JP2008184553A - Material for liquid crystal, liquid crystal elastomer, method for producing material for liquid crystal and method for producing liquid crystal elastomer - Google Patents

Material for liquid crystal, liquid crystal elastomer, method for producing material for liquid crystal and method for producing liquid crystal elastomer Download PDF

Info

Publication number
JP2008184553A
JP2008184553A JP2007019695A JP2007019695A JP2008184553A JP 2008184553 A JP2008184553 A JP 2008184553A JP 2007019695 A JP2007019695 A JP 2007019695A JP 2007019695 A JP2007019695 A JP 2007019695A JP 2008184553 A JP2008184553 A JP 2008184553A
Authority
JP
Japan
Prior art keywords
liquid crystal
chemical formula
compound
compound shown
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007019695A
Other languages
Japanese (ja)
Other versions
JP5130520B2 (en
Inventor
Toshio Itahara
俊夫 板原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2007019695A priority Critical patent/JP5130520B2/en
Publication of JP2008184553A publication Critical patent/JP2008184553A/en
Application granted granted Critical
Publication of JP5130520B2 publication Critical patent/JP5130520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Graft Or Block Polymers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for a liquid crystal capable of forming a stable liquid crystal having a large enthalpy change when changing from the liquid crystal to a liquid, without impairment of the elasticity of a liquid crystal elastomer, and a liquid crystal elastomer including the material for liquid crystal. <P>SOLUTION: The material for a liquid crystal has two biphenol group in which the terminals are substituted with vinyl groups (carbon-carbon double bonds) and becomes a stable liquid crystalline state because of large enthalpy change when changing from a liquid crystal to a liquid and exhibits clear liquid crystalline properties in both of the temperature-raising process and the temperature-lowering process and has a wide liquid crystal temperature range. When the material for liquid crystal is mixed with a polybutadiene and the mixture is dissolved in an organic solvent and then, the organic solvent is evaporated and residual solid is heated from 180°C to 250°C, the material for liquid crystal is bound as side chains to polybutadiene chains and crosslinking is formed between polybutadienes to produce the liquid crystal elastomer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は液晶用材料、液晶エラストマー、液晶用材料の製造方法、及び液晶エラストマーの製造方法に関し、特に、人工筋肉やソフトアクチュエータ等に用いて好適な技術に関する。   The present invention relates to a liquid crystal material, a liquid crystal elastomer, a method for producing a liquid crystal material, and a method for producing a liquid crystal elastomer, and particularly relates to a technique suitable for use in artificial muscles, soft actuators, and the like.

末端に二重結合をもつ液晶分子は、液晶ポリマーを合成するための液晶モノマーとして重要である。末端に二重結合をもつ液晶分子を用いて液晶ポリマーを合成する方法として、二重結合のビニル重合による方法が一般的であるが、二重結合のあるポリマーと、末端に二重結合をもつ液晶分子とからラジカル開始剤を用いてポリマーに液晶部位を連結させるラジカル反応や光反応による方法も知られている。   Liquid crystal molecules having a double bond at the terminal are important as liquid crystal monomers for synthesizing liquid crystal polymers. As a method of synthesizing a liquid crystal polymer using liquid crystal molecules having a double bond at the terminal, a method of vinyl polymerization of a double bond is generally used, but a polymer having a double bond and a double bond at the terminal are used. There are also known methods based on radical reaction or photoreaction in which a liquid crystal moiety is linked to a polymer from a liquid crystal molecule using a radical initiator.

液晶部位(メソゲン)が1つで末端に二重結合をもつ化合物の重合や、光反応やラジカル開始剤を用いる反応による二重結合のあるポリマーへの結合はすでに知られている。例えば、化1に示すように、液晶部位(メソゲン)としてビフェニル基が1つで末端に二重結合をもつものおよびそれらを重合した液晶ポリマーの合成に関する特許や研究論文は多数開示されている。特に、化2に示す化合物はAldrich社より市販されている。   Polymerization of a compound having one liquid crystal moiety (mesogen) and having a double bond at the terminal, and bonding to a polymer having a double bond by a reaction using a photoreaction or a radical initiator are already known. For example, as shown in Chemical formula 1, many patents and research papers relating to the synthesis of a liquid crystal moiety (mesogen) having one biphenyl group and having a double bond at the terminal and a liquid crystal polymer obtained by polymerizing them are disclosed. In particular, the compound shown in Chemical Formula 2 is commercially available from Aldrich.

Figure 2008184553
(式中、RがHで、Aが(CH2mであるか、
RがH又はMeで、AがCOO(CH2mであり、
mは2〜12、nは3〜12である。)
Figure 2008184553
Wherein R is H and A is (CH 2 ) m
R is H or Me, A is COO (CH 2 ) m ,
m is 2 to 12, and n is 3 to 12. )

Figure 2008184553
Figure 2008184553

しかし、液晶部位(メソゲン)が1つであり末端に二重結合をもつ化合物は、一般に液晶から液体へ変化する時のエンタルピー変化が小さく、重合や二重結合のあるポリマーに連結されている液晶部位(メソゲン)において液晶性が発現しにくい面がある。一方、液晶部位(メソゲン)が複数あるオリゴマー液晶においては、液晶から液体へ変化する時のエンタルピー変化が大きく、安定な液晶となることが開示されている(例えば、特許文献1参照)。   However, a compound with one liquid crystal moiety (mesogen) and a double bond at the end generally has a small enthalpy change when changing from liquid crystal to liquid, and the liquid crystal is linked to a polymer having polymerization or a double bond. There is a surface in which liquid crystallinity is difficult to be expressed at a site (mesogen). On the other hand, it is disclosed that an oligomer liquid crystal having a plurality of liquid crystal sites (mesogens) has a large enthalpy change when changing from a liquid crystal to a liquid and becomes a stable liquid crystal (for example, see Patent Document 1).

このオリゴマー液晶を含む液晶エラストマーは、エラストマー特性をもつポリマーが架橋構造を持っているためゴム弾性を有している。さらに、その中に液晶分子の配列による異方性があるため、特定の方向にのみ伸縮することができる。生体にはコラーゲンなどの液晶エラストマーがあり、異方性のゴム弾性を有する液晶エラストマーは、この生体筋肉の代わりとなる人工筋肉として様々な生体内バルブや人工心臓などの人工臓器材料への利用が期待されている。   The liquid crystal elastomer including the oligomer liquid crystal has rubber elasticity because a polymer having elastomer characteristics has a crosslinked structure. Furthermore, since there is anisotropy due to the alignment of the liquid crystal molecules, it can expand and contract only in a specific direction. There are liquid crystal elastomers such as collagen in the living body, and the liquid crystal elastomers having anisotropic rubber elasticity can be used for various in vivo valves and artificial organ materials such as artificial hearts as artificial muscles that can substitute for the living body muscles. Expected.

液晶エラストマーは、液晶部位がポリマーの側鎖に結合した側鎖型高分子液晶が架橋されたエラストマー弾性をもつ材料として多くの研究が進められている(例えば、非特許文献1参照)。しかし、エラストマー性をもつ液晶ポリマーを合成し、それを架橋することは製造方法においては工程が複雑になり、コスト面においても不利である。そこで、エラストマーとしてよく知られたジエン系ポリマー(代表例:ポリブタジエン)に液晶を結合させることにより液晶エラストマーを得ることは実用化において効率的であり、例えば特許文献3においては、ジエン系ポリマーに末端に二重結合をもつ液晶分子を側鎖として結合させた液晶エラストマーを調製する方法が開示されている。   Many studies have been made on liquid crystal elastomer as a material having elastomer elasticity in which a side chain type polymer liquid crystal in which a liquid crystal portion is bonded to a side chain of a polymer is crosslinked (for example, see Non-Patent Document 1). However, synthesizing a liquid crystal polymer having an elastomeric property and cross-linking the liquid crystal polymer complicates the steps in the production method, which is disadvantageous in terms of cost. Therefore, it is efficient in practical use to obtain a liquid crystal elastomer by bonding a liquid crystal to a diene polymer (typical example: polybutadiene) well known as an elastomer. For example, in Patent Document 3, a diene polymer is terminated with a terminal. Discloses a method for preparing a liquid crystal elastomer in which liquid crystal molecules having a double bond are bonded as side chains.

しかし、実用的な液晶エラストマーを調製するためには架橋が必要である。現在は、加硫(硫黄を加えて加熱する)や様々な架橋剤を用いる方法で架橋が行われている。架橋がなされた液晶エラストマーにおいては、伸びたり元の形に縮んだりする際に、ポリマー主鎖間の架橋により互いがずれてしまうことを防ぎ、伸縮において型崩れせずに元の形に戻ることができる。   However, crosslinking is necessary to prepare a practical liquid crystal elastomer. Currently, crosslinking is performed by vulcanization (heating by adding sulfur) or by using various crosslinking agents. In a liquid crystal elastomer that has been cross-linked, it can be prevented from shifting due to cross-linking between polymer main chains when it stretches or shrinks to its original shape, and it returns to its original shape without loss of shape during expansion and contraction. Can do.

また、ポリマー鎖が架橋されていない液晶エラストマーの場合は、一本一本のポリマー鎖がほどけるため、有機溶剤に容易に溶ける。ところが、ポリマー鎖が架橋された液晶エラストマーの場合は、一本一本のポリマー鎖はほどけることが無く、そのため有機溶剤に溶けにくくなり、有機溶剤を吸ってゲルとなる。   In the case of a liquid crystal elastomer in which polymer chains are not cross-linked, each polymer chain is unwound and easily dissolved in an organic solvent. However, in the case of a liquid crystal elastomer in which polymer chains are cross-linked, each polymer chain is not unwound, so that it is difficult to dissolve in an organic solvent, and the organic solvent is sucked into a gel.

特開2004−75623号公報JP 2004-75623 A 特開2003−2904号公報JP 2003-2904 A Liquid Crystal Elastomers, Oxford University Press, Oxford, 2003Liquid Crystal Elastomers, Oxford University Press, Oxford, 2003

液晶エラストマーの実用化やさらに有機溶剤や液晶を吸って膨潤するゲルを調製するために、ジエン系ポリマーに安定な液晶分子を側鎖として結合させるとともに主鎖間の架橋を行った液晶エラストマーの開発が必要である。しかし、前述したように、液晶部位(メソゲン)が1つの場合は、液晶から液体へ変化する時のエンタルピー変化は小さく、ジエン系ポリマーに大量に液晶分子を側鎖として結合させないと液晶性が発現しにくいという問題点がある。   Development of liquid crystal elastomers in which stable liquid crystal molecules are bonded as side chains to the diene polymer and the main chains are cross-linked to prepare gels that swell upon absorption of organic solvents and liquid crystals. is required. However, as described above, when there is only one liquid crystal moiety (mesogen), the enthalpy change when changing from liquid crystal to liquid is small, and liquid crystal properties are manifested unless a large amount of liquid crystal molecules are bonded as side chains to the diene polymer. There is a problem that it is difficult to do.

