JP2008183488A - Method for enhancing blocking rate of permeable membrane, method for treating permeable membrane, permeable membrane apparatus, and pure water preparation apparatus - Google Patents
Method for enhancing blocking rate of permeable membrane, method for treating permeable membrane, permeable membrane apparatus, and pure water preparation apparatus Download PDFInfo
- Publication number
- JP2008183488A JP2008183488A JP2007017127A JP2007017127A JP2008183488A JP 2008183488 A JP2008183488 A JP 2008183488A JP 2007017127 A JP2007017127 A JP 2007017127A JP 2007017127 A JP2007017127 A JP 2007017127A JP 2008183488 A JP2008183488 A JP 2008183488A
- Authority
- JP
- Japan
- Prior art keywords
- permeable membrane
- module
- rejection
- rate
- primary side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、逆浸透膜、ナノ濾過膜等の透過膜の阻止率を向上させる方法、阻止率を向上させた透過膜を用いる透過膜処理方法、およびこれらに適した透過膜装置に関するものである。 The present invention relates to a method for improving the rejection rate of a permeable membrane such as a reverse osmosis membrane and a nanofiltration membrane, a permeable membrane treatment method using a permeable membrane with an improved rejection rate, and a permeable membrane device suitable for these methods. .
水処理に用いられる透過膜、特にナノろ過膜、逆浸透膜などの選択性透過膜の無機電解質や水溶性有機物等の分離対象物に対する阻止率は、水中に存在する酸化性物質や還元性物質などの影響、その他の原因による素材高分子の劣化によって低下し、必要とされる処理水質が得られなくなる。この変化は、長期間使用しているうちに少しずつ起こることもあり、また事故によって突発的に起こることもある。このような阻止率が低下した透過膜の阻止率を向上させ、性能を回復するために、阻止率向上剤が提案されている。 Permeation membranes used for water treatment, especially nanofiltration membranes, reverse osmosis membranes and other selective permeation membranes with respect to separation targets such as inorganic electrolytes and water-soluble organic substances are oxidizing substances and reducing substances present in water The required quality of treated water cannot be obtained due to the deterioration of the raw material polymer due to the influence of the above and other causes. This change may occur little by little during long-term use, or it may happen suddenly due to an accident. In order to improve the blocking rate of such a permeable membrane with a reduced blocking rate and restore the performance, a blocking rate improving agent has been proposed.
一般に高純度の純水を製造するための超純水製造システムには、逆浸透膜処理装置と、この逆浸透膜処理装置の透過水を高度処理する電気再生式脱イオン装置または他のイオン交換装置とが組み込まれている。一方、近年の半導体回路形成技術の進歩により、線幅65nm以下の回路を作成することが可能となってきている。それに伴い超純水に対する要求水質も高まっており、後段処理の負荷を軽減し、より高いレベルでの純水製造を実現する純水製造装置および純水製造方法の開発が望まれている。 In general, an ultrapure water production system for producing high-purity pure water includes a reverse osmosis membrane treatment device and an electric regenerative deionization device or other ion-exchange device for advanced treatment of the permeated water of the reverse osmosis membrane treatment device. The device is built in. On the other hand, it has become possible to create a circuit having a line width of 65 nm or less due to recent progress in semiconductor circuit formation technology. Accordingly, the required water quality for ultrapure water is also increasing, and it is desired to develop a pure water production apparatus and a pure water production method that can reduce the load of post-treatment and realize pure water production at a higher level.
このような超純水製造システムにおいても、逆浸透膜を阻止率向上剤で処理することが提案されている(例えば特許文献1)。特許文献1は未公開であるが、重量平均分子量2000〜6000のポリアルキレングルコール、またはそれにアニオン性の官能基を導入したイオン性高分子を含有する阻止率向上剤が示されている。
In such an ultrapure water production system, it has been proposed to treat a reverse osmosis membrane with a blocking rate improver (for example, Patent Document 1). Although
特許文献2には、水軟化用膜の製造法において、ポリアミド膜の阻止率を向上させるための阻止率向上剤として、加水分解性タンニン酸、スチレン/マレアミド酸コポリマー、C5乃至C7ヒドロキシアルキルメタクリレートポリマー、コポリマーまたはターポリマー、複数個のスルホニウムもしくは第4級アンモニウム基を有する第1のポリマーと複数個のカルボキシレート基を有する第2のポリマーから製造したコアセルベート、任意の他の置換基をもつ枝分れしたポリアミドアミン類、酢酸ビニルコポリマー、ヒドロキシエチル・メタクリレートとメタクリル酸またはメタクリルアミド(任意に他の混和性モノマーを含む)とのコポリマー、スチレン/マレアミド酸コポリマーなどが示されている。
また特許文献3には、水処理に用いられる透過膜の阻止率を向上させるための阻止率向上剤として、重量平均分子量10万以上のイオン性高分子を含有する阻止率向上剤が示されている。このようなイオン性高分子としては、ポリビニルアミジンまたはその誘導体、複素環を有するカチオン性高分子等のカチオン性高分子、ならびにポリアクリル酸またはその誘導体、ポリスチレンスルホン酸またはその誘導体等のアニオン性高分子が示されている。
従来の透過膜の阻止率向上処理は、透過膜を取り付けた状態で、モジュールの1次側に上記の阻止率向上剤を供給することにより、モジュールから透過膜を取り外すことなく阻止率を向上させるか、あるいは供給水に阻止率向上剤を注入することにより、処理操作を継続しながら阻止率を向上させている。複数のモジュールが並列または段階的に配置されている場合でも、阻止率向上剤を、第1段の各モジュールの1次側に均等に供給することにより、全体のモジュールの阻止率を向上させている。 In the conventional process of improving the rejection rate of the permeable membrane, the above-described rejection rate improving agent is supplied to the primary side of the module with the permeable membrane attached, thereby improving the rejection rate without removing the permeable membrane from the module. Alternatively, the rejection rate is improved while the treatment operation is continued by injecting the rejection rate improver into the feed water. Even when a plurality of modules are arranged in parallel or in stages, the rejection rate of the entire module can be improved by supplying the rejection rate improver evenly to the primary side of each module in the first stage. Yes.
このような透過膜の阻止率向上処理では、阻止率向上剤の供給により透過膜の阻止率が向上した段階で、阻止率向上剤の供給を停止して処理を停止するが、阻止率向上処理の終点を判定するのは困難である。阻止率は処理液と被処理液に含まれる塩分その他の阻止成分の比により計算されるが、阻止率向上処理中に上記の計算により処理液中の阻止成分の阻止率を求めるのは困難である。例えば被処理液の供給を停止して阻止率向上剤のみを供給して向上処理を行う場合には、阻止率向上剤の供給を停止して被処理液を供給し、すなわち阻止率向上処理を中止して、処理液と被処理液に含まれる阻止成分の比により阻止率を求めなければならない。 In such a permeable membrane rejection rate improving process, when the rejection rate of the permeable membrane is improved by supplying the rejection rate improving agent, the supply of the rejection rate improving agent is stopped and the process is stopped. It is difficult to determine the end point of. Although the rejection rate is calculated by the ratio of the salt content and other inhibition components contained in the treatment liquid and the liquid to be treated, it is difficult to obtain the rejection rate of the inhibition component in the treatment liquid by the above calculation during the inhibition rate improvement process. is there. For example, when the supply of the liquid to be treated is stopped and the improvement process is performed by supplying only the rejection rate improving agent, the supply of the liquid to be processed is stopped by stopping the supply of the rejection rate improving agent. It must be stopped and the blocking rate must be determined by the ratio of blocking components contained in the treatment liquid and the liquid to be treated.
被処理液の供給を停止することなく阻止率向上剤を供給して向上処理を行う場合でも、阻止率向上剤に含まれる有機・無機成分量や水分の量、ならびに透過する水分量等を考慮する必要があり、阻止率向上の判定は困難である。阻止率向上剤に標識物質を添加し、その除去率から阻止率向上の判定を行うことも考えられるが、標識物質を添加できない場合があり、添加できたとしても阻止率向上処理の終点を判定するためには、精度が不十分な場合がある。 Even when the rejection rate improver is supplied without stopping the supply of the liquid to be treated, the amount of organic / inorganic components contained in the rejection rate improver, the amount of moisture, and the amount of moisture that permeates are taken into account. Therefore, it is difficult to determine whether the rejection rate has improved. It may be possible to add a labeling substance to the rejection rate improver and determine the rejection rate based on its removal rate, but there may be cases where the labeling substance cannot be added. To do so, the accuracy may be insufficient.
