JP2008184741A - Soil improvement method including calcium by use of microorganism - Google Patents

Soil improvement method including calcium by use of microorganism Download PDF

Info

Publication number
JP2008184741A
JP2008184741A JP2007016739A JP2007016739A JP2008184741A JP 2008184741 A JP2008184741 A JP 2008184741A JP 2007016739 A JP2007016739 A JP 2007016739A JP 2007016739 A JP2007016739 A JP 2007016739A JP 2008184741 A JP2008184741 A JP 2008184741A
Authority
JP
Japan
Prior art keywords
ground
polyvalent metal
microorganisms
nutrient source
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007016739A
Other languages
Japanese (ja)
Other versions
JP4608669B2 (en
Inventor
Satoru Kawasaki
了 川▲崎▼
Naoki Hiroyoshi
直樹 広吉
Shunsuke Shimada
俊介 島田
Tadao Koyama
忠雄 小山
Rei Terajima
麗 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Hokkaido University NUC
Original Assignee
Kyokado Engineering Co Ltd
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd, Hokkaido University NUC filed Critical Kyokado Engineering Co Ltd
Priority to JP2007016739A priority Critical patent/JP4608669B2/en
Publication of JP2008184741A publication Critical patent/JP2008184741A/en
Application granted granted Critical
Publication of JP4608669B2 publication Critical patent/JP4608669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving soil in a wide range by use of only the substances existing in the natural condition without generating toxic substance even after the soil improvement to prevent the environment from being affected by the soil improvement. <P>SOLUTION: A mixture liquid prepared by mixing nutrient source with polyvalent metallic compound to increase solubility of the polyvalent metallic compound is poured into the ground, and the product prepared by metabolic action of the microorganisms living in the ground is reacted with the polyvalent metallic compound to consolidate the ground. In the ground containing large amount of polyvalent metallic compound, the product prepared by the metabolic action of the microorganisms living in the ground is reacted with the polyvalent metallic compound after the nutrient source is poured into the ground and the polyvalent metallic compound, is dissolved to consolidate the ground. Sugar can be used as the nutrient source. In addition, one or a plurality of kinds of substances among microorganisms, slightly soluble silicate compound, nutrient source, and pH regulator or hardener are charged into the ground as required. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は地盤中に栄養源、多価金属化合物、微生物を投入し、微生物の代謝作用による生成物と多価金属化合物を反応させて地盤を固結させる地盤改良方法に係り、特に、地盤の固結に際して有害物を発生せず、このため環境への悪影響を与えることがなく、しかも大掛かりな装置や有害な薬品を必要とせず、液状化対策工事、構造物基礎下の耐震補強等に適した地盤改良方法に関する。   The present invention relates to a ground improvement method in which a nutrient source, a polyvalent metal compound, and a microorganism are introduced into the ground, and a product resulting from the metabolic action of the microorganism reacts with the polyvalent metal compound to solidify the ground. It does not generate harmful substances when consolidated, so it does not adversely affect the environment, and does not require large-scale equipment or harmful chemicals. It is suitable for liquefaction countermeasure construction, seismic reinforcement under the structure foundation, etc. The present invention relates to a ground improvement method.

注入材により地盤を固結して地盤改良を図る方法として、従来、地盤中に注入材として水ガラスや、セメントを注入して地盤を固結する方法が採用されていた。   As a method of solidifying the ground with an injection material to improve the ground, conventionally, a method of solidifying the ground by injecting water glass or cement as an injection material into the ground has been adopted.

しかし、この方法では注入材が強アルカリであったり、あるいは強酸を使用したりする等、環境への悪影響を与える恐れがあり、さらには取り扱いに注意が必要であり、また、使用できる地盤が限定されている。   However, this method may cause adverse effects on the environment, such as the use of strong alkalis or strong acids in the injection material, and requires careful handling, and the ground that can be used is limited. Has been.