一方、大量に液晶分子を用いると液晶エラストマーのエラストマー弾性が損なわれてしまう。それ故、少量の液晶分子を側鎖として結合させるだけで液晶性の発現できるようにするためには、液晶から液体へ変化する時のエンタルピー変化の大きい安定な液晶であるとともに、末端にジエン系ポリマーと連結できるビニル基(炭素・炭素二重結合)をもつ液晶分子の開発が必要である。   On the other hand, when a large amount of liquid crystal molecules is used, the elasticity of the liquid crystal elastomer is impaired. Therefore, in order to be able to exhibit liquid crystallinity only by bonding a small amount of liquid crystal molecules as a side chain, it is a stable liquid crystal with a large enthalpy change when changing from liquid crystal to liquid, and a diene type at the end. Development of liquid crystal molecules with vinyl groups (carbon / carbon double bonds) that can be linked to polymers is necessary.

本発明は前述の問題点に鑑み、液晶から液体へ変化する時のエンタルピー変化の大きい安定な液晶を発現できるとともに、エラストマー弾性が損なわれないようにする液晶用材料及びその液晶用材料を包含した液晶エラストマーを提供することを目的としている。   In view of the above-mentioned problems, the present invention includes a liquid crystal material capable of exhibiting a stable liquid crystal having a large enthalpy change when changing from liquid crystal to liquid, and that does not impair elastomer elasticity and the liquid crystal material. The object is to provide a liquid crystal elastomer.

本発明の液晶用材料は、構造が化3で表される化合物を含むことを特徴とする。

Figure 2008184553
(式中、RがHで、Aが(CH2mであるか、
RがH又はMeで、AがCOO(CH2mであり、
mは2以上、nは3以上である。) The liquid crystal material of the present invention is characterized by including a compound having a structure represented by Chemical Formula 3.
Figure 2008184553
Wherein R is H and A is (CH 2 ) m
R is H or Me, A is COO (CH 2 ) m ,
m is 2 or more, and n is 3 or more. )

本発明の液晶エラストマーは、互いに架橋された複数のポリブタジエン鎖と、前記複数のポリブタジエン鎖の少なくとも一部に結合された化3に示す化合物とを有することを特徴とする。   The liquid crystal elastomer of the present invention is characterized by having a plurality of polybutadiene chains cross-linked to each other and a compound represented by Chemical Formula 3 bonded to at least a part of the plurality of polybutadiene chains.

本発明の液晶用材料の製造方法は、4−シアノ−4'−ヒドロキシビフェニルと、化4に示す化合物とを反応させて、化5に示す化合物を生成する工程と、前記化5に示す化合物と、4'−ヒドロキシ−4−ビフェニルカルボン酸とを反応させて、化6に示す化合物を生成する工程と、前記化6に示す化合物と、化7に示す化合物とを反応させて、化8に示す化合物を生成する工程とを有することを特徴とする。

Figure 2008184553
(式中、n=3以上、Xはハロゲン原子)
Figure 2008184553
(式中、n=3以上、Xはハロゲン原子)
Figure 2008184553
(式中、n=3以上)
Figure 2008184553
(式中、m=2以上、Xはハロゲン原子)
Figure 2008184553
(式中、m=2以上、n=3以上)
また、本発明の液晶用材料の製造方法の他の特徴とするところは、4−シアノ−4'−ヒドロキシビフェニルと、化4に示す化合物とを反応させて、化5に示す化合物を生成する工程と、前記化5に示す化合物と、4'−ヒドロキシ−4−ビフェニルカルボン酸とを反応させて、化6に示す化合物を生成する工程と、前記化6に示す化合物と、化9に示す化合物とを反応させて、化10に示す化合物を生成する工程と、前記化10に示す化合物と、アクリル酸またはメタクリル酸と反応させて、化11に示す化合物を生成する工程とを有する。
Figure 2008184553
(式中、m=2以上、Xはハロゲン原子)
Figure 2008184553
(式中、m=2以上、n=3以上、Xはハロゲン原子)
Figure 2008184553
(式中、m=2以上、n=3以上、R=H or Me) The method for producing a liquid crystal material of the present invention includes a step of reacting 4-cyano-4′-hydroxybiphenyl with a compound represented by Chemical Formula 4 to produce a compound represented by Chemical Formula 5, and a compound represented by Chemical Formula 5 above: Is reacted with 4′-hydroxy-4-biphenylcarboxylic acid to produce the compound shown in Chemical Formula 6, the compound shown in Chemical Formula 6 is reacted with the compound shown in Chemical Formula 7, and Chemical Formula 8 And a step of producing a compound shown in the above.
Figure 2008184553
(Where n = 3 or more, X is a halogen atom)
Figure 2008184553
(Where n = 3 or more, X is a halogen atom)
Figure 2008184553
(Where n = 3 or more)
Figure 2008184553
(In the formula, m = 2 or more, X is a halogen atom)
Figure 2008184553
(Where m = 2 or more, n = 3 or more)
Another feature of the method for producing a liquid crystal material of the present invention is that 4-cyano-4′-hydroxybiphenyl is reacted with a compound represented by Chemical Formula 4 to produce a compound represented by Chemical Formula 5. A step of reacting a compound represented by the chemical formula 5 with 4′-hydroxy-4-biphenylcarboxylic acid to produce a compound represented by the chemical formula 6, a compound represented by the chemical formula 6; It has the process of making a compound react, and producing | generating the compound shown to Chemical formula 10, The compound shown to the said Chemical formula 10, and making it react with acrylic acid or methacrylic acid, and producing | generating the compound shown to Chemical formula 11.
Figure 2008184553
(In the formula, m = 2 or more, X is a halogen atom)
Figure 2008184553
(In the formula, m = 2 or more, n = 3 or more, X is a halogen atom)
Figure 2008184553
(Where, m = 2 or more, n = 3 or more, R = H or Me)

本発明の液晶エラストマーの製造方法は、ポリブタジエンと化3に示す化合物とを混合し、180℃〜250℃の範囲内で加熱することを特徴とする。   The method for producing a liquid crystal elastomer of the present invention is characterized in that polybutadiene and the compound shown in Chemical formula 3 are mixed and heated within a range of 180 ° C to 250 ° C.

本発明によれば、化合物に2つのビフェニル基が含まれている。これにより、液晶から液体へ変化する時のエンタルピー変化の大きく安定な液晶状態となり、昇温過程及び降温過程のいずれにおいても明瞭な液晶性を示すことができ、ポリブタジエンと混合すれば、ポリブタジエン間で架橋が起こり、エラストマー弾性を有するようすることができる。   According to the invention, the compound contains two biphenyl groups. As a result, a stable liquid crystal state having a large enthalpy change when changing from liquid crystal to liquid can be obtained, and clear liquid crystallinity can be exhibited in both the temperature rising process and the temperature falling process. Crosslinking occurs and can have elastomer elasticity.

前述したように特許文献1には、複数の液晶部位(メソゲン)をもつと安定な液晶状態になることが示されている。そこで本発明者は、液晶部位として2つのビフェニル基をもち、末端にジエン系ポリマーと結合できるビニル基(炭素・炭素二重結合)をもつ液晶分子を発明した。この液晶分子を用いれば、ジエン系ポリマーに液晶部位(メソゲン)が2つの液晶分子を側鎖として結合させることにより安定な液晶性が発現でき、さらに主鎖間の架橋の結果、伸縮においてポリマー主鎖間の架橋により互いがずれてしまうことを防ぎ、型崩れしない液晶エラストマーを作製することができる。   As described above, Patent Document 1 shows that a stable liquid crystal state is obtained when a plurality of liquid crystal sites (mesogens) are provided. Therefore, the present inventor has invented a liquid crystal molecule having two biphenyl groups as liquid crystal moieties and a vinyl group (carbon / carbon double bond) that can be bonded to a diene polymer at the terminal. If this liquid crystal molecule is used, stable liquid crystallinity can be exhibited by bonding two liquid crystal molecules having two liquid crystal molecules (mesogens) as side chains to the diene-based polymer. It is possible to prevent the liquid crystal elastomers from being out of shape by preventing them from being displaced due to cross-linking between chains.

本発明における化3に示す新規化合物は、ビニル基(炭素・炭素二重結合)を末端に置換した2つのビフェニル基をもち、その好ましい態様は液晶から液体へ変化する時のエンタルピー変化の大きく安定な液晶状態となり、昇温過程及び降温過程のいずれにおいても明瞭な液晶性を示すとともに、その液晶温度範囲が広く、それらを混合することで容易に融点を低下させることができる。また、化3に示す化合物と分子量200万から300万のポリブタジエンとを180℃から250℃で加熱することにより、ポリブタジエン鎖に化3に示す化合物を側鎖として結合させることができる。   The novel compound represented by Chemical Formula 3 in the present invention has two biphenyl groups substituted with vinyl groups (carbon / carbon double bonds) at its ends, and its preferred embodiment is a large and stable enthalpy change when changing from liquid crystal to liquid. The liquid crystal state becomes clear and shows clear liquid crystallinity in both the temperature rising process and the temperature lowering process, and the liquid crystal temperature range is wide, and the melting point can be easily lowered by mixing them. Further, the compound shown in Chemical formula 3 can be bonded to the polybutadiene chain as a side chain by heating the compound shown in Chemical formula 3 and polybutadiene having a molecular weight of 2 million to 3 million at 180 ° C. to 250 ° C.