図5(a)、(b)はそれぞれ給水中に阻止率向上剤を供給して阻止率向上処理を行う場合の従来の透過膜装置を示すフロー図である。図中、1はモジュールで、透過膜2により1次側(濃縮液室)3と、2次側(透過液室)4に区画されている。モジュール1の1次側3にはポンプP1を有する被処理液供給路L1が連絡し、2次側4から透過液取出路L2が系外に連絡し、さらに1次側3から弁V1を有する濃縮液取出路L3が系外に連絡している。被処理液供給路L1にはポンプP2を有する阻止率向上剤供給路L4が連絡している。
5 (a) and 5 (b) are flow charts showing a conventional permeable membrane device in the case where a rejection rate improving agent is supplied into the water supply to perform the rejection rate improvement process. In the figure,
図5(a)、(b)ではそれぞれモジュール1の1次側3へ被処理液供給路L1からポンプP1により被処理液(原水)を供給し、透過膜2を通して2次側4へ溶媒(水)を透過させ、2次側4から透過液を透過液取出路L2を通して取出すことにより透過膜処理(水処理)を行う。1次側3の濃縮液は濃縮液取出路L3から系外に排出される。透過膜2の阻止率向上処理を行う場合は、阻止率向上剤を阻止率向上剤供給路L4からポンプP2により被処理液供給路L1を通してモジュール1の1次側3へ供給し、阻止率向上剤を透過膜2に付着させて、透過膜2の阻止率を向上させる。
5 (a) and 5 (b), the liquid to be processed (raw water) is supplied from the liquid supply path L1 to the
上記従来の阻止率向上処理では、図5(a)の場合、被処理液供給路L1および透過液取出路L2に電導度計E1、E2を設けて被処理液および透過液の電導度を測定し、その測定値から阻止率を計算する。また図5(b)の場合、被処理液供給路L1および透過液取出路L2から分岐するサンプリング路L5、L6から、弁V2、V3を開き被処理液および透過液の試料を採取して、その分析結果から阻止率を計算し、得られた阻止率が所定値になった段階で阻止率向上剤の供給を停止し、阻止率向上処理を終了している。 In the conventional rejection rate improving process, in the case of FIG. 5A, the conductivity of the liquid to be processed and the permeated liquid are measured by providing conductivity meters E1 and E2 in the liquid supply path L1 and the permeate outlet path L2. Then, the rejection rate is calculated from the measured value. In the case of FIG. 5 (b), the valves V2 and V3 are opened from the sampling paths L5 and L6 branched from the liquid supply path L1 and the permeate extraction path L2, and samples of the liquid to be processed and the permeate are collected. The rejection rate is calculated from the analysis result. When the obtained rejection rate reaches a predetermined value, the supply of the rejection rate improving agent is stopped, and the rejection rate improvement process is completed.
しかしながらこのような従来法では、前述のように精度が不十分な場合があり、阻止率向上の判定を迅速かつ正確に行うことができない。このように従来法では、阻止率向上処理を中止することなく、阻止率向上の判定を迅速かつ正確に行うことができず、このため過剰な阻止率向上剤が消費されたり、処理が不十分な場合は、再度阻止率向上処理を行う必要があるなどの問題点があった。
本発明課題は、阻止率向上処理を中止することなく、阻止率向上の判定を迅速かつ正確に行って効率よく阻止率向上処理を行うことができ、これにより過剰な阻止率向上剤の消費や処理不十分な場合の発生などを防ぐことができる透過膜の阻止率向上方法、および阻止率を向上させた透過膜を用いる透過膜処理方法、ならびにこれらに適した透過膜装置を提供することである。 It is an object of the present invention to efficiently perform a rejection rate improvement process by quickly and accurately determining the rejection rate improvement without stopping the rejection rate improvement process. By providing a method for improving the rejection rate of a permeable membrane that can prevent the occurrence of insufficient processing, a permeable membrane treatment method using a permeable membrane with an improved rejection rate, and a permeable membrane device suitable for these methods is there.
本発明は次の透過膜の阻止率向上方法、透過膜処理方法および透過膜装置である。
(1) 透過膜モジュールの1次側に阻止率向上剤を供給して透過膜の阻止率を向上させる方法において、
モジュールの1次側に有機物を主成分とする阻止率向上剤を供給し、
モジュールの1次側から取り出される阻止率向上剤の量を測定し、
測定された阻止率向上剤の量またはその変化量に応じて阻止率向上剤の供給量を制御することを特徴とする透過膜の阻止率向上方法。
(2) モジュールの1次側から取り出される阻止率向上剤の量の測定が、モジュールの1次側から取り出される取出液中の阻止率向上剤の量、または取出液を他の液と混合してモジュールの1次側に供給する場合、混合後の液中の阻止率向上剤の量の測定である上記(1)記載の方法。
(3) 阻止率向上剤の量の測定が、有機物量の測定である上記(1)または(2)記載の方法。
(4) 測定された阻止率向上剤の濃度またはその変化量が所定値になった時点で阻止率向上剤の供給量を減少し、または阻止率向上剤の供給を停止する上記(1)ないし(3)のいずれかに記載の方法。
(5) 透過膜モジュールが未使用のモジュール、または使用後薬品洗浄されたモジュールである上記(1)ないし(4)のいずれかに記載の方法。
(6) 阻止率向上剤がイオン性または非イオン性高分子である上記(1)ないし(5)のいずれかに記載の方法。
(7) 阻止率向上剤がポリアルキレングリコール鎖を有する化合物および/または複数のフェノール性ヒドロキシル基を有する化合物を含有する上記(1)ないし(6)のいずれかに記載の方法。
(8) 阻止率向上剤がカチオン性高分子および/またはアニオン性高分子である上記(1)ないし(7)のいずれかに記載の方法。
(9) 処理対象モジュールの1次側入口の阻止率向上剤溶液供給時の操作圧力が0.3MP以上、2次側出口の透過水量/阻止率向上剤溶液の供給量が0.2以上である上記(1)ないし(8)のいずれかに記載の方法。
(10) 透過膜モジュールの1次側に被処理液を通液し、2次側から透過液を取り出して透過膜処理を行うと同時に、透過膜モジュールの1次側に阻止率向上剤を通液して阻止率を向上させる上記(1)ないし(9)のいずれかに記載の方法。
(11) 上記(1)ないし(10)のいずれかに記載の方法により阻止率を向上させた透過膜モジュールの1次側に被処理液を通液し、2次側から透過液を取り出す透過膜処理方法。
(12) 1次側に被処理液を通液し、2次側から透過液を取り出す透過膜モジュールと、
モジュールの1次側に有機物を主成分とする阻止率向上剤を通液して、処理対象モジュールの阻止率を向上させる通液装置と、
モジュールの1次側から取り出される阻止率向上剤の量を測定する測定装置と、
測定装置で測定された阻止率向上剤の量またはその変化量に応じて阻止率向上剤の供給量を制御する制御装置と
を含む透過膜装置。
(13) 上記(12)に記載の透過膜装置を備えた純水製造装置。
The present invention provides the following method for improving the rejection of a permeable membrane, a permeable membrane treatment method, and a permeable membrane device.
(1) In a method for improving the rejection rate of a permeable membrane by supplying a rejection rate improver to the primary side of the permeable membrane module,
Supplying a blocking rate improver mainly composed of organic substances to the primary side of the module,
Measure the amount of rejection improver removed from the primary side of the module,
A method for improving the rejection rate of a permeable membrane, comprising controlling the supply amount of a rejection rate improver in accordance with the measured amount of the rejection rate improver or the amount of change thereof.
(2) The measurement of the amount of the rejection improving agent taken out from the primary side of the module is performed by mixing the amount of the rejection improving agent in the extraction liquid extracted from the primary side of the module, or the extraction liquid with other liquids. When supplying to the primary side of the module, the method according to the above (1), which is measurement of the amount of the rejection improving agent in the liquid after mixing.
(3) The method according to the above (1) or (2), wherein the measurement of the amount of the rejection improving agent is measurement of the amount of organic substances.
(4) The above-described (1) to (1), wherein the supply rate of the rejection rate improving agent is decreased or the supply rate of the rejection rate improving agent is stopped when the measured concentration of the rejection rate improving agent or the amount of change thereof reaches a predetermined value. The method according to any one of (3).
(5) The method according to any one of the above (1) to (4), wherein the permeable membrane module is an unused module or a chemical-cleaned module after use.
(6) The method according to any one of (1) to (5) above, wherein the rejection improving agent is an ionic or nonionic polymer.
(7) The method according to any one of (1) to (6) above, wherein the rejection rate improver comprises a compound having a polyalkylene glycol chain and / or a compound having a plurality of phenolic hydroxyl groups.
(8) The method according to any one of (1) to (7) above, wherein the rejection rate improver is a cationic polymer and / or an anionic polymer.
(9) The operating pressure at the time of supply of the blocking rate improver solution at the primary side inlet of the module to be treated is 0.3 MP or more, and the amount of permeated water / blocking rate improver solution supplied at the secondary side outlet is 0.2 or more. The method according to any one of (1) to (8) above.
(10) The liquid to be treated is passed through the primary side of the permeable membrane module, the permeate is taken out from the secondary side and subjected to the permeable membrane treatment. At the same time, a blocking rate improver is passed through the primary side of the permeable membrane module. The method according to any one of (1) to (9) above, wherein the blocking rate is improved by liquid.
(11) Permeation for passing the liquid to be treated to the primary side of the permeable membrane module whose blocking rate is improved by the method described in any one of (1) to (10) above, and taking out the permeate from the secondary side. Membrane processing method.
(12) a permeable membrane module for passing the liquid to be treated on the primary side and taking out the permeate from the secondary side;
A liquid passing device for passing a blocking rate improver mainly composed of an organic substance to the primary side of the module to improve the blocking rate of the module to be treated;
A measuring device for measuring the amount of blocking rate improver removed from the primary side of the module;
And a control device that controls the supply amount of the blocking rate improver according to the amount of the blocking rate improver measured by the measuring device or the amount of change thereof.
(13) A pure water production apparatus including the permeable membrane device according to (12).
