JP2008182866A - 超音波アクチュエータの振動体の製造方法 - Google Patents

超音波アクチュエータの振動体の製造方法 Download PDF

Info

Publication number
JP2008182866A
JP2008182866A JP2007016159A JP2007016159A JP2008182866A JP 2008182866 A JP2008182866 A JP 2008182866A JP 2007016159 A JP2007016159 A JP 2007016159A JP 2007016159 A JP2007016159 A JP 2007016159A JP 2008182866 A JP2008182866 A JP 2008182866A
Authority
JP
Japan
Prior art keywords
piezoelectric
substrate
vibrating body
manufacturing
displacement portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007016159A
Other languages
English (en)
Inventor
Takashi Matsuo
隆 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007016159A priority Critical patent/JP2008182866A/ja
Publication of JP2008182866A publication Critical patent/JP2008182866A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】複数の圧電変位部を有する超音波アクチュエータにおける振動体の製造方法において、高出力、高駆動効率を安定して得ることが可能な振動体の製造方法を提供する。
【解決手段】電気信号により伸縮する複数の独立して形成された圧電変位部を有し、該圧電変位部の共振により励振される振動体と、振動体に加圧接触され、該振動体に対して相対移動を生じる移動体と、を備えている超音波アクチュエータにおけ振動体の製造方法であって、複数の圧電変位部の基材となる圧電基材を生成する圧電基材生成工程と、圧電基材の一方の面に基板を結合する基板結合工程と、基板結合工程で前記基板が結合された前記圧電基材を加工することにより、複数の前記圧電変位部を前記基板を介して一体化して形成する加工工程と、を有する。
【選択図】図3