また、化3に示す化合物、及び分子量200万から300万のポリブタジエンを有機溶剤に溶かした後に有機溶剤を蒸発させ、残った固体を180℃から250℃まで加熱すると、ポリブタジエン鎖に化3に示す化合物が側鎖として結合されるとともに、ポリブタジエン間に架橋が起こってエラストマーとなり、そのエラストマー内に化3に示す化合物がポリブタジエン鎖に結合して包含される。また、加熱温度が180℃未満では、ポリブタジエン鎖に化3に示す化合物が側鎖として結合されず、250℃を超えて加熱すると、化3に示す化合物やポリブタジエンなどの有機化合物が分解しやすい状態となってしまう。したがって、加熱温度は180℃から250℃であることが必要である。なお、化3に示す化合物が側鎖として結合する反応、及びポリブタジエン間の架橋は、230℃まででほとんど終了するが、一般に有機化合物は300℃を超えると分解し始めることが知られている。   Further, when the compound shown in Chemical formula 3 and polybutadiene having a molecular weight of 2 million to 3 million are dissolved in an organic solvent, the organic solvent is evaporated, and the remaining solid is heated from 180 ° C. to 250 ° C. to form a polybutadiene chain. While the compound is bonded as a side chain, cross-linking occurs between the polybutadienes to become an elastomer, and the compound shown in Chemical Formula 3 is included in the elastomer by being bonded to the polybutadiene chain. In addition, when the heating temperature is less than 180 ° C., the compound shown in Chemical Formula 3 is not bonded as a side chain to the polybutadiene chain, and when heated above 250 ° C., the compound shown in Chemical Formula 3 or an organic compound such as polybutadiene is easily decomposed. End up. Therefore, the heating temperature needs to be 180 ° C to 250 ° C. The reaction in which the compound shown in Chemical Formula 3 is bonded as a side chain and the cross-linking between polybutadienes are almost completed up to 230 ° C., but it is generally known that organic compounds begin to decompose when the temperature exceeds 300 ° C.

また、m<2の場合は、液晶温度が高くなり過ぎてしまい、生体へ利用することができない。また、n>12の場合は、化3に示す化合物を合成するのに多くの手間がかかってしまう。したがって、mは2以上とし、12以下であることが好ましい。   In the case of m <2, the liquid crystal temperature becomes too high and cannot be used for a living body. When n> 12, it takes a lot of time to synthesize the compound shown in Chemical formula 3. Accordingly, m is 2 or more and preferably 12 or less.

そして、n<3の場合も、液晶温度が高くなり過ぎてしまい、生体へ利用することができない。また、n>12の場合は、化3に示す化合物を合成するのに多くの手間がかかってしまう。したがって、nは3以上とし、12以下であることが好ましい。   In the case of n <3, the liquid crystal temperature becomes too high and cannot be used for a living body. When n> 12, it takes a lot of time to synthesize the compound shown in Chemical formula 3. Accordingly, n is 3 or more and preferably 12 or less.

次に、本実施例で行った化3に示す化合物の合成方法と、それらの物性の特徴について説明する。   Next, a method for synthesizing the compound represented by Chemical Formula 3 carried out in this example and the characteristics of the physical properties will be described.

4−シアノ−4'−ヒドロキシビフェニルとα、ω−ジブロモアルカン(n=3〜12)とを1:1のモル比で混合し、N,N−ジメチルホルムアミドに溶かし、炭酸カリウムを同じモル数加えて12時間から24時間室温で攪拌した。そして、反応液をろ過し、ろ液の溶媒を蒸留して残渣をクロロホルムに溶解し、シリカゲルカラムクロマトグラフ(展開溶媒:クロロホルムとヘキサンとの混合溶媒)を用いて分離した。これにより、化12に示す化合物(α−ブロモ−ω−(4−シアノビフェニル−4'−イルオキシ)アルカン)を得た。なお、本実施例においては、N,N−ジメチルホルムアミドを用いたが、N,N−ジメチルホルムアミドの代わりにDMSO(ジメチルスルホキシド)を用いてもよい。   4-Cyano-4′-hydroxybiphenyl and α, ω-dibromoalkane (n = 3 to 12) are mixed at a molar ratio of 1: 1, dissolved in N, N-dimethylformamide, and potassium carbonate is added in the same number of moles. In addition, the mixture was stirred at room temperature for 12 to 24 hours. And the reaction liquid was filtered, the solvent of the filtrate was distilled, the residue was dissolved in chloroform, and separated using a silica gel column chromatograph (developing solvent: mixed solvent of chloroform and hexane). As a result, the compound (α-bromo-ω- (4-cyanobiphenyl-4′-yloxy) alkane) represented by Chemical formula 12 was obtained. In this example, N, N-dimethylformamide was used, but DMSO (dimethyl sulfoxide) may be used instead of N, N-dimethylformamide.

Figure 2008184553
(式中、n=3以上)
Figure 2008184553
(Where n = 3 or more)

次に、化12に示す化合物と4'−ヒドロキシ−4−ビフェニルカルボン酸とを1:1のモル比で混合し、N,N−ジメチルホルムアミドに溶かし、炭酸カリウムを同じモル数加え15時間室温で攪拌した。そして、反応液をろ過し、ろ液の溶媒を蒸留して残渣をクロロホルムに溶解し、シリカゲルクロマトグラフ(展開溶媒:クロロホルムとメタノールとの混合溶媒)を用いて分離した。これにより、化6に示す化合物を得た。なお、本実施例においては、クロロホルムとメタノールとの混合溶媒を用いたが、混合溶媒の代わりにクロロホルムのみを用いてもよい。   Next, the compound shown in Chemical Formula 12 and 4′-hydroxy-4-biphenylcarboxylic acid are mixed at a molar ratio of 1: 1, dissolved in N, N-dimethylformamide, and added with the same number of moles of potassium carbonate for 15 hours at room temperature. And stirred. And the reaction liquid was filtered, the solvent of the filtrate was distilled, the residue was dissolved in chloroform, and separated using silica gel chromatography (developing solvent: mixed solvent of chloroform and methanol). As a result, the compound shown in Chemical formula 6 was obtained. In this example, a mixed solvent of chloroform and methanol was used, but instead of the mixed solvent, only chloroform may be used.

次に、化6に示す化合物と化13に示す化合物とを1:1のモル比で混合し、N,N−ジメチルホルムアミドに溶かし、炭酸カリウムを同じモル数加え15時間室温で攪拌した。そして、反応液をろ過し、ろ液の溶媒を蒸留して残渣をクロロホルムに溶解し、シリカゲルクロマトグラフ(展開溶媒:クロロホルムとヘキサンとの混合溶媒)を用いて分離した。これにより、化8に示す化合物を得た。なお、本実施例においては、クロロホルムとヘキサンとの混合溶媒を用いたが、混合溶媒の代わりにクロロホルムのみを用いてもよい。   Next, the compound shown in Chemical formula 6 and the compound shown in Chemical formula 13 were mixed at a molar ratio of 1: 1, dissolved in N, N-dimethylformamide, added with the same number of moles of potassium carbonate, and stirred at room temperature for 15 hours. And the reaction liquid was filtered, the solvent of the filtrate was distilled, the residue was dissolved in chloroform, and separated using silica gel chromatography (developing solvent: mixed solvent of chloroform and hexane). As a result, the compound shown in Chemical Formula 8 was obtained. In this example, a mixed solvent of chloroform and hexane was used, but instead of the mixed solvent, only chloroform may be used.

Figure 2008184553
(式中、m=2以上)
Figure 2008184553
(Where m = 2 or more)

本実施例では、(m=3、6、n=3〜12)の20種類の組み合わせ、(m=4、n=5)の組み合わせ、及び(m=8、n=5)の組み合わせの計22種類について同様の手順で化8に示す化合物を作製した。   In the present embodiment, a total of 20 combinations (m = 3, 6, n = 3 to 12), (m = 4, n = 5), and (m = 8, n = 5). The compounds shown in Chemical formula 8 were prepared in the same procedure for 22 types.

また、これとは別に、化6に示す化合物とα、ω−ジブロモアルカン(m=2〜12)とを1:1のモル比で混合し、N,N−ジメチルホルムアミドに溶かし、炭酸カリウムを同じモル数加え12時間から24時間室温で攪拌した。そして、反応液をろ過し、ろ液の溶媒を蒸留して残渣をクロロホルムに溶解し、シリカゲルカラムクロマトグラフ(展開溶媒:クロロホルムとヘキサンとの混合溶媒)を用いて分離した。これにより、化14に示す化合物を得た。なお、本実施例においては、N,N−ジメチルホルムアミドを用いたが、N,N−ジメチルホルムアミドの代わりにDMSOを用いてもよい。   Separately, the compound shown in Chemical Formula 6 and α, ω-dibromoalkane (m = 2 to 12) are mixed at a molar ratio of 1: 1, dissolved in N, N-dimethylformamide, and potassium carbonate is added. The same number of moles was added and the mixture was stirred at room temperature for 12 to 24 hours. And the reaction liquid was filtered, the solvent of the filtrate was distilled, the residue was dissolved in chloroform, and separated using a silica gel column chromatograph (developing solvent: mixed solvent of chloroform and hexane). As a result, the compound shown in Chemical formula 14 was obtained. In this example, N, N-dimethylformamide was used, but DMSO may be used instead of N, N-dimethylformamide.

Figure 2008184553
(式中、m=2以上、n=3以上)
Figure 2008184553
(Where m = 2 or more, n = 3 or more)

次に、化14に示す化合物と化15に示す化合物とを1:1のモル比で混合し、N,N−ジメチルホルムアミドに溶かし、炭酸カリウムを同じモル数加え15時間室温で攪拌した。そして、反応液をろ過し、ろ液の溶媒を蒸留して残渣をクロロホルムに溶解し、シリカゲルクロマトグラフ(展開溶媒:クロロホルムとヘキサンとの混合溶媒)を用いて分離した。これにより、化11に示す化合物を得た。なお、本実施例においては、クロロホルムとヘキサンとの混合溶媒を用いたが、混合溶媒の代わりにクロロホルムのみを用いてもよい。   Next, the compound shown in Chemical formula 14 and the compound shown in Chemical formula 15 were mixed at a molar ratio of 1: 1, dissolved in N, N-dimethylformamide, added with the same number of moles of potassium carbonate, and stirred at room temperature for 15 hours. And the reaction liquid was filtered, the solvent of the filtrate was distilled, the residue was dissolved in chloroform, and separated using silica gel chromatography (developing solvent: mixed solvent of chloroform and hexane). As a result, the compound shown in Chemical Formula 11 was obtained. In this example, a mixed solvent of chloroform and hexane was used, but instead of the mixed solvent, only chloroform may be used.