本発明において阻止率向上処理の対象となる透過膜は、1次側に被処理液を通液して透過させ、2次側から透過液を取り出し膜分離を行う透過膜であるが、特に逆浸透膜、ナノ濾過膜等の無機電解質や水溶性有機物等を水から分離する選択性透過膜が対象として適している。このような透過膜は支持材に取り付けてモジュールとして膜分離装置に装備され、膜分離に供されるが、本発明における阻止率向上処理はこのような膜分離装置に装備された状態のモジュールに対して行われる。このような阻止率向上処理の対象となる透過膜は、未使用の透過膜でも、使用により性能が低下した透過膜でもい。 In the present invention, the permeation membrane to be subjected to the rejection improvement process is a permeation membrane that allows the liquid to be treated to pass through the primary side and permeate it, and removes the permeate from the secondary side to perform membrane separation. Selective permeable membranes that separate inorganic electrolytes such as osmotic membranes and nanofiltration membranes and water-soluble organic substances from water are suitable as targets. Such a permeable membrane is attached to a support material and mounted as a module in a membrane separation apparatus, and is used for membrane separation. The rejection rate improving process in the present invention is applied to a module in a state equipped in such a membrane separation apparatus. Against. The permeation membrane to be subjected to such a rejection improvement process may be an unused permeation membrane or a permeation membrane whose performance has been degraded by use.
いずれの場合も薬品洗浄を行ったモジュールを阻止率向上処理の対象とすることができるが、特に使用により性能が低下した透過膜の場合は薬品洗浄を行ったものが好ましい。薬品洗浄の目的は膜表面の汚染物質を除去することにより、阻止率向上剤が膜自体に吸着しやすくすることである。洗浄薬品としては酸(塩酸、硝酸、シュウ酸、クエン酸など)、アルカリ(水酸化カリウム、水酸化ナトリウムなど)、界面活性剤(ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸ナトリウムなど)、酸化・還元剤(過酸化水素、過炭酸、過酢酸、重亜硫酸ナトリウムなど)が用いられ、これら薬品の水溶液をモジュールに通液したり、透過膜を薬品に浸漬することにより洗浄を行う方法が一般的である。 In any case, the module that has been subjected to chemical cleaning can be the target of the rejection improvement process, but in the case of a permeable membrane whose performance has deteriorated due to use, those that have been subjected to chemical cleaning are preferred. The purpose of the chemical cleaning is to make it easy for the blocking rate improver to be adsorbed on the membrane itself by removing contaminants on the membrane surface. Cleaning chemicals include acids (hydrochloric acid, nitric acid, oxalic acid, citric acid, etc.), alkalis (potassium hydroxide, sodium hydroxide, etc.), surfactants (sodium dodecyl sulfate, sodium dodecylbenzene sulfate, etc.), oxidizing / reducing agents ( Hydrogen peroxide, percarbonate, peracetic acid, sodium bisulfite, etc.) are used, and cleaning is generally performed by passing an aqueous solution of these chemicals through a module or immersing a permeable membrane in the chemicals.
本発明における阻止率向上処理剤は、有機物を主成分とする阻止率向上剤であり、阻止率向上処理により透過膜の溶解性物質の阻止率が向上するものであれば特に制限されることなく使用可能である。このような阻止率向上剤としては、イオン性または非イオン性高分子が好ましい。イオン性高分子の場合、カチオン性高分子、アニオン性高分子、両性高分子等をそれぞれ単独で使用できるが、カチオン性高分子とアニオン性高分子を段階的に、好ましくは交互に供給すると、阻止率向上効果が高まるので好ましい。 The rejection improving agent in the present invention is a rejection improving agent having an organic substance as a main component, and is not particularly limited as long as the rejection of the soluble substance of the permeable membrane is improved by the rejection improving process. It can be used. Such a blocking rate improver is preferably an ionic or nonionic polymer. In the case of an ionic polymer, a cationic polymer, an anionic polymer, an amphoteric polymer, etc. can be used alone, but when a cationic polymer and an anionic polymer are supplied stepwise, preferably alternately, This is preferable because the effect of improving the rejection is increased.
好ましい阻止率向上剤としては、ポリアルキレングリコール鎖を有する化合物、複数のフェノール性ヒドロキシル基を有する化合物を含有するものがあげられる。これらは公知のものが使用でき、前記特許文献1〜3に記載のもの、ならびに他の阻止率向上能を有するものなどが使用できる。特に好ましい阻止率向上剤としては、ポリビニルメチルエーテル、ポリビニルアルコール、ポリエチレンイミンなどの水溶性高分子やタンニン酸などのポリフェノール、特許文献2に記載のイオン性高分子(ポリアミジン、ポリスチレンスルホン酸)、特許文献3に記載の重量平均分子量2000〜6000のポリエチレングリコール鎖を有する化合物などがあげられる。ポリアルキレングリコール鎖を有する化合物としては、ポリエチレングリコールまたはポリエチレングリコール誘導体をあげることができる。
Preferred blocking rate improvers include compounds having a polyalkylene glycol chain and compounds having a plurality of phenolic hydroxyl groups. As these, known ones can be used, and those described in
これらの阻止率向上剤は、処理対象となる透過膜の材質、形態等に応じて適したものが選ばれ、純水または被処理水等の溶媒に溶解して使用される。阻止率向上剤の濃度はそれぞれの透過膜、モジュールの形式等により変わるが、一般的には0.01〜1000mg/L程度、好ましくは0.1〜100mg/Lの濃度に調製して阻止率向上処理に供される。阻止率向上剤は、複数のものを組合わせて用いることができ、この場合混合して通液してもよく、また別々に時間をずらせて通液することもできる。 These blocking rate improvers are selected according to the material, form, etc. of the permeable membrane to be treated, and are used after being dissolved in a solvent such as pure water or treated water. The concentration of the blocking rate improver varies depending on the permeable membrane, module type, etc., but is generally adjusted to a concentration of about 0.01 to 1000 mg / L, preferably 0.1 to 100 mg / L. It is used for the improvement process. A plurality of blocking rate improvers can be used in combination, and in this case, they may be mixed and passed, or may be passed separately while shifting the time.
本発明における阻止率向上処理は、処理対象モジュールに阻止率向上剤を供給して阻止率を向上させる。この場合、透過膜を取り付けたモジュールの1次側に阻止率向上剤を供給し、阻止率向上剤を透過膜に付着させ、透過膜の阻止率向上させる。透過膜への吸着性の高い阻止率向上剤を用いる場合は、阻止率向上剤をモジュールに供給して透過膜と接触させた状態を保ち、あるいは低圧で流動させて吸着させることができるが、一般的には阻止率向上剤を高圧で供給して透過膜を透過させ、2次側から透過液を取り出すことにより、透過膜の内部まで阻止率向上剤を付着させるのが好ましい。 In the rejection rate improving process in the present invention, the rejection rate improving agent is supplied to the processing target module to improve the rejection rate. In this case, the blocking rate improver is supplied to the primary side of the module to which the permeable membrane is attached, and the blocking rate improving agent is attached to the permeable membrane, thereby improving the blocking rate of the permeable membrane. When using a blocking rate improver with high adsorptivity to the permeable membrane, the blocking rate improving agent can be supplied to the module and kept in contact with the permeable membrane, or can be adsorbed by flowing at a low pressure, In general, it is preferable to attach the rejection improving agent to the inside of the permeable membrane by supplying the rejection improving agent at a high pressure to permeate the permeable membrane and take out the permeate from the secondary side.
この場合、処理対象モジュールの1次側入口の阻止率向上剤溶液供給時の操作圧力は、処理対象モジュールの通常使用時(RO処理時)の圧力によって異なり、通常使用時の圧力がおよそ0.75MPaである場合には、1次側入口の阻止率向上剤溶液供給時の操作圧力は0.3MPa以上、好ましくは0.3〜1MPaとすることができ、処理対象モジュールの通常使用時の圧力がおよそ1.5MPaの場合には、先の場合の2倍、即ち、1次側入口の阻止率向上剤溶液供給時の操作圧力は0.6MPa以上、好ましくは0.6〜2MPaとすることができる。そして2次側出口の透過水量/阻止率向上剤溶液の供給量が0.2から0.8とすることができる。 In this case, the operation pressure at the time of supplying the rejection ratio improving agent solution at the primary inlet of the processing target module differs depending on the pressure at the time of normal use (RO processing) of the processing target module. In the case of 75 MPa, the operating pressure when supplying the blocking ratio improver solution at the primary side inlet can be 0.3 MPa or more, preferably 0.3 to 1 MPa, and the pressure during normal use of the processing target module Is approximately 1.5 MPa, the operating pressure at the time of supplying the blocking ratio improver solution at the primary side inlet is 0.6 MPa or more, preferably 0.6 to 2 MPa. Can do. The supply amount of the permeated water amount / rejection rate improver solution at the secondary outlet can be set to 0.2 to 0.8.
阻止率向上処理はモジュールから透過膜を取り外さずに阻止率向上剤を供給して阻止率向上処理を行うことができる。阻止率向上処理は透過膜処理(水処理)を停止してバッチ式に行ってもよく、また透過膜処理の継続中に、供給水に阻止率向上剤を注入することにより、透過膜処理操作を継続しながら阻止率向上処理を行ってもよい。モジュールの1次側に供給した阻止率向上剤は一部の成分が透過膜に付着し、残部の成分が残留したまま1次側から取出されるので、供給側に循環して補給する阻止率向上剤と混合して1次側に供給することができる。2次側から透過液が得られる場合、透過液も循環することができる。 The rejection improvement process can be performed by supplying a rejection improvement agent without removing the permeable membrane from the module. The rejection improvement process may be performed batchwise with the permeable membrane treatment (water treatment) stopped, and the permeable membrane treatment operation is performed by injecting a rejection improvement agent into the feed water during the permeable membrane treatment. The rejection rate improving process may be performed while continuing. The rejection rate improver supplied to the primary side of the module is partially removed from the primary side with the remaining components remaining on the permeable membrane. It can be mixed with an improver and supplied to the primary side. When the permeate is obtained from the secondary side, the permeate can also circulate.
阻止率向上処理対象とするモジュールは1つのモジュールに限らず、複数のモジュール、あるいは複数のモジュールにより構成される複数のモジュール群などを処理対象モジュールとすることができる。透過膜装置が複数のモジュールから構成される場合、透過膜処理中に一部の単一もしくは複数のモジュールを阻止率向上処理対象として選択し、選択された対象モジュールの透過膜処理を停止し、あるいは停止することなく阻止率向上処理を行うことができる。 The module to be the rejection rate improvement processing target is not limited to a single module, and a plurality of modules or a plurality of module groups including a plurality of modules can be set as processing target modules. When the permeable membrane device is composed of a plurality of modules, select a single module or a plurality of modules as the rejection improvement processing target during the permeable membrane processing, stop the permeable membrane processing of the selected target module, Alternatively, the rejection rate improvement process can be performed without stopping.
段階的に複数のモジュールが配置されている場合、個々のモジュールの1次側に阻止率向上剤を供給して阻止率向上処理を行うことができるが、前段のモジュールの1次側に阻止率向上剤を供給し、前段のモジュールの1次側から取り出す濃縮液を後段のモジュールの1次側に供給して段階的に阻止率向上処理を行うことにより、余圧を利用して効率よく阻止率向上処理を行うことができるので好ましい。前段のモジュールの1次側から取り出す濃縮液を後段のモジュールの1次側に供給して段階的に阻止率向上処理を行う場合、前段のモジュールで液の透過が起こると、前段のモジュールの1次側から取り出して後段のモジュールへ供給する濃縮液中の阻止率向上剤濃度が高くなるので、後段のモジュールへ供給する濃縮液中の阻止率向上剤の濃度が適正値を維持するように、前段のモジュールへ供給する阻止率向上剤の注入量または濃度を減少させるのが好ましい。 When a plurality of modules are arranged in stages, the rejection rate improving agent can be supplied by supplying a rejection rate improving agent to the primary side of each module, but the rejection rate is improved on the primary side of the preceding module. By supplying the improver and supplying the concentrated liquid taken out from the primary side of the previous module to the primary side of the subsequent module and performing the rejection rate improvement process step by step, the residual pressure is effectively used to prevent it. It is preferable because a rate improvement process can be performed. When the concentrated liquid taken out from the primary side of the preceding module is supplied to the primary side of the succeeding module and the rejection improvement process is performed step by step, if liquid permeation occurs in the preceding module, 1 of the preceding module Since the concentration of the rejection improving agent in the concentrate supplied from the next side and supplied to the subsequent module is increased, the concentration of the rejection improving agent in the concentrated solution supplied to the subsequent module is maintained at an appropriate value. It is preferable to reduce the injection amount or concentration of the blocking rate improver supplied to the previous module.
透過膜の阻止率向上の度合いを従来のように被処理液と処理液の電導度その他の成分から計算するのは困難であるが、本発明ではモジュールの1次側から取り出される阻止率向上剤の量を測定し、測定された阻止率向上剤の量またはその変化量に応じて阻止率向上剤の供給量を制御する。モジュールの1次側から取り出される阻止率向上剤の量は、モジュールの1次側から取り出される取出液中の阻止率向上剤の量、または取出液を他の液と混合してモジュールの1次側に供給する場合は、混合後の液中の阻止率向上剤の量を測定することにより得ることができる。 Although it is difficult to calculate the degree of improvement in the rejection of the permeable membrane from the conductivity and other components of the liquid to be processed and the processing liquid as in the prior art, in the present invention, the rejection rate improver taken out from the primary side of the module And the supply amount of the blocking rate improver is controlled according to the measured amount of the blocking rate improving agent or the amount of change thereof. The amount of the rejection improving agent taken out from the primary side of the module is equal to the amount of the rejection improving agent in the extraction liquid taken out from the primary side of the module or the primary of the module by mixing the extraction liquid with other liquids. When supplying to the side, it can obtain by measuring the quantity of the blocking rate improvement agent in the liquid after mixing.
モジュールの1次側から取り出される取出液は、透過膜を通して液の透過が起こる場合は濃縮液であるが、液の透過が起こらない場合は残留阻止率向上剤の液となる。取出液または混合液中の阻止率向上剤の量は有機物量として測定され、通常液中の有機物濃度として測定するのが好ましいが、他の値でもよい。阻止率向上剤の透過膜への付着により、取出液中の阻止率向上剤の量は少なくなるが、透過膜からの液の透過による濃縮で阻止率向上剤の量は増加する。このため取出液中の阻止率向上剤の量の測定を継続することにより、透過膜の阻止率向上の度合いと阻止率向上剤の量またはその変化量とを関連付けることができる。 The extracted liquid taken out from the primary side of the module is a concentrated liquid when liquid permeation occurs through the permeable membrane, but becomes a residual blocking ratio improver when no liquid permeation occurs. The amount of the rejection improving agent in the extracted liquid or mixed liquid is measured as the amount of organic substance, and it is preferably measured as the organic substance concentration in the normal liquid, but may be other values. Although the amount of the blocking rate improver in the extracted liquid decreases due to the blocking rate improving agent adhering to the permeable membrane, the amount of the blocking rate improving agent increases due to the concentration of the liquid through the permeable membrane. For this reason, by continuing the measurement of the amount of the blocking rate improver in the extracted liquid, the degree of improvement of the blocking rate of the permeable membrane can be correlated with the amount of the blocking rate improving agent or the amount of change thereof.
本発明では、測定された阻止率向上剤の量またはその変化量に応じて阻止率向上剤の供給量を制御するが、その制御方法としては阻止率向上剤の量、好ましくは濃度、またはその変化量が所定値になった時点で阻止率向上剤の供給量を減少し、または阻止率向上剤の供給を停止するように制御することができる。阻止率向上剤の量として有機物量を、例えばTOC計等により液中の全有機性炭素濃度を測定すれば、短時間で正確に測定することができ、阻止率が向上したと判断できる阻止率向上剤の量またはその変化量の検知、およびそれによる制御も簡易かつ迅速に行うことができる。段階的に複数のモジュールが配置されている場合は、各段の濃度を測定してもよいが、最終段の濃度を測定して制御を行うことができる。段階的に複数のモジュールが配置されている場合の前段または中間のモジュールにおける濃度変化については、各段の濃縮率を予測し、または実験的に確かめて濃度変化を予測し、各段の濃縮液が一定の濃度範囲内に維持されるように、プログラムを組んで制御するのが好ましい。 In the present invention, the supply rate of the rejection rate improver is controlled in accordance with the measured amount of the rejection rate improver or the amount of change thereof. As a control method thereof, the amount of the rejection rate improver, preferably the concentration, When the amount of change reaches a predetermined value, the supply rate of the rejection rate improving agent can be decreased or the supply of the rejection rate improving agent can be stopped. If the total organic carbon concentration in the liquid is measured with an TOC meter or the like as the amount of the blocking rate improver, for example, the blocking rate can be measured accurately in a short time and the blocking rate can be judged to have improved. Detection of the amount of the improving agent or the amount of change thereof, and control based thereon can be performed easily and quickly. When a plurality of modules are arranged in stages, the concentration at each stage may be measured, but the control can be performed by measuring the density at the final stage. Concentration changes in the previous or intermediate module when multiple modules are arranged in stages, predict the concentration rate of each stage, or experimentally verify the concentration change, Is preferably controlled by a program so that the value is maintained within a certain concentration range.
本発明の透過膜処理方法は、上記の阻止率向上処理により阻止率を向上させた透過膜モジュールの1次側に被処理液を通液し、2次側から透過液を取り出す方法であり、モジュールの阻止率を向上させることにより、高水質の処理水を得ることができる。このような透過膜処理中に一部または全部のモジュールの阻止率向上処理を行えば、透過膜処理を中断することなく透過膜の阻止率を向上させることができる。 The permeable membrane treatment method of the present invention is a method in which the liquid to be treated is passed through the primary side of the permeable membrane module whose rejection rate is improved by the above-described rejection rate improvement treatment, and the permeate is taken out from the secondary side. By improving the blocking rate of the module, high quality treated water can be obtained. If the rejection rate improving process for a part or all of the modules is performed during such a permeable membrane treatment, the permeable membrane rejection rate can be improved without interrupting the permeable membrane treatment.
本発明の透過膜装置は、1次側に被処理液を通液し、2次側から透過液を取り出す透過膜モジュールと、モジュールの1次側に有機物を主成分とする阻止率向上剤を通液して、処理対象モジュールの阻止率を向上させる通液装置と、モジュールの1次側から取り出される阻止率向上剤の量を測定する測定装置と、測定装置で測定された阻止率向上剤の量またはその変化量に応じて阻止率向上剤の供給量を制御する制御装置とを含む透過膜装置である。 The permeable membrane device of the present invention comprises a permeable membrane module for passing a liquid to be treated on the primary side and taking out the permeable solution from the secondary side, and a blocking rate improver mainly composed of an organic substance on the primary side of the module. A liquid passing device that improves the rejection rate of the module to be processed by passing liquid, a measuring device that measures the amount of the rejection rate improving agent taken out from the primary side of the module, and a rejection rate improving agent that is measured by the measuring device And a control device that controls the supply amount of the rejection rate improving agent in accordance with the amount of change or the change amount thereof.
上記の透過膜装置において、モジュールは単一のものでもよく、また並列的または段階的に複数のものから構成されていてもよい。測定装置としては、有機物量を測定する装置、特に液中の全有機物濃度を測定する装置が好ましく、一般的に用いられているTOC計などが使用できる。制御装置は、測定された阻止率向上剤の濃度またはその変化量が所定値になった時点で阻止率向上剤の供給量を減少し、または阻止率向上剤の供給を停止するように構成することができる。 In the above permeable membrane device, the module may be a single module, or may be composed of a plurality of modules in parallel or stepwise. As the measuring apparatus, an apparatus for measuring the amount of organic substances, particularly an apparatus for measuring the total organic substance concentration in the liquid is preferable, and a generally used TOC meter or the like can be used. The control device is configured to decrease the supply rate of the rejection rate improver or stop supplying the rejection rate improver when the measured concentration of the rejection rate improver or the amount of change thereof reaches a predetermined value. be able to.
上記の透過膜装置においては、透過膜モジュールの1次側に被処理液を通液し、2次側から透過液を取り出して透過膜処理を行う。透過膜モジュールの阻止率を向上させるには、通液装置によりモジュールの1次側に有機物を主成分とする阻止率向上剤を供給し、測定装置によりモジュールの1次側から取り出される阻止率向上剤の量を測定し、制御装置により測定装置測定された阻止率向上剤の量またはその変化量に応じて阻止率向上剤の供給量を制御することにより透過膜の阻止率向上させる。 In the above permeable membrane device, the liquid to be treated is passed through the primary side of the permeable membrane module, and the permeable membrane is processed by taking out the permeate from the secondary side. In order to improve the rejection rate of the permeable membrane module, a rejection rate improver mainly composed of organic substances is supplied to the primary side of the module by the liquid passing device, and the rejection rate is improved by being taken out from the primary side of the module by the measuring device. The amount of the agent is measured, and the blocking rate of the permeable membrane is improved by controlling the supply rate of the blocking rate improving agent according to the amount of the blocking rate improving agent measured by the control device or the change amount thereof.
本発明の純水製造装置は、上記の透過膜装置を備え、透過膜処理により純水を製造するように構成された装置であり、上記の透過膜装置の他に前処理装置、後処理装置、その他の付随する装置を付加することができる。 A pure water production apparatus of the present invention is an apparatus that includes the above-described permeable membrane device and is configured to produce pure water by permeable membrane treatment. In addition to the above permeable membrane device, a pretreatment device and a post-treatment device are provided. Other accompanying devices can be added.
本発明によれば、透過膜モジュールの1次側に阻止率向上剤を供給して透過膜の阻止率を向上させる方法において、モジュールの1次側に有機物を主成分とする阻止率向上剤を供給し、モジュールの1次側から取り出される阻止率向上剤の量を測定し、測定された阻止率向上剤の量またはその変化量に応じて阻止率向上剤の供給量を制御するようにしたので、阻止率向上処理を中止することなく、阻止率向上の判定を迅速かつ正確に行って効率よく阻止率向上処理を行うことができ、これにより過剰な阻止率向上剤の消費や処理不十分な場合の発生などを防ぐことができる。 According to the present invention, in the method for improving the rejection rate of the permeable membrane by supplying the rejection rate improver to the primary side of the permeable membrane module, the rejection rate improver mainly comprising an organic substance is provided on the primary side of the module. The amount of the blocking rate improver that is supplied and taken out from the primary side of the module is measured, and the supply rate of the blocking rate improving agent is controlled in accordance with the measured amount of blocking rate improving agent or its variation. Therefore, without stopping the rejection rate improvement process, it is possible to quickly and accurately determine the improvement of the rejection rate and efficiently perform the rejection rate improvement process, which results in excessive consumption of the rejection rate improver and insufficient processing. Can be prevented.
以下、本発明の実施の形態を図面により説明する。図1ないし図4(a)、(b)は本発明の実施形態による透過膜装置を示すフロー図であり、図5と同一符号は同一または相当部分を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1 to 4 (a) and 4 (b) are flow charts showing a permeable membrane device according to an embodiment of the present invention. The same reference numerals as those in FIG. 5 denote the same or corresponding parts.
図1の透過膜装置の基本的な構成は図5の透過膜装置と同様になっており、モジュール1は透過膜2により1次側(濃縮液室)3と、2次側(透過液室)4に区画されている。モジュール1の1次側3にはポンプP1を有する被処理液供給路L1が連絡し、2次側4から透過液取出路L2が系外に連絡し、さらに1次側3から弁V1を有する濃縮液取出路L3が系外に連絡している。被処理液供給路L1にはポンプP2を有する阻止率向上剤供給路L4が連絡している。
The basic configuration of the permeable membrane device of FIG. 1 is the same as that of the permeable membrane device of FIG. 5, and the
図1ではモジュール1の1次側3へ被処理液供給路L1からポンプP1により被処理液(原水)を供給し、透過膜2を通して2次側4へ溶媒(水)を透過させ、2次側4から透過液を透過液取出路L2を通して取出すことにより透過膜処理(水処理)を行う。1次側3の濃縮液は濃縮液取出路L3から系外に排出される。透過膜2の阻止率向上処理を行う場合は、阻止率向上剤を阻止率向上剤供給路L4からポンプP2により被処理液供給路L1を通してモジュール1の1次側3へ供給し、阻止率向上剤を透過膜2に付着させて、透過膜2の阻止率を向上させる。
In FIG. 1, the liquid to be treated (raw water) is supplied from the liquid supply path L1 to the
図1では、図5(a)の電導度計E1、E2、ならびに図5(b)のサンプリング路L5、L6の替わりに、V4を有するサンプリング路L7が濃縮液取出路L3から分岐してTOC計5に連絡し、濃縮液中のTOC(全有機性炭素)濃度を測定して制御装置6へ入力するように構成されている。制御装置6は、TOC計5で測定されたTOC濃度またはその変化量に応じてポンプP2へ信号を送り、阻止率向上剤の供給量を制御するように構成されている。
In FIG. 1, instead of the conductivity meters E1 and E2 in FIG. 5 (a) and the sampling paths L5 and L6 in FIG. 5 (b), a sampling path L7 having V4 is branched from the concentrated liquid extraction path L3, and the TOC. A total of 5 is communicated, and the TOC (total organic carbon) concentration in the concentrate is measured and input to the
阻止率向上剤を供給して阻止率向上処理を行う過程において、サンプリング路L7から濃縮液を取出してTOC計5に導入し、濃縮液中のTOC濃度を測定して制御装置6へ入力する。制御装置6では、TOC計5から入力されるTOC濃度の測定値を監視し、その濃度またはその変化量が所定値になった時点でポンプP2へ信号を送り、阻止率向上剤の供給量を減少し、または阻止率向上剤の供給を停止するように制御する。
In the process of supplying the rejection rate improving agent and performing the rejection rate improving process, the concentrated solution is taken out from the sampling path L7 and introduced into the
TOC計5で測定するTOC濃度は、阻止率向上剤の供給を開始した時点では低くなり、透過膜への阻止率向上剤の付着が進行するに従って急激に高くなって一定値に近づき、その後は緩やかに上昇する。このためTOC濃度またはその変化量が所定値になった時点で阻止率向上したものと判定し、阻止率向上剤の供給量を減少し、または阻止率向上剤の供給を停止して阻止率向上処理を終了することができる。
The TOC concentration measured by the
具体的には、透過膜としてRO膜に供給する阻止率向上剤のTOC濃度をCTOCf、濃縮水の阻止率向上剤TOC濃度をCTOCb、濃縮水の阻止率向上剤濃度の単位時間あたり変化をΔCTOCb、RO膜の回収率をRで表すと、以下の式が満たされる条件になれば阻止率向上処理が完了したと判断できる。
ΔCTOCb÷CTOCb≦0.001〜0.1 (好ましくは0.005〜0.02)
CTOCb=CTOCf×(1/1−R)
ΔCTOCbを算出する際の単位時間は通常0.5hであり、阻止率向上処理を行う通水量により0.2〜2.0hの範囲で変えることができる。この範囲は限定されるものではなく、膜の仕様、阻止率向上剤の種類などにより、適切な時間を予備試験などで確認した上で選定すればよい。
Specifically, the TOC concentration of the rejection rate improver to be supplied to the RO membrane as a permeable membrane is C TOC f, the rejection rate improver TOC concentration of concentrated water is C TOC b, and the concentration time rejection rate improver concentration unit time When the hit change is represented by ΔC TOC b and the RO membrane recovery rate is represented by R, it can be determined that the rejection rate improvement processing has been completed if the following equation is satisfied.
ΔC TOC b ÷ C TOC b ≦ 0.001 to 0.1 (preferably 0.005 to 0.02)
C TOC b = C TOC fx × (1 / 1-R)
The unit time for calculating ΔC TOC b is usually 0.5 h, and can be changed in the range of 0.2 to 2.0 h depending on the amount of water passing through the blocking rate improving process. This range is not limited, and may be selected after confirming an appropriate time by a preliminary test or the like according to the specification of the film, the kind of the blocking rate improver, and the like.
図2の透過膜装置は複数のモジュールが段階的に配置された例を示し、モジュール1a、1b、1cは透過膜2a、2b、2cにより1次側3a、3b、3cと、2次側4a、4b、4cに区画されている。モジュール1aの1次側3aにはポンプP1を有する被処理液供給路L1が連絡し、2次側4aから透過液取出路L2が系外に連絡し、さらに1次側3aから濃縮液取出路L8がモジュール1bの1次側3bに連絡している。モジュール1bの1次側3bから濃縮液取出路L9がモジュール1cの1次側3cに連絡し、2次側4bから透過液取出路L10が透過液取出路L2に連絡している。モジュール1cの1次側3cから弁V1を有する濃縮液取出路L3が系外に連絡し、2次側4cから透過液取出路L11が透過液取出路L2に連絡している。被処理液供給路L1にはポンプ13を有する阻止率向上剤供給路L4が連絡している。TOC計5、制御装置6は図1と同様に構成されている。
The permeable membrane device of FIG. 2 shows an example in which a plurality of modules are arranged in stages. The
図2ではモジュール1aの1次側3aへ被処理液供給路L1からポンプP1により被処理液(原水)を供給し、透過膜2aを通して2次側4aへ溶質(水)を透過させ、2次側4から透過液を透過液取出路L2を通して取出し、1次側3aから濃縮液をモジュール1bの1次側3bへ送って同様に透過させ、さらにモジュール1bの1次側3bから濃縮液をモジュール1cの1次側3cへ送って同様に透過させることにより透過膜処理(水処理)を行う。モジュール1cの1次側3cの濃縮液は濃縮液取出路L3から系外に排出される。
In FIG. 2, the liquid to be processed (raw water) is supplied from the liquid supply path L1 to the
透過膜2の阻止率向上処理を行う場合は、阻止率向上剤を阻止率向上剤供給路L4からポンプP2により被処理液供給路L1を通してモジュール1aの1次側3aへ供給し、その濃縮液をモジュール1b、1cの1次側3b、3cへ順次供給し、阻止率向上剤を透過膜2a、2b、2cに付着させて、透過膜2a、2b、2cの阻止率を向上させる。
When performing the rejection improvement process of the
阻止率向上剤を供給して阻止率向上処理を行う過程において、サンプリング路L7から濃縮液を取出してTOC計5に導入し、濃縮液中のTOC濃度を測定して制御装置6へ入力する。制御装置6では、TOC計5から入力されるTOC濃度の測定値を監視し、その濃度またはその変化量が所定値になった時点でポンプP2へ信号を送り、阻止率向上剤の供給量を減少し、または阻止率向上剤の供給を停止するように制御する。上記の濃縮液中のTOC濃度の測定は、サンプリング路L7から取出す濃縮液をTOC計5で測定するようにされているが、さらに弁V5、V6、V7を有するサンプリング路L12、L13、L14をTOC計5に連絡し、C1、C2、C3、C4のTOC濃度を測定してもよい。
In the process of supplying the rejection rate improving agent and performing the rejection rate improving process, the concentrated solution is taken out from the sampling path L7 and introduced into the
上記のように段階的に複数のモジュールが配置されている場合の前段または中間のモジュールにおける濃度変化については、各段の濃縮率を予測し、または実験的に確かめて濃度変化を予測し、各段の濃縮液が一定の濃度範囲内に維持されるように、プログラムを組んで制御することができる。実装置ではC1〜C4の濃度の測定結果に基づき阻止率向上剤の薬注ポンプをフィードバック制御する方法や、あらかじめ供給量をプログラム制御する方法、手動で制御する方法などを採用することができる。 As for the concentration change in the previous stage or intermediate module when multiple modules are arranged in stages as described above, predict the concentration rate of each stage, or experimentally confirm the concentration change, The program can be controlled in a program so that the stage concentrate is maintained within a certain concentration range. In the actual apparatus, a method of feedback-controlling the injection pump of the rejection rate improving agent based on the measurement result of the C1-C4 concentration, a method of controlling the supply amount in advance, a method of manually controlling, and the like can be adopted.
図3の透過膜装置は複数のモジュールが並列的に配置されたモジュール群がさらに段階的に配置された例を示す。すなわちモジュール1a1、1a2、1a3・・・1nが並列的に配置されたモジュール群と、モジュール1b1、1b2、1b3・・・1bnが並列的に配置されたモジュール群と、モジュール1c1、1c2、1c3・・・1cnが並列的に配置されたモジュール群とが段階的に配置されており、被処理液供給路L1は分岐してモジュール1a1、1a2、1a3・・・1nの1次側に連絡し、モジュール1a1、1a2、1a3・・・1nの1次側から濃縮液取出路がモジュール1b1、1b2、1b3・・・1bnと、モジュール1c1、1c2、1c3・・・1cnの1次側に順次連絡し、透過液取出路L2は各モジュールの2次側に連絡している。他の構成は図2と同様である。 The permeable membrane device of FIG. 3 shows an example in which a module group in which a plurality of modules are arranged in parallel is arranged in stages. That is, a module group in which modules 1a1, 1a2, 1a3... 1n are arranged in parallel, a module group in which modules 1b1, 1b2, 1b3... 1bn are arranged in parallel, and modules 1c1, 1c2, 1c3,. The module group in which 1cn is arranged in parallel is arranged in stages, the liquid supply path L1 to be processed branches and communicates with the primary side of the modules 1a1, 1a2, 1a3. From the primary side of the modules 1a1, 1a2, 1a3,... 1n, the concentrate extraction passage sequentially communicates with the modules 1b1, 1b2, 1b3... 1bn and the primary side of the modules 1c1, 1c2, 1c3. The permeate extraction path L2 communicates with the secondary side of each module. Other configurations are the same as those in FIG.
図3の透過膜装置では、被処理液および阻止率向上剤の供給がモジュール1a1、1a2、1a3・・・1nの1次側に分流し、濃縮液がモジュール1a1、1a2、1a3・・・1nの1次側からモジュール1b1、1b2、1b3・・・1bnおよびモジュール1c1、1c2、1c3・・・1cnの1次側に順次送られて、透過膜処理および阻止率向上処理を行う他は図2と同様である。図3では、全ての濃縮液取出路が合流した時点でTOC計5による測定を行っているが、複数の箇所から濃縮液の取出しを行い、TOC計による測定を行うこともできる。
In the permeable membrane apparatus of FIG. 3, the supply of the liquid to be treated and the rejection rate improving agent is diverted to the primary side of the modules 1a1, 1a2, 1a3... 1n, and the concentrated liquid is the modules 1a1, 1a2, 1a3. 1bn and modules 1c1, 1c2, 1c3... 1cn are sequentially sent from the primary side to the primary side of the modules 1b1, 1b2, 1b3. It is the same. In FIG. 3, the measurement by the
図4(a)、(b)は単一のモジュールを選択してバッチ式に阻止率向上処理を行う例を示す。図4(a)、(b)において、7は循環液槽、8は阻止率向上剤槽であり、循環液槽7からポンプP1を有する循環液供給路L15がモジュール1の1次側3に連絡し、2次側4からの透過液取出路L2および1次側3からの濃縮液取出路L3は循環液槽7に連絡している。阻止率向上剤槽8からポンプP2を有する阻止率向上剤供給路L4が、図4(a)では循環液供給路L15に連絡し、図4(b)では循環液槽7に連絡している。他の構成は図1と同様である。
4A and 4B show an example in which a single module is selected and the rejection rate improvement process is performed in a batch manner. 4 (a) and 4 (b), 7 is a circulating fluid tank, 8 is a blocking rate improver tank, and the circulating fluid supply path L15 having the pump P1 from the circulating
図4(a)、(b)では、透過膜処理は図1〜3と同様に行われ、阻止率向上処理が透過膜処理から切り離して図4(a)、(b)の装置で行われる。この場合、循環液槽7からポンプP1により循環液供給路L15を通してモジュール1の1次側3に循環液を供給して阻止率向上処理を行う過程で、図4(a)では阻止率向上剤槽8からポンプP2により阻止率向上剤供給路L4を通して阻止率向上剤を循環液供給路L15に供給し、阻止率向上処理を行う。
4 (a) and 4 (b), the permeable membrane process is performed in the same manner as in FIGS. 1 to 3, and the rejection rate improving process is separated from the permeable membrane process and performed in the apparatus of FIGS. 4 (a) and 4 (b). . In this case, in the process of supplying the circulating liquid from the circulating
図4(b)ではそれに先立って循環液槽7に供給して循環液中に混合した後、循環液槽7からポンプP1により循環液供給路L15を通してモジュール1の1次側3に循環液を供給して阻止率向上処理を行う。図4(a)、(b)いずれの場合も、透過液と濃縮液の両方とも循環液槽7に循環するので、循環液中の阻止率向上剤濃度は透過膜2への付着による減少以外の影響を受けず、濃縮液取出路L3から取出される阻止率向上剤濃度は阻止率向上の度合いを比較的正確に表している。他の操作は図1と同様である。
In FIG. 4B, prior to this, the liquid is supplied to the circulating
図4(a)において、単モジュール型ROシステムにおけるバッチ処理方式による濃縮水TOC濃度をモニタした例を以下に示す。モジュールとして新品4インチの日東電工(株)製超低圧逆浸透膜モジュールES−20について、阻止率向上剤として重量平均分子量4000のポリエチレングリコール(PEG4000)を用い、阻止率向上処理を行った際の、濃縮水中のPEG4000濃度をモニタした結果を示す。 In FIG. 4A, an example of monitoring the concentrated water TOC concentration by the batch processing method in the single module RO system is shown below. For the new 4-inch Nitto Denko Corporation ultra-low pressure reverse osmosis membrane module ES-20 as a module, polyethylene glycol (PEG 4000) having a weight average molecular weight of 4000 was used as a blocking rate improver, and the blocking rate improvement treatment was performed. The result of having monitored the PEG4000 density | concentration in concentrated water is shown.