地盤の液状化が発生する可能性のある地盤には、海岸沿いの貝殻等のカルシウムを含む地盤が多い。しかし、地盤改良の際、周辺環境への影響のない地盤改良方法が求められる場合、従来のシリカ化合物等の強アルカリや、反応材として酸では地盤改良後に未反応物質が溶解してしまう可能性があった。また、水ガラスとカルシウムを用いる注入材ではゲル化時間が短いことから地盤中に浸透せず広範囲の地盤改良が困難であった。   In the ground where liquefaction of the ground may occur, there are many grounds containing calcium such as shells along the coast. However, when a ground improvement method that does not affect the surrounding environment is required during ground improvement, there is a possibility that unreacted substances will dissolve after the ground improvement with a strong alkali such as a conventional silica compound or an acid as a reaction material. was there. Moreover, in the injection material using water glass and calcium, since the gelation time is short, it does not penetrate into the ground and it is difficult to improve the ground in a wide range.

本出願人による多価金属化合物を有効成分とするA液と、炭酸、重炭酸、硫酸、燐酸およびこれらの多価金属塩の群から選択される一種または複数種を有効成分とするB液とを土中に浸透または注入し、または土と混合し、不溶性塩を形成させることにより、アルカリ汚染が少なく、またはシリカ分が溶出しないため水質汚染が生じることのない発明が、すでに公知となっている。(特許文献1)   A liquid containing a polyvalent metal compound as an active ingredient by the applicant, and a B liquid containing one or more selected from the group of carbonic acid, bicarbonate, sulfuric acid, phosphoric acid and their polyvalent metal salts as active ingredients An invention has been already known in which water is not contaminated by infiltrating or injecting into the soil, or mixing with the soil to form an insoluble salt so that there is little alkali contamination or silica does not elute. Yes. (Patent Document 1)

消石灰または生石灰と糖類とを反応させて得られるカルシウムサッカラートからなるセメント混和剤については、すでに公知となっている(特許文献2、特許文献3、特許文献4)。   A cement admixture made of calcium saccharate obtained by reacting slaked lime or quicklime with sugar is already known (Patent Document 2, Patent Document 3, Patent Document 4).

本発明者らは、さらに上記方法を改良し、微生物による代謝作用によって二酸化炭素を発生させることにより、酸やアルカリの使用量を少なくしても、ゲル化時間の長い、安定したゲルを得ることを見出し、さらに、栄養源と多価金属化合物をあらかじめ混合することにより地盤中で地盤改良効果が高く、環境に悪影響を与えないグラウトを開発して本発明を完成するに至った。   The present inventors further improve the above method, and generate carbon dioxide by metabolic action of microorganisms to obtain a stable gel having a long gelation time even if the amount of acid or alkali used is reduced. Furthermore, the present invention was completed by developing a grout that has a high ground improvement effect in the ground and does not adversely affect the environment by previously mixing a nutrient source and a polyvalent metal compound.

特開2004−67819号公報JP 2004-67819 A 特開平08−183957号公報Japanese Patent Application Laid-Open No. 08-183957 特許第3325250号公報Japanese Patent No. 3325250 特許第3357670号公報Japanese Patent No. 3357670

そこで、本発明の課題はさらに環境への影響の低減を追求し、自然の状態で存在する物質だけを使用して、改良地盤およびその周辺に、また地盤改良後においても有害な物質を発生させず、上述の公知技術に存する欠点を改良した広範囲の地盤を改良する方法を提供することにある。   Therefore, the object of the present invention is to further reduce the impact on the environment, and to use only substances that exist in the natural state to generate harmful substances on and around the improved ground and after ground improvement. First, it is an object to provide a method for improving a wide range of ground, which has improved the above-mentioned drawbacks of the known technology.

上述の課題を解決するため、本発明は栄養源と多価金属化合物を混合して多価金属化合物の溶解度を上げた混合液を地盤中に注入し、地盤中に生息する微生物の代謝作用により生成した生成物と多価金属化合物を反応させて地盤を固結させることを特徴とする。   In order to solve the above-mentioned problems, the present invention injects a mixed solution in which the nutrient source and the polyvalent metal compound are mixed to increase the solubility of the polyvalent metal compound into the ground, and the metabolic action of microorganisms living in the ground. It is characterized by solidifying the ground by reacting the produced product with a polyvalent metal compound.

また、多価金属化合物を多く含む地盤においては栄養源を注入し、多価金属化合物を溶解させた後、地盤中に生息する微生物の代謝作用により生成した生成物と多価金属化合物を反応させて地盤を固結させることを特徴とする。   In addition, in the ground containing a large amount of polyvalent metal compound, after injecting nutrient sources and dissolving the polyvalent metal compound, the product produced by the metabolic action of microorganisms living in the ground is reacted with the polyvalent metal compound. It is characterized by solidifying the ground.