Figure 2008184553
(式中、R=HまたはMe)
Figure 2008184553
(Where R = H or Me)

本実施例では、(m=3、n=3、R=H)の組み合わせ、(m=3、n=3、R=Me)の組み合わせ、(m=5、n=5、R=H)の組み合わせ、(m=10、n=12、R=H)の組み合わせ、(m=10、n=12、R=Me)の組み合わせ、(m=11、n=11、R=Me)の組み合わせ、(m=12、n=12、R=H)の組み合わせ、及び(m=12、n=12、R=Me)の組み合わせの計8種類について同様の手順で化11に示す化合物を作製した。   In this embodiment, a combination of (m = 3, n = 3, R = H), a combination of (m = 3, n = 3, R = Me), (m = 5, n = 5, R = H) A combination of (m = 10, n = 12, R = H), a combination of (m = 10, n = 12, R = Me), a combination of (m = 11, n = 11, R = Me) , (M = 12, n = 12, R = H) and (m = 12, n = 12, R = Me) in total for 8 types of compounds, the compound shown in Chemical formula 11 was prepared in the same procedure. .

次に、化8に示す化合物について元素分析、水素核磁気共鳴スペクトル、赤外吸収スペクトルなどにより同定した。化8に示す化合物(m=3)の元素分析の結果を表1に示す。また、化8に示す化合物(m=6)の元素分析の結果を表2に示す。表1及び表2に示す元素分析の結果より化8に示す化合物は純粋であることが確認された。   Next, the compound shown in Chemical formula 8 was identified by elemental analysis, hydrogen nuclear magnetic resonance spectrum, infrared absorption spectrum and the like. Table 1 shows the results of elemental analysis of the compound represented by Chemical Formula 8 (m = 3). In addition, Table 2 shows the results of elemental analysis of the compound represented by Chemical Formula 8 (m = 6). From the results of elemental analysis shown in Tables 1 and 2, it was confirmed that the compound shown in Chemical Formula 8 was pure.

Figure 2008184553
Figure 2008184553

Figure 2008184553
Figure 2008184553

化8に示す化合物(m=3)の水素核磁気共鳴スペクトルの結果を表3に示す。表3に示す水素核磁気共鳴スペクトルの結果は類似したスペクトルを示し、化3に示す化合物がnの値によってメチレン鎖の長さ(n数)だけが異なる類似した構造であることが確認された。   Table 3 shows the result of the hydrogen nuclear magnetic resonance spectrum of the compound represented by Chemical formula 8 (m = 3). The results of the hydrogen nuclear magnetic resonance spectrum shown in Table 3 showed a similar spectrum, and it was confirmed that the compound shown in Chemical Formula 3 had a similar structure in which only the length of the methylene chain (n number) was different depending on the value of n. .

Figure 2008184553
Figure 2008184553

次に、化11に示す化合物の水素核磁気共鳴スペクトルの結果を表4に示す。アクリル酸と結合させた化合物(R=H)では、ビニル基(二重結合)に起因するδ6.4(dd, 1H, J=16.0.Hz, J=1.5Hz), 6.1(dd, 1H, J=16.0Hz, J=10.0Hz), 5.8(dd, 1H, J=10.0Hz, J=1.5Hz) 付近の特徴的なスペクトルが観測された。また、メタクリル酸と結合させた化合物(R=Me)では、ビニル基(二重結合)に起因するδ6.1(s, 1H), 5.5(s, 1H)とδ1.95(メタクリル酸のMe)付近の特徴的なスペクトルが観測された。これらの結果からアクリル酸またはメタクリル酸が結合されていることが確認された。   Next, Table 4 shows the result of the hydrogen nuclear magnetic resonance spectrum of the compound represented by Chemical formula 11. In the compound bonded with acrylic acid (R = H), δ6.4 (dd, 1H, J = 16.0.Hz, J = 1.5Hz), 6.1 (dd, 1H, due to vinyl group (double bond) J = 16.0Hz, J = 10.0Hz), 5.8 (dd, 1H, J = 10.0Hz, J = 1.5Hz), characteristic spectra were observed. In addition, in the compound bonded with methacrylic acid (R = Me), δ6.1 (s, 1H), 5.5 (s, 1H) and δ1.95 (Me of methacrylic acid) due to the vinyl group (double bond). ) A characteristic spectrum in the vicinity was observed. From these results, it was confirmed that acrylic acid or methacrylic acid was bound.

Figure 2008184553
Figure 2008184553

化3に示す化合物の熱的変化における相組織の変化についてホットプレート上に載せたまま偏光顕微鏡を用いて観察した。化8に示す化合物(m=3、n=3、5〜12)の液晶状態を図1〜図11に示す。なお、化8に示す化合物のうちn=4のものは液晶性を示さないか、または非常に液晶範囲が狭かった。図1〜図11に示すように、何れの化合物においても液晶性が確認された。   The change of the phase structure due to the thermal change of the compound shown in Chemical Formula 3 was observed using a polarizing microscope while being placed on the hot plate. 1 to 11 show liquid crystal states of the compounds represented by Chemical Formula 8 (m = 3, n = 3, 5 to 12). Of the compounds shown in Chemical formula 8, those with n = 4 did not show liquid crystallinity or had a very narrow liquid crystal range. As shown in FIGS. 1 to 11, liquid crystallinity was confirmed in any compound.

次に、mの異なる化8に示す化合物(m=4、n=5)の降温過程の171℃でのネマチック液晶を図12に示す。図12に示すように、mが異なる場合でも相組織は似ていることが確認された。   Next, FIG. 12 shows a nematic liquid crystal at 171 ° C. in the temperature lowering process of the compound (m = 4, n = 5) represented by Chemical Formula 8 having different m. As shown in FIG. 12, it was confirmed that the phase structures were similar even when m was different.

図13〜図16には、化11に示す化合物(m=3、n=3、R=Me)、(m=11、n=11、R=Me)、(m=12、n=12、R=H)、(m=12、n=12、R=Me)の液晶状態を示す。図13〜図16に示すように、何れの化合物においても液晶性が確認された。   13 to 16, the compounds shown in Chemical formula 11 (m = 3, n = 3, R = Me), (m = 11, n = 11, R = Me), (m = 12, n = 12, R = H), (m = 12, n = 12, R = Me). As shown in FIGS. 13 to 16, liquid crystallinity was confirmed in any compound.

さらに液晶混合系として、図17に化8に示す化合物(m=3、n=5)と化8に示す化合物(m=6、n=5)とを1:1のモル比で混合した混合物の液晶状態の降温過程の172℃でのネマチック液晶を示す。さらに図18に化8に示す化合物(m=3、n=5)と、化8に示す化合物(m=4、n=5)と、化8に示す化合物(m=6、n=5)と、化8に示す化合物(m=8、n=5)との4種類を1:1:1:1のモル比で混合した混合物の液晶状態の昇温過程の84℃でのネマチック液晶を示す。図17及び図18に示すように、何れの化合物においても液晶性が確認された。   Furthermore, as a liquid crystal mixed system, a mixture in which the compound shown in FIG. 17 (m = 3, n = 5) and the compound shown in FIG. 8 (m = 6, n = 5) are mixed at a molar ratio of 1: 1. 2 shows a nematic liquid crystal at 172 ° C. in the temperature lowering process of the liquid crystal state. Further, the compound shown in Chemical formula 8 (m = 3, n = 5), the compound shown in Chemical formula 8 (m = 4, n = 5), and the compound shown in Chemical formula 8 (m = 6, n = 5) are shown in FIG. And a nematic liquid crystal at 84 ° C. in the temperature rising process of the liquid crystal state of a mixture in which four kinds of compounds represented by Chemical Formula 8 (m = 8, n = 5) are mixed at a molar ratio of 1: 1: 1: 1. Show. As shown in FIGS. 17 and 18, liquid crystallinity was confirmed in any compound.

次に、示差走査熱量計(DSC)及び偏光顕微鏡により確認された化8に示す化合物(m=3)の相転移温度を表5及び図19に示す。なお、DSCでの温度の上昇および降下は5℃/minで測定した。図19に示すように、液晶から等方性液体への転移点における偶奇効果が明瞭に認められた。   Next, Table 5 and FIG. 19 show the phase transition temperatures of the compound (m = 3) shown in Chemical Formula 8 confirmed by a differential scanning calorimeter (DSC) and a polarizing microscope. The temperature increase and decrease in DSC were measured at 5 ° C./min. As shown in FIG. 19, the even-odd effect at the transition point from the liquid crystal to the isotropic liquid was clearly recognized.

Figure 2008184553
Figure 2008184553

一方、化8に示す化合物(m=6)の相転移温度を表6及び図20に示す。なお、DSCでの温度の上昇および降下は5℃/minで測定した。図20に示すように、液晶から等方性液体への転移点における偶奇効果が認められるが、結晶から液晶への転移点(融点)において偶奇効果はnが6以下では認められなくなった。また、nが小さい方が化8に示す化合物の液晶温度範囲が広いことがわかる。   On the other hand, Table 6 and FIG. 20 show the phase transition temperatures of the compound represented by Chemical Formula 8 (m = 6). The temperature increase and decrease in DSC were measured at 5 ° C./min. As shown in FIG. 20, an even-odd effect at the transition point from the liquid crystal to the isotropic liquid is recognized, but the even-odd effect at the transition point (melting point) from the crystal to the liquid crystal is not recognized when n is 6 or less. It can also be seen that the smaller the n, the wider the liquid crystal temperature range of the compound shown in Chemical Formula 8.

Figure 2008184553
Figure 2008184553

図21に化8に示す化合物(m=3、n=5)、化8に示す化合物(m=4、n=5)、化8に示す化合物(m=6、n=5)、化8に示す化合物(m=8、n=5)の昇温過程の示差走査熱量計(DSC)を示し、図22にこの混合物の降温過程の示差走査熱量計(DSC)を示す。図21に示すように、mの数が大きくなるにつれて融点は低下した。特に化8に示す化合物(m=8、n=5)では融点は70℃と低くなったが、他のn=5の化合物に比べ液晶温度範囲は狭くなった。   FIG. 21 shows a compound shown in Chemical formula 8 (m = 3, n = 5), a compound shown in Chemical formula 8 (m = 4, n = 5), a compound shown in Chemical formula 8 (m = 6, n = 5), Chemical formula 8 A differential scanning calorimeter (DSC) in the temperature rising process of the compound (m = 8, n = 5) shown in FIG. 2 is shown, and FIG. 22 shows a differential scanning calorimeter (DSC) in the temperature lowering process of this mixture. As shown in FIG. 21, the melting point decreased as the number of m increased. In particular, in the compound shown in Chemical Formula 8 (m = 8, n = 5), the melting point was as low as 70 ° C., but the liquid crystal temperature range was narrower than other compounds with n = 5.

図23に化8に示す化合物(m=3、n=5)と化8に示す化合物(m=6、n=5)との混合系における混合比と液晶温度範囲との関連を示す。さらに、化8に示す化合物(m=3、n=5)と、化8に示す化合物(m=4、n=5)と、化8に示す化合物(m=6、n=5)と、化8に示す化合物(m=8、n=5)との4種類を1:1:1:1のモル比で混合した混合物の昇温過程の示差走査熱量計(DSC)を図24に示す。上記4種の等モル混合物は転移点がブロードになったが、液晶温度範囲は55℃から149℃と液晶から液体への転移点はあまり変わらないが融点が大幅に低くなった。以上より、化8に示す化合物(n=5)は、mの数の異なる化8に示す化合物と混合すると液晶から液体への転移温度はわずかしか変化しないで、融点が大きく低下することがわかる。   FIG. 23 shows the relationship between the liquid crystal temperature range and the mixing ratio in the mixed system of the compound shown in Chemical formula 8 (m = 3, n = 5) and the compound shown in Chemical formula 8 (m = 6, n = 5). Furthermore, the compound shown in Chemical formula 8 (m = 3, n = 5), the compound shown in Chemical formula 8 (m = 4, n = 5), the compound shown in Chemical formula 8 (m = 6, n = 5), FIG. 24 shows a differential scanning calorimeter (DSC) of a temperature rising process of a mixture in which four types of compounds shown in Chemical Formula 8 (m = 8, n = 5) are mixed at a molar ratio of 1: 1: 1: 1. . The above four equimolar mixtures had a broad transition point, but the liquid crystal temperature range was 55 ° C. to 149 ° C., although the transition point from the liquid crystal to the liquid did not change much, but the melting point was significantly lowered. From the above, it can be seen that the compound (n = 5) shown in Chemical Formula 8 is mixed with the compound shown in Chemical Formula 8 having a different number of m, the transition temperature from the liquid crystal to the liquid changes only slightly, and the melting point greatly decreases. .

次に、化11に示す化合物の液晶相及び液晶温度範囲を表7に示す。表7に示すように、化11に示す化合物の液晶温度範囲はm及びnが小さい方が広いことがわかる。   Next, Table 7 shows liquid crystal phases and liquid crystal temperature ranges of the compounds represented by Chemical formula 11. As shown in Table 7, it can be seen that the liquid crystal temperature range of the compound shown in Chemical formula 11 is wider when m and n are smaller.

Figure 2008184553
Figure 2008184553

化3に示す化合物は液晶部位であるビフェニル基が2つあるため、液晶から液体へ変化する時のエンタルピー変化が大きいという特徴を有する。比較のため化8に示す化合物と似た液晶部位であるビフェニル基が1つの化合物である化16に示す化合物のDSCを調べた。そして、その結果を図25に示す。化16に示す化合物はn=3のとき液晶性はなかった。また、化16に示す化合物でn=6及びn=8の液晶温度は化3に示す化合物と比べ低いが、その液晶から液体へ変化する時のエンタルピー変化は化3に示す化合物と比べ非常に小さいことがわかる。化16に示す化合物(n=6)のそのエンタルピー変化は1.2J/gであり、化16に示す化合物(n=8)のそのエンタルピー変化は1.9J/gであった。   Since the compound represented by Chemical Formula 3 has two biphenyl groups which are liquid crystal sites, it has a feature that the enthalpy change when changing from liquid crystal to liquid is large. For comparison, the DSC of the compound represented by Chemical Formula 16 in which the biphenyl group, which is a liquid crystal moiety similar to the compound represented by Chemical Formula 8, is one compound was examined. The result is shown in FIG. The compound shown in Chemical formula 16 had no liquid crystallinity when n = 3. Moreover, although the liquid crystal temperature of n = 6 and n = 8 is low compared with the compound shown in Chemical formula 3 in the compound shown in Chemical formula 16, the enthalpy change when changing from the liquid crystal to the liquid is much higher than the compound shown in Chemical formula 3. I understand that it is small. The enthalpy change of the compound shown in Chemical formula 16 (n = 6) was 1.2 J / g, and the enthalpy change of the compound shown in Chemical formula 16 (n = 8) was 1.9 J / g.

Figure 2008184553
(式中、n=3〜12)
Figure 2008184553
(Where n = 3 to 12)

一方、図21に示した化8に示す化合物(m=4、n=5)のそのエンタルピー変化は9.5J/g、化8に示す化合物(m=4、n=5)のそのエンタルピー変化は7.5J/g、化8に示す化合物(m=6、n=5)のそのエンタルピー変化は7.4J/g、化8に示す化合物(m=8、n=5)のそのエンタルピー変化は10.3J/gであった。すなわち化8に示す化合物は化16に示す化合物に比べ、液晶から液体へ変化する時のエンタルピー変化は6倍から8倍になり、化8に示す化合物は安定な液晶状態をつくることができることがわかる。   On the other hand, the enthalpy change of the compound (m = 4, n = 5) shown in FIG. 21 shown in FIG. 21 is 9.5 J / g, and the enthalpy change of the compound (m = 4, n = 5) shown in FIG. 7.5J / g, the enthalpy change of the compound shown in Chemical formula 8 (m = 6, n = 5) is 7.4J / g, the enthalpy change of the compound shown in Chemical formula 8 (m = 8, n = 5) is 10.3J / g. In other words, the enthalpy change when the compound shown in Chemical formula 8 changes from liquid crystal to liquid is 6 to 8 times that of the compound shown in Chemical formula 16, so that the compound shown in Chemical formula 8 can create a stable liquid crystal state. Recognize.

次に、本実施例で行った化3に示す化合物の重合と、化3に示す化合物とポリブタジエン(分子量200万から300万)との混合物から、ポリブタジエンに化3に示す化合物が連結するとともに、ポリブタジエン間が架橋されたポリブタジエン・エラストマーの調製する方法について説明する。   Next, the polymerization of the compound shown in Chemical Formula 3 carried out in this Example and the mixture of the compound shown in Chemical Formula 3 and polybutadiene (molecular weight 2 million to 3 million) were linked to the polybutadiene in the chemical formula 3, A method for preparing a polybutadiene elastomer in which polybutadienes are crosslinked will be described.

化8に示す化合物と、重合開始剤2,2'−アゾビス(イソブチロニトリル)(ラジカル開始剤)とをジメチルスルホキシドとトルエンとの混合溶媒中で、60〜80℃で12〜40時間加熱しラジカル重合させてポリマーを得た。なお、本実施例では、ジメチルスルホキシドとトルエンの混合溶媒を用いたが、混合溶媒の代わりにジメチルスルホキシドのみを用いてもよい。   The compound shown in Chemical formula 8 and the polymerization initiator 2,2′-azobis (isobutyronitrile) (radical initiator) are heated in a mixed solvent of dimethyl sulfoxide and toluene at 60 to 80 ° C. for 12 to 40 hours. The polymer was obtained by radical polymerization. In this example, a mixed solvent of dimethyl sulfoxide and toluene was used, but only dimethyl sulfoxide may be used instead of the mixed solvent.

次に、化8に示す化合物をラジカル重合させたポリマーとポリブタジエンとを重量比1:5から1:1に混合し、クロロホルムに溶かした。クロロホルム蒸発後に生成した固体を230℃まで加熱するとポリブタジエン間に架橋がおこるとともに、ポリブタジエン鎖に化3に示す化合物が結合した液晶エラストマーが得られた。なお、本実施例では、(m=3、n=5)の組み合わせ、(m=3、n=7)の組み合わせ、(m=3、n=9)の組み合わせ、及び(m=3、n=11)の組み合わせの計4種類について同様の手順で液晶エラストマーを作製した。   Next, a polymer obtained by radical polymerization of the compound shown in Chemical Formula 8 and polybutadiene were mixed at a weight ratio of 1: 5 to 1: 1 and dissolved in chloroform. When the solid produced after evaporation of chloroform was heated to 230 ° C., cross-linking occurred between the polybutadienes, and a liquid crystal elastomer in which the compound represented by Chemical Formula 3 was bonded to the polybutadiene chain was obtained. In this embodiment, a combination of (m = 3, n = 5), a combination of (m = 3, n = 7), a combination of (m = 3, n = 9), and (m = 3, n = 11) Liquid crystal elastomers were prepared in the same procedure for a total of four types of combinations.

図26に、化8に示す化合物(m=3、n=11)とポリブタジエン(分子量200万から300万)との重量比が1:2である混合物のDSC変化を示す。261は、化8に示す化合物(m=3、n=11)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物の1回目の昇温過程のDSC曲線である。また、262は、化8に示す化合物(m=3、n=11)のみの昇温過程のDSC曲線である。化8に示す化合物(m=3、n=11)とポリブタジエン(分子量200万から300万)との重量比が1:2である混合物を、1回目の昇温過程で230℃に加熱すると、200℃付近にポリブタジエン間の架橋とポリブタジエン鎖と化8に示す化合物との連結による大きな吸熱が見られ、ゴム状弾性体が得られることがわかる。   FIG. 26 shows the DSC change of a mixture in which the weight ratio of the compound represented by Chemical Formula 8 (m = 3, n = 11) and polybutadiene (molecular weight: 2 million to 3 million) is 1: 2. 261 is a DSC curve of the first temperature rising process of the mixture of the compound shown in Chemical formula 8 (m = 3, n = 11) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2). Reference numeral 262 denotes a DSC curve in the temperature rising process of only the compound shown in Chemical Formula 8 (m = 3, n = 11). When a mixture in which the weight ratio of the compound shown in Chemical formula 8 (m = 3, n = 11) and polybutadiene (molecular weight 2 million to 3 million) is 1: 2 is heated to 230 ° C. in the first temperature raising process, A large endotherm is observed near 200 ° C. due to the cross-linking between polybutadienes and the connection between the polybutadiene chain and the compound shown in Chemical Formula 8, indicating that a rubber-like elastic body can be obtained.

また、263は、化8に示す化合物(m=3、n=11)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物を230℃まで一度加熱した後の2回目の昇温過程のDSC曲線である。このゴム状弾性体は、2回目以降、230℃で加熱しても、1回目の昇温過程で起こるような大きな吸熱は生じないことがわかる。このことはポリブタジエン間で架橋がすでに終了していることを示している。   263 is the second time after a mixture of the compound shown in Chemical Formula 8 (m = 3, n = 11) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2) is heated to 230 ° C. once. It is a DSC curve of the temperature rising process. It can be seen that the rubber-like elastic body does not generate a large endotherm that occurs in the first temperature raising process even if it is heated at 230 ° C. for the second and subsequent times. This indicates that crosslinking between the polybutadienes has already been completed.

264は、化8に示す化合物(m=3、n=11)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物を230℃まで一度加熱した後の2回目の降温過程のDSC曲線であり、265は、化8に示す化合物(m=3、n=11)のみの降温過程のDSC曲線である。また、266は、化8に示す化合物(m=3、n=11)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物を230℃まで一度加熱した後の3回目の降温過程のDSC曲線である。このゴム状弾性体は、2回目以降、200℃で加熱すると、融点または液晶から液体への転移点がそれぞれ2つ生じていることがわかる。2回目の昇温過程では、昇温過程で液晶から液体への転移点が2つあり、2回目の降温過程では、融点が2つあることがわかる。   H.264 is the second temperature drop after heating a mixture of the compound shown in Chemical Formula 8 (m = 3, n = 11) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2) to 230 ° C. once. DSC curve of the process, and 265 is a DSC curve of the temperature lowering process of only the compound shown in Chemical Formula 8 (m = 3, n = 11). 266 is the third time after once heating the mixture of the compound shown in Chemical formula 8 (m = 3, n = 11) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2) to 230 ° C. It is a DSC curve of the temperature lowering process. It can be seen that when this rubber-like elastic body is heated at 200 ° C. for the second time and thereafter, two melting points or two transition points from liquid crystal to liquid are generated. It can be seen that in the second temperature increase process, there are two transition points from the liquid crystal to the liquid in the temperature increase process, and in the second temperature decrease process, there are two melting points.

図27には、化8に示す化合物(m=3、n=9)とポリブタジエン(分子量200万から300万)(重量比1:2)の混合物の架橋後の液晶エラストマーのDSCを示す。271は、化8に示す化合物(m=3、n=9)のみの昇温過程のDSC曲線であり、272は、化8に示す化合物(m=3、n=9)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物を230℃まで一度加熱した後の2回目の昇温過程のDSC曲線である。また、273は、化8に示す化合物(m=3、n=9)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物の降温過程のDSC曲線であり、274は、化8に示す化合物(m=3、n=9)のみの降温過程のDSC曲線である。昇温過程ではピークはブロードなため、転移点がそれぞれ2つあることがわかりにくいが、降温過程では転移点がそれぞれ2つあることがわかる。   FIG. 27 shows the DSC of the liquid crystal elastomer after crosslinking of a mixture of the compound shown in Chemical Formula 8 (m = 3, n = 9) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2). 271 is a DSC curve in the temperature raising process of only the compound (m = 3, n = 9) shown in Chemical Formula 8, and 272 is the compound (m = 3, n = 9) shown in Chemical Formula 8 and polybutadiene (molecular weight 200). FIG. 3 is a DSC curve of a second temperature raising process after the mixture is once heated to 230 ° C. 273 is a DSC curve of the temperature lowering process of the mixture of the compound shown in Chemical formula 8 (m = 3, n = 9) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2). , DSC curve of the temperature lowering process of only the compound (m = 3, n = 9) shown in Chemical formula 8. Since the peak is broad in the temperature raising process, it is difficult to understand that there are two transition points, but in the temperature lowering process, there are two transition points.

図28には、化8に示す化合物(m=3、n=7)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物の架橋後の液晶エラストマーのDSCを示す。281は、化8に示す化合物(m=3、n=7)のみの昇温過程のDSC曲線であり、282は、化8に示す化合物(m=3、n=7)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物を230℃まで一度加熱した後の2回目の昇温過程のDSC曲線である。昇温過程でピークはそれぞれ2つあることがわかる。   FIG. 28 shows the DSC of the liquid crystal elastomer after crosslinking of a mixture of the compound shown in Chemical Formula 8 (m = 3, n = 7) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2). 281 is a DSC curve of the temperature rising process of only the compound shown in Chemical formula 8 (m = 3, n = 7), and 282 is the compound shown in Chemical formula 8 (m = 3, n = 7) and polybutadiene (molecular weight 200). FIG. 3 is a DSC curve of a second temperature raising process after the mixture is once heated to 230 ° C. It can be seen that there are two peaks in the temperature raising process.

以上のように、融点または液晶から液体への転移点がそれぞれ2つ生じる結果は、多くの化8に示す化合物とポリブタジエンとの混合物において見いだされた。このように得られた液晶エラストマーのDSCにおいて、融点または液晶から液体への転移点のピークがそれぞれ2つあることは、化8に示す化合物がポリブタジエンに結合している場合と、結合していない場合との2種類あることに起因する。   As described above, the results of two melting points or two transition points from liquid crystal to liquid were found in many mixtures of the compound shown in Chemical Formula 8 and polybutadiene. In the DSC of the liquid crystal elastomer thus obtained, there are two peaks at the melting point or the transition point from the liquid crystal to the liquid, indicating that the compound shown in Chemical Formula 8 is not bonded to the polybutadiene. This is because there are two types of cases.

図29は、化8に示す化合物(m=3、n=5)とポリブタジエン(分子量200万から300万)(重量比1:2)の混合物を230℃まで一度加熱した後に昇温課程の156℃で液晶が発現しているところを示す偏光顕微鏡写真である。また、図30は、化8に示す化合物(m=3、n=11)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物を230℃まで一度加熱した後に昇温課程の153℃で液晶が発現しているところを示す偏光顕微鏡写真である。図29及び図30に示すように、何れの液晶エラストマーにおいても液晶が確認された。   FIG. 29 shows a mixture of the compound shown in Chemical Formula 8 (m = 3, n = 5) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2) once heated to 230 ° C. and then heated at 156. It is a polarizing microscope photograph which shows the place where the liquid crystal is developing at ° C. FIG. 30 shows a mixture of the compound shown in Chemical formula 8 (m = 3, n = 11) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2) once heated to 230 ° C. and then heated. It is a polarizing microscope photograph which shows the place where the liquid crystal is developing at 153 degreeC of the course. As shown in FIGS. 29 and 30, liquid crystals were confirmed in any liquid crystal elastomer.

また、上記で得られたポリブタジエン鎖と化8に示す化合物とを230℃で加熱することにより得られる液晶エラストマーは、クロロホルム、トルエン、ラウリン酸メチル、アセトンなどの有機溶剤の中で膨潤してゲルになる。   The liquid crystal elastomer obtained by heating the polybutadiene chain obtained above and the compound shown in Chemical Formula 8 at 230 ° C. is swollen in an organic solvent such as chloroform, toluene, methyl laurate, acetone, etc. become.

以上のように、化3に示す新規化合物は、末端に炭素と炭素の二重結合(ビニル基)をもち、液晶性を示す部位(メソゲン)が2つからなる液晶性を示すビフェニル誘導体である。この化合物の液晶温度範囲は広く、しかも液晶から液体への転移点のエンタルピー変化が大きいという特徴を有する。この新規化合物を含む液晶分子はポリブタジエンと混合して230℃にまで加熱すると、ポリブタジエンが架橋されるとともに、この液晶分子がポリブタジエンと結合されて液晶エラストマーとなる。このことは液晶エラストマーとして実用化に適しているといえる。   As described above, the novel compound shown in Chemical Formula 3 is a biphenyl derivative having a liquid crystallinity having a carbon-carbon double bond (vinyl group) at the terminal and having two liquid crystalline portions (mesogens). . This compound has a feature that the liquid crystal temperature range is wide and the enthalpy change at the transition point from the liquid crystal to the liquid is large. When the liquid crystal molecules containing the novel compound are mixed with polybutadiene and heated to 230 ° C., the polybutadiene is crosslinked and the liquid crystal molecules are bonded to the polybutadiene to form a liquid crystal elastomer. This can be said to be suitable for practical use as a liquid crystal elastomer.