TOC濃度で0.3mg/Lに調整したPEG4000水溶液(0.55mg/L)を、透過水、濃縮水流量を調整せずに通水した場合(通常条件、回収率75%、給水圧力0.75MPa、流量5.3L/min)と、濃縮水の流量を減らして通水した場合(回収率89%)での、濃縮水のTOC濃度を比較した結果である。TOCの測定にはオンラインTOC計SIEVE900(シーバス社製)で測定した。なお回収率は、モジュールへの供給液量に対する透過液量の重量%である。上記の結果を図6のグラフに示す。図6中、◇は回収率75%、●は回収率89%のプロットを示す。
When a PEG 4000 aqueous solution (0.55 mg / L) adjusted to a TOC concentration of 0.3 mg / L is passed without adjusting the permeate and concentrated water flow rates (normal conditions, recovery rate 75%,
図6のグラフに示すように、通常処理(回収率75%:◇)よりも濃縮水量を減らした処理(回収率89%:●)の方が、濃縮水TOC濃度の上昇が速かった。また、濃縮水TOC濃度が1.2mg/Lに達したのを確認した後、処理を完了した。回収率75%と89%の条件で処理したRO膜モジュールともに、処理前のイソプロパノール阻止率が90%であったのに対し、処理後の阻止率は95%に向上した。その結果、双方の条件ともほぼ同じ性能であることが確認され、濃縮水TOC濃度により阻止率向上処理の完了を判断できることが示された。 As shown in the graph of FIG. 6, the concentrated water TOC concentration increased more rapidly in the treatment (recovery rate 89%: ●) in which the amount of concentrated water was reduced than in the normal treatment (recovery rate 75%: ◇). Moreover, after confirming that the concentrated water TOC concentration reached 1.2 mg / L, the treatment was completed. Both RO membrane modules treated under conditions of 75% and 89% recovery had an isopropanol rejection of 90% before treatment, while the rejection after treatment improved to 95%. As a result, it was confirmed that the performance was almost the same in both conditions, and it was shown that the completion of the rejection rate improvement process can be judged by the concentrated water TOC concentration.
図1において、単モジュール型ROシステムにおける連続処理方式による濃縮水TOC濃度をモニタした例を以下に示す。モジュールとして使用履歴のある8インチの日東電工(株)製超低圧逆浸透膜モジュールES−20について、洗浄処理後に、阻止率向上剤としてカチオン性高分子:ポリビニルアミジン(分子量:350万)を用いて阻止率向上処理を行った後、さらにアニオン性高分子:ポリスチレンスルホン酸ナトリウム(分子量:50万)を用いて阻止率向上処理を行った際の、濃縮水中の阻止率向上剤濃度をモニタした。阻止率向上剤濃度はTOCで測定した。TOCの測定にはオンラインTOC計SIEVEAS500(シーバス社製)を用いた。 In FIG. 1, an example of monitoring the concentrated water TOC concentration by a continuous processing method in a single module RO system is shown below. For the 8-inch ultra-low pressure reverse osmosis membrane module ES-20 manufactured by Nitto Denko Co., Ltd., which has a history of use as a module, a cationic polymer: polyvinylamidine (molecular weight: 3.5 million) was used as a blocking rate improver after washing treatment. After the rejection rate improvement treatment, the anionic polymer: polystyrene polystyrene sulfonate (molecular weight: 500,000) was used to monitor the rejection rate improver concentration in the concentrated water when the rejection rate improvement treatment was performed. . The rejection improving agent concentration was measured by TOC. An TOC meter SIEVEAS 500 (manufactured by Seabass) was used for the measurement of TOC.
薬品洗浄の手順は次の通りである。2重量%クエン酸に15h浸漬した後、純水を40L/minで1h通水してフラッシングした(回収率75%)。次にpH12に調整した水酸化ナトリウム水溶液に15h浸漬した後、純水を40L/minで1h通水しフラッシングした(回収率75%)。
The procedure for chemical cleaning is as follows. After immersing in 2% by weight citric acid for 15 hours, pure water was flushed by passing water at 40 L / min for 1 hour (recovery rate 75%). Next, it was immersed in an aqueous sodium hydroxide solution adjusted to
阻止率向上処理はまずTOC濃度で0.5mg/Lに調整したポリビニルアミジン水溶液を回収率50%(給水圧力0.75MPa、流量40L/min)で通水し、濃縮水のTOC濃度を測定した。測定結果を図7(a)のグラフに示す。阻止率向上剤を添加する前から、給水には0.5mg/LのTOCが含まれていた。濃縮水TOC濃度が1.5mg/Lに達したのを確認した後、前段の処理を完了した。 In the rejection improvement process, first, a polyvinylamidine aqueous solution adjusted to a TOC concentration of 0.5 mg / L was passed at a recovery rate of 50% (water supply pressure 0.75 MPa, flow rate 40 L / min), and the TOC concentration of concentrated water was measured. . The measurement results are shown in the graph of FIG. Prior to the addition of the blocking rate improver, the water supply contained 0.5 mg / L TOC. After confirming that the concentrated water TOC concentration reached 1.5 mg / L, the previous treatment was completed.
つづいてTOC濃度で1.0mg/Lに調整したポリスチレンスルホン酸ナトリウム水溶液を、回収率50%(給水圧力0.75MPa、流量40L/min)で通水し、濃縮水のTOC濃度を測定した。結果を図7(b)のグラフに示す。濃縮水TOC濃度が2.5mg/Lに達したのを確認した後、後段の処理を完了した。前段の処理前の電気導電率から算出した脱塩率は92%であったが、後段の処理後は97%に向上した。後段のポリスチレンスルホン酸ナトリウム水溶液の通水処理において、濃縮水TOC濃度が1.0mg/Lの時点(2時間経過)で処理を停止して脱塩率を測定したところ、到達脱塩率は95%にとどまった。 Subsequently, a polystyrene sulfonate aqueous solution adjusted to a TOC concentration of 1.0 mg / L was passed at a recovery rate of 50% (water supply pressure of 0.75 MPa, flow rate of 40 L / min), and the TOC concentration of concentrated water was measured. The results are shown in the graph of FIG. After confirming that the concentrated water TOC concentration reached 2.5 mg / L, the subsequent treatment was completed. The desalting rate calculated from the electrical conductivity before the treatment in the former stage was 92%, but improved to 97% after the treatment in the latter stage. In the subsequent water passage treatment of the aqueous sodium polystyrenesulfonate solution, when the concentration of the concentrated water TOC was 1.0 mg / L (2 hours elapsed) and the desalting rate was measured, the ultimate desalting rate was 95. It remained at%.
図2において、直列モジュール型ROシステムにおける連続処理方式による濃縮水TOC濃度のモニタした例を以下に示す。モジュールとして新品4インチの日東電工(株)製超低圧逆浸透膜モジュールES20について、阻止率向上剤としてタンニン酸を用い、阻止率向上処理を行った際の、濃縮水中の阻止率向上剤濃度のモニタ結果を示す。阻止率向上剤濃度はTOCで測定した。TOCの測定にはオンラインTOC計SIEVEAS500(シーバス社製)を用いた。図2において、サンプリング路L7のほかにL12、L13、L14を設けてTOC計5に連絡し、C1、C2、C3、C4のTOC濃度を測定した。
In FIG. 2, the example which monitored the concentrated water TOC density | concentration by the continuous processing system in a serial module type RO system is shown below. About the new 4-inch Nitto Denko Corporation ultra-low pressure reverse osmosis membrane module ES20, the tannic acid was used as the rejection rate improver, and when the rejection rate improvement treatment was performed, the concentration of the rejection rate improver in the concentrated water The monitoring result is shown. The rejection improving agent concentration was measured by TOC. An TOC meter SIEVEAS 500 (manufactured by Seabass) was used for the measurement of TOC. In FIG. 2, L12, L13, and L14 are provided in addition to the sampling path L7 and communicated to the
図8のグラフは、C1、C2、C3、C4における給水および各RO膜モジュール濃縮水のTOC濃度の測定結果を示す。このように複数段RO膜モジュールを接続した装置で阻止率向上処理を行う場合、後段(2、3段目)のRO膜給水中の阻止率向上剤が濃縮される。適正濃度以上の阻止率向上剤がRO膜に供給されると、閉塞による採水量の低下などの不具合が生じるため、各段の濃縮液が一定の濃度範囲内に維持されるように、プログラムを組んで給水中の阻止率向上剤濃度を制御した。 The graph of FIG. 8 shows the measurement results of the TOC concentration of water supply and each RO membrane module concentrated water in C1, C2, C3, and C4. In this way, when the rejection rate improving process is performed by the apparatus connected to the multi-stage RO membrane module, the rejection rate improving agent in the RO membrane water supply in the latter stage (second and third stages) is concentrated. If a blocking rate improver with an appropriate concentration or higher is supplied to the RO membrane, problems such as a decrease in the amount of water collected due to clogging occur, so the program should be implemented so that the concentrated solution at each stage is maintained within a certain concentration range. In combination, the concentration of the blocking rate improver in the feed water was controlled.