このとき栄養源としては、糖を用いることができる。   At this time, sugar can be used as a nutrient source.

さらに上記方法において、微生物、難溶性珪酸化合物、栄養源、pH調整剤、または硬化剤のうちの一種または複数種を投入することを特徴する。   Further, in the above method, one or more of microorganisms, hardly soluble silicate compounds, nutrient sources, pH adjusters, or curing agents are added.

上述の本発明により、あらかじめ栄養源と多価金属化合物を混合することにより、多価金属化合物の溶解度を高くし、地盤中への浸透性を高めることができる。   By mixing the nutrient source and the polyvalent metal compound in advance according to the present invention, the solubility of the polyvalent metal compound can be increased and the permeability into the ground can be increased.

さらに、微生物の代謝により栄養源が消費され、代謝物が生成されると、多価金属化合物の溶解度が低下し、地盤中で析出することにより、止水性の向上や地盤の固結に際して有害物質を発生せず、このため環境への悪影響を与えることがなく、しかも大掛かりな装置や有害な薬品を必要とせず、液状化対策工事、構造物基礎下の耐震補強等に適した地盤改良方法である。   Furthermore, when nutrient sources are consumed due to the metabolism of microorganisms and metabolites are produced, the solubility of the polyvalent metal compound decreases and precipitates in the ground, thereby improving the water-stopping property and causing harmful substances when the ground is consolidated. It is a ground improvement method suitable for liquefaction countermeasures, seismic reinforcement under the structure foundation, etc., without causing adverse effects on the environment and without requiring large equipment and harmful chemicals. is there.

微生物は例えば次式に示されるとおり、代謝活動において栄養源(グルコース)から二酸化炭素を生じる。
6126+6O2→6CO2+6H2O(好気性条件)
6126→2CO2+2C25OH(嫌気性条件)
Microorganisms produce carbon dioxide from a nutrient source (glucose) in metabolic activity, for example, as shown in the following formula.
C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O ( aerobic conditions)
C 6 H 12 O 6 → 2CO 2 + 2C 2 H 5 OH (anaerobic condition)

このとき地盤中に注入した多価金属化合物としてのカルシウムと微生物の生成した二酸化炭素が反応し、次式のとおり、土粒子間に炭酸カルシウムが析出・沈澱し、地盤を硬化する。
Ca2++CO2→H2O→CaCO3+2H+
At this time, calcium as a polyvalent metal compound injected into the ground reacts with carbon dioxide generated by microorganisms, and calcium carbonate precipitates and settles between the soil particles as shown in the following formula, thereby hardening the ground.
Ca 2+ + CO 2 → H 2 O → CaCO 3 + 2H +

さらに栄養源を注入することで栄養源の種類や量により微生物の代謝速度が変化し、二酸化炭素の生成量の変化に伴いカルシウム塩の析出量が変化することから、地盤の硬化時間および強度、透水係数等を調整できる。地盤においてカルシウム溶解量が少ない場合や、地盤を高強度に改良する場合においては、さらに多価金属化合物を地盤中に注入し、カルシウム塩の析出量を多くすることもできる。   Furthermore, by injecting nutrient sources, the metabolic rate of microorganisms changes depending on the type and amount of nutrient sources, and the precipitation amount of calcium salt changes with changes in the amount of carbon dioxide produced, so the hardening time and strength of the ground, The hydraulic conductivity etc. can be adjusted. When the amount of dissolved calcium in the ground is small or when the ground is improved with high strength, a polyvalent metal compound can be further injected into the ground to increase the amount of precipitated calcium salt.

また、微生物の多く存在する地盤においては、有機栄養源により地盤中の微生物の代謝を調整することにより、地盤中の多価金属化合物や注入した多価金属化合物と反応し、金属塩を析出させることができる。   In addition, in the ground where many microorganisms exist, by adjusting the metabolism of microorganisms in the ground by organic nutrient sources, it reacts with the polyvalent metal compound in the ground and the injected polyvalent metal compound to precipitate the metal salt. be able to.