Description

本発明は、超音波アクチュエータの振動体の製造方法に関し、特に振動体を移動体に加圧接触させて相対移動を発生させる超音波アクチュエータの振動体の製造方法に関する。
近年、様々な移動装置に超音波アクチュエータを用いることが試みられている。超音波アクチュエータは、通常、電気−機械エネルギー変換素子である圧電素子を備えた振動体と、該振動体に加圧された状態で接触する移動体等から構成される。超音波アクチュエータは、振動体に駆動信号を入力して振動体を伸縮運動させ、振動体の一部に楕円振動(以下、円振動を含む。)をさせることにより、振動体に加圧接触された移動体との間で摩擦力により相対運動を発生させるものである。
この様な構成の超音波アクチュエータに用いられる振動体としては、2つの圧電素子が平行に配置されたパラレル型振動体(例えば、特許文献1参照)等が知られている。
ここで、従来の超音波アクチュエータにおける、振動体の概略について説明する。
最初に、振動体の構成を図8を用いて説明する。図8は、従来のパラレル振動体10の構成図である。
パラレル型振動体10は、図8に示す様に、2つの圧電素子152,153、連結部104、及びベース部材105等を備え、平行に配置された圧電素子152,153のそれぞれの一端には連結部104が接着剤等により接合されている。一方、圧電素子152,153のそれぞれの他端はベース部材105が接着剤等により接合されている。
次に、この様な構成の振動体の固有モードについて図9を用いて説明する。図9(a)、図9(b)は、従来のパラレル型振動体10のそれぞれ同相モード、逆相モードによる変形の様子を示す図である。
同相モードは、2つの圧電素子152,153が同じ位相で伸縮するモードであり、図9(a)に示す様に、2つの圧電素子152,153が同じ方向に伸縮し、連結部104が矢印R方向に振動する。また、逆相モードは、2つの圧電素子152,153が互いに逆の位相で伸縮するモードであり、図9(b)に示す様に、2つの圧電素子152,153が互いに反対方向に伸縮し、連結部104が矢印S1,S2方向に振動する。
この様な同相モード、逆相モードを用いて、それぞれの共振周波数を所定の関係に設定し、2つの圧電素子152,153を共振駆動することにより、連結部104の先端に設けられた当接部106aを楕円軌道(円軌道を含む)を描く様に移動、すなわち楕円振動(円振動を含む)をさせることができる。
尚、同相モード、逆相モードを用いて当接部106aに楕円振動をさせる駆動方法としては、位相差駆動、単相駆動の2つの駆動方法が知られている。
位相差駆動は、同相モード、逆相モードの共振周波数を略一致させて、共振周波数近傍の周波数で位相の異なる交流電圧を2つの圧電素子にそれぞれ印加することで、その電圧や位相差に応じて、形状、回転方向が決まる楕円振動が生成される。単相駆動は、同相モード、逆相モードの共振周波数を所定値ずらして、両共振周波数の間の周波数において、1つの圧電素子に単相の交流電圧を印加することで、楕円振動が生成される。その共振周波数の差と周波数によって楕円振動の形状が決まり、交流電圧を印加する圧電素子を切り替えることで楕円振動の回転方向を反転させることができる。
ところで、この様な構成の振動体においては、2つの圧電素子の位置誤差や特性差等の左右対称性の楕円軌道に対する感度が非常に高いものである。
同相モード、逆相モードは、2つの圧電素子の左右対称性が崩れると、共振Qが低下して振動振幅が減衰することにより楕円軌道が小さくなる。この為、超音波アクチュエータの出力低下(移動体の速度、推力の低下)や方向差が生じる。左右対称性が崩れる要因として、2つの圧電素子の位置の左右誤差や圧電素子単体の共振周波数の差等が挙げられ、いずれも前述の様に楕円軌道に対する誤差感度が高い。
図12にパラレル型振動体において、2つの圧電素子の位置の左右誤差、圧電素子間の特性差がある場合の楕円軌道を示した。図12示す様に、2つの圧電素子の位置の左右誤差、圧電素子間の特性差がある場合、設計値に対して、楕円軌跡が小さくなることが確認できる。
また、2つの圧電素子の位置が左右対称であっても、設計値に対して内側や外側にずれた場合にも、同相モード、逆相モードの共振周波数が設計値からずれて、楕円軌道が変化する為、超音波アクチュエータの出力低下(移動体の速度、推力の低下)や個体ばらつきが生じる。
ここで、2つの圧電素子の位置が、設計値に対して内側や外側にずれた場合の共振周波数や楕円軌道の変化の様子を図10、図11を用いて説明する。図10は、パラレル型振動体における圧電素子の位置誤差と共振周波数の関係を示すグラフである。図11は、パラレル型振動体おける圧電素子の位置誤差による楕円軌道の変化の様子を示す図である。
図10、図11に示す様に、2つの圧電素子の位置誤差により、共振周波数が大きく変化し、楕円軌道が大きく変化することが確認できる。尚、図10、図11、及び図12は、いずれもシミュレーションによるものである。また、図10、図11において、素子位置誤差は、2つの圧電素子が内側にd移動した場合を−d、2つの圧電素子が外側にd移動した場合を+dとする。また、図11におけるX軸、Y軸は、前述の図8に示すX方向、Y方向に相当する。また、図11、図12は、単相駆動における楕円軌道を示しているが、位相差駆動においても共振周波数のずれにより、同様に楕円軌道が大きく変化する。
特許第3523488号公報
この様に、2つの圧電素子を備えた振動体においては、2つの圧電素子の位置誤差や特性差等を抑えて、左右対称性を高精度で確保することが重要である。
しかしながら、特許文献1に開示されている様な従来のパラレル型振動体においては、前述の様に、独立した2つの圧電素子をベース部材と連結部の間に接着剤等により結合して製造するものであるので、容易に左右対称性を高精度で確保することは困難なものと考えられる。すなわち、2つの圧電素子を用意し、ベース部材や連結部に対して相互位置を高精度に位置決めし、接着剤を用いて固定結合するものであるので、次の様な問題が懸念される。
第1に、圧電素子単体の共振周波数は、通常、ロット間等で最大20%程度のばらつきを持つものであり、組立て前に単体圧電素子の特性を全数測定し、特性の類似したものを選別して組み合わせる工程が必要な場合があり、工程の複雑化を招く恐れがある。
第2に、振動体の組立てを行う際、2つの圧電素子の位置や傾きを決める為の組立て治具を用いるが、簡単な構成では、圧電素子の位置がずれ易く、高精度に位置決めを行う為には、精度の高い治具が必要となる。また、接着剤の硬化中や、搬送中に圧電素子がずれない様に保持する機構が必要となることから、組立て治具の複雑化、大型化等によるコスト増や生産性の低下を招く恐れがある。
第3に、圧電素子の位置誤差や特性差等の左右対称性は、圧電素子材料にQ値の高い材料(高Q材)を使用した場合に特に大きく影響する。高Q材(例えば、ハード系のPZT)は、共振時の振動振幅の減衰が小さい為、大きな変位量が得られるとともに、共振時の発熱が低く、駆動効率が高いという利点がある。しかしながら、一方では周波数に対する特性変化が大きく(周波数特性が急峻)、同相駆動モード、逆相駆動モードの共振周波数の少しの変化に対しても楕円軌道が大きく変化する。また、2つの圧電素子素子の共振周波数の差も楕円軌跡に大きく影響し、超音波アクチュエータの出力ばらつきが非常に大きくなる。したがって、これらの影響を回避する為に、高Q材を使用することができず、超音波アクチュエータの高出力化や高駆動効率化を阻害するといった問題等がある。
本発明は、上記課題を鑑みてなされたもので、電気信号により伸縮し、独立して設けられた複数の圧電変位部を有し、該圧電変位部の共振により励振される振動体と、該振動体に加圧接触され、該振動体に対して相対移動を生じる移動体と、を有する超音波アクチュエータにおける振動体の製造方法であって、装置の複雑化と高価格化を招くことなく、複数の圧電変位部の左右対称性を高精度で確保することにより、高出力、高駆動効率を安定して得ることが可能な振動体の製造方法を提供することを目的とする。
上記目的は、下記の1乃至5のいずれか1項に記載の発明によって達成される。
1.電気信号により伸縮する複数の独立して形成された圧電変位部を有し、該圧電変位部の共振により励振される振動体と、
前記振動体に加圧接触され、該振動体に対して相対移動を生じる移動体と、
を備えている超音波アクチュエータにおける前記振動体の製造方法であって、
複数の前記圧電変位部の基材となる圧電基材を生成する圧電基材生成工程と、
前記圧電基材の一方の面に基板を結合する基板結合工程と、
前記基板結合工程で前記基板が結合された前記圧電基材を加工することにより、複数の前記圧電変位部を前記基板を介して一体化して形成する加工工程と、を有することを特徴とする振動体の製造方法。
2.前記基板の材料は、金属であることを特徴とする前記1に記載の振動体の製造方法。
3.前記振動体は、前記移動体に当接する当接部材を有し、
前記当接部材は、前記基板と同じ材料を用い、
前記当接部材を前記基板に一体化して形成することを特徴とする前記1に記載の振動体の製造方法。
4.前記加工は、切削加工であることを特徴とする前記1に記載の振動体の製造方法。
5.前記加工工程は、複数の独立した前記圧電変位が前記基板を介して平行に一体化して形成されるように、前記基板結合工程で前記基板が結合された前記圧電基材から、所定の位置の該圧電基材を除去加工することを特徴とする前記1に記載の振動体の製造方法。
本発明によれば、基板結合工程で基板が結合された圧電基材を加工することにより、複数の圧電変位部を基板を介して一体化して形成する様にした。すなわち、複数の圧電変位部を一体化して形成することにより、複数の圧電変位部の位置誤差や特性差等の左右対称性を高精度で確保することができる様になる。したがって、超音波アクチュエータの性能ばらつきを抑えることができる。また、複数の圧電変位部にQ値の高い圧電材料を使用することができる様になるので、高出力、高駆動効率を安定して得ることができる。
以下図面に基づいて、本発明に係る超音波アクチュエータにおける振動体の製造方法の実施の形態を説明する。尚、本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限られない。
〔実施形態1〕
最初に、実施形態1による超音波アクチュエータ1の構成を図1を用いて説明する。図1は、超音波アクチュエータ1の全体構成の概要を示す図である。
超音波アクチュエータ1は、図1に示す様に、パラレル型振動体10、ガイド部材20、加圧部材30、移動体40、及びローラ50等を有する。超音波アクチュエータ1は、電気−機械エネルギー変換素子である後述の圧電変位部102,103を備えたパラレル型振動体10(以下、振動体10とも記する)に駆動信号を入力して振動体10を伸縮運動させ、振動体10の一部を楕円軌道(円軌道を含む)を描く様に移動、すなわち楕円振動(円振動を含む)をさせる。これにより、振動体10に加圧された状態で接触する移動体40との間で摩擦力により相対移動を発生させるものである。
パラレル型振動体10は、ガイド部材20に沿って上下方向に移動可能に支持され、コイルばね等の加圧部材30によって移動体40に加圧接触される。移動体40は、ローラ50、または図示しないリニアガイド等に沿って左右方向に移動可能に支持されている。振動体10に楕円振動が励振されると、移動体40が摩擦力により移動される。楕円振動の回転方向が時計方向であれば、移動体40は右へ、反時計方向であれば左へ移動する。
尚、移動体40は、板状あるいは棒状のステンレス等の金属材料で形成され、振動体10との摩擦による磨耗を防ぐ為、窒化処理等の表面硬化処理が施されている。また、本実施形態1による超音波アクチュエータ1では、リニア駆動の例を示したが、移動体40にロータ等の回転体を用いることで回転駆動を行うこともできる。
次に、実施形態1によるパラレル型振動体10の構成を図2を用いて説明する。図2は、実施形態1によるパラレル型振動体10の外観斜視図である。
パラレル型振動体10は、図2に示す様に、変位部材101、ベース部材105、及び当接部材106等を有する。変位部材101の一端には、当接部材106が接着剤等により接合されている。一方、変位部材101の他端にはベース部材105が接着剤等により接合されている。尚、接着剤には、接着強度が高く、剛性の高いエポキシ系接着剤を用いる。
変位部材101は、圧電変位部102,103、及び連結部104から構成され、2つの圧電変位部102,103は、連結部104を介して平行に配置されている。
圧電変位部102,103は、PZT等の圧電特性を示す後述の圧電基材100aより形成される。圧電変位部102,103は、厚さ数10μmの圧電セラミックス薄板(以下、圧電薄板とも記する)と銀や銀パラジウム等からなる内部電極層が交互にY方向に積層された構成で、内部電極が1層毎に接続される様に圧電変位部102,103のそれぞれの前面に外部電極107が形成されている。尚、図2中、圧電変位部102,103のそれぞれの背面にも前面の外部電極107には接続されない内部電極に接続される外部電極107が形成されている。
また、外部電極107には、図示しないリード線やFPC(フレキシブルプリント配線板)が接続され、駆動回路と接続される。外部電極107間に電圧を印加することで、それぞれの圧電薄膜がY方向に伸び(縮み)、圧電変位部102,103がY方向に変位する。
連結部104の材料には、強度が高い、例えばステンレス等の金属材料を用いる。これにより連結部104を薄型化することができ、振動体10のY方向(変位方向)の寸法を小さくすることができる。すなわち振動体10を小型化することができる。
当接部材106は、変位部材101の共振により励振され、楕円振動を行う。移動体40は、当接部材106に加圧接触され、当接部材106の振動周期と同じ周期の繰り返し摩擦力が移動体40と当接部材106との間に発生する。この繰り返し摩擦力が駆動力となり、移動体40を移動させることができる。
当接部材106の材料には、磨耗を防ぐ為、硬度の高い、アルミナ、ジルコニア等のセラミックス、あるいは超硬合金等を用いる。尚、当接部材106は、その質量を大きくすることで、振動振幅を大きくすることができる。したがって、当接部材106の材料に、タングステン、またはニッケル、銅、鉄などをバインダとしたタングステン合金、あるいはタングステンカーバイト系超硬合金を用いてもよい。
ベース部材105の材料には、製造し易く減衰の小さいステンレス等の金属材料を用いる。
また、この様な構成の変位部材101において、前述の単相駆動を行なう為に、同相モード、逆相モードの共振周波数が所定の差となる様に、圧電変位部102,103の長さ、断面形状、間隔等が調整されている。この様に、実施形態1によるパラレル型振動体10は、簡略な構成であり、共振駆動を行うことにより、低電圧化、高効率化できる。
同相モードは、圧電変位部102,103が同じ位相で伸縮し、当接部材106がY方向に振動する。逆相モードは、圧電変位部102,103が逆の位相で伸縮することにより、連結部104と当接部材106がXY平面で自転運動を行い、その結果、当接部材106の先端はX方向に振動する。そして、2つのモードのそれぞれの共振周波数の間の周波数の交流電圧を一方の圧電変位部102(103)に印加することで、2つのモードは位相がずれて励起され、当接部材106の先端には、Y方向の振動とX方向の振動が合成された楕円振動が生成される。また、交流電圧を印加する圧電変位部102(103)を切り替えることで、楕円の回転方向が逆回転となる。
次に、この様な構成のパラレル型振動体10における変位部材101の製造方法について、図3を用いて説明する。図3(a)乃至図3(e)は、実施形態1による変位部材101の製造工程の概要を示す図である。
最初に、図3(a)に示す様に、矩形の圧電薄板111と所定のパターンに形成された内部電極層112を交互に積層し、焼成して、圧電変位部102,103の基材となる圧電基材100aを生成する(圧電基材生成工程)。尚、圧電基材100aの上下の面は研磨され、平滑度と積層方向の寸法が精度よく確保されている。
次に、図3(b)に示す様に、圧電基材100aに、本発明における基板に該当し、変位部材101の連結部104となり、圧電基材100aと同じ平面形状をなす金属薄板114を接着し、変位基材100bを生成する(基板結合工程)。金属薄板114の材料には、安価で強度の高いステンレスなどを使用し、接着剤には、接着強度が高く、剛性の高いエポキシ系接着剤などを用いる。
次に、この様に圧電基材100aに金属薄板114が結合された変位基材100bを、図3(c)に示す様に、線L11,L12に沿って、例えば、ダイサによりカットし、図3(d)に示す様なコの字型の長尺状の変位基材100b′に切り出す。尚、この字型の線L12に沿ってカットする際には、圧電基材100aがほぼ除去されるように圧電基材100aと金属薄板114の結合部の境界まで加工を行う(加工工程)。
次に、変位基材100b′を、図3(d)に示す様に、線L13に沿って、変位部材101の厚さ毎にダイシングを行い(加工工程)、図3(e)に示す様に、変位部材101を得る。その後、図示しない外部電極の印刷工程や、分極工程が行われる。
この様に、本発明の実施形態1に係る超音波アクチュエータ1におけるパラレル型振動体10の製造方法においては、圧電変位部102,103は、同一の変位基材100bから切削加工により連結部104を介して一体化して形成される。すなわち、2つの圧電変位部102,103の位置関係は、機械の加工精度のみで決まる為、高精度に製造することができ、非常に正確な形状が得られる。また、2つの圧電変位部102,103は、1対として同一の変位基材100bから切り出される為、圧電変位部102,103間に共振周波数等の特性差が生じ難くなる。これにより、2つの圧電変位部102,103の左右対称性を高精度で確保することができる様になる。
したがって、振動体10の個体ばらつきを低減でき、設計値に近い高い出力を得ることができる。また、Q値の高い圧電材料を使用することが可能となるので、大きな楕円振動が得られ、超音波アクチュエータ1の出力、駆動効率を向上させることができる。
また、従来の超音波アクチュエータに比べて、振動体10の組立て治具を簡略化することができる。また、従来の超音波アクチュエータの様に、組立て前の圧電素子の選別、組合せ工程が不要となる。
〔実施形態2〕
次に、実施形態2によるパラレル型振動体10における変位部材101の製造方法について説明する。
最初に、実施形態2によるパラレル型振動体10の構成を説明する。尚、その要部構成は、前述した実施形態1の場合と略同様なので詳細な説明は省略し、構成の異なる変位部材101の連結部104と当接部材106について図4を用いて説明する。図4は、実施形態2によるパラレル型振動体10の外観斜視図である。
実施形態2による連結部104には、図4に示す様に、実施形態1の場合の当接部材106に該当する当接部106aが一体化して形成される。
この場合、耐久性が要求される用途では、連結部104の材料として、ステンレスなどに窒化処理などの表面硬化処理を施したものや、当接部106aの表面にTiCNなどのセラミックコーティングを施したもの、あるいは、材料自体の硬度の高い、アルミナ、ジルコニアなどのセラミックスや超硬合金などを用いる。
図5(a)乃至図5(e)に実施形態2による変位部材101の製造工程の概要を示す。実施形態2による変位部材101の製造工程は、図5(a)乃至図5(e)に示す様に実施形態1の場合と略同様であるが、図5(b)に示す様に、本発明における基板に該当し、変位部材101の連結部104となる薄板115には、当接部106aが形成されている。
この様に、連結部104に当接部106aが一体化して形成されているため、単品での変位部材101に当接部106aを結合する工程を省くことができる。これにより振動体10の製造工程を簡略化でき、製造コストを低減させることができる。
〔実施形態3〕
次に、実施形態3による変位部102,103、及びベース部材105の製造方法について説明する。
最初に、実施形態3によるパラレル型振動体10の構成を説明する。尚、その要部構成は、前述した実施形態2の場合と略同様なので詳細な説明は省略し、構成の異なるベース部材105について図6を用いて説明する。図6は、実施形態3によるパラレル型振動体10の外観斜視図である。
実施形態3によるベース部材105は、図6に示す様に、連結部を兼用化している。すなわち後述する様に、ベース部材105は、圧電変位部102,103と一体化して切り出される。
図7(a)乃至図7(e)に実施形態3による圧電変位部102,103、及びベース部材105の製造工程の概要を示す。
図7(b)に示す様に、圧電基材100aの底面には、ベース部材105が接着される。ベース部材105が接着された圧電基材100aは、図7(c)、図7(d)に示す様に、実施形態2の場合と略同様の工程を経て切削加工され、図7(e)に示す様に、圧電変位部102,103とベース部材105とが一体化して切り出される。
この様に、ベース部材105を圧電変位部102,103と一体化して切り出すので、ベース部材105の形状に制約がある程度生じるが、単品でのベース部材105の結合工程を省けるので、振動体10の製造工程を簡略化できる。
本発明の実施形態1に係る超音波アクチュエータの全体構成図である。 実施形態1に係るパラレル型振動体の外観斜視図である。 実施形態1に係るパラレル型振動体における変位部材の製造工程の概要を示す図である。 実施形態2に係るパラレル型振動体の外観斜視図である。 実施形態2に係るパラレル型振動体における変位部材の製造工程の概要を示す図である。 実施形態3に係るパラレル型振動体の外観斜視図である。 実施形態3に係るパラレル型振動体における変位部材の製造工程の概要を示す図である。 従来のパラレル型振動体の構成図である。 従来のパラレル型振動体の固有モードによる変形の様子を示す図である。 従来のパラレル型振動体における圧電素子の位置誤差と共振周波数の関係を示すグラフである。 従来のパラレル型振動体おける圧電素子の位置誤差による楕円軌道の変化の様子を示す図である。 従来のパラレル型振動体における圧電素子位置の左右誤差、圧電素子間の特性差による楕円軌道の変化の様子を示す図である。
符号の説明
1 超音波アクチュエータ
10 パラレル型振動体
100a 圧電基材
100b 変位基材
101 変位部材
102,103 圧電変位部
104 連結部
105 ベース部材
106 当接部材
107 外部電極
111 圧電薄膜
112 内部電極層
114 金属薄板
115 薄板
152,153 圧電素子
20 ガイド部材
30 加圧部材
40 移動体
50 ローラ

Claims (5)

  1. 電気信号により伸縮する複数の独立して形成された圧電変位部を有し、該圧電変位部の共振により励振される振動体と、
    前記振動体に加圧接触され、該振動体に対して相対移動を生じる移動体と、
    を備えている超音波アクチュエータにおける前記振動体の製造方法であって、
    複数の前記圧電変位部の基材となる圧電基材を生成する圧電基材生成工程と、
    前記圧電基材の一方の面に基板を結合する基板結合工程と、
    前記基板結合工程で前記基板が結合された前記圧電基材を加工することにより、複数の前記圧電変位部を前記基板を介して一体化して形成する加工工程と、を有することを特徴とする振動体の製造方法。
  2. 前記基板の材料は、金属であることを特徴とする請求項1に記載の振動体の製造方法。
  3. 前記振動体は、前記移動体に当接する当接部材を有し、
    前記当接部材は、前記基板と同じ材料を用い、
    前記当接部材を前記基板に一体化して形成することを特徴とする請求項1に記載の振動体の製造方法。
  4. 前記加工は、切削加工であることを特徴とする請求項1に記載の振動体の製造方法。
  5. 前記加工工程は、複数の独立した前記圧電変位が前記基板を介して平行に一体化して形成されるように、前記基板結合工程で前記基板が結合された前記圧電基材から、所定の位置の該圧電基材を除去加工することを特徴とする請求項1に記載の振動体の製造方法。
JP2007016159A 2007-01-26 2007-01-26 超音波アクチュエータの振動体の製造方法 Pending JP2008182866A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016159A JP2008182866A (ja) 2007-01-26 2007-01-26 超音波アクチュエータの振動体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016159A JP2008182866A (ja) 2007-01-26 2007-01-26 超音波アクチュエータの振動体の製造方法

Publications (1)

Publication Number Publication Date
JP2008182866A true JP2008182866A (ja) 2008-08-07

Family

ID=39726330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016159A Pending JP2008182866A (ja) 2007-01-26 2007-01-26 超音波アクチュエータの振動体の製造方法

Country Status (1)

Country Link
JP (1) JP2008182866A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124176A1 (ja) * 2020-12-09 2022-06-16 ソニーグループ株式会社 ダイヤフラムポンプ、電子機器、製造装置及び製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124176A1 (ja) * 2020-12-09 2022-06-16 ソニーグループ株式会社 ダイヤフラムポンプ、電子機器、製造装置及び製造方法

Similar Documents

Publication Publication Date Title
JP4891053B2 (ja) 超音波モータ
JP5765993B2 (ja) 振動型駆動装置
JP4794897B2 (ja) 超音波モータ
EP1726049B1 (en) Wide frequency range electromechanical actuator
JP4795158B2 (ja) 超音波モータ
JP5979817B2 (ja) 振動波駆動装置
JP4697929B2 (ja) 積層圧電素子及び振動波駆動装置
US8749117B2 (en) Vibrating body of vibratory drive unit and vibratory drive unit
WO2010088937A1 (en) Piezoelectric actuator
JP2014018027A (ja) 振動型アクチュエータ、撮像装置、及びステージ
JP2005354787A (ja) 振動波駆動装置
JP2006094591A (ja) 超音波モータとその運転方法
JP2004506526A (ja) ウォーキングアクチュエータ
Shen et al. Design and fabrication of a high-power eyeball-like microactuator using a symmetric piezoelectric pusher element
JP2006271065A (ja) 駆動装置
US7825566B2 (en) Ultrasonic actuator and method for manufacturing piezoelectric deformation portion used in the same
JP2008067539A (ja) 超音波アクチュエータ、及びその振動体の製造方法
US7501743B2 (en) Piezoelectric ultrasonic motor for 2-dimensional positioning
JP2008182866A (ja) 超音波アクチュエータの振動体の製造方法
JP2003164174A (ja) 圧電アクチュエータ
JP2008172885A (ja) 超音波アクチュエータ
JP5144097B2 (ja) 超音波モータ装置
JP4578799B2 (ja) 圧電アクチュエータ及びそれを用いた電子機器
JP4818853B2 (ja) 超音波モータ素子
JP2004187334A (ja) 超音波モータ及び超音波モータ付き電子機器