化8に示す化合物(m=3、n=3)の降温過程の155℃でのネマチック液晶を示す偏光顕微鏡写真である。10 is a polarizing micrograph showing a nematic liquid crystal at 155 ° C. in the temperature lowering process of the compound (m = 3, n = 3) shown in Chemical Formula 8. 化8に示す化合物(m=3、n=5)の昇温過程の114℃でのネマチック液晶を示す偏光顕微鏡写真である。10 is a polarizing micrograph showing a nematic liquid crystal at 114 ° C. in the temperature rising process of the compound (m = 3, n = 5) shown in Chemical Formula 8. 化8に示す化合物(m=3、n=6)の昇温過程の110℃でのネマチック液晶を示す偏光顕微鏡写真である。10 is a polarizing microscope photograph showing a nematic liquid crystal at 110 ° C. in a temperature rising process of a compound (m = 3, n = 6) shown in Chemical Formula 8. 化8に示す化合物(m=3、n=7)の昇温過程の140℃でのネマチック液晶を示す偏光顕微鏡写真である。10 is a polarizing microscope photograph showing a nematic liquid crystal at 140 ° C. in a temperature rising process of a compound (m = 3, n = 7) shown in Chemical Formula 8. 化8に示す化合物(m=3、n=8)の昇温過程の118℃でのネマチック液晶を示す偏光顕微鏡写真である。10 is a polarizing micrograph showing a nematic liquid crystal at 118 ° C. in the temperature rising process of the compound shown in Chemical Formula 8 (m = 3, n = 8). 化8に示す化合物(m=3、n=9)の昇温過程の151℃でのスメクチックA液晶を示す偏光顕微鏡写真である。10 is a polarizing microscope photograph showing a smectic A liquid crystal at 151 ° C. in the temperature rising process of the compound shown in Chemical Formula 8 (m = 3, n = 9). 化8に示す化合物(m=3、n=10)の昇温過程の105℃でのスメクチックA液晶を示す偏光顕微鏡写真である。10 is a polarizing micrograph showing a smectic A liquid crystal at 105 ° C. in the temperature rising process of the compound shown in Chemical Formula 8 (m = 3, n = 10). 化8に示す化合物(m=3、n=10)の昇温過程の110℃でのネマチック液晶を示す偏光顕微鏡写真である。10 is a polarizing microscope photograph showing a nematic liquid crystal at 110 ° C. in the temperature rising process of the compound shown in Chemical Formula 8 (m = 3, n = 10). 化8に示す化合物(m=3、n=11)の昇温過程の146℃でのスメクチックA液晶を示す偏光顕微鏡写真である。10 is a polarizing micrograph showing a smectic A liquid crystal at 146 ° C. in the temperature rising process of the compound shown in Chemical Formula 8 (m = 3, n = 11). 化8に示す化合物(m=3、n=12)の昇温過程の109℃でのスメクチックA液晶を示す偏光顕微鏡写真である。10 is a polarizing micrograph showing a smectic A liquid crystal at 109 ° C. in the temperature rising process of the compound shown in Chemical Formula 8 (m = 3, n = 12). 化8に示す化合物(m=3、n=12)の昇温過程の120℃でのネマチック液晶を示す偏光顕微鏡写真である。10 is a polarizing microscope photograph showing a nematic liquid crystal at 120 ° C. in the temperature rising process of the compound shown in Chemical Formula 8 (m = 3, n = 12). 化8に示す化合物(m=4、n=5)の降温過程の171℃でのネマチック液晶を示す偏光顕微鏡写真である。10 is a polarizing micrograph showing a nematic liquid crystal at 171 ° C. in the temperature lowering process of the compound (m = 4, n = 5) shown in Chemical Formula 8. 化11に示す化合物(m=3、n=3、R=Me)の昇温過程の206℃でのネマチック液晶を示す偏光顕微鏡写真である。7 is a polarizing micrograph showing a nematic liquid crystal at 206 ° C. during the temperature rising process of the compound represented by Chemical Formula 11 (m = 3, n = 3, R = Me). 化11に示す化合物(m=11、n=11、R=Me)の降温過程の127℃でのネマチック液晶を示す偏光顕微鏡写真である。21 is a polarizing micrograph showing a nematic liquid crystal at 127 ° C. in the temperature lowering process of the compound represented by Chemical Formula 11 (m = 11, n = 11, R = Me). 化11に示す化合物(m=12、n=12、R=H)の昇温過程の114℃でのネマチック液晶を示す偏光顕微鏡写真である。6 is a polarizing micrograph showing a nematic liquid crystal at 114 ° C. during the temperature rising process of the compound represented by Chemical Formula 11 (m = 12, n = 12, R = H). 化11に示す化合物(m=12、n=12、R=Me)の降温過程の95℃でのネマチック液晶を示す偏光顕微鏡写真である。7 is a polarizing micrograph showing a nematic liquid crystal at 95 ° C. in the temperature lowering process of the compound shown in Chemical Formula 11 (m = 12, n = 12, R = Me). 化8に示す化合物(m=3、n=5)と化8に示す化合物(m=6、n=5)とを1:1のモル比で混合した混合物の降温過程の172℃でのネマチック液晶を示す偏光顕微鏡写真である。Nematic at 172 ° C. in the temperature lowering process of the mixture obtained by mixing the compound represented by Chemical formula 8 (m = 3, n = 5) and the compound represented by Chemical formula 8 (m = 6, n = 5) at a molar ratio of 1: 1. It is a polarizing microscope photograph which shows a liquid crystal. 化8に示す化合物(m=3、n=5)と、化8に示す化合物(m=4、n=5)と、化8に示す化合物(m=6、n=5)と、化8に示す化合物(m=8、n=5)との4種類を1:1:1:1のモル比で混合した混合物の昇温過程の84℃でのネマチック液晶を示す偏光顕微鏡写真である。The compound shown in Chemical formula 8 (m = 3, n = 5), the compound shown in Chemical formula 8 (m = 4, n = 5), the compound shown in Chemical formula 8 (m = 6, n = 5), and Chemical formula 8 4 is a polarizing micrograph showing a nematic liquid crystal at 84 ° C. in a temperature rising process of a mixture obtained by mixing four types of the compounds shown in (4) with the compound (m = 8, n = 5) at a molar ratio of 1: 1: 1: 1. 化8に示す化合物(m=3)の相転移温度とアルキル鎖n(n=3〜12)との関連を示す図である。It is a figure which shows the relationship between the phase transition temperature of the compound (m = 3) shown in Chemical formula 8, and the alkyl chain n (n = 3-12). 化8に示す化合物(m=6)の相転移温度とアルキル鎖n(n=3〜12)との関連を示す図である。It is a figure which shows the relationship between the phase transition temperature of the compound (m = 6) shown in Chemical formula 8, and the alkyl chain n (n = 3-12). 化8に示す化合物(m=3、n=5)、化8に示す化合物(m=4、n=5)、化8に示す化合物(m=6、n=5)、化8に示す化合物(m=8、n=5)の昇温過程の示差走査熱量計(DSC)を示す図である。Compound shown in Chemical formula 8 (m = 3, n = 5), Compound shown in Chemical formula 8 (m = 4, n = 5), Compound shown in Chemical formula 8 (m = 6, n = 5), Compound shown in Chemical formula 8 It is a figure which shows the differential scanning calorimeter (DSC) of the temperature rising process of (m = 8, n = 5). 化8に示す化合物(m=3、n=5)、化8に示す化合物(m=4、n=5)、化8に示す化合物(m=6、n=5)、化8に示す化合物(m=8、n=5)の降温過程の示差走査熱量計(DSC)を示す図である。Compound shown in Chemical formula 8 (m = 3, n = 5), Compound shown in Chemical formula 8 (m = 4, n = 5), Compound shown in Chemical formula 8 (m = 6, n = 5), Compound shown in Chemical formula 8 It is a figure which shows the differential scanning calorimeter (DSC) of the temperature fall process of (m = 8, n = 5). 化8に示す化合物(m=3、n=5)と化8に示す化合物(m=6、n=5)の混合系の混合比と液晶温度範囲との関連を示す図である。It is a figure which shows the relationship between the mixing ratio of the mixed system of the compound (m = 3, n = 5) shown in Chemical formula 8 and the compound (m = 6, n = 5) shown in Chemical formula 8 and the liquid crystal temperature range. 化8に示す化合物(m=3、n=5)、化8に示す化合物(m=4、n=5)、化8に示す化合物(m=6、n=5)と化8に示す化合物(m=8、n=5)の4種の等モル混合物の昇温過程の示差走査熱量計(DSC)を示す図である。The compound shown in Chemical formula 8 (m = 3, n = 5), the compound shown in Chemical formula 8 (m = 4, n = 5), the compound shown in Chemical formula 8 (m = 6, n = 5) and the compound shown in Chemical formula 8 It is a figure which shows the differential scanning calorimeter (DSC) of the temperature rising process of 4 types of equimolar mixtures of (m = 8, n = 5). 化16に示す化合物(n=3)、化16に示す化合物(n=6)、及び化16に示す化合物(n=8)の昇温過程DSCを示す図である。It is a figure which shows the temperature rising process DSC of the compound (n = 3) shown in Chemical formula 16, the compound (n = 6) shown in Chemical formula 16, and the compound (n = 8) shown in Chemical formula 16. 化8に示す化合物(m=3、n=11)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物のDSCを示す図である。It is a figure which shows the DSC of the mixture of the compound (m = 3, n = 11) shown in Chemical formula 8 and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2). 化8に示す化合物(m=3、n=9)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物の架橋後の液晶エラストマーのDSCを示す図である。It is a figure which shows DSC of the liquid crystal elastomer after bridge | crosslinking of the compound (m = 3, n = 9) shown in Chemical formula 8 and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2). 化8に示す化合物(m=3、n=7)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物の架橋後の液晶エラストマーのDSCを示す図である。It is a figure which shows DSC of the liquid crystal elastomer after bridge | crosslinking of the compound (m = 3, n = 7) shown in Chemical formula 8, and the polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2). 化8に示す化合物(m=3、n=5)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物を230℃まで一度加熱した後に昇温課程の156℃で液晶が発現しているところを示す偏光顕微鏡写真である。A mixture of the compound shown in Chemical Formula 8 (m = 3, n = 5) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2) was heated once to 230 ° C. and then heated at 156 ° C. in the temperature rising process. It is a polarization micrograph which shows the place which has expressed. 化8に示す化合物(m=3、n=11)とポリブタジエン(分子量200万から300万)(重量比1:2)との混合物を230℃まで一度加熱した後に昇温課程の153℃で液晶が発現しているところを示す偏光顕微鏡写真である。A mixture of the compound shown in Chemical Formula 8 (m = 3, n = 11) and polybutadiene (molecular weight 2 million to 3 million) (weight ratio 1: 2) was heated once to 230 ° C. and then heated at 153 ° C. in the temperature rising process. It is a polarization micrograph which shows the place which has expressed.

符号の説明Explanation of symbols

261 混合物の1回目の昇温過程のDSC曲線
262 化8に示す化合物(m=3、n=11)のみの昇温過程のDSC曲線
263 混合物を230℃まで一度加熱した後の2回目の昇温過程のDSC曲線
264 混合物を230℃まで一度加熱した後の2回目の降温過程のDSC曲線
265 化8に示す化合物(m=3、n=11)のみの降温過程のDSC曲線
266 混合物を230℃まで一度加熱した後の3回目の降温過程のDSC曲線
271 化8に示す化合物(m=3、n=9)のみの昇温過程のDSC曲線
272 混合物を230℃まで一度加熱した後の2回目の昇温過程のDSC曲線
273 混合物の降温過程のDSC曲線
274 化8に示す化合物(m=3、n=9)のみの降温過程のDSC曲線
281 化8に示す化合物(m=3、n=7)のみの昇温過程のDSC曲線
282 混合物を230℃まで一度加熱した後の2回目の昇温過程のDSC曲線
261 DSC curve of the first heating process of the mixture 262 DSC curve of the heating process of only the compound shown in Chemical Formula 8 (m = 3, n = 11) 263 The second rising after heating the mixture to 230 ° C. once DSC curve 264 of temperature process DSC curve 264 of the second temperature decrease process after heating the mixture once to 230 ° C. 265 DSC curve 266 of the temperature decrease process of the compound (m = 3, n = 11) alone DSC curve of the third temperature decrease process after heating to once at 270 ° C DSC curve of the temperature increase process of only the compound (m = 3, n = 9) shown in Chemical Formula 272 2 after heating the mixture to 230 ° C once DSC curve of the second temperature rising process 273 DSC curve of the temperature decreasing process of the mixture 274 DSC curve of the temperature decreasing process of only the compound shown in Chemical formula 8 (m = 3, n = 9) 281 Compound shown in Chemical formula 8 (m = , N = 7) only DSC curve of the second heating process after the DSC curve 282 mixture Atsushi Nobori process was once heated up to 230 ° C. of

Claims (5)

構造が化1で表される化合物を含むことを特徴とする液晶用材料。
Figure 2008184553
(式中、RがHで、Aが(CH2mであるか、
RがH又はMeで、AがCOO(CH2mであり、
mは2以上、nは3以上である。)
A liquid crystal material comprising a compound represented by the formula:
Figure 2008184553
Wherein R is H and A is (CH 2 ) m
R is H or Me, A is COO (CH 2 ) m ,
m is 2 or more, and n is 3 or more. )
互いに架橋された複数のポリブタジエン鎖と、
前記複数のポリブタジエン鎖の少なくとも一部に結合された化2に示す化合物とを有することを特徴とする液晶エラストマー。
Figure 2008184553
(式中、RがHで、Aが(CH2mであるか、
RがH又はMeで、AがCOO(CH2mであり、
mは2以上、nは3以上である。)
A plurality of polybutadiene chains cross-linked to each other;
A liquid crystal elastomer comprising: a compound represented by Chemical Formula 2 bonded to at least a part of the plurality of polybutadiene chains.
Figure 2008184553
Wherein R is H and A is (CH 2 ) m
R is H or Me, A is COO (CH 2 ) m ,
m is 2 or more, and n is 3 or more. )
4−シアノ−4'−ヒドロキシビフェニルと、化3に示す化合物とを反応させて、化4に示す化合物を生成する工程と、
前記化4に示す化合物と、4'−ヒドロキシ−4−ビフェニルカルボン酸とを反応させて、化5に示す化合物を生成する工程と、
前記化5に示す化合物と、化6に示す化合物とを反応させて、化7に示す化合物を生成する工程とを有することを特徴とする液晶用材料の製造方法。
Figure 2008184553
(式中、n=3以上、Xはハロゲン原子)
Figure 2008184553
(式中、n=3以上、Xはハロゲン原子)
Figure 2008184553
(式中、n=3以上)
Figure 2008184553
(式中、m=2以上、Xはハロゲン原子)
Figure 2008184553
(式中、m=2以上、n=3以上)
Reacting 4-cyano-4′-hydroxybiphenyl with a compound represented by Chemical Formula 3 to produce a compound represented by Chemical Formula 4;
Reacting the compound shown in Chemical Formula 4 with 4′-hydroxy-4-biphenylcarboxylic acid to produce the compound shown in Chemical Formula 5;
A method for producing a liquid crystal material, comprising: reacting the compound represented by Chemical Formula 5 with the compound represented by Chemical Formula 6 to produce a compound represented by Chemical Formula 7.
Figure 2008184553
(Where n = 3 or more, X is a halogen atom)
Figure 2008184553
(Where n = 3 or more, X is a halogen atom)
Figure 2008184553
(Where n = 3 or more)
Figure 2008184553
(In the formula, m = 2 or more, X is a halogen atom)
Figure 2008184553
(Where m = 2 or more, n = 3 or more)
4−シアノ−4'−ヒドロキシビフェニルと、化8に示す化合物とを反応させて、化9に示す化合物を生成する工程と、
前記化9に示す化合物と、4'−ヒドロキシ−4−ビフェニルカルボン酸とを反応させて、化10に示す化合物を生成する工程と、
前記化10に示す化合物と、化11に示す化合物とを反応させて、化12に示す化合物を生成する工程と、
前記化12に示す化合物と、アクリル酸またはメタクリル酸と反応させて、化13に示す化合物を生成する工程とを有することを特徴とする液晶用材料の製造方法。
Figure 2008184553
(式中、n=3以上、Xはハロゲン原子)
Figure 2008184553
(式中、n=3以上、Xはハロゲン原子)
Figure 2008184553
(式中、n=3以上)
Figure 2008184553
(式中、m=2以上、Xはハロゲン原子)
Figure 2008184553
(式中、m=2以上、n=3以上、Xはハロゲン原子)
Figure 2008184553
(式中、m=2以上、n=3以上、R=H or Me)
Reacting 4-cyano-4′-hydroxybiphenyl with a compound represented by Chemical Formula 8 to produce a compound represented by Chemical Formula 9;
Reacting the compound represented by Chemical Formula 9 with 4′-hydroxy-4-biphenylcarboxylic acid to produce the compound represented by Chemical Formula 10;
Reacting the compound shown in Chemical Formula 10 with the compound shown in Chemical Formula 11 to produce a compound shown in Chemical Formula 12,
A method for producing a material for liquid crystal, comprising the step of reacting the compound represented by Chemical Formula 12 with acrylic acid or methacrylic acid to produce the compound represented by Chemical Formula 13.
Figure 2008184553
(Where n = 3 or more, X is a halogen atom)
Figure 2008184553
(Where n = 3 or more, X is a halogen atom)
Figure 2008184553
(Where n = 3 or more)
Figure 2008184553
(In the formula, m = 2 or more, X is a halogen atom)
Figure 2008184553
(In the formula, m = 2 or more, n = 3 or more, X is a halogen atom)
Figure 2008184553
(Where, m = 2 or more, n = 3 or more, R = H or Me)
ポリブタジエンと化14に示す化合物とを混合し、180℃〜250℃の範囲内で加熱することを特徴とする液晶エラストマーの製造方法。
Figure 2008184553
(式中、RがHで、Aが(CH2mであるか、
RがH又はMeで、AがCOO(CH2mであり、
mは2以上、nは3以上である。)
A method for producing a liquid crystal elastomer, comprising mixing polybutadiene and a compound represented by Chemical Formula 14 and heating within a range of 180 ° C to 250 ° C.
Figure 2008184553
Wherein R is H and A is (CH 2 ) m
R is H or Me, A is COO (CH 2 ) m ,
m is 2 or more, and n is 3 or more. )
JP2007019695A 2007-01-30 2007-01-30 Liquid crystal material, liquid crystal elastomer, method for producing liquid crystal material, and method for producing liquid crystal elastomer Active JP5130520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019695A JP5130520B2 (en) 2007-01-30 2007-01-30 Liquid crystal material, liquid crystal elastomer, method for producing liquid crystal material, and method for producing liquid crystal elastomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019695A JP5130520B2 (en) 2007-01-30 2007-01-30 Liquid crystal material, liquid crystal elastomer, method for producing liquid crystal material, and method for producing liquid crystal elastomer

Publications (2)

Publication Number Publication Date
JP2008184553A true JP2008184553A (en) 2008-08-14
JP5130520B2 JP5130520B2 (en) 2013-01-30

Family

ID=39727806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019695A Active JP5130520B2 (en) 2007-01-30 2007-01-30 Liquid crystal material, liquid crystal elastomer, method for producing liquid crystal material, and method for producing liquid crystal elastomer

Country Status (1)

Country Link
JP (1) JP5130520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122018A (en) * 2008-11-18 2010-06-03 Tokai Rubber Ind Ltd Tactile sensor and manufacturing method of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055905A (en) * 1990-11-09 1993-01-14 Canon Inc Liquid crystal element, display device, and display method using this device
JP2003002904A (en) * 2001-06-25 2003-01-08 Sumitomo Rubber Ind Ltd Liquid crystal elastomer
JP2004075623A (en) * 2002-08-20 2004-03-11 Toshio Itahara Biphenyl derivative oligomer and liquid crystal
JP2006265403A (en) * 2005-03-24 2006-10-05 Kagoshima Univ Liquid crystal material and its manufacturing method
JP2007270077A (en) * 2006-03-31 2007-10-18 Kagoshima Univ Liquid crystal elastomer, liquid crystal film, liquid crystal gel and method for producing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055905A (en) * 1990-11-09 1993-01-14 Canon Inc Liquid crystal element, display device, and display method using this device
JP2003002904A (en) * 2001-06-25 2003-01-08 Sumitomo Rubber Ind Ltd Liquid crystal elastomer
JP2004075623A (en) * 2002-08-20 2004-03-11 Toshio Itahara Biphenyl derivative oligomer and liquid crystal
JP2006265403A (en) * 2005-03-24 2006-10-05 Kagoshima Univ Liquid crystal material and its manufacturing method
JP2007270077A (en) * 2006-03-31 2007-10-18 Kagoshima Univ Liquid crystal elastomer, liquid crystal film, liquid crystal gel and method for producing them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122018A (en) * 2008-11-18 2010-06-03 Tokai Rubber Ind Ltd Tactile sensor and manufacturing method of same

Also Published As

Publication number Publication date
JP5130520B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5340530B2 (en) Manufacturing method of micro phase separation structure
JP6813147B2 (en) Dynamic covalent compound and its recombination method
US20050242325A1 (en) Shape memory main-chain smectic-C elastomers
BR122017010545B1 (en) statistical thermoplastic copolymer, its preparation method, its compositions and vehicle tire
JP2007197609A (en) Optically driven actuator, method of manufacturing the same
Yao et al. Synthesis and self-assembly behaviours of side-chain smectic thiol–ene polymers based on the polysiloxane backbone
WO2021045203A1 (en) Polymer material and production method therefor
Yang et al. Mesogen-jacketed liquid crystalline polymers and elastomers bearing polynorbornene backbone
WO2001046284A1 (en) Three arm star compositions of matter and methods of preparation
Zhu et al. Molecular engineering of step-growth liquid crystal elastomers
JP5998403B2 (en) Liquid crystalline polyaminourethane, production intermediate thereof, and production method thereof
Wang et al. Synthesis of an azobenzene-containing main-chain crystalline polymer and photodeformation behaviors of its supramolecular hydrogen-bonded fibers
JP5130520B2 (en) Liquid crystal material, liquid crystal elastomer, method for producing liquid crystal material, and method for producing liquid crystal elastomer
Wang et al. Reprocessable and healable room temperature photoactuators based on a main-chain azobenzene liquid crystalline poly (ester-urea)
KR20150139430A (en) The novel bimesogenic compound
US11643496B2 (en) Polymer electrolyte having superior ion conductivity and mechanical strength and method of manufacturing same
JPH07258369A (en) High-molecular liquid-crystal polyurethane
Wang et al. Synthesis and characterization of four-armed star mesogen-jacketed liquid crystal polymer
Wang et al. Synthesis of a novel star liquid crystal polymer using trifunctional initiator via atom transfer radical polymerization
KR101816283B1 (en) poly(ε-decalactone)-poly(L-lactide) multiarm star copolymers as thermoplastic elastomers
JP2007045759A (en) Liquid crystal polymer and liquid crystal elastomer and mesogen used for production thereof
JP5333975B2 (en) (Meth) acrylate ester copolymer, pressure-sensitive adhesive composition comprising the same, and method for producing (meth) acrylate ester copolymer
Feng et al. One‐Step Method for Synthesis of PDMS‐Based Macroazoinitiators and Block Copolymers from the Initiators
JP6504552B2 (en) Method for producing liquid crystal elastomer
JP7012392B2 (en) A method for producing a photoresponsive polymer compound, an adhesive, a photoresponsive substance, and a photoresponsive polymer compound.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150