しかし、従来用いられている石灰等の多価金属塩は水への溶解度が低く、地盤中の析出量が小さい。地盤を改良するための十分なカルシウム量を得るには大量の水に溶解しなければならず、その他の注入材を希釈してしまう。そこで、本発明では多価金属化合物が栄養源として例えばスクロースと反応してカルシウムサッカラートを生成させ、水に対する溶解度が大きくする。   However, conventionally used polyvalent metal salts such as lime have a low solubility in water and a small amount of precipitation in the ground. In order to obtain a sufficient amount of calcium to improve the ground, it must be dissolved in a large amount of water, diluting other infusion materials. Therefore, in the present invention, the polyvalent metal compound reacts with, for example, sucrose as a nutrient source to generate calcium saccharate, thereby increasing the solubility in water.

カルシウムサッカラートの生成は常温〜100℃程度の温度で生成可能であり、糖および多価金属化合物を十分に加え、未反応物をろ過し取り除いて使用する。   Calcium saccharate can be produced at a temperature ranging from room temperature to about 100 ° C., and a saccharide and a polyvalent metal compound are sufficiently added, and unreacted substances are filtered and used.

本発明における多価金属化合物とは多価金属の塩化物、微粒子石灰、および微粒子セメント群の中から選択される一種または複数種であり、好ましくは水溶性化合物である。例えば、カルシウム、マンガン、マグネシウム、銅、亜鉛、カリウム、アルミニウムおよび鉄、塩ならびに酸化物からなる金属成分を用いることができる。   In the present invention, the polyvalent metal compound is one or more selected from the group consisting of chlorides of polyvalent metals, fine lime, and fine cement, and is preferably a water-soluble compound. For example, a metal component composed of calcium, manganese, magnesium, copper, zinc, potassium, aluminum and iron, a salt and an oxide can be used.

また、炭酸カルシウムには3つの異なった結晶形(カルサイト、アラゴナイト、バテライト)があり、常温・常圧のカルシウム溶液中からは通常カルサイトが析出するが、Mg2+やある種の有機成分を溶液中に少量添加すると、アラゴナイトやバテライトが析出する。特にアラゴナイトやバテライトは結晶が成長する際に顕著な方向性を有しているため、炭酸カルシウムの結晶形態を制御することができれば、地盤の力学特性や水理学特性の異方性を比較的自由に制御できる可能性がある。 Calcium carbonate has three different crystal forms (calcite, aragonite, and vaterite), and calcite usually precipitates in calcium solutions at room temperature and pressure, but Mg 2+ and certain organic components When a small amount of is added to the solution, aragonite and vaterite are precipitated. In particular, aragonite and vaterite have a remarkable direction during crystal growth, so if the crystal morphology of calcium carbonate can be controlled, the anisotropy of the mechanical and hydraulic characteristics of the ground is relatively free. There is a possibility that it can be controlled.

本発明における栄養源とは微生物の栄養源となるものであり、好ましくは土壌中の微生物によって代謝分解されるものがよい。例えば、グルコースやフラクトースなどの単糖類、スクロース、マルトースあるいはガラクトースなどの2糖類、その他のオリゴ糖、デキストロース、でんぷんやマルトデキストリンなどの多糖類、その他糖類を例示することができる。微生物によって、あるいは有機栄養源によって代謝速度が変化するため、施工地盤によって選択する必要がある。   The nutrient source in the present invention is a nutrient source for microorganisms, and preferably one that is metabolically decomposed by microorganisms in the soil. Examples include monosaccharides such as glucose and fructose, disaccharides such as sucrose, maltose and galactose, other oligosaccharides, polysaccharides such as dextrose, starch and maltodextrin, and other saccharides. Since the metabolic rate varies depending on the microorganism or organic nutrient source, it is necessary to select it according to the construction ground.

また、多価金属化合物と錯体をつくるものとして、グリシン、リシン、グルタミン酸、およびその他のアミノ酸、ジペプチド、ポリペプチド、蛋白加水分解物、ミルク固形物、クリーム、卵固形物、ゼラチンおよびホエー蛋白からなる群から選択されるアミノ成分を用いてもよい(特開2005−145965号公報参照)。これらの栄養源は単体で用いても良いし、複数種を組み合わせてもよい。   In addition, glycine, lysine, glutamic acid, and other amino acids, dipeptides, polypeptides, protein hydrolysates, milk solids, creams, egg solids, gelatin and whey proteins are used as complexes with polyvalent metal compounds. An amino component selected from the group may be used (see JP 2005-145965 A). These nutrient sources may be used alone or in combination.

また、あらかじめ地盤に、あるいは一度注入した地盤にさらに同種または別の種類の栄養源、多価金属化合物、微生物を繰り返し注入することにより、地盤中の微生物や、注入した微生物の代謝を活性化させ強固に地盤を改良することができる。   In addition, by repeatedly injecting the same or different types of nutrients, polyvalent metal compounds, and microorganisms into the ground in advance or once into the ground, the microorganisms in the ground and the metabolism of the injected microorganisms are activated. The ground can be strongly improved.

本発明に用いられる微生物は人体や環境に影響を与えにくいものならば、使用可能である。特に、乳酸菌やイースト菌等の従来から食品に利用されているものや、一般の地盤中に多く存在するものが利用できる。   The microorganism used in the present invention can be used as long as it hardly affects the human body and the environment. In particular, lactic acid bacteria, yeast bacteria, and the like that have been used for foods in the past, and those that exist in general ground can be used.

また、本発明により析出するカルシウム塩とは炭酸カルシウム、水酸化カルシウム、乳酸カルシウム、硝酸カルシウム、等のカルシウム塩、水酸化アルミニウム等のアルミニウム塩、マグネシウム塩等の多価金属塩で、多価金属化合物および注入する微生物や地盤に生息する微生物に影響される。   The calcium salt precipitated according to the present invention is a calcium salt such as calcium carbonate, calcium hydroxide, calcium lactate or calcium nitrate, an aluminum salt such as aluminum hydroxide, or a polyvalent metal salt such as magnesium salt. It is influenced by the compound and the microorganisms to be injected or inhabiting the ground.

さらに、本発明において地盤中の強度増加を図るため、難溶性珪酸化合物として珪藻土、白土、ベントナイト等の粘土鉱物、および珪石粉、火山灰等の天然珪酸鉱物、焼却灰、高炉スラグ等を加えてもよい。   Furthermore, in order to increase the strength in the ground in the present invention, clay minerals such as diatomaceous earth, white clay, bentonite, and natural silicate minerals such as quartzite powder and volcanic ash, incineration ash, blast furnace slag, etc. may be added as a hardly soluble silicate compound. Good.

また、微生物の代謝を活性化するために、さらにpH調整剤、硬化剤を用いてもよい。   Moreover, in order to activate the metabolism of microorganisms, you may use a pH adjuster and a hardening | curing agent further.

スクロースと水酸化カルシウムを用いた溶解度の測定
水酸化カルシウムとスクロースを用いたときの水への溶解度の変化を測定した。
Measurement of Solubility Using Sucrose and Calcium Hydroxide Changes in water solubility when calcium hydroxide and sucrose were used were measured.

1.試験方法
蒸留水100mlにスクロースを加え、スクロースが溶けるまで攪拌し、その後水酸化カルシウム7.41gを加え、70℃まで加熱して24時間攪拌する。その後、液温を室温(25℃)まで冷まし、ろ過した液のカルシウム濃度を測定した。
1. Test method Add sucrose to 100 ml of distilled water, stir until sucrose is dissolved, then add 7.41 g of calcium hydroxide, heat to 70 ° C. and stir for 24 hours. Thereafter, the liquid temperature was cooled to room temperature (25 ° C.), and the calcium concentration of the filtered liquid was measured.

2.測定装置
ICP発光分光分析装置を使用した。
2. Measuring apparatus An ICP emission spectroscopic analyzer was used.

3.試験結果 3. Test results

Figure 2008184741
Figure 2008184741

表1の結果より、スクロースを添加しない場合に比べ、添加した場合の方が、ろ過液のカルシウム含有量が多いことがわかった。また、スクロースの添加量とろ過液のカルシウム含有量の相関は小さいという結果が得られた。   From the results in Table 1, it was found that the calcium content of the filtrate was higher when the sucrose was added than when the sucrose was not added. Moreover, the result that the correlation of the addition amount of sucrose and the calcium content of a filtrate was small was obtained.

炭酸カルシウム析出試験
実施例1の実験ケースNo.1で得られたカルシウム溶液に、イースト菌を加え、カルシウム濃度を測定した。
Calcium carbonate precipitation test To the calcium solution obtained in Experimental Case No. 1 of Example 1, yeast was added and the calcium concentration was measured.

1.試験方法
実施例1の実験ケースNo.1で得られたカルシウム溶液のろ過液を4ml試験管にとり、イースト菌0.1gを加えた。そして、24時間後のカルシウム濃度を測定した。
1. Test Method The filtrate of the calcium solution obtained in Experimental Case No. 1 of Example 1 was put in a 4 ml test tube, and 0.1 g of yeast was added. Then, the calcium concentration after 24 hours was measured.

2.試験結果
カルシウム溶液にイースト菌を加えた24時間後のカルシウム濃度は27kg/m3だった。
2. Test result The calcium concentration 24 hours after adding yeast to the calcium solution was 27 kg / m 3 .

一方、イースト菌を加える前のカルシウム濃度は実施例1より33.5kg/m3だったことより、溶液中のカルシウム濃度は減少したことがわかった。これより、微生物の代謝により炭酸カルシウムを析出させることが確認できた。 On the other hand, the calcium concentration before adding yeast was 33.5 kg / m 3 from Example 1, indicating that the calcium concentration in the solution was reduced. From this, it was confirmed that calcium carbonate was precipitated by the metabolism of microorganisms.

改良された標準砂供試体の透水試験
実施例1の実験ケースNo.2の配合により得られたろ過液とイースト菌(商品名:日清スーパーカメリヤ)2%を攪拌して標準砂供試体に通水した後、透水係数を測定した。また、比較として、実施例1の比較例で得られたろ過液にも同様にイースト菌を添加して標準砂供試体に通水し、透水係数を測定した。
Permeability test of an improved standard sand specimen Test case No. 1 of Example 1 The filtrate obtained by blending 2 and 2% of yeast (trade name: Nissin Super Camellia) were stirred and passed through a standard sand specimen, and the water permeability coefficient was measured. In addition, as a comparison, yeast was similarly added to the filtrate obtained in the comparative example of Example 1, and water was passed through the standard sand specimen, and the water permeability coefficient was measured.

1.試験方法
1mのプラスチック製モールドに標準砂を90cm充填(相対密度60%、透水係数2.02×10-2cm/s)し、実施例1の実験ケースNo.2のカルシウム含有液100mlあたりイースト菌2gの割合で作成した薬液1500mlを5サイクル通液し、作成した供試体を脱型して10cmに切断後、ラッピング材で密封し室温にて28日間養生後の透水係数を測定した。
1. Test method 90 cm of standard sand is filled into a 1 m plastic mold (relative density 60%, water permeability 2.02 × 10 -2 cm / s), and 2 g of yeast per 100 ml of the calcium-containing solution in test case No. 2 of Example 1 The prepared 1500 ml of the chemical solution was passed through 5 cycles, the prepared specimen was demolded and cut to 10 cm, sealed with a wrapping material, and the permeability coefficient after curing at room temperature for 28 days was measured.

透水試験は地盤工学会基準に準じた加圧透水試験を行った。同様に、実施例1の比較例のろ過液についても透水試験を行った。さらに、ろ過液100mlあたり栄養源としてスクロース68.4gを加えた液でも測定した。   The water permeability test was a pressurized water permeability test according to the Geotechnical Society standards. Similarly, a water permeation test was performed on the filtrate of the comparative example of Example 1. Furthermore, it measured also with the liquid which added 68.4g of sucrose as a nutrient source per 100 ml of filtrates.

2.試験結果
結果を表2に示す。
2. Test results The results are shown in Table 2.

スクロースなしの水酸化カルシウムろ過液(No.1)では水のみ(No.4)と比較して透水係数の低下がわずかしか見られなかったのに対し、水酸化カルシウムを溶解したろ過液に対してスクロースを加えたろ過液(No.2)では、約一桁の透水係数の低下が見られた。また、水酸化カルシウム溶液に栄養源としてスクロース68.4gを加えたろ過液による実験(No.3)では透水係数が大きく低下し、実験ケースNo.2の値より小さくなった。   The calcium hydroxide filtrate without sucrose (No. 1) showed only a slight decrease in the hydraulic conductivity compared to water alone (No. 4), whereas the calcium hydroxide filtrate did not In the filtrate with sucrose added (No. 2), the permeability coefficient decreased by about an order of magnitude. Moreover, in the experiment (No. 3) with the filtrate which added 68.4g of sucrose as a nutrient source to the calcium hydroxide solution, the water permeability coefficient decreased greatly and became smaller than the value of experiment case No. 2.

これより、カルシウム溶液配合時にスクロースを加えることで、カルシウムの溶解度が上がることから、微生物の栄養源は注入時よりも、多価金属化合物配合時に混合することによりカルシウムの溶解度を上げ、効果的に地盤を改良することができる。   From this, by adding sucrose at the time of blending calcium solution, the solubility of calcium increases, so the nutrient source of microorganisms increases the solubility of calcium by mixing at the time of blending polyvalent metal compound rather than at the time of injection, effectively The ground can be improved.

Figure 2008184741
Figure 2008184741

Claims (7)

栄養源と多価金属化合物を混合して多価金属化合物の溶解度を上げた混合液を地盤中に注入し、地盤中に生息する微生物の代謝作用により生成した生成物と多価金属化合物を反応させて地盤を固結させることを特徴とする地盤改良工法。   A mixed liquid in which the solubility of the polyvalent metal compound is increased by mixing the nutrient source and the polyvalent metal compound is injected into the ground, and the product produced by the metabolic action of microorganisms living in the ground reacts with the polyvalent metal compound. A ground improvement method characterized by allowing the ground to solidify. 多価金属化合物を多く含む地盤に栄養源を注入し、多価金属化合物を溶解させた後、地盤中に生息する微生物の代謝作用により生成した生成物と多価金属化合物を反応させて地盤を固結させることを特徴とする地盤改良工法。   After injecting nutrients into the ground rich in polyvalent metal compounds and dissolving the polyvalent metal compounds, the product produced by the metabolic action of microorganisms living in the ground reacts with the polyvalent metal compounds to create the ground. A ground improvement method characterized by consolidation. 請求項1または2において、栄養源として糖を用いることを特徴とする地盤改良工法。   The ground improvement construction method according to claim 1 or 2, wherein sugar is used as a nutrient source. 請求項1から3のいずれかにおいて、さらに微生物を投入することを特徴とする地盤改良方法。   The ground improvement method according to any one of claims 1 to 3, further comprising introducing a microorganism. 請求項1から4のいずれかにおいて、さらに難溶性珪酸化合物を投入する地盤改良方法。   The ground improvement method according to any one of claims 1 to 4, further comprising adding a hardly soluble silicate compound. 請求項1から5のいずれかにおいて、pH調整剤、または硬化剤のうちの一種または複数種をさらに投入する地盤改良方法。   The ground improvement method according to any one of claims 1 to 5, wherein one or more of a pH adjuster and a curing agent are further added. 請求項1から6のいずれかにおいて、栄養源、多価金属化合物、微生物のうちの一種または複数種を地盤中に前もって、あるいは追加注入することを特徴とする地盤改良方法。
The ground improvement method according to any one of claims 1 to 6, wherein one or a plurality of nutrient sources, polyvalent metal compounds, and microorganisms are injected into the ground in advance or additionally.
JP2007016739A 2007-01-26 2007-01-26 Ground improvement method containing calcium using microorganisms Active JP4608669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016739A JP4608669B2 (en) 2007-01-26 2007-01-26 Ground improvement method containing calcium using microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016739A JP4608669B2 (en) 2007-01-26 2007-01-26 Ground improvement method containing calcium using microorganisms

Publications (2)

Publication Number Publication Date
JP2008184741A true JP2008184741A (en) 2008-08-14
JP4608669B2 JP4608669B2 (en) 2011-01-12

Family

ID=39727974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016739A Active JP4608669B2 (en) 2007-01-26 2007-01-26 Ground improvement method containing calcium using microorganisms

Country Status (1)

Country Link
JP (1) JP4608669B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940462B1 (en) * 2011-02-10 2012-05-30 強化土エンジニヤリング株式会社 Ground improvement method
JP2019173398A (en) * 2018-03-28 2019-10-10 株式会社熊谷組 Ground improvement method
JP2019173397A (en) * 2018-03-28 2019-10-10 株式会社熊谷組 Soil solidification method
JP2020002216A (en) * 2018-06-26 2020-01-09 株式会社熊谷組 Liquid medicine for soil conditioning, soil conditioning method using liquid medicine for soil conditioning, and handling method of liquid medicine for soil conditioning
JP2021113452A (en) * 2020-01-20 2021-08-05 株式会社熊谷組 Soil solidification method
JP2023178680A (en) * 2022-06-06 2023-12-18 強化土エンジニヤリング株式会社 Ground reinforcement method, and ground solidification material used in the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319053A (en) * 1990-11-21 2000-11-21 Tobu Kagaku Kk Cement admixture composed of calcium saccharate
JP2001232344A (en) * 2000-02-23 2001-08-28 Kurita Water Ind Ltd Method for forming sand layer in contaminated soil and treating method of contaminated soil
JP2004067819A (en) * 2002-08-05 2004-03-04 Kyokado Eng Co Ltd Method for consolidating soil and method for treating concrete skeleton
JP2006169940A (en) * 2004-11-17 2006-06-29 Hokkaido Univ Soil improving method and grout used for soil improvement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319053A (en) * 1990-11-21 2000-11-21 Tobu Kagaku Kk Cement admixture composed of calcium saccharate
JP2001232344A (en) * 2000-02-23 2001-08-28 Kurita Water Ind Ltd Method for forming sand layer in contaminated soil and treating method of contaminated soil
JP2004067819A (en) * 2002-08-05 2004-03-04 Kyokado Eng Co Ltd Method for consolidating soil and method for treating concrete skeleton
JP2006169940A (en) * 2004-11-17 2006-06-29 Hokkaido Univ Soil improving method and grout used for soil improvement method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940462B1 (en) * 2011-02-10 2012-05-30 強化土エンジニヤリング株式会社 Ground improvement method
JP2019173398A (en) * 2018-03-28 2019-10-10 株式会社熊谷組 Ground improvement method
JP2019173397A (en) * 2018-03-28 2019-10-10 株式会社熊谷組 Soil solidification method
JP7032199B2 (en) 2018-03-28 2022-03-08 株式会社熊谷組 Ground improvement method
JP7032198B2 (en) 2018-03-28 2022-03-08 株式会社熊谷組 Soil solidification method
JP2020002216A (en) * 2018-06-26 2020-01-09 株式会社熊谷組 Liquid medicine for soil conditioning, soil conditioning method using liquid medicine for soil conditioning, and handling method of liquid medicine for soil conditioning
JP7260968B2 (en) 2018-06-26 2023-04-19 株式会社熊谷組 Soil conditioning liquid, soil conditioning method using soil conditioning liquid, and handling method of soil conditioning liquid
JP2021113452A (en) * 2020-01-20 2021-08-05 株式会社熊谷組 Soil solidification method
JP2023178680A (en) * 2022-06-06 2023-12-18 強化土エンジニヤリング株式会社 Ground reinforcement method, and ground solidification material used in the same
JP7449596B2 (en) 2022-06-06 2024-03-14 強化土エンジニヤリング株式会社 Ground reinforcement method and soil consolidation material used in this method

Also Published As

Publication number Publication date
JP4608669B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4621634B2 (en) Method of consolidation of ground containing calcium using microorganisms
JP4608669B2 (en) Ground improvement method containing calcium using microorganisms
JP4599611B2 (en) Ground improvement method and grout used in the method
JP5599032B2 (en) Ground improvement method
JP4517050B2 (en) Ground improvement method and apparatus
JP2007332617A (en) Soil improving method
US4004428A (en) Process for stabilizing soil
JP2008063495A (en) Method for treating soil or building skeleton
JP2008138069A (en) Method for treating soil or construction skeleton
JP2008161778A (en) Soil purifying method
JPS6094496A (en) Curing agent composition for alkali metal silicate solution
JP6052144B2 (en) Civil engineering materials and methods for manufacturing the same
JP6183621B2 (en) Manufacturing method for civil engineering materials
JPH0598257A (en) Chemical for grouting soil
JPS6053587A (en) Liquid for ground impregnation
CN111334309A (en) Biological reinforcement method using magnesium additive and application thereof
JP7244971B1 (en) Ground consolidation material and ground grouting method using it
JP2006143976A (en) Method and apparatus for reduction of leaching out of heavy metals in improved matter
JP4619837B2 (en) Solidified material, solidified body using the same, and soil improvement method
JP2853772B2 (en) Ground injection agent
JPH08269449A (en) Grout for the ground and method for grouting the ground
JP3370254B2 (en) Ground injection method
JP2007332618A (en) Soil improving method
JPH0251582A (en) Grout
JPH08134446A (en) Grout for ground and method for grouting ground

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4608669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250