すなわちC2の濃度が上昇をはじめたと同時に阻止率向上剤の供給量を減らし、2段目RO膜の給水TOC濃度(C2)が50mg/Lを越えないようにした。その後、C2濃度が安定したため阻止率向上剤濃度を一定に保った後、2段目RO膜の給水TOC濃度(C3)が50mg/Lを越えないように、再度、阻止率向上剤の供給量を減らした。このように制御を行うことで、後段RO膜モジュールに高濃度の阻止率向上剤が供給されることを防ぐことができた。この状態で、最終段のTOC濃度C4が上限の50mg/Lに達して変化量がゼロに近づいた時点で、阻止率向上剤の供給を停止し、阻止率向上処理を終了した。 That is, at the same time as the concentration of C2 began to increase, the supply rate of the rejection rate improving agent was reduced so that the water supply TOC concentration (C2) of the second-stage RO membrane did not exceed 50 mg / L. Then, after the C2 concentration was stabilized, the rejection rate improver concentration was kept constant, and then the supply rate of the rejection rate improver was again made so that the water supply TOC concentration (C3) of the second stage RO membrane did not exceed 50 mg / L. Reduced. By controlling in this way, it was possible to prevent the high-concentration rejection rate improver from being supplied to the subsequent RO membrane module. In this state, when the final stage TOC concentration C4 reached the upper limit of 50 mg / L and the amount of change approached zero, the supply of the blocking rate improver was stopped, and the blocking rate improving process was terminated.
本発明は、逆浸透膜、ナノ濾過膜等の透過膜の阻止率を向上させる方法、阻止率を向上させた透過膜を用いる透過膜処理方法、およびこれらに適した透過膜装置に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for a method for improving the rejection rate of a permeable membrane such as a reverse osmosis membrane or a nanofiltration membrane, a permeable membrane treatment method using a permeable membrane with an improved rejection rate, and a permeable membrane device suitable for these. is there.
1、1a、1b、1c モジュール
2、2a、2b、2c 透過膜
3、3a、3b、3c 1次側
4、4a、4b、4c 2次側
5 TOC計
6 制御装置
7 循環液槽
8 阻止率向上剤槽
L1 被処理液供給路
L2 透過液取出路
L3 濃縮液取出路
L4 阻止率向上剤供給路
P1、P2 ポンプ
V1a、V1b・・ 弁
1, 1a, 1b,
Claims (13)
モジュールの1次側に有機物を主成分とする阻止率向上剤を供給し、
モジュールの1次側から取り出される阻止率向上剤の量を測定し、
測定された阻止率向上剤の量またはその変化量に応じて阻止率向上剤の供給量を制御することを特徴とする透過膜の阻止率向上方法。 In the method of improving the rejection rate of the permeable membrane by supplying a rejection rate improver to the primary side of the permeable membrane module,
Supplying a blocking rate improver mainly composed of organic substances to the primary side of the module,
Measure the amount of rejection improver removed from the primary side of the module,
A method for improving the rejection rate of a permeable membrane, comprising controlling the supply amount of a rejection rate improver in accordance with the measured amount of the rejection rate improver or the amount of change thereof.
モジュールの1次側に有機物を主成分とする阻止率向上剤を通液して、処理対象モジュールの阻止率を向上させる通液装置と、
モジュールの1次側から取り出される阻止率向上剤の量を測定する測定装置と、
測定装置で測定された阻止率向上剤の量またはその変化量に応じて阻止率向上剤の供給量を制御する制御装置と
を含む透過膜装置。 A permeable membrane module for passing the liquid to be treated to the primary side and taking out the permeate from the secondary side;
A liquid passing device for passing a blocking rate improver mainly composed of an organic substance to the primary side of the module to improve the blocking rate of the module to be treated;
A measuring device for measuring the amount of blocking rate improver removed from the primary side of the module;
And a control device that controls the supply amount of the blocking rate improver according to the amount of the blocking rate improver measured by the measuring device or the amount of change thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017127A JP5050536B2 (en) | 2007-01-26 | 2007-01-26 | Permeation rate improvement method for permeable membrane, permeable membrane treatment method, permeable membrane device, and pure water production device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017127A JP5050536B2 (en) | 2007-01-26 | 2007-01-26 | Permeation rate improvement method for permeable membrane, permeable membrane treatment method, permeable membrane device, and pure water production device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008183488A true JP2008183488A (en) | 2008-08-14 |
JP5050536B2 JP5050536B2 (en) | 2012-10-17 |
Family
ID=39726871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007017127A Expired - Fee Related JP5050536B2 (en) | 2007-01-26 | 2007-01-26 | Permeation rate improvement method for permeable membrane, permeable membrane treatment method, permeable membrane device, and pure water production device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5050536B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105417753A (en) * | 2015-12-16 | 2016-03-23 | 王寒 | Energy-saving micro-concentrated-water reverse osmosis device and control method thereof |
JPWO2016111371A1 (en) * | 2015-01-09 | 2017-10-19 | 東レ株式会社 | Method of improving semi-permeable membrane blocking performance, semi-permeable membrane, semi-permeable membrane water generator |
JP2020175333A (en) * | 2019-04-18 | 2020-10-29 | 三菱ケミカル株式会社 | Membrane separation system and separation treatment method of mixture of organic compound and water |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7177452B2 (en) | 2019-10-24 | 2022-11-24 | 三菱重工業株式会社 | Desalting Performance Restoring Agent for Cellulose Acetate Membrane and Method for Restoring Desalting Performance of Cellulose Acetate Membrane |
-
2007
- 2007-01-26 JP JP2007017127A patent/JP5050536B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016111371A1 (en) * | 2015-01-09 | 2017-10-19 | 東レ株式会社 | Method of improving semi-permeable membrane blocking performance, semi-permeable membrane, semi-permeable membrane water generator |
CN105417753A (en) * | 2015-12-16 | 2016-03-23 | 王寒 | Energy-saving micro-concentrated-water reverse osmosis device and control method thereof |
CN105417753B (en) * | 2015-12-16 | 2019-08-06 | 王寒 | The micro- concentrated water reverse osmosis unit of energy conservation and its control method |
JP2020175333A (en) * | 2019-04-18 | 2020-10-29 | 三菱ケミカル株式会社 | Membrane separation system and separation treatment method of mixture of organic compound and water |
JP7238567B2 (en) | 2019-04-18 | 2023-03-14 | 三菱ケミカル株式会社 | MEMBRANE SEPARATION SYSTEM AND METHOD FOR SEPARATION OF ORGANIC COMPOUND/WATER MIXTURE |
Also Published As
Publication number | Publication date |
---|---|
JP5050536B2 (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103492054B (en) | Method for cleaning membrane module | |
JP6269241B2 (en) | Forward osmosis processing system | |
CN107261847A (en) | Permeability and separation system and method | |
EP2119675A1 (en) | Method for the treatment with reverse osmosis membrane | |
JP5928070B2 (en) | Method for removing ammonia from wastewater containing ammonia | |
KR20120095858A (en) | Recycling method and device for recycling waste water containing slurry from a semi-conductor treatment process, in particular from a chemico-mechanical polishing process | |
JP5050536B2 (en) | Permeation rate improvement method for permeable membrane, permeable membrane treatment method, permeable membrane device, and pure water production device | |
JP2008132421A (en) | Water treatment apparatus and water treatment method | |
JP5346784B2 (en) | Separation membrane manufacturing method, separation membrane, and separation membrane module having ion exclusion performance | |
JP2008086879A (en) | Ultrapure water manufacturing apparatus and method | |
JP2021006335A (en) | Oxidation risk evaluation method of separation membrane in separation membrane plant and fresh water generator | |
WO2016111371A1 (en) | Method for improving inhibition performance of semipermeable membrane, semipermeable membrane, and semipermeable membrane water production device | |
KR101929815B1 (en) | Water treating apparatus and method using multi ro device | |
KR20190138776A (en) | Washing water supply | |
JPWO2008059824A1 (en) | Water treatment apparatus and water treatment method | |
WO2016111370A1 (en) | Water treatment method | |
JP4770633B2 (en) | Reverse osmosis membrane treatment method | |
JP2013193004A (en) | Pure water production method | |
KR101859135B1 (en) | Apparatus for manufacturing ultra pure water | |
JP2004033800A (en) | Control method of concentration of residual chlorine, producing method of ultra-pure water and control method of concentration of injected chlorine | |
KR101968525B1 (en) | A backwash method for a reverse osmosis membrane and a system for the same | |
JP4765929B2 (en) | Method for improving rejection rate of permeable membrane, permeable membrane treatment method, and permeable membrane device | |
JP4180019B2 (en) | Reverse osmosis membrane cleaning method and wastewater recovery method using this method | |
JP2011020032A (en) | Treatment method of reverse osmosis membrane and reverse osmosis membrane apparatus | |
JP2009240917A (en) | Method for improving blocking rate of permeable membrane and permeable membrane device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120709 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |