の次段の増幅回路41で、検出対象の軸受装置の歪み信号のゲインを高くするためには、歪みセンサ21の出力信号に含まれる上記したオフセットを取り除く必要がある。   However, when the strain-measuring sensor element 23 of the strain sensor 21 is made of, for example, a thick film resistor, there is a manufacturing variation, and therefore an initial offset due to individual differences occurs in the output signal of the strain sensor 21. Further, when the strain sensor 21 has the structure shown in FIGS. 5 to 8, for example, the bolt 39 is used to fasten the strain generating member 22 to the wheel bearing device (the outer member 1 in this case). The distortion due to the fixing force applied with the fastening is applied to the distortion generating member 22, and the output signal of the distortion sensor 21 is further changed by the distortion. These offsets are usually larger than the distortion signal of the bearing device to be detected. Therefore, in order to increase the gain of the strain signal of the bearing device to be detected in the amplification circuit 41 at the next stage of the strain sensor 21, it is necessary to remove the offset included in the output signal of the strain sensor 21.

処理回路40におけるオフセット調整回路42は、上記した歪みセンサ21の初期オフセットと、車輪用軸受装置への固定によるオフセットを、正規の値に調整するものであり、コントロール回路47による調整、もしくは外部からの指令によるオフセット調整が可能なように構成されている。
上記したように、オフセットの原因は歪みセンサ21のばらつきとセンサ固定時の歪みであることから、車輪用軸受装置に歪みセンサ21を取り付けて、組立が完了した段階でオフセットを調整するのが望ましい。
The offset adjustment circuit 42 in the processing circuit 40 adjusts the initial offset of the strain sensor 21 and the offset due to fixing to the wheel bearing device to normal values, and is adjusted by the control circuit 47 or externally. It is configured to be able to adjust the offset according to the command.
As described above, the cause of the offset is the variation of the strain sensor 21 and the strain when the sensor is fixed. Therefore, it is desirable to attach the strain sensor 21 to the wheel bearing device and adjust the offset when the assembly is completed. .

図11は、歪みセンサ21、増幅回路41、およびオフセット調整回路42の具体的な接続構成例を示す。この構成例では、オフセット調整回路42は、オペアンプOP、抵抗R3,R4、可変抵抗器VR1,VR2などからなる加減算器として構成される。このオフセット調整回路42の場合、センサ付き車輪用軸受装置の組立完了後にセンサ出力が規定値(ゼロ点電圧)になるように、可変抵抗器VR1,VR2の抵抗値が調整されて固定される。
このオフセット調整回路42において、前記可変抵抗器VR1,VR2に代えてレーザトリミング抵抗素子を用いても良い。また、オフセット調整回路42をマイクロコンピュータなどで構成する場合、上記した可変抵抗器VR1,VR2の抵抗値を調整する操作と同等の操作をソフトウエアで実行し、設定値を記憶手段43に記憶するようにしても良い。
FIG. 11 shows a specific connection configuration example of the strain sensor 21, the amplifier circuit 41, and the offset adjustment circuit 42. In this configuration example, the offset adjustment circuit 42 is configured as an adder / subtracter including an operational amplifier OP, resistors R3 and R4, variable resistors VR1 and VR2, and the like. In the case of this offset adjustment circuit 42, the resistance values of the variable resistors VR1 and VR2 are adjusted and fixed so that the sensor output becomes a specified value (zero point voltage) after the assembly of the wheel bearing device with sensor is completed.
In this offset adjustment circuit 42, a laser trimming resistor element may be used instead of the variable resistors VR1 and VR2. When the offset adjustment circuit 42 is configured by a microcomputer or the like, an operation equivalent to the operation for adjusting the resistance values of the variable resistors VR1 and VR2 described above is executed by software, and the setting value is stored in the storage unit 43. You may do it.

このように、センサ付き車輪用軸受装置の組立完了後に、歪みセンサ21のセンサ出力が規定値となるようにオフセット調整回路42でオフセットを調整すると、センサ付き車輪用軸受装置が完成品となった時点でのセンサ出力をゼロ点電圧とすることができるため、センサ付き車輪用軸受装置の単体でのセンサ信号の品質を確保することができる。   Thus, after the assembly of the sensor-equipped wheel bearing device is completed, when the offset is adjusted by the offset adjustment circuit 42 so that the sensor output of the strain sensor 21 becomes a specified value, the sensor-equipped wheel bearing device is a completed product. Since the sensor output at the time can be set to the zero point voltage, it is possible to ensure the quality of the sensor signal of the single wheel bearing device with sensor.

なお、図5〜図8に例示した歪みセンサ21では図示していないが、歪み発生部材22に温度センサ素子を設けても良く、この場合には温度センサ素子の出力に基づいて、センサオフセットの自動補償をコントロール回路47で行うことができる。
例えば、図11のオフセット調整回路42の場合、コントロール回路47から、端子T1に温度センサ素子の検出出力に応じた制御電圧e1を入力することにより、オフセット値の温度補償を行うことができる。
Although not shown in the strain sensor 21 illustrated in FIG. 5 to FIG. 8, a temperature sensor element may be provided in the strain generating member 22, and in this case, the sensor offset is determined based on the output of the temperature sensor element. Automatic compensation can be performed by the control circuit 47.
For example, in the case of the offset adjustment circuit 42 in FIG. 11, temperature control of the offset value can be performed by inputting the control voltage e1 corresponding to the detection output of the temperature sensor element from the control circuit 47 to the terminal T1.

図11の回路構成例では、歪みセンサ21として、図8に示した構成の歪みセンサ21が用いられている。この場合、歪み発生部材22の径方向片22Aにおける歪みを受ける位置に配置された特性の異なる2つの歪み測定用センサ素子23(S1),23(S2)を、2つの固定抵抗R1,R2とブリッジ接続して構成される。この場合には、2つの歪み測定用センサ素子23(S1),23(S2)の各出力を加算した振幅の歪み信号出力を得ることができる。   In the circuit configuration example of FIG. 11, the strain sensor 21 having the configuration shown in FIG. 8 is used as the strain sensor 21. In this case, two strain measuring sensor elements 23 (S1) and 23 (S2) having different characteristics, which are arranged at positions to receive strain in the radial piece 22A of the strain generating member 22, are two fixed resistors R1 and R2. Configured by bridge connection. In this case, a distortion signal output having an amplitude obtained by adding the outputs of the two strain measurement sensor elements 23 (S1) and 23 (S2) can be obtained.

記憶手段43は例えば不揮発メモリからなり、上記したオフセットの温度特性や、感度、非線形を補正するためのパラメータを記憶する。コントロール回路47は、これらのパラメータに基づいて、各種の補正回路44の補正処理を制御する。
例えば、歪みセンサ21の出力特性は車輪用軸受装置に加わる荷重と非線形な関係にあるので、この特性データをテーブル化して記憶手段43に記憶するか、あるいは近似曲線のパラメータの形態で記憶手段43に記憶する。コントロール回路47は、記憶手段43に記憶された非線形補正のデータを読み出し、補正回路44の一つとして用意された線形補正回路の動作を制御することにより、非線形補正の処理を実行する。オフセットの温度補正や、感度補正についても同様にして実行される。
The storage means 43 is composed of, for example, a non-volatile memory, and stores parameters for correcting the temperature characteristics, sensitivity, and nonlinearity of the offset. The control circuit 47 controls the correction processing of various correction circuits 44 based on these parameters.
For example, since the output characteristic of the strain sensor 21 has a non-linear relationship with the load applied to the wheel bearing device, this characteristic data is tabulated and stored in the storage means 43, or the storage means 43 in the form of an approximate curve parameter. To remember. The control circuit 47 reads the nonlinear correction data stored in the storage unit 43 and controls the operation of the linear correction circuit prepared as one of the correction circuits 44 to execute the nonlinear correction process. The offset temperature correction and sensitivity correction are performed in the same manner.

外部インタフェース45は、外部からコントルール回路47との間で通信を行う手段であり、信号端子や無線通信手段などで構成される。この外部インタフェース45を介して、記憶手段43に記憶された補正データの修正などを外部から行うことができる。   The external interface 45 is a means for performing communication with the control circuit 47 from the outside, and includes a signal terminal, a wireless communication means, and the like. The correction data stored in the storage unit 43 can be corrected from the outside via the external interface 45.

信号出力回路46は、オフセット調整回路42や各種の補正回路44で補正された歪みセンサ21の出力信号を、パルス変調、周波数変調、A/D変換、シリアルデータへの変換など、各種の変換を行って外部に出力する。   The signal output circuit 46 performs various conversions such as pulse modulation, frequency modulation, A / D conversion, and conversion to serial data on the output signal of the distortion sensor 21 corrected by the offset adjustment circuit 42 and various correction circuits 44. Go and output to the outside.

このように、このセンサ付き車輪用軸受装置では、外方部材1および内方部材2のうちの固定側部材(ここでは外方部材1)に固定された歪み発生部材22、およびこの歪み発生部材22に取付けられた歪み測定用のセンサ素子23を含む歪みセンサ21と、この歪みセンサ21の前記センサ素子23の出力する歪み信号を処理する処理回路40とを備え、前記処理回路40が、前記センサ素子23の出力のオフセットを調整するオフセット調整回路42を有するものとしたので、軸受装置で検出した荷重信号が適正に校正された状態で出力され、信号を利用する車体側では軸受の荷重状態を簡単で正確に得ることができる。   Thus, in this wheel bearing device with a sensor, the strain generating member 22 fixed to the fixed member (here, the outer member 1) of the outer member 1 and the inner member 2, and the strain generating member. 22, a strain sensor 21 including a strain measurement sensor element 23 attached to 22, and a processing circuit 40 that processes a strain signal output from the sensor element 23 of the strain sensor 21. Since the offset adjustment circuit 42 for adjusting the offset of the output of the sensor element 23 is provided, the load signal detected by the bearing device is output in a properly calibrated state, and the load state of the bearing is used on the vehicle body side using the signal. Can be obtained easily and accurately.

図12は、歪みセンサ21の出力電圧と、センサ付き車輪用軸受装置を車体へ取り付けるときの取り付けボルトの締め付け力との関係をグラフで示したものである。このように、歪みセンサ21の出力特性は、車体への取り付け状態によっても異なる。すなわち、このセンサ付き車輪用軸受装置を取り付けボルトによって車体へ固定するとき、固定による歪みが軸受装置に発生し、その歪みが歪みセンサ21の歪み発生部材22に伝わることによって、歪みセンサ21の出力特性が変化する。   FIG. 12 is a graph showing the relationship between the output voltage of the strain sensor 21 and the tightening force of the mounting bolt when the sensor-equipped wheel bearing device is mounted on the vehicle body. Thus, the output characteristics of the strain sensor 21 vary depending on the state of attachment to the vehicle body. That is, when the wheel bearing device with sensor is fixed to the vehicle body with the mounting bolt, distortion due to fixation is generated in the bearing device, and the distortion is transmitted to the strain generating member 22 of the strain sensor 21, whereby the output of the strain sensor 21. The characteristic changes.

このように、車体にセンサ付き車輪用軸受装置を取り付ける固定力にはばらつきがあり、それに伴う歪みセンサ21の出力特性の変化量は一定ではない。そこで、軸受装置に印加される荷重をより正確に測定するために、車両が正規の姿勢・状態にあるときのセンサ出力を車体側の電気制御ユニット(ECU)などに予め記憶しておき、車両使用時におけるセンサ出力を記憶された前記センサ出力値と比較して変化量を求めることで、車両使用時に軸受装置に印加される荷重を測定するようにしても良い。また、これらの処理を実行する機能部は、例えば図9の処理回路40におけるコントロール回路47の内部に実装しても良い。このセンサ付き車輪用軸受装置では、上記したように車体への取り付け前にセンサ付き車輪用軸受装置の単体でのセンサ出力が調整されているので、そこからのセンサ出力の変化量は大きくなく、上記した処理は容易に実施可能である。   Thus, there is a variation in the fixing force for attaching the wheel bearing device with sensor to the vehicle body, and the amount of change in the output characteristics of the strain sensor 21 is not constant. Therefore, in order to more accurately measure the load applied to the bearing device, the sensor output when the vehicle is in a normal posture / state is stored in advance in an electric control unit (ECU) or the like on the vehicle body side. The load applied to the bearing device during use of the vehicle may be measured by comparing the sensor output during use with the stored sensor output value to determine the amount of change. Further, the functional unit that executes these processes may be mounted inside the control circuit 47 in the processing circuit 40 of FIG. 9, for example. In this sensor-equipped wheel bearing device, as described above, the sensor output of the sensor-equipped wheel bearing device alone is adjusted before being attached to the vehicle body, so the amount of change in sensor output from there is not large, The above processing can be easily performed.

図13は、前記処理回路40の他の構成例を示す。この構成例は、図9の処理回路40において、さらに車体取付力検出手段48と取付異常判定手段49を付加している。その他の構成は図9の場合と同様である。
車体取付力検出手段48は、センサ付き車輪用軸受装置の固定側部材(こでは外方部材1)の車体への取り付け力を歪みセンサ21の出力から検出するものである。取付異常判定手段49は、前記車体取付力検出手段48により検出された取り付け力が設定範囲内であるか否かを判定して、設定範囲外であるとアラーム信号を出力するものである。
FIG. 13 shows another configuration example of the processing circuit 40. In this configuration example, a vehicle body attachment force detection means 48 and an attachment abnormality determination means 49 are further added to the processing circuit 40 of FIG. Other configurations are the same as those in FIG.
The vehicle body attachment force detecting means 48 detects the attachment force of the stationary side member (here, the outer member 1) of the sensor-equipped wheel bearing device to the vehicle body from the output of the strain sensor 21. The attachment abnormality determination means 49 determines whether or not the attachment force detected by the vehicle body attachment force detection means 48 is within a set range, and outputs an alarm signal if it is outside the set range.

例えば、図12のグラフにおいて、センサ付き車輪用軸受装置の単体でのセンサ出力電圧はV0に調整されている。前記取り付け力の設定範囲の最小値がF1で最大値がF2のとき、センサ出力電圧はV1〜V2の範囲になるため、この範囲を外れたセンサ出力電圧が出力されたとき、取付異常判定手段49は取り付け力異常と判断してアラーム信号を出力する。   For example, in the graph of FIG. 12, the sensor output voltage of the single wheel bearing device with sensor is adjusted to V0. When the minimum value of the setting range of the mounting force is F1 and the maximum value is F2, the sensor output voltage is in the range of V1 to V2. Therefore, when a sensor output voltage outside this range is output, the mounting abnormality determination means 49 determines that the mounting force is abnormal and outputs an alarm signal.

このように処理回路40を構成した場合、取付異常判定手段49の判定をセンサ状態の品質管理基準として利用できる。また、センサ付き車輪用軸受装置の車体への取付状態を管理することができるので、より正確な荷重測定が可能となる。   When the processing circuit 40 is configured in this way, the determination of the attachment abnormality determination unit 49 can be used as a quality control reference for the sensor state. Moreover, since the attachment state to the vehicle body of the wheel bearing apparatus with a sensor can be managed, more accurate load measurement is possible.

この発明の一実施形態にかかるセンサ付き車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with a sensor concerning one Embodiment of this invention. 同センサ付き車輪用軸受装置の外方部材の正面図である。It is a front view of the outward member of the bearing device for wheels with the sensor. センサ信号処理回路ユニットの側面図である。It is a side view of a sensor signal processing circuit unit. (A)は歪みセンサの一構成例の側面図、(B)はそのIV矢視図である。(A) is a side view of a configuration example of a strain sensor, and (B) is a view taken along the arrow IV. (A)は歪みセンサの他の構成例の断面図、(B)は同正面図、(C)は同斜視図である。(A) is sectional drawing of the other structural example of a strain sensor, (B) is the front view, (C) is the perspective view. 図5の歪みセンサを車輪用軸受装置へ取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the distortion sensor of FIG. 5 to the wheel bearing apparatus. 図5の歪みセンサにおける歪み発生部材の折れ曲がり角部からの距離と歪みの大きさとの関係を示すグラフである。It is a graph which shows the relationship between the distance from the bending corner | angular part of the distortion generation member in the distortion sensor of FIG. 5, and the magnitude | size of distortion. (A)は歪みセンサのさらに他の構成例の断面図、(B)は同正面図、(C)は同斜視図である。(A) is sectional drawing of the further another structural example of a strain sensor, (B) is the front view, (C) is the perspective view. 処理回路の一構成例のブロック図である。It is a block diagram of one structural example of a processing circuit. 歪みセンサに増幅回路を接続した回路構成図である。It is a circuit block diagram which connected the amplifier circuit to the distortion sensor. 歪みセンサに増幅回路およびオフセット調整回路を接続した回路構成図である。It is a circuit block diagram which connected the amplifier circuit and the offset adjustment circuit to the distortion sensor. 歪みセンサの出力電圧と取り付けボルト締め付け力との関係を示すグラフである。It is a graph which shows the relationship between the output voltage of a distortion sensor, and a mounting bolt clamping force. 処理回路の他の構成例のブロック図である。It is a block diagram of the other structural example of a processing circuit.

符号の説明Explanation of symbols

1…外方部材
2…内方部材
3,4…転走面
5…転動体
21…歪みセンサ
22…歪み発生部材
23…歪み測定用センサ素子
40…処理回路
42…オフセット調整回路
VR1,VR2…可変抵抗器
DESCRIPTION OF SYMBOLS 1 ... Outer member 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 21 ... Strain sensor 22 ... Strain generating member 23 ... Strain measuring sensor element 40 ... Processing circuit 42 ... Offset adjustment circuit VR1, VR2 ... Variable resistor

Claims (4)

複列の転走面が内周に形成された外方部材と、前記各転走面に対向する転走面を外周に有する内方部材と、各列の転走面間に介在した複列の転走面を有する転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置において、
前記外方部材および内方部材のうちの固定側部材に固定された歪み発生部材、およびこの歪み発生部材に取付けられた歪み測定用のセンサ素子を含む歪みセンサと、この歪みセンサの前記センサ素子の出力する歪み信号を処理する処理回路とを備え、
この処理回路は、前記センサ素子の出力のオフセットを調整するオフセット調整手段を有することを特徴とするセンサ付き車輪用軸受装置。
An outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface opposite to each rolling surface on the outer periphery, and a double row interposed between the rolling surfaces of each row In a wheel bearing device that includes a rolling element having a rolling surface, and rotatably supports the wheel with respect to the vehicle body,
A strain generating member including a strain generating member fixed to a fixed side member of the outer member and the inner member, a strain measuring sensor element attached to the strain generating member, and the sensor element of the strain sensor And a processing circuit for processing the distortion signal output from
This processing circuit has an offset adjusting means for adjusting an offset of the output of the sensor element, and is equipped with a sensor-equipped wheel bearing device.
請求項1において、前記オフセット調整手段が、可変抵抗器、またはレーザトリミング抵抗素子、またはオフセット調整する設定値の記憶機能を有するマイクロコンピュータのうちのいずれかであるセンサ付き車輪用軸受装置。   The sensor-equipped wheel bearing device according to claim 1, wherein the offset adjusting unit is one of a variable resistor, a laser trimming resistor element, or a microcomputer having a setting value storage function for offset adjustment. 請求項1または請求項2において、前記固定側部材が外方部材であって、前記歪み発生部材が外方部材に取付けられたセンサ付き車輪用軸受装置。   The sensor-equipped wheel bearing device according to claim 1 or 2, wherein the fixed side member is an outer member, and the strain generating member is attached to the outer member. 請求項3において、前記固定側部材の車体への取り付け力を前記センサの出力で検出する車体取付力検出手段と、この車体取付力検出手段により検出された取り付け力が設定範囲内であるか否かを判定して設定範囲外であるとアラーム信号を出力する取付異常判定手段を設けたセンサ付き車輪用軸受装置。
4. The vehicle body attachment force detection means for detecting the attachment force of the fixed side member to the vehicle body based on the output of the sensor, and whether or not the attachment force detected by the vehicle body attachment force detection means is within a set range. A bearing device for a wheel with a sensor provided with an attachment abnormality determining means for determining whether or not it is out of a set range and outputting an alarm signal.
JP2007020376A 2007-01-31 2007-01-31 Wheel bearing device with sensor Expired - Fee Related JP4919827B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007020376A JP4919827B2 (en) 2007-01-31 2007-01-31 Wheel bearing device with sensor
PCT/JP2008/000072 WO2008093491A1 (en) 2007-01-31 2008-01-24 Wheel bearing device with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020376A JP4919827B2 (en) 2007-01-31 2007-01-31 Wheel bearing device with sensor

Publications (2)

Publication Number Publication Date
JP2008185496A true JP2008185496A (en) 2008-08-14
JP4919827B2 JP4919827B2 (en) 2012-04-18

Family

ID=39728643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020376A Expired - Fee Related JP4919827B2 (en) 2007-01-31 2007-01-31 Wheel bearing device with sensor

Country Status (1)

Country Link
JP (1) JP4919827B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148846A1 (en) 2010-05-24 2011-12-01 Ntn株式会社 Sensor-equipped wheel bearing
WO2012153721A1 (en) 2011-05-09 2012-11-15 Ntn株式会社 Sensor-equipped wheel bearing
JP2013032998A (en) * 2011-08-03 2013-02-14 Ntn Corp Bearing for wheel with sensor
US8578791B2 (en) 2008-11-17 2013-11-12 Ntn Corporation Sensor-equipped bearing for wheel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203518A (en) * 1992-01-24 1993-08-10 Casio Comput Co Ltd Bridge-type sensor
JP3251081B2 (en) * 1992-12-03 2002-01-28 株式会社イシダ Weighing device
JP2004003601A (en) * 2002-04-23 2004-01-08 Nsk Ltd Rolling bearing unit with sensor
JP2004184278A (en) * 2002-12-04 2004-07-02 Showa Corp Abnormality detector for torque sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203518A (en) * 1992-01-24 1993-08-10 Casio Comput Co Ltd Bridge-type sensor
JP3251081B2 (en) * 1992-12-03 2002-01-28 株式会社イシダ Weighing device
JP2004003601A (en) * 2002-04-23 2004-01-08 Nsk Ltd Rolling bearing unit with sensor
JP2004184278A (en) * 2002-12-04 2004-07-02 Showa Corp Abnormality detector for torque sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8578791B2 (en) 2008-11-17 2013-11-12 Ntn Corporation Sensor-equipped bearing for wheel
WO2011148846A1 (en) 2010-05-24 2011-12-01 Ntn株式会社 Sensor-equipped wheel bearing
CN102906436A (en) * 2010-05-24 2013-01-30 Ntn株式会社 Sensor-equipped wheel bearing
US9008899B2 (en) 2010-05-24 2015-04-14 Ntn Corporation Wheel bearing with sensor
CN102906436B (en) * 2010-05-24 2015-04-29 Ntn株式会社 Sensor-equipped wheel bearing
WO2012153721A1 (en) 2011-05-09 2012-11-15 Ntn株式会社 Sensor-equipped wheel bearing
US9011013B2 (en) 2011-05-09 2015-04-21 Ntn Corporation Sensor-equipped wheel bearing
JP2013032998A (en) * 2011-08-03 2013-02-14 Ntn Corp Bearing for wheel with sensor

Also Published As

Publication number Publication date
JP4919827B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4931623B2 (en) Wheel bearing device with sensor
JP4889324B2 (en) Wheel bearing with sensor
JP2007292158A (en) Wheel bearing with sensor
JP5089041B2 (en) Wheel bearing with sensor
WO2007105367A1 (en) Bearing for wheel with sensor
US7856893B2 (en) Bearing for wheel with sensor
JP4850078B2 (en) Wheel bearing with sensor
JP4864441B2 (en) Wheel bearing with sensor
JP4919827B2 (en) Wheel bearing device with sensor
JP4925625B2 (en) Wheel bearing with sensor
JP2007292159A (en) Wheel bearing with sensor
JP2007064778A (en) Bearing for wheel with sensor
JP4879529B2 (en) Wheel bearing with sensor
JP2007292156A (en) Wheel bearing with sensor
JP2007278407A (en) Bearing for wheel with sensor
JP2007292157A (en) Wheel bearing with sensor
JP5334370B2 (en) Wheel bearing with sensor
JP2007078597A (en) Bearing with sensor for wheel
JP5235306B2 (en) Wheel bearing with sensor
JP2008045903A (en) Bearing for vehicular wheel provided with sensor
JP2007292231A (en) Wheel bearing with sensor
JP4925770B2 (en) Wheel bearing with sensor
JP2007292233A (en) Wheel bearing with sensor
JP2007292230A (en) Wheel bearing with sensor
JP2010032229A (en) Wheel bearing with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees