JP2007292157A - Wheel bearing with sensor - Google Patents

Wheel bearing with sensor Download PDF

Info

Publication number
JP2007292157A
JP2007292157A JP2006119093A JP2006119093A JP2007292157A JP 2007292157 A JP2007292157 A JP 2007292157A JP 2006119093 A JP2006119093 A JP 2006119093A JP 2006119093 A JP2006119093 A JP 2006119093A JP 2007292157 A JP2007292157 A JP 2007292157A
Authority
JP
Japan
Prior art keywords
sensor
wheel bearing
strain
mounting member
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006119093A
Other languages
Japanese (ja)
Inventor
Takami Ozaki
孝美 尾崎
Tomoumi Ishikawa
智海 石河
Kentaro Nishikawa
健太郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006119093A priority Critical patent/JP2007292157A/en
Publication of JP2007292157A publication Critical patent/JP2007292157A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wheel bearing with a sensor capable of compactly mounting the sensor for load detection on a vehicle, sensitively detecting the load on a wheel and reducing costs in mass-production. <P>SOLUTION: In the wheel bearing for freely rotatably supporting a wheel to a vehicle body by interposing double-row rolling elements 3 between an outer member 1 and an inner member 2, a sensor unit 21 is mounted in a fixed side member of the outer member 1 and inner member 2. When the outer member 1 is taken as the fixed side member, for instance, the sensor unit 21 consists of a sensor mounting member 22 and one or more distortion sensor 23 mounted in a sensor mounting part 22. The sensor mounting part 22 is provided with two contact fixing parts 22a, 22b to be fixed to the outer member 1. A first contact fixing part 22a is fixed to a suspension device 16 in a vehicle body. A second contact fixing part 22b is fixed to a peripheral surface of the outer member 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

従来、自動車の安全走行のために、各車輪の回転速度を検出するセンサを車輪用軸受に設けたものがある。従来の一般的な自動車の走行安全性確保対策は、各部の車輪の回転速度を検出することで行われているが、車輪の回転速度だけでは十分でなく、その他のセンサ信号を用いてさらに安全面の制御が可能なことが求められている。   2. Description of the Related Art Conventionally, there is a wheel bearing provided with a sensor for detecting the rotational speed of each wheel for safe driving of an automobile. Conventional measures to ensure driving safety of general automobiles are carried out by detecting the rotational speed of the wheels of each part, but the rotational speed of the wheels is not sufficient, and it is further safer by using other sensor signals. It is required that the surface can be controlled.

そこで、車両走行時に各車輪に作用する荷重から姿勢制御を図ることも考えられる。例えばコーナリングにおいては外側車輪に大きな荷重がかかり、また左右傾斜面走行では片側車輪に、ブレーキングにおいては前輪にそれぞれ荷重が片寄るなど、各車輪にかかる荷重は均等ではない。また、積載荷重不均等の場合にも各車輪にかかる荷重は不均等になる。このため、車輪にかかる荷重を随時検出できれば、その検出結果に基づき、事前にサスペンション等を制御することで、車両走行時の姿勢制御(コーナリング時のローリング防止、ブレーキング時の前輪沈み込み防止、積載荷重不均等による沈み込み防止等)を行うことが可能となる。しかし、車輪に作用する荷重を検出するセンサの適切な設置場所がなく、荷重検出による姿勢制御の実現が難しい。   Therefore, it is conceivable to control the attitude from the load acting on each wheel during vehicle travel. For example, a large load is applied to the outer wheel in cornering, and the load applied to each wheel is not uniform. Further, even when the load is uneven, the load applied to each wheel becomes uneven. For this reason, if the load applied to the wheel can be detected at any time, based on the detection result, the suspension and the like are controlled in advance, thereby controlling the posture during vehicle travel (preventing rolling during cornering, preventing the front wheel from sinking during braking, It is possible to prevent subsidence due to uneven load capacity. However, there is no appropriate installation location of a sensor that detects a load acting on the wheel, and it is difficult to realize posture control by load detection.

また、今後ステアバイワイヤが導入されて、車軸とステアリングが機械的に結合しないシステムになってくると、車軸方向荷重を検出して運転手が握るハンドルに路面情報を伝達することが求められる。   In addition, when steer-by-wire is introduced in the future, and the system is such that the axle and the steering are not mechanically coupled, it is required to detect the axle direction load and transmit the road surface information to the handle held by the driver.

このような要請に応えるものとして、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受が提案されている(例えば特許文献1)。
特表2003−530565号公報
As a response to such a demand, a wheel bearing has been proposed in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 1).
Special table 2003-530565 gazette

車輪用軸受の外輪は、転走面を有し、強度が求められる部品であって、塑性加工や、旋削加工、熱処理、研削加工などの複雑な工程を経て生産される軸受部品であるため、特許文献1のように外輪に歪みゲージを貼り付けるのでは、生産性が悪く、量産時のコストが高くなるという問題点がある。   The outer ring of the wheel bearing is a part that has a rolling surface and requires strength, and is a bearing part that is produced through complicated processes such as plastic working, turning, heat treatment, and grinding. When a strain gauge is attached to the outer ring as in Patent Document 1, there is a problem that productivity is poor and the cost for mass production is high.

この発明の目的は、車両にコンパクトに荷重検出用のセンサを設置できて、車輪にかかる荷重等を検出でき、量産時のコストが安価となるセンサ付車輪用軸受を提供することである。   An object of the present invention is to provide a sensor-equipped wheel bearing in which a load detection sensor can be compactly installed in a vehicle, a load applied to a wheel can be detected, and the cost during mass production is reduced.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、懸架装置に取付けられて車体に対して車輪を回転自在に支持する車輪用軸受において、センサ取付部材およびこのセンサ取付部材に取付けた少なくとも1つ以上の歪みセンサからなるセンサユニットを、前記外方部材および内方部材のうちの固定側部材に取付け、前記センサ取付部材は、固定側部材に固定するための2箇所の接触固定部を有し、前記接触固定部のうち第1の接触固定部は、車体の懸架装置に固定されるものであり、第2の接触固定部は、前記固定側部材の周面に固定されるものであることを特徴とする。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface of the outer member, In a wheel bearing having a double row rolling element interposed between both rolling surfaces and attached to a suspension device to rotatably support the wheel with respect to the vehicle body, the sensor mounting member and the sensor mounting member A sensor unit comprising at least one or more strain sensors is attached to a fixed side member of the outer member and the inner member, and the sensor mounting member has two contact fixing parts for fixing to the fixed side member. The first contact fixing portion of the contact fixing portion is fixed to a suspension device of a vehicle body, and the second contact fixing portion is fixed to the peripheral surface of the fixed side member. It is characterized by being.

車両走行に伴い回転側部材に荷重が加わると、転動体を介して固定側部材が変形し、その変形はセンサユニットに歪みをもたらす。センサユニットに設けられた歪みセンサは、センサユニットの歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪にかかる荷重や車両のステアモーメントを検出することができる。また、この検出した荷重やステアモーメントを自動車の車両制御に使用することが出来る。ステアモーメントは、車両が曲線進路を走行する際に車両用軸受にかかるモーメントである。
センサユニットは、センサ取付部材の2箇所の接触固定部を車体の懸架装置および固定側部材の周面にそれぞれ固定して固定側部材に固定されるため、前記車輪にかかる荷重や車両のステアモーメントの他に、固定側部材と懸架装置の固定状態を検出することができる。固定状態が不良で、固定側部材と懸架装置間に緩みがある場合、センサ取付部材の歪みが大きく現れる。
この車輪用軸受は、センサ取付部材およびこのセンサ取付部材に取付けた少なくとも1つ以上の歪みセンサからなるセンサユニットを固定側部材に取付ける構成としたため、荷重検出用のセンサを車両にコンパクトかつ容易に設置できる。センサ取付部材は固定側部材および懸架装置に固定して取付けられる簡易な部品であるため、これに歪みセンサを取付けることで、量産性に優れたものとでき、コスト低下が図れる。
When a load is applied to the rotation side member as the vehicle travels, the fixed side member is deformed via the rolling elements, and the deformation causes distortion of the sensor unit. The strain sensor provided in the sensor unit detects the strain of the sensor unit. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel and the vehicle steering moment can be detected from the output of the strain sensor. Further, the detected load and steering moment can be used for vehicle control of the automobile. The steering moment is a moment applied to the vehicle bearing when the vehicle travels on a curved path.
Since the sensor unit is fixed to the stationary member by fixing the two contact fixing portions of the sensor mounting member to the suspension of the vehicle body and the peripheral surface of the stationary member, the load applied to the wheel and the vehicle steering moment In addition, it is possible to detect the fixed state of the stationary member and the suspension device. If the fixed state is poor and there is a looseness between the fixed side member and the suspension device, the sensor mounting member is greatly distorted.
Since this wheel bearing has a structure in which a sensor unit comprising a sensor mounting member and at least one strain sensor mounted on the sensor mounting member is mounted on the stationary member, the load detection sensor can be compactly and easily mounted on the vehicle. Can be installed. Since the sensor attachment member is a simple part that is fixedly attached to the stationary member and the suspension device, attaching a strain sensor to the sensor attachment member makes it possible to achieve excellent mass productivity and reduce costs.

この発明において、前記センサユニットを、前記固定側部材の上部または下部または上下両方に配置することができる。この場合、歪みセンサの出力より、車両にかかる荷重を算出することができる。   In the present invention, the sensor unit can be arranged on the upper side or the lower side or both above and below the fixed side member. In this case, the load applied to the vehicle can be calculated from the output of the strain sensor.

また、この発明において、前記センサユニットを、前記固定側部材の車両進行方向における前部または後部または前後両方に配置してもよい。この場合、歪みセンサの出力より、車両のステアモーメントを算出することができる。   Moreover, in this invention, you may arrange | position the said sensor unit in the front part in the vehicle advancing direction of the said fixed side member, a rear part, or both front and back. In this case, the vehicle steering moment can be calculated from the output of the strain sensor.

前記センサ取付部材の第2の接触固定部は、前記固定側部材の周方向において、前記第1の接触固定部とは同位相の周方向位置となる前記固定側部材の周面に固定するのが良い。
第1および第2の接触固定部を周方向において同位相とすると、センサ取付部材の長さを短くでき、センサユニットの設置が容易となる。
The second contact fixing portion of the sensor mounting member is fixed to the peripheral surface of the fixed side member that is in the same circumferential direction as the first contact fixing portion in the circumferential direction of the fixed side member. Is good.
When the first and second contact fixing portions have the same phase in the circumferential direction, the length of the sensor mounting member can be shortened, and the sensor unit can be easily installed.

前記固定側部材を外方部材とすることができる。その場合、センサユニットを外方部材に取付ける。   The fixed member can be an outer member. In that case, the sensor unit is attached to the outer member.

前記歪みセンサの出力によって、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を推定する作用力推定手段を設けると良い。
作用力推定手段によって得られる車輪用軸受に作用する外力、またはタイヤと路面間の作用力を自動車の車両制御に使用することにより、きめ細かな車両制御が可能となる。
It is preferable to provide an acting force estimating means for estimating an external force acting on the wheel bearing or an acting force between the tire and the road surface by the output of the strain sensor.
By using the external force acting on the wheel bearing obtained by the acting force estimation means or the acting force between the tire and the road surface for vehicle control of the automobile, fine vehicle control is possible.

前記固定側部材に作用する外力、または前記タイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、前記センサユニットは塑性変形しないものとするのが良い。上記想定される最大の力は、車両故障につながらない走行において想定される最大の力である。
センサユニットに塑性変形が生じると、固定側部材の変形がセンサユニットのセンサ取付部材に正確に伝わらず、歪みの測定に影響を及ぼすからである。
It is preferable that the sensor unit is not plastically deformed even when a maximum force assumed as an external force acting on the stationary member or an acting force acting between the tire and the road surface is applied. The assumed maximum force is the maximum force assumed in traveling that does not lead to vehicle failure.
This is because, when plastic deformation occurs in the sensor unit, the deformation of the fixed side member is not accurately transmitted to the sensor mounting member of the sensor unit and affects the measurement of strain.

前記センサ取付部材はプレス加工品とすることができる。センサ取付部材をプレス加工により製作すると、加工が容易であり、コストダウンが可能になる。   The sensor mounting member may be a press-processed product. If the sensor mounting member is manufactured by press working, the processing is easy and the cost can be reduced.

前記センサ取付部材は金属粉末射出成形による焼結金属としても良い。
センサ取付部材を金属粉末射出成形により製作すると、寸法精度の良いセンサ取付部材が得られる。
The sensor mounting member may be a sintered metal by metal powder injection molding.
When the sensor mounting member is manufactured by metal powder injection molding, a sensor mounting member with good dimensional accuracy can be obtained.

前記センサ取付部材と前記固定側部材との固定は、ボルトおよび接着剤のいずれかを用いて行なうか、または両方を併用して行なうか、または溶接を用いて行なうことができる。
上記いずれかの方法でセンサ取付部材と固定側部材とを固定すると、センサ取付部材を固定側部材に強固に固定することができる。そのため、センサ取付部材が固定側部材に対して位置ずれすることがなく、固定側部材の変形をセンサ取付部材に正確に伝えることが可能になる。
The sensor mounting member and the fixed side member can be fixed using either a bolt or an adhesive, or a combination of both, or welding.
When the sensor attachment member and the fixed side member are fixed by any one of the above methods, the sensor attachment member can be firmly fixed to the fixed side member. Therefore, the sensor mounting member is not displaced with respect to the fixed side member, and the deformation of the fixed side member can be accurately transmitted to the sensor mounting member.

前記センサ取付部材に温度センサを設けても良い。
車輪用軸受は使用中に温度が変化するため、その温度変化がセンサ取付部材の歪み、または歪みセンサの動作に影響を及ぼす。また、周囲の環境温度の変化に対しても同様の影響を及ぼす。温度センサの出力により歪みセンサの温度特性を補正することで、精度の高い荷重検出を行なうことが可能となる。
A temperature sensor may be provided on the sensor mounting member.
Since the temperature of the wheel bearing changes during use, the temperature change affects the strain of the sensor mounting member or the operation of the strain sensor. It also has the same effect on changes in ambient environmental temperature. By correcting the temperature characteristics of the strain sensor based on the output of the temperature sensor, it is possible to detect a load with high accuracy.

前記センサ取付部材に加速度センサおよび振動センサのうち少なくとも一つを設けても良い。
センサ取付部材に、歪みセンサの他に加速度センサ、振動センサ等の各種センサを取付けると、荷重と車輪用軸受の状態を1箇所で測定することができ、配線等を簡略なものとすることができる。
The sensor mounting member may be provided with at least one of an acceleration sensor and a vibration sensor.
When various sensors such as an acceleration sensor and a vibration sensor are mounted on the sensor mounting member in addition to the strain sensor, the load and the state of the wheel bearing can be measured at one place, and wiring and the like can be simplified. it can.

前記歪みセンサは、前記センサ取付部材の表面に絶縁層を印刷および焼成によって形成し、前記絶縁層の上に電極および歪み測定用抵抗体を印刷および焼成によって形成したものとしても良い。
上記のように歪みセンサを形成すると、歪みセンサをセンサ取付部材に対して接着により固定する場合のように、経年変化による接着強度の低下がないため、センサユニットの信頼性を向上させることができる。また、加工が容易であるため、コストダウンを図れる。
In the strain sensor, an insulating layer may be formed on the surface of the sensor mounting member by printing and baking, and an electrode and a strain measurement resistor may be formed on the insulating layer by printing and baking.
When the strain sensor is formed as described above, the adhesion strength due to secular change does not decrease as in the case where the strain sensor is fixed to the sensor mounting member by adhesion, so that the reliability of the sensor unit can be improved. . Moreover, since processing is easy, cost reduction can be achieved.

前記センサユニットの近傍に、前記歪みセンサの出力信号を処理するセンサ信号処理回路を有するセンサ信号処理回路ユニットを設けても良い。
センサユニットの近傍にセンサ信号処理回路ユニットを設けると、センサユニットからセンサ信号処理回路ユニットへの配線の手間が簡略化できる。また、車輪用軸受以外の場所にセンサ信号処理回路ユニットを設ける場合よりも、センサ信号処理回路ユニットをコンパクトに設置できる。
A sensor signal processing circuit unit having a sensor signal processing circuit for processing the output signal of the strain sensor may be provided in the vicinity of the sensor unit.
Providing a sensor signal processing circuit unit in the vicinity of the sensor unit can simplify the wiring work from the sensor unit to the sensor signal processing circuit unit. Further, the sensor signal processing circuit unit can be installed more compactly than when the sensor signal processing circuit unit is provided in a place other than the wheel bearing.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、懸架装置に取付けられて車体に対して車輪を回転自在に支持する車輪用軸受において、センサ取付部材およびこのセンサ取付部材に取付けた少なくとも1つ以上の歪みセンサからなるセンサユニットを、前記外方部材および内方部材のうちの固定側部材に取付け、前記センサ取付部材は、固定側部材に固定するための2箇所の接触固定部を有し、前記接触固定部のうち第1の接触固定部は、車体の懸架装置に固定されるものであり、第2の接触固定部は、前記固定側部材の周面に固定されるものであるため、車両にコンパクトに荷重検出用のセンサを設置でき、かつ車輪にかかる荷重や車両のステアモーメント、および固定側部材と懸架装置の固定状態を検出できる。センサ取付部材は固定側部材に取付けられる簡易な部品であるため、これに歪みセンサを取付けることで、量産性に優れたものとでき、コスト低下が図れる。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface of the outer member, In a wheel bearing having a double row rolling element interposed between both rolling surfaces and attached to a suspension device to rotatably support the wheel with respect to the vehicle body, the sensor mounting member and the sensor mounting member A sensor unit comprising at least one or more strain sensors is attached to a fixed side member of the outer member and the inner member, and the sensor mounting member has two contact fixing parts for fixing to the fixed side member. The first contact fixing portion of the contact fixing portion is fixed to a suspension device of a vehicle body, and the second contact fixing portion is fixed to the peripheral surface of the fixed side member. Therefore, the load detection sensor is compact in the vehicle. Installation can, and can detect the locked state of the steering moment of the load and the vehicle according to the wheels, and the fixed-side member and the suspension device. Since the sensor mounting member is a simple part that can be mounted on the fixed side member, by attaching a strain sensor to the sensor mounting member, the sensor mounting member can be excellent in mass productivity and cost reduction can be achieved.

この発明の実施形態を図1ないし図3と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受は、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が外向きとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、密封装置7,8によりそれぞれ密封されている。   This sensor-equipped wheel bearing includes an outer member 1 having a double row rolling surface 3 formed on the inner periphery, an inner member 2 having a rolling surface 4 opposed to each of the rolling surfaces 3, and these It is comprised by the double row rolling element 5 interposed between the rolling surfaces 3 and 4 of the outer member 1 and the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 are arc-shaped in cross section, and each rolling surface 3 and 4 is formed so that the contact angle is outward. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by sealing devices 7 and 8, respectively.

外方部材1は固定側部材となるものであって、全体が一体の部品とされている。外方部材1は、車体懸架装置のナックル16に取付けるためのフランジ1aを外周部に有し、そのフランジ1aの周方向複数箇所(この実施形態では4箇所)に、内周に雌ねじが切られた車体取付孔14が設けられている。一方、ナックル16における前記車体取付孔14と対応する位置には、段付きのナックルボルト孔17が設けられている。ナックルボルト孔17側から挿入したナックルボルト18を車体取付孔14に螺着することで、外方部材1とナックル16(懸架装置)とが互いに固定一体化される。   The outer member 1 is a fixed side member, and is formed as an integral part as a whole. The outer member 1 has flanges 1a for attaching to the knuckle 16 of the vehicle body suspension device on the outer peripheral portion, and female threads are cut on the inner periphery at a plurality of circumferential positions (four in this embodiment) of the flange 1a. A vehicle body mounting hole 14 is provided. On the other hand, a stepped knuckle bolt hole 17 is provided at a position corresponding to the vehicle body mounting hole 14 in the knuckle 16. By screwing the knuckle bolt 18 inserted from the knuckle bolt hole 17 side into the vehicle body mounting hole 14, the outer member 1 and the knuckle 16 (suspension device) are fixedly integrated with each other.

内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト19の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、ホイールおよび制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。   The inner member 2 serves as a rotation side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the inboard side end of the shaft portion 9b of the hub wheel 9. And become. The hub ring 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts 19 at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

外方部材1の外周部には、図3に示すセンサユニット21が設けられている。センサユニット21は、センサ取付部材22に、このセンサ取付部材22の歪みを測定する歪みセンサ23を取付けたものである。センサ取付部材22は、前記ナックル16に接触させて固定する第1の接触固定部22aと、外方部材1の外周面に接触させて固定する第2の接触固定部22bとを有している。歪みセンサ23は、センサ取付部材22の中間部に配置され、接着剤等により取付けられている。   A sensor unit 21 shown in FIG. 3 is provided on the outer peripheral portion of the outer member 1. The sensor unit 21 is obtained by attaching a strain sensor 23 for measuring the strain of the sensor attachment member 22 to the sensor attachment member 22. The sensor mounting member 22 includes a first contact fixing portion 22a that is fixed in contact with the knuckle 16, and a second contact fixing portion 22b that is fixed in contact with the outer peripheral surface of the outer member 1. . The strain sensor 23 is disposed at an intermediate portion of the sensor attachment member 22 and attached by an adhesive or the like.

上記センサユニット21は、図1および図2に示すように、外方部材1の上部に配置され、センサ取付部材22の第1および第2の接触固定部22a,22bにより、両接触固定部22a,22bが外方部材1の周方向において同位相の位置となるように、ナックル16および外方部材1の外周面に接着剤等で固定して取付けられる。第1および第2の接触固定部22a,22bの位置を周方向において同位相とすると、センサ取付部材22の長さを短くすることができるため、センサユニット21の設置が容易である。センサユニット21を取付ける外方部材1の軸方向位置は、外方部材1のアウトボード側端の近傍、例えばアウトボード側列の転走面3よりもアウトボード側の位置とされる。センサ取付部材22は、この外方部材1への固定により塑性変形を起こさない形状や材質とされている。   As shown in FIGS. 1 and 2, the sensor unit 21 is arranged on the upper part of the outer member 1, and the first and second contact fixing portions 22a and 22b of the sensor mounting member 22 are used to form both contact fixing portions 22a. , 22b are fixedly attached to the outer peripheral surface of the knuckle 16 and the outer member 1 with an adhesive or the like so that they are positioned in the same phase in the circumferential direction of the outer member 1. If the positions of the first and second contact fixing portions 22a and 22b are in the same phase in the circumferential direction, the sensor mounting member 22 can be shortened, so that the sensor unit 21 can be easily installed. The axial direction position of the outer member 1 to which the sensor unit 21 is attached is a position near the outboard side end of the outer member 1, for example, a position on the outboard side with respect to the rolling surface 3 of the outboard side row. The sensor mounting member 22 has a shape or material that does not cause plastic deformation by being fixed to the outer member 1.

また、センサ取付部材22は、車輪用軸受に予想される最大の荷重が印加された場合でも、塑性変形を起こさない形状とする必要がある。上記想定される最大の力は、車両故障につながらない走行において想定される最大の力である。センサ取付部材22に塑性変形が生じると、外方部材1の変形がセンサ取付部材22に正確に伝わらず、歪みの測定に影響を及ぼすためである。   Further, the sensor mounting member 22 needs to have a shape that does not cause plastic deformation even when the maximum load expected for the wheel bearing is applied. The assumed maximum force is the maximum force assumed in traveling that does not lead to vehicle failure. This is because when the sensor mounting member 22 is plastically deformed, the deformation of the outer member 1 is not accurately transmitted to the sensor mounting member 22 and affects the measurement of strain.

センサユニット21のセンサ取付部材22は、例えばプレス加工により製作することができる。センサ取付部材22をプレス加工品とすると、コストダウンが可能になる。
また、センサ取付部材22は、金属粉末射出成形による焼結金属品としてもよい。金属粉末射出成形は、金属、金属間化合物等の成形技術の一つであり、金属粉末をバインダーと混練する工程、この混練物を用いて射出成形する工程、成形体の脱脂処理を行なう工程、成形体の焼結を行なう工程を含む。この金属粉末射出成形によれば、一般の粉末冶金に比べて焼結密度の高い焼結体が得られ、焼結金属品を高い寸法精度で製作することができ、また機械的強度も高いという利点がある。
The sensor mounting member 22 of the sensor unit 21 can be manufactured by, for example, press working. If the sensor mounting member 22 is a pressed product, the cost can be reduced.
The sensor mounting member 22 may be a sintered metal product by metal powder injection molding. Metal powder injection molding is one of the molding techniques for metals, intermetallic compounds, etc., a step of kneading metal powder with a binder, a step of injection molding using this kneaded product, a step of degreasing the molded body, Including a step of sintering the compact. According to this metal powder injection molding, a sintered body having a higher sintering density than that of general powder metallurgy is obtained, and sintered metal products can be manufactured with high dimensional accuracy, and mechanical strength is also high. There are advantages.

歪みセンサ23としては、種々のものを使用することができる。例えば、歪みセンサ23が金属箔ストレインゲージで構成されている場合、この金属箔ストレインゲージの耐久性を考慮すると、車輪用軸受に予想される最大の荷重が印加された場合でも、センサ取付部材22における歪みセンサ23取付部分の歪み量が1500マイクロストレイン以下であることが好ましい。同様の理由から、歪みセンサ23が半導体ストレインゲージで構成されている場合は、同歪み量が1000マイクロストレイン以下であることが好ましい。また、歪みセンサ23が圧膜式センサで構成されている場合は、同歪み量が1500マイクロストレイン以下であることが好ましい。   Various strain sensors 23 can be used. For example, when the strain sensor 23 is composed of a metal foil strain gauge, considering the durability of the metal foil strain gauge, the sensor mounting member 22 can be used even when the expected maximum load is applied to the wheel bearing. It is preferable that the strain amount of the portion where the strain sensor 23 is attached is 1500 microstrain or less. For the same reason, when the strain sensor 23 is composed of a semiconductor strain gauge, the amount of strain is preferably 1000 microstrain or less. Further, when the strain sensor 23 is constituted by a pressure film type sensor, the strain amount is preferably 1500 microstrain or less.

図1に示すように、歪みセンサ23の出力を処理する手段として、作用力推定手段31および異常判定手段32が設けられている。これらの手段31,32は、この車輪用軸受の外方部材1等に取付けられた回路基板等に電子回路装置(図示せず)に設けられたものであっても、また自動車の電気制御ユニット(ECU)に設けられたものであっても良い。   As shown in FIG. 1, acting force estimating means 31 and abnormality determining means 32 are provided as means for processing the output of the strain sensor 23. These means 31 and 32 may be provided in an electronic circuit device (not shown) on a circuit board or the like attached to the outer member 1 of the wheel bearing, or may be an electric control unit of an automobile. (ECU) may be provided.

上記構成のセンサ付車輪用軸受の作用を説明する。ハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1およびナックル16に固定されたセンサ取付部材22に伝わり、センサ取付部材22が変形する。そのセンサ取付部材22の歪みを歪みセンサ23により測定する。センサ取付部材22は外方部材1と比べて脆弱であり、その脆弱なセンサ取付部材22の歪みを歪みセンサ23が測定するため、外方部材1の歪みよりも大きな歪みが得られ、感度良く外方部材1の歪みを検出することができる。   The operation of the sensor-equipped wheel bearing with the above configuration will be described. When a load is applied to the hub wheel 9, the outer member 1 is deformed via the rolling elements 5, and the deformation is transmitted to the outer member 1 and the sensor mounting member 22 fixed to the knuckle 16, and the sensor mounting member 22. Is deformed. The strain of the sensor mounting member 22 is measured by the strain sensor 23. The sensor mounting member 22 is weaker than the outer member 1, and the strain sensor 23 measures the strain of the weak sensor mounting member 22, so that a strain larger than the strain of the outer member 1 is obtained, and the sensitivity is high. The distortion of the outer member 1 can be detected.

荷重の方向や大きさによって歪みの変化が異なるため、予め歪みと荷重の関係を実験やシミュレーションにて求めておけば、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を算出することができる。前記作用力推定手段31は、このように実験やシミュレーションにより予め求めて設定しておいた歪みと荷重の関係から、歪みセンサ23の出力により、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を算出する。前記異常判定手段32は、作用力推定手段31により算出された車輪用軸受に作用する外力、またはタイヤと路面間の作用力が、許容値を超えたと判断される場合に、外部に異常信号を出力する。この異常信号を、自動車の車両制御に使用することができる。また、リアルタイムで車輪用軸受に作用する外力、またはタイヤと路面間の作用力を出力すると、よりきめ細かな車両制御が可能となる。   Since the strain changes depending on the direction and magnitude of the load, if the relationship between the strain and the load is obtained in advance through experiments and simulations, the external force acting on the wheel bearing or the acting force between the tire and the road surface is calculated. be able to. From the relationship between the strain and the load obtained and set in advance through experiments and simulations, the acting force estimation means 31 is configured so that the external force acting on the wheel bearing or the distance between the tire and the road surface is determined by the output of the strain sensor 23. Is calculated. The abnormality determining means 32 outputs an abnormal signal to the outside when it is determined that the external force acting on the wheel bearing calculated by the acting force estimating means 31 or the acting force between the tire and the road surface exceeds an allowable value. Output. This abnormal signal can be used for vehicle control of an automobile. Further, when an external force acting on the wheel bearing in real time or an acting force between the tire and the road surface is output, finer vehicle control becomes possible.

この実施形態のセンサユニット21は、センサ取付部材22に歪みセンサ23を1個だけ取付けた構成としているが、センサ取付部材22に歪みセンサ23を複数個取付けた構成としても良い。センサ取付部材22に歪みセンサ23を複数個取付けると、より一層精度の高い荷重の検出が可能となる。   The sensor unit 21 of this embodiment has a configuration in which only one strain sensor 23 is mounted on the sensor mounting member 22, but a configuration in which a plurality of strain sensors 23 are mounted on the sensor mounting member 22 may be employed. If a plurality of strain sensors 23 are attached to the sensor attachment member 22, it becomes possible to detect a load with higher accuracy.

また、この実施形態は、センサユニット21を外方部材1の上部1箇所だけに配置した構成としているが、図4に示すように、センサユニット21を外方部材1の上部および下部の複数箇所に配置した構成としても良い。センサユニット21を複数箇所に配置すると、より一層精度の高い荷重の検出が可能となる。場合によっては、外方部材1の下部1箇所にだけセンサユニット21を配置した構成としてもよい。   Further, in this embodiment, the sensor unit 21 is arranged at only one upper portion of the outer member 1. However, as shown in FIG. 4, the sensor unit 21 is provided at a plurality of locations at the upper and lower portions of the outer member 1. It is good also as a structure arrange | positioned. If the sensor units 21 are arranged at a plurality of locations, it becomes possible to detect a load with higher accuracy. Depending on the case, the sensor unit 21 may be arranged only at one lower portion of the outer member 1.

図5および図6は異なる実施形態を示す。この車輪用軸受は、センサ取付部材22と外方部材1との固定をボルトを用いて行なうものである。図6に示すように、このセンサ取付部材22は、全体形状は図3に示すセンサ取付部材22と同じであり、第1の接触固定部22aに軸方向のボルト挿通孔40が形成され、かつ第2の接触固定部22bに径方向のボルト挿通孔41が形成されている。ナックル16および外方部材1の周面には、前記ボルト挿通孔40,41に対応する位置に、内周面に雌ねじが形成されたボルト螺着孔42,43がそれぞれ形成されている。図5に示すように、センサユニット21は、センサ取付部材22のボルト挿通孔40,41に外周側からボルト44を挿通し(正確にはボルト挿通孔40についてはアウトボード側からボルト44を挿通する)、そのボルト44の雄ねじ部44aをボルト螺着孔42,43に螺着させることにより、ナックル16および外方部材1に固定される。   5 and 6 show different embodiments. In this wheel bearing, the sensor mounting member 22 and the outer member 1 are fixed using bolts. As shown in FIG. 6, the sensor mounting member 22 has the same overall shape as the sensor mounting member 22 shown in FIG. 3, and an axial bolt insertion hole 40 is formed in the first contact fixing portion 22a. A radial bolt insertion hole 41 is formed in the second contact fixing portion 22b. Bolt screw holes 42 and 43 having internal threads formed on the inner peripheral surface are formed in the peripheral surfaces of the knuckle 16 and the outer member 1 at positions corresponding to the bolt insertion holes 40 and 41, respectively. As shown in FIG. 5, in the sensor unit 21, the bolts 44 are inserted into the bolt insertion holes 40, 41 of the sensor mounting member 22 from the outer peripheral side (more precisely, the bolts 44 are inserted from the outboard side with respect to the bolt insertion holes 40. The screw 44 is fixed to the knuckle 16 and the outer member 1 by screwing the male screw portion 44a of the bolt 44 into the bolt screw holes 42 and 43.

ナックル16および外方部材1に対するセンサ取付部材22の固定については、接着剤およびボルトのいずれを用いても良い。また、両者を併用してもよい。さらには、接着剤やボルトを用いず、溶接でセンサ取付部材22と外方部材1とを固定しても良い。
これらの固定構造のいずれを採用した場合でも、センサ取付部材22と外方部材1とを強固に固定することができる。そのため、センサ取付部材22が外方部材1に対して位置ずれすることがなく、外方部材1の変形をセンサ取付部材22に正確に伝えることが可能になる。
For fixing the sensor attachment member 22 to the knuckle 16 and the outer member 1, either an adhesive or a bolt may be used. Moreover, you may use both together. Furthermore, you may fix the sensor attachment member 22 and the outward member 1 by welding, without using an adhesive agent and a volt | bolt.
Regardless of which of these fixing structures is employed, the sensor mounting member 22 and the outer member 1 can be firmly fixed. Therefore, the sensor mounting member 22 is not displaced with respect to the outer member 1, and the deformation of the outer member 1 can be accurately transmitted to the sensor mounting member 22.

図7はセンサユニットの異なる実施形態を示す。このセンサユニット21は、歪みセンサ23とは別に温度センサ24が設けられている。なお、センサ取付部材22の形状は図3に示すものと同じであり、歪みセンサ23および温度センサ24はいずれも、センサ取付部材22の中央部に配置されている。温度センサ24としては、例えば白金測温抵抗または熱電対またはサーミスタを使用することができる。さらに、これら以外の温度を検出することが可能なセンサを使用することもできる。   FIG. 7 shows a different embodiment of the sensor unit. The sensor unit 21 is provided with a temperature sensor 24 in addition to the strain sensor 23. The shape of the sensor mounting member 22 is the same as that shown in FIG. 3, and both the strain sensor 23 and the temperature sensor 24 are arranged at the center of the sensor mounting member 22. As the temperature sensor 24, for example, a platinum resistance thermometer, a thermocouple, or a thermistor can be used. Furthermore, a sensor capable of detecting a temperature other than these can also be used.

このセンサユニット21を設けた車軸用軸受も、歪みセンサ23がセンサ取付部材22の歪みを検出し、その歪みにより車輪に加わる荷重を測定する。ところで、車輪用軸受は使用中に温度が変化し、その温度変化がセンサ取付部材22の歪み、または歪みセンサ23の動作に影響を及ぼす。そこで、センサ取付部材22に配置した温度センサ24にてセンサ取付部材22の温度を検出し、その検出した温度により歪みセンサ23の出力を補正することにより、歪みセンサ23の温度による影響を除去することができる。これにより、精度の高い荷重検出を行なうことが可能となる。   Also in the axle bearing provided with the sensor unit 21, the strain sensor 23 detects the strain of the sensor mounting member 22, and measures the load applied to the wheel by the strain. By the way, the temperature of the wheel bearing changes during use, and the temperature change affects the strain of the sensor mounting member 22 or the operation of the strain sensor 23. Therefore, the temperature sensor 24 arranged on the sensor mounting member 22 detects the temperature of the sensor mounting member 22 and corrects the output of the strain sensor 23 based on the detected temperature, thereby removing the influence of the temperature of the strain sensor 23. be able to. Thereby, it is possible to detect the load with high accuracy.

図8はセンサユニットのさらに異なる実施形態を示す。このセンサユニット21は、歪みセンサ23とは別に各種センサ25が設けられている。各種センサ25は、加速度センサおよび振動センサのうちの少なくとも一つとする。なお、センサ取付部材22の形状は図3に示すものと同じであり、歪みセンサ23および各種センサ25はいずれも、センサ取付部材22の中央部に配置されている。
このように、センサ取付部材22に歪みセンサ23および各種センサ25を取付けると、荷重と車輪用軸受の状態を1箇所で測定することができ、配線等を簡略なものとすることができる。
FIG. 8 shows a further different embodiment of the sensor unit. The sensor unit 21 is provided with various sensors 25 separately from the strain sensor 23. The various sensors 25 are at least one of an acceleration sensor and a vibration sensor. The shape of the sensor mounting member 22 is the same as that shown in FIG. 3, and the strain sensor 23 and the various sensors 25 are both disposed at the center of the sensor mounting member 22.
Thus, when the strain sensor 23 and the various sensors 25 are attached to the sensor attachment member 22, the load and the state of the wheel bearing can be measured at one place, and wiring and the like can be simplified.

図9は前記各実施形態とは異なる方法で歪みセンサを形成したセンサユニットの構造を示す。このセンサユニット21は、センサ取付部材22の上に絶縁層50が形成され、この絶縁層50の表面の両側に対を成す電極51,52が形成され、これら電極51,52の間で前記絶縁層50の上に歪みセンサとなる歪み測定用抵抗体53が形成され、さらに電極51,52と歪み測定用抵抗体53の上に保護膜54を形成された構造となっている。   FIG. 9 shows a structure of a sensor unit in which a strain sensor is formed by a method different from that in each of the embodiments. In this sensor unit 21, an insulating layer 50 is formed on the sensor mounting member 22, and a pair of electrodes 51, 52 are formed on both sides of the surface of the insulating layer 50. A strain measuring resistor 53 serving as a strain sensor is formed on the layer 50, and a protective film 54 is further formed on the electrodes 51 and 52 and the strain measuring resistor 53.

このセンサユニット21の製造方法を次に示す。まず、ステンレス鋼等の金属材料で形成されたセンサ取付部材22の表面にガラス等の絶縁材料を印刷、焼成して絶縁層50を形成する。次に、絶縁層50の表面に、導電性材料を印刷、焼成して電極51,52を形成する。さらに、電極51と電極52との間に、抵抗体となる材料を印刷、焼成して歪み測定用抵抗体53を形成する。さらに、これら電極51,52および歪み測定用抵抗体53を保護するために、保護膜54を形成する。   A method for manufacturing the sensor unit 21 will be described below. First, the insulating layer 50 is formed by printing and baking an insulating material such as glass on the surface of the sensor mounting member 22 formed of a metal material such as stainless steel. Next, a conductive material is printed and baked on the surface of the insulating layer 50 to form the electrodes 51 and 52. Furthermore, a strain measurement resistor 53 is formed by printing and baking a material to be a resistor between the electrode 51 and the electrode 52. Further, a protective film 54 is formed to protect the electrodes 51 and 52 and the strain measuring resistor 53.

通常、歪みセンサはセンサ取付部材22に対して接着による固定が行なわれるが、この固定構造は、経年変化による接着強度の低下が歪みセンサの検出に影響を及ぼす可能性があり、またコストアップの原因ともなっている。これに対し、この実施形態のように、センサ取付部材22の表面に絶縁層50を印刷および焼成により形成し、この絶縁層50の上に電極51,52および歪みセンサとなる歪み測定用抵抗体53を印刷および焼成により形成したセンサユニット21とすると、信頼性の向上とコストダウンを図ることが可能となる。   Usually, the strain sensor is fixed to the sensor mounting member 22 by bonding. However, this fixing structure may affect the detection of the strain sensor due to a decrease in bonding strength due to aging. It is also a cause. On the other hand, as in this embodiment, the insulating layer 50 is formed on the surface of the sensor mounting member 22 by printing and baking, and the electrodes 51 and 52 and the strain measurement resistor serving as the strain sensor are formed on the insulating layer 50. When the sensor unit 21 is formed by printing and baking 53, it is possible to improve reliability and reduce costs.

図10ないし図12はさらに異なる実施形態を示す。この車輪用軸受は、センサユニット21に設けられた歪みセンサや前述の各センサ(温度センサ、加速度センサ、振動センサ)の出力を処理するためのセンサ信号処理回路ユニット60を組み込んだものである。このセンサ信号処理回路ユニット60は外方部材1の外周面に取付けられている。   10 to 12 show a further different embodiment. This wheel bearing incorporates a sensor signal processing circuit unit 60 for processing the outputs of the strain sensors provided in the sensor unit 21 and the aforementioned sensors (temperature sensor, acceleration sensor, vibration sensor). The sensor signal processing circuit unit 60 is attached to the outer peripheral surface of the outer member 1.

センサ信号処理回路ユニット60は、樹脂等で製作されたハウジング61内に、ガラスエポキシ等で製作された回路基板62を有し、その回路基板62上には、前記歪みセンサ23の出力信号を処理するオペアンプ、抵抗、マイコン等や歪みセンサ23を駆動する電源用の電気・電子部品63が配置されている。また、歪みセンサ23の配線と回路基板62とを接合する接合部64を有している。また、外部からの電源供給や外部へセンサ信号処理回路によって処理された出力信号を出力するケーブル65を有している。センサユニット21に前述の各センサ(温度センサ、加速度センサ、振動センサ)が設けられている場合、センサ信号処理回路ユニット60にはそれぞれのセンサに対応した回路基板62、電気・電子部品63、接合部64、ケーブル65等が設けられる。   The sensor signal processing circuit unit 60 has a circuit board 62 made of glass epoxy or the like in a housing 61 made of resin or the like, and the output signal of the strain sensor 23 is processed on the circuit board 62. An operational amplifier, a resistor, a microcomputer, etc., and a power supply electric / electronic component 63 for driving the strain sensor 23 are arranged. In addition, a joint portion 64 that joins the wiring of the strain sensor 23 and the circuit board 62 is provided. Further, it has a cable 65 for supplying power from the outside and outputting an output signal processed by the sensor signal processing circuit to the outside. When the sensor unit 21 is provided with each of the above-described sensors (temperature sensor, acceleration sensor, vibration sensor), the sensor signal processing circuit unit 60 includes a circuit board 62, an electric / electronic component 63, a joint corresponding to each sensor. A portion 64, a cable 65, and the like are provided.

一般的には、車輪用軸受に設けられた各センサの出力を処理するセンサ信号処理回路ユニットは自動車の電気制御ユニット(ECU)に設けられるが、この実施形態のように、車輪用軸受におけるセンサユニット21の近傍にセンサ信号処理回路ユニット60を設けることで、センサユニット21からセンサ信号処理回路ユニット60への配線の手間が簡略化でき、また車輪用軸受以外の場所にセンサ信号処理回路ユニット60を設ける場合よりも、センサ信号処理回路ユニット60をコンパクトに設置できる。   In general, a sensor signal processing circuit unit for processing the output of each sensor provided in a wheel bearing is provided in an electric control unit (ECU) of an automobile. As in this embodiment, a sensor in a wheel bearing is provided. By providing the sensor signal processing circuit unit 60 in the vicinity of the unit 21, labor for wiring from the sensor unit 21 to the sensor signal processing circuit unit 60 can be simplified, and the sensor signal processing circuit unit 60 is provided at a place other than the wheel bearing. The sensor signal processing circuit unit 60 can be installed more compactly than the case of providing the sensor.

図13および図14は、上記各実施形態とはセンサユニット21の配置箇所が異なる実施形態を示す。上記各実施形態が、外方部材1の上部または下部または上下両方のセンサユニット21が配置されているのに対し、この実施形態は、外方部材1の車両進行方向における前部にセンサユニット21が配置されている。また、図13に示すように、歪みセンサ23の出力を処理する手段として、上記実施形態における作用力推定手段31の代わりに、モーメント推定手段33が設けられている。これ以外は図1ないし図3の実施形態と同じ構成であるため、同一構成箇所には同一符号を付して表示し、その説明を省略する。   FIG. 13 and FIG. 14 show an embodiment in which the arrangement location of the sensor unit 21 is different from the above embodiments. In each of the above embodiments, the sensor unit 21 at the upper part, the lower part, or both the upper and lower parts of the outer member 1 is arranged. Is arranged. As shown in FIG. 13, as means for processing the output of the strain sensor 23, moment estimating means 33 is provided instead of the acting force estimating means 31 in the above embodiment. Other than this, the configuration is the same as that of the embodiment of FIGS. 1 to 3, and thus the same components are denoted by the same reference numerals and description thereof is omitted.

この実施形態の場合も、ハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1およびナックル16に固定されたセンサ取付部材22に伝わり、センサ取付部材22が変形する。そのセンサ取付部材22の歪みを歪みセンサ23により測定する。センサ取付部材22は外方部材1と比べて脆弱であり、その脆弱なセンサ取付部材22の歪みを歪みセンサ23が測定するため、外方部材1の歪みよりも大きな歪みが得られ、感度良く外方部材1の歪みを検出することができる。   Also in this embodiment, when a load is applied to the hub wheel 9, the outer member 1 is deformed via the rolling elements 5, and the deformation is a sensor mounting member 22 fixed to the outer member 1 and the knuckle 16. The sensor mounting member 22 is deformed. The strain of the sensor mounting member 22 is measured by the strain sensor 23. The sensor mounting member 22 is weaker than the outer member 1, and the strain sensor 23 measures the strain of the weak sensor mounting member 22, so that a strain larger than the strain of the outer member 1 is obtained, and the sensitivity is high. The distortion of the outer member 1 can be detected.

荷重の方向や大きさによって歪みの変化が異なるため、予め歪みと荷重の関係を実験やシミュレーションにて求めておけば、車輪用軸受に作用するステアモーメントを算出することができる。ステアモーメントは、車両が曲線進路を走行する際に車両用軸受にかかるモーメントである。前記モーメント推定手段33は、このように実験やシミュレーションにより予め求めて設定しておいた歪みと荷重の関係から、歪みセンサ23の出力により、車輪用軸受に作用するステアモーメントを算出する。これをもとに異常判定手段32は、車輪用軸受に作用するステアモーメントが許容値を超えたと判断される場合に、外部に異常信号を出力する。この異常信号を、自動車の車両制御に使用することができる。また、リアルタイムで車輪用軸受に作用するステアモーメントを出力すると、よりきめ細かな車両制御が可能となる。   Since the strain changes depending on the direction and magnitude of the load, if the relationship between the strain and the load is obtained in advance through experiments and simulations, the steering moment acting on the wheel bearing can be calculated. The steering moment is a moment applied to the vehicle bearing when the vehicle travels on a curved path. The moment estimation means 33 calculates the steering moment acting on the wheel bearing based on the output of the strain sensor 23 from the relationship between the strain and the load obtained and set in advance through experiments and simulations. Based on this, the abnormality determination means 32 outputs an abnormality signal to the outside when it is determined that the steering moment acting on the wheel bearing exceeds the allowable value. This abnormal signal can be used for vehicle control of an automobile. Further, if the steering moment acting on the wheel bearing is output in real time, more detailed vehicle control becomes possible.

この実施形態は、外方部材1の車両進行方向における前部1箇所だけにセンサユニット21を配置した構成としているが、図15に示すように、外方部材1の前部および後部の複数箇所にセンサユニット21を配置した構成としても良い。このようにセンサユニット21を複数箇所に配置すると、より一層精度の高いステアモーメントの検出が可能となる。場合によっては、外方部材1の後部1箇所だけにセンサユニット21を配置した構成としてもよい。   In this embodiment, the sensor unit 21 is arranged at only one front portion of the outer member 1 in the vehicle traveling direction. However, as shown in FIG. Alternatively, the sensor unit 21 may be arranged. If the sensor units 21 are arranged in a plurality of places as described above, it is possible to detect the steer moment with higher accuracy. In some cases, the sensor unit 21 may be disposed only at one rear portion of the outer member 1.

なお、前記各実施形態では、外方部材1が固定側部材である場合につき説明したが、この発明は、内方部材が固定側部材である車輪用軸受にも適用することができ、その場合、センサユニット21は内方部材の内周となる周間に設ける。
また、前記各実施形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、このセンサ付車輪用軸受は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。
In each of the above embodiments, the case where the outer member 1 is a fixed side member has been described. However, the present invention can also be applied to a wheel bearing in which the inner member is a fixed side member. The sensor unit 21 is provided between the inner circumferences of the inner member.
In each of the above embodiments, the case where the present invention is applied to a third generation type wheel bearing has been described. However, the present invention is applicable to a first or second generation type wheel in which the bearing portion and the hub are independent parts. The present invention can also be applied to a bearing or a fourth-generation type wheel bearing in which a part of the inner member is composed of an outer ring of a constant velocity joint. Further, this sensor-equipped wheel bearing can be applied to a wheel bearing for a driven wheel, and can also be applied to a tapered roller type wheel bearing of each generation type.

この発明の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning the embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the wheel bearing with a sensor. (A)は同センサユニットの正面図、(B)はその側面図である。(A) is a front view of the sensor unit, and (B) is a side view thereof. 異なるセンサ付車輪用軸受の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of a different wheel bearing with a sensor. この発明の異なる実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning different embodiment of this invention. (A)は同センサ付車輪用軸受のセンサユニットの平面図、(B)はそのVIB−VIB断面図である。(A) is a top view of the sensor unit of the wheel bearing with a sensor, (B) is the VIB-VIB sectional drawing. (A)は異なるセンサユニットの平面図、(B)はその側面図である。(A) is a top view of a different sensor unit, (B) is the side view. (A)さらに異なるセンサユニットの平面図、(B)はその側面図である。(A) The top view of a different sensor unit, (B) is the side view. さらに異なるセンサユニットの断面構造を示す図である。It is a figure which shows the cross-section of another sensor unit. この発明のさらに異なる実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further different embodiment of this invention. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the wheel bearing with a sensor. センサ信号処理回路ユニットの平面図である。It is a top view of a sensor signal processing circuit unit. この発明のさらに異なる実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the bearing for wheels with a sensor concerning still another embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材とセンサユニットを示す正面図である。It is a front view which shows the outward member and sensor unit of the wheel bearing with a sensor. (A)は同センサユニットの平面図、(B)はその側面図である。(A) is a plan view of the sensor unit, and (B) is a side view thereof.

符号の説明Explanation of symbols

1…外方部材(固定側部材)
2…内方部材(回転側部材)
3,4…転走面
5…転動体
7,8…密封装置
16…ナックル(懸架装置)
18…ナックルボルト
21…センサユニット
22…センサ取付部材
22a…第1の接触固定部
22b…第2の接触固定部
23…歪みセンサ
24…温度センサ
25…各種センサ
31…作用力推定手段
32…異常判定手段
33…モーメント推定手段
50…絶縁層
51,52…電極
53…歪み測定用抵抗体
54…保護膜
60…センサ信号処理回路ユニット
61…ハウジング
62…回路基板
63…電気・電子部品
64…接合部
65…ケーブル
1 ... Outer member (fixed side member)
2 ... Inward member (rotary member)
3, 4 ... rolling surface 5 ... rolling elements 7, 8 ... sealing device 16 ... knuckle (suspension device)
DESCRIPTION OF SYMBOLS 18 ... Knuckle bolt 21 ... Sensor unit 22 ... Sensor attachment member 22a ... 1st contact fixing part 22b ... 2nd contact fixing part 23 ... Strain sensor 24 ... Temperature sensor 25 ... Various sensors 31 ... Action force estimation means 32 ... Abnormality Determination means 33 ... Moment estimation means 50 ... Insulating layers 51, 52 ... Electrodes 53 ... Strain measuring resistor 54 ... Protective film 60 ... Sensor signal processing circuit unit 61 ... Housing 62 ... Circuit board 63 ... Electric / electronic component 64 ... Join Part 65 ... Cable

Claims (14)

複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、懸架装置に取付けられて車体に対して車輪を回転自在に支持する車輪用軸受において、
センサ取付部材およびこのセンサ取付部材に取付けた少なくとも1つ以上の歪みセンサからなるセンサユニットを、前記外方部材および内方部材のうちの固定側部材に取付け、前記センサ取付部材は、固定側部材に固定するための2箇所の接触固定部を有し、前記接触固定部のうち第1の接触固定部は、車体の懸架装置に固定されるものであり、第2の接触固定部は、前記固定側部材の周面に固定されるものであることを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces A rolling bearing, and a wheel bearing that is attached to a suspension device and rotatably supports the wheel with respect to the vehicle body,
A sensor unit comprising a sensor attachment member and at least one strain sensor attached to the sensor attachment member is attached to a fixed side member of the outer member and the inner member, and the sensor attachment member is a fixed side member The first contact fixing part is fixed to the suspension device of the vehicle body, and the second contact fixing part is the above-mentioned contact fixing part. A sensor-equipped bearing for wheels, wherein the bearing is fixed to a peripheral surface of a stationary member.
請求項1において、前記センサユニットを、前記固定側部材の上部または下部または上下両方に配置したセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1, wherein the sensor unit is disposed on an upper portion, a lower portion, or both upper and lower sides of the fixed side member. 請求項1において、前記センサユニットを、前記固定側部材の車両進行方向における前部または後部または前後両方に配置したセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1, wherein the sensor unit is disposed at a front portion, a rear portion, or both front and rear in the vehicle traveling direction of the fixed side member. 請求項1ないし請求項3のいずれか1項において、前記センサ取付部材の第2の接触固定部は、前記固定側部材の周方向において、前記第1の接触固定部とは同位相の周方向位置となる前記固定側部材の周面に固定されるセンサ付車輪用軸受。   4. The second contact fixing portion of the sensor mounting member according to claim 1, wherein the second contact fixing portion of the sensor mounting member has a circumferential direction in phase with the first contact fixing portion in the circumferential direction of the fixing side member. The wheel bearing with a sensor fixed to the surrounding surface of the said fixed side member used as a position. 請求項1ないし請求項4のいずれか1項において、前記固定側部材が外方部材であるセンサ付車輪用軸受。   5. The wheel bearing with sensor according to claim 1, wherein the fixed side member is an outer member. 6. 請求項1ないし請求項5のいずれか1項において、前記歪みセンサの出力によって、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を推定する作用力推定手段を設けたセンサ付車輪用軸受。   6. The sensor-equipped wheel according to claim 1, further comprising an acting force estimating unit that estimates an external force acting on a wheel bearing or an acting force between a tire and a road surface based on an output of the strain sensor. Bearings. 請求項1ないし請求項6のいずれか1項において、前記固定側部材に作用する外力、または前記タイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、前記センサユニットのセンサ取付部材は塑性変形しないものとしたセンサ付車輪用軸受。   In any one of claims 1 to 6, even in a state in which an assumed maximum force is applied as an external force acting on the stationary member or an acting force acting between the tire and a road surface. A sensor-equipped wheel bearing wherein the sensor mounting member of the sensor unit is not plastically deformed. 請求項1ないし請求項7のいずれか1項において、前記センサ取付部材がプレス加工品であるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to any one of claims 1 to 7, wherein the sensor mounting member is a press-processed product. 請求項1ないし請求項7のいずれか1項において、前記センサ取付部材が金属射出成形による焼結金属であるセンサ付車輪用軸受。   The wheel bearing with a sensor according to any one of claims 1 to 7, wherein the sensor mounting member is a sintered metal by metal injection molding. 請求項1ないし請求項9のいずれか1項において、前記センサ取付部材と前記懸架装置との固定を、ボルトおよび接着剤のいずれかを用いて行なうか、または両方を併用して行なうか、または溶接を用いて行なうセンサ付車輪用軸受。   In any one of Claims 1 thru | or 9, the said sensor attachment member and the said suspension apparatus are fixed using either a volt | bolt and an adhesive agent, or performing both together, or Wheel bearing with sensor that is performed by welding. 請求項1ないし請求項10のいずれか1項において、前記センサ取付部材に温度センサを設けたセンサ付車輪用軸受。   11. The wheel bearing with sensor according to claim 1, wherein a temperature sensor is provided on the sensor mounting member. 請求項1ないし請求項11のいずれか1項において、前記センサ取付部材に加速度センサおよび振動センサのうち少なくとも一つを設けたセンサ付車輪用軸受。   12. The sensor-equipped wheel bearing according to claim 1, wherein the sensor mounting member is provided with at least one of an acceleration sensor and a vibration sensor. 請求項1ないし請求項12のいずれか1項において、前記歪みセンサは、前記センサ取付部材の表面に絶縁層を印刷および焼成によって形成し、前記絶縁層の上に電極および歪み測定用抵抗体を印刷および焼成によって形成したものであるセンサ付車輪用軸受。   13. The strain sensor according to claim 1, wherein the strain sensor is formed by printing and baking an insulating layer on a surface of the sensor mounting member, and an electrode and a strain measuring resistor are formed on the insulating layer. Sensor-equipped wheel bearing formed by printing and firing. 請求項1ないし請求項13のいずれか1項において、前記センサユニットの近傍に、前記歪みセンサの出力信号を処理するセンサ信号処理回路を有するセンサ信号処理回路ユニットを設けたセンサ付車輪用軸受。   14. The sensor-equipped wheel bearing according to claim 1, wherein a sensor signal processing circuit unit having a sensor signal processing circuit for processing an output signal of the strain sensor is provided in the vicinity of the sensor unit.
JP2006119093A 2006-04-24 2006-04-24 Wheel bearing with sensor Pending JP2007292157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119093A JP2007292157A (en) 2006-04-24 2006-04-24 Wheel bearing with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119093A JP2007292157A (en) 2006-04-24 2006-04-24 Wheel bearing with sensor

Publications (1)

Publication Number Publication Date
JP2007292157A true JP2007292157A (en) 2007-11-08

Family

ID=38762965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119093A Pending JP2007292157A (en) 2006-04-24 2006-04-24 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP2007292157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076988A1 (en) * 2007-12-18 2009-06-25 Ab Skf Bearing and sensor unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076988A1 (en) * 2007-12-18 2009-06-25 Ab Skf Bearing and sensor unit

Similar Documents

Publication Publication Date Title
JP4889324B2 (en) Wheel bearing with sensor
JP2007292158A (en) Wheel bearing with sensor
JP4850078B2 (en) Wheel bearing with sensor
US7856893B2 (en) Bearing for wheel with sensor
WO2007105367A1 (en) Bearing for wheel with sensor
JP2007057299A (en) Wheel bearing with sensor
JP2007057302A (en) Wheel bearing with sensor
JP2007057300A (en) Wheel bearing with sensor
JP2007057259A (en) Wheel bearing with sensor
JP4931525B2 (en) Wheel bearing device with in-wheel motor built-in sensor
JP2008051283A (en) Wheel bearing with sensor
JP2007292159A (en) Wheel bearing with sensor
JP2008051239A (en) Wheel bearing with sensor
JP2007292156A (en) Wheel bearing with sensor
JP2007292157A (en) Wheel bearing with sensor
JP2007278407A (en) Bearing for wheel with sensor
JP2008045903A (en) Bearing for vehicular wheel provided with sensor
JP2007064337A (en) Sensor-equipped bearing for wheel
JP5334370B2 (en) Wheel bearing with sensor
JP4925770B2 (en) Wheel bearing with sensor
JP2010032229A (en) Wheel bearing with sensor
JP2008045904A (en) Wheel bearing with sensor
JP2007078597A (en) Bearing with sensor for wheel
JP2007292231A (en) Wheel bearing with sensor
JP2007292233A (en) Wheel bearing with sensor