JP2008180930A - Diffraction optical element and mold for diffraction optical element - Google Patents

Diffraction optical element and mold for diffraction optical element Download PDF

Info

Publication number
JP2008180930A
JP2008180930A JP2007014663A JP2007014663A JP2008180930A JP 2008180930 A JP2008180930 A JP 2008180930A JP 2007014663 A JP2007014663 A JP 2007014663A JP 2007014663 A JP2007014663 A JP 2007014663A JP 2008180930 A JP2008180930 A JP 2008180930A
Authority
JP
Japan
Prior art keywords
diffractive optical
optical element
mold
shape
diffraction optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007014663A
Other languages
Japanese (ja)
Inventor
Yoshio Sakai
由雄 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2007014663A priority Critical patent/JP2008180930A/en
Publication of JP2008180930A publication Critical patent/JP2008180930A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffraction optical element in which the number of production stages can be reduced, and to provide a mold for a diffraction optical element. <P>SOLUTION: In the diffraction optical element 1, the surface is provided with a diffraction optical face 10, and the cross-sectional shape of the diffraction optical face 10 is the brazed one, and the ridgeline 12 of the peak with a brazed shape is continuously formed spirally from the outer circumferential part of the diffraction optical face 10 toward the central part. According to this shape, the brazed shape of the diffraction optical face can be continuously subjected to machining, and the production stages of the diffraction optical element can be remarkably reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回折光学素子および回折光学素子を製造するための回折光学素子用金型に関する。   The present invention relates to a diffractive optical element and a diffractive optical element mold for producing the diffractive optical element.

近年、光学系の高性能化・小型化の要求に伴い、その要求を満たす回折光学素子が注目されている。回折光学素子は、回折光学面の断面形状をブレーズド形状(鋸歯形状)にすることにより高い回折効率が得られている。
回折光学素子の回折光学面には、同心状に数多くの溝が設けられブレーズド形状が形成されている。このような回折光学素子を製作するには、例えば特許文献1に示すような金型を用い、金型の形状を反転転写により製造するか、光学部材を切削して回折光学面を形成する方法がとられている。
In recent years, attention has been paid to diffractive optical elements that satisfy the demands of high performance and downsizing optical systems. The diffractive optical element achieves high diffraction efficiency by making the cross-sectional shape of the diffractive optical surface a blazed shape (sawtooth shape).
On the diffractive optical surface of the diffractive optical element, many grooves are provided concentrically to form a blazed shape. In order to manufacture such a diffractive optical element, for example, a mold as shown in Patent Document 1 is used, and the shape of the mold is manufactured by reversal transfer, or the optical member is cut to form a diffractive optical surface. Has been taken.

特開2002−182024号公報JP 2002-182024 A

しかしながら、回折光学面のブレーズド形状の製作には、光学部材に同心状の溝を一本ごと超硬や単結晶ダイヤモンドチップなどの刃具を用いて切削加工されているため、多くの時間を費やし、製造工数がかかるという問題がある。
本発明は、上記課題を解決するためになされたものであり、その目的は、回折光学素子の製造工数を削減できる回折光学素子および回折光学素子用金型を提供することにある。
However, in the production of the blazed shape of the diffractive optical surface, the concentric grooves in the optical member are each cut using a cutting tool such as cemented carbide or a single crystal diamond tip. There is a problem that it takes man-hours for manufacturing.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a diffractive optical element and a mold for the diffractive optical element that can reduce the number of manufacturing steps of the diffractive optical element.

上記課題を解決するために、本発明の回折光学素子は、表面に回折光学面を有し、該回折光学面の断面形状がブレーズド形状の回折光学素子であって、前記ブレーズド形状の山の稜線が、らせん状に前記回折光学面の外周部から中心部に向かい連続して形成されていることを特徴とする。   In order to solve the above problems, the diffractive optical element of the present invention is a diffractive optical element having a diffractive optical surface on its surface and a cross-sectional shape of the diffractive optical surface having a blazed shape, and the ridge line of the blazed mountain. Is formed continuously in a spiral from the outer peripheral portion to the center portion of the diffractive optical surface.

この構成によれば、回折光学面におけるブレーズド形状の山の稜線が、らせん状に回折光学面の外周部から中心部に向かい連続して形成されている。この形状であれば、回折光学面のブレーズド形状を連続して切削加工ができるため、回折光学素子の製造工数を大幅に削減することができ、良好な光学特性を有する回折光学素子を提供できる。   According to this configuration, the ridge line of the blazed mountain on the diffractive optical surface is continuously formed in a spiral shape from the outer peripheral part to the center part of the diffractive optical surface. With this shape, since the blazed shape of the diffractive optical surface can be continuously cut, the number of manufacturing steps of the diffractive optical element can be greatly reduced, and a diffractive optical element having good optical characteristics can be provided.

また、本発明の回折光学素子用金型では、表面に回折光学面を有し、回折光学面の断面形状がブレーズド形状の回折光学素子を、金型に形成された転写回折光学面の反転転写により製造する回折光学素子用金型であって、前記ブレーズド形状の山の稜線がらせん状に前記転写回折光学面の外周部から中心部に向かい連続して形成されていることを特徴とする。   In the diffractive optical element mold according to the present invention, a diffractive optical surface having a diffractive optical surface on its surface and a cross-sectional shape of the diffractive optical surface is a blazed diffractive optical surface. The blazed ridge line is continuously formed in a spiral from the outer peripheral portion to the central portion of the transfer diffractive optical surface.

この構成によれば、転写回折光学面におけるブレーズド形状の山の稜線が、らせん状に転写回折光学面の外周部から中心部に向かい連続して形成されている。この形状であれば、転写回折光学面のブレーズド形状を連続して切削加工ができるため、製造工数を大幅に削減する回折光学素子用金型を提供することができる。   According to this configuration, the ridge line of the blazed peak on the transfer diffractive optical surface is continuously formed in a spiral shape from the outer periphery to the center of the transfer diffractive optical surface. With this shape, the blazed shape of the transfer diffractive optical surface can be continuously cut, so that it is possible to provide a diffractive optical element mold that greatly reduces the number of manufacturing steps.

以下、本発明を具体化した実施形態について図面に従って説明する。
(第1の実施形態)
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.
(First embodiment)

図1は本実施形態の回折光学素子の構成を示す構成図であり、図1(a)は模式平面図、図1(b)は同図(a)のA−A断線に沿う模式断面図である。
回折光学素子1は、プラスチックなどで形成された円形の透過性光学基板の表面に溝が設けられ、この溝が形成されている面が回折光学面10として機能する。溝の断面は図1(b)に示すように、ブレーズド形状(鋸歯形状)に形成され、ブレーズド形状の山の稜線12は、回折光学面10の外周部から中心部に向かい、らせん状に連続して形成されている。このブレーズド形状は、回折光学素子1が凸レンズとして機能するように設計されている。
1A and 1B are configuration diagrams showing the configuration of the diffractive optical element according to the present embodiment. FIG. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view taken along the line AA in FIG. It is.
In the diffractive optical element 1, a groove is provided on the surface of a circular transmissive optical substrate made of plastic or the like, and the surface on which the groove is formed functions as the diffractive optical surface 10. The cross section of the groove is formed in a blazed shape (sawtooth shape) as shown in FIG. 1B, and the ridge line 12 of the blazed mountain is continuous in a spiral shape from the outer periphery to the center of the diffractive optical surface 10. Is formed. This blazed shape is designed so that the diffractive optical element 1 functions as a convex lens.

上記のような回折光学素子1は、透過性光学基板を切削加工して形成されている。例えば、超精密加工機を用いて切削加工が行われる。図2は超精密加工機の構成を示す構成図である。
超精密加工機50には、ベッド51上を移動可能に制御されるテーブル52に装着されたワーク53を主軸55に取り付けられた切削刃具54によって加工する加工ゾーンと、オンマシン計測装置56の計測用プローブ57により、加工されたワーク53の形状を計測する計測ゾーンとを備えている。
テーブル52、主軸55、オンマシン計測装置56はNC装置58に制御され、オンマシン計測装置56で計測されたデータは、データ処理・プログラミング装置59にてデータ処理が行われNC装置58にフィードバックされている。このようにして、ワーク53の精密な加工を可能にしている。
The diffractive optical element 1 as described above is formed by cutting a transmissive optical substrate. For example, cutting is performed using an ultraprecision machine. FIG. 2 is a block diagram showing the configuration of the ultraprecision machine.
The ultra-precision processing machine 50 includes a processing zone for processing a work 53 mounted on a table 52 controlled to be movable on a bed 51 by a cutting blade 54 attached to a main shaft 55, and measurement by an on-machine measuring device 56. And a measurement zone for measuring the shape of the processed workpiece 53 by the probe 57.
The table 52, the spindle 55, and the on-machine measuring device 56 are controlled by the NC device 58, and the data measured by the on-machine measuring device 56 is processed by the data processing / programming device 59 and fed back to the NC device 58. ing. In this way, the workpiece 53 can be precisely processed.

また、超精密加工機50を用いた切削加工には、図3に示すような切削刃具が用いられている。図3は切削刃具の構成を示す構成図であり、図3(a)は平面図、図3(b)は刃先部を拡大した斜視図である。
切削刃具60の一方の側にはバイト部61が設けられ、その一部に刃先62が形成されている。刃先62は単結晶ダイヤモンドまたは超硬材料にて形成され、刃先62の刃先面65,66,67の角度を適宜変更することで、切削形状に適したすくい角および逃げ角を設定することができ、ワークへの精密な切削加工を可能にしている。
Further, a cutting tool as shown in FIG. 3 is used for cutting using the ultraprecision machine 50. FIG. 3 is a configuration diagram showing the configuration of the cutting blade, FIG. 3 (a) is a plan view, and FIG. 3 (b) is an enlarged perspective view of the cutting edge portion.
A cutting tool 61 is provided on one side of the cutting blade 60, and a cutting edge 62 is formed on a part thereof. The cutting edge 62 is made of single crystal diamond or a super hard material, and the rake angle and clearance angle suitable for the cutting shape can be set by appropriately changing the angles of the cutting edge surfaces 65, 66, 67 of the cutting edge 62. , Enabling precise cutting of workpieces.

以上のように、本実施形態の回折光学素子1の構成によれば、回折光学面10におけるブレーズド形状の山の稜線12が、らせん状に回折光学面10の外周部から中心部に向かい連続して形成されている。この形状であれば、回折光学面10のブレーズド形状を連続して切削加工ができるため、従来のような同心状に複数の溝を形成する必要がなく、回折光学素子1の製造工数を大幅に削減することができ、良好な光学特性を有する回折光学素子1を提供できる。   As described above, according to the configuration of the diffractive optical element 1 of the present embodiment, the ridge line 12 of the blazed mountain on the diffractive optical surface 10 is continuous from the outer peripheral portion of the diffractive optical surface 10 to the central portion in a spiral shape. Is formed. With this shape, since the blazed shape of the diffractive optical surface 10 can be continuously cut, it is not necessary to form a plurality of grooves concentrically as in the prior art, and the number of manufacturing steps of the diffractive optical element 1 is greatly increased. Thus, the diffractive optical element 1 having good optical characteristics can be provided.

なお、本実施形態では回折光学面を1つの連続した山の稜線(溝)にて形成したが、複数の連続した山の稜線(溝)にて形成することも可能である。
(第2の実施形態)
In this embodiment, the diffractive optical surface is formed by one continuous mountain ridgeline (groove), but may be formed by a plurality of continuous mountain ridgelines (grooves).
(Second Embodiment)

次に、第2の実施形態として、回折光学素子を製造するための回折光学素子用金型について説明する。
図4は回折光学素子用金型の構成を示す構成図であり、図4(a)は模式平面図、図4(b)は同図(a)のB−B断線に沿う模式断面図である。
回折光学素子用金型2は、表面に溝が設けられ、転写回折光学面20が形成されている。この転写回折光学面20は、この溝形状が光学部材に反転転写されて回折光学面として機能するように形成されている。溝の断面は図2(b)に示すように、ブレーズド形状(鋸歯形状)に形成され、ブレーズド形状の山の稜線22は、回折光学素子用金型2の外周部から中心部に向かい、らせん状に連続して形成されている。
Next, a diffractive optical element mold for manufacturing a diffractive optical element will be described as a second embodiment.
4A and 4B are configuration diagrams showing the configuration of the mold for the diffractive optical element. FIG. 4A is a schematic plan view, and FIG. 4B is a schematic cross-sectional view taken along the line BB in FIG. is there.
The diffractive optical element mold 2 is provided with grooves on the surface, and a transfer diffractive optical surface 20 is formed. The transfer diffractive optical surface 20 is formed so that the groove shape is inverted and transferred to an optical member to function as a diffractive optical surface. The cross section of the groove is formed in a blazed shape (sawtooth shape) as shown in FIG. 2B, and the ridge line 22 of the blazed ridge is spiraled from the outer peripheral portion of the diffractive optical element mold 2 to the central portion. It is formed continuously.

回折光学素子用金型2の材料としては、ステンレススチール、超硬材料が用いられ、その表面に無電解Niメッキ層やCu、Al、Au、Ag、無酸素Cuなどのメッキ層が形成されている。主に、プラスチックレンズの成形にはステンレススチールの金型材料が用いられ、ガラスレンズの成形には超硬材料の金型材料が用いられる。
また、このブレーズド形状は、光学部材に反転転写された回折光学面が凸レンズとして機能するように設計されている。
上記のような回折光学素子用金型2のブレーズド形状は、第1の実施形態で説明した超精密加工機および切削刃具により切削加工されて形成されている。
As the material of the diffractive optical element mold 2, stainless steel or super hard material is used, and an electroless Ni plating layer or a plating layer of Cu, Al, Au, Ag, oxygen-free Cu or the like is formed on the surface thereof. Yes. A stainless steel mold material is mainly used for molding a plastic lens, and a cemented carbide material is used for molding a glass lens.
The blazed shape is designed such that the diffractive optical surface reversely transferred to the optical member functions as a convex lens.
The blazed shape of the diffractive optical element mold 2 as described above is formed by cutting with the ultraprecision machine and the cutting blade described in the first embodiment.

このように形成された回折光学素子用金型2は、以下のように用いて回折光学素子を製造することが可能である。
図5は回折光学素子用金型を用いて回折光学素子を製造する方法を説明する説明図であり、図5(a)は金型に形成された形状を転写する方法を説明する説明図、図5(b)は製造された回折光学素子の模式断面図である。
まず、図5(a)に示すように、上型として超硬材料で形成された回折光学素子用金型2を用い、下型35との間に光学ガラスからなる光学部材36を配置する。そして、回折光学素子用金型2と下型35を合わせるように、光学部材36をガラス軟化点以上に加熱した後に圧力を加える。光学部材36が軟化して、回折光学素子用金型2に形成された転写回折光学面20が光学部材36に反転転写する。このようにして、図5(b)に示すような、回折光学面30の山の稜線32が、回折光学素子3の外周部から中心部に向かい、らせん状に連続して形成された回折光学素子3を得ることができる。
The diffractive optical element mold 2 formed as described above can be used as follows to manufacture a diffractive optical element.
FIG. 5 is an explanatory view for explaining a method for producing a diffractive optical element using a mold for a diffractive optical element, and FIG. 5 (a) is an explanatory view for explaining a method for transferring a shape formed on the mold. FIG. 5B is a schematic cross-sectional view of the manufactured diffractive optical element.
First, as shown in FIG. 5A, a diffractive optical element mold 2 formed of a super hard material is used as an upper mold, and an optical member 36 made of optical glass is disposed between the lower mold 35. Then, pressure is applied after the optical member 36 is heated to the glass softening point or higher so that the diffractive optical element mold 2 and the lower mold 35 are matched. The optical member 36 is softened, and the transfer diffractive optical surface 20 formed on the diffractive optical element mold 2 is reversely transferred to the optical member 36. In this way, as shown in FIG. 5B, the ridge line 32 of the peak of the diffractive optical surface 30 is formed in a continuous spiral manner from the outer peripheral part to the central part of the diffractive optical element 3. Element 3 can be obtained.

以上のように、本実施形態の回折光学素子用金型2の構成によれば、転写回折光学面20におけるブレーズド形状の山の稜線12が、らせん状に転写回折光学面20の外周部から中心部に向かい連続して形成されている。この形状であれば、転写回折光学面20のブレーズド形状を連続して切削加工ができるため、従来のような同心状に複数の溝を形成する必要がなく、製造工数を大幅に削減する回折光学素子用金型を提供することができる。   As described above, according to the configuration of the diffractive optical element mold 2 of this embodiment, the ridge line 12 of the blazed ridge in the transfer diffractive optical surface 20 is spirally centered from the outer periphery of the transfer diffractive optical surface 20. It is formed continuously toward the part. With this shape, the blazed shape of the transfer diffractive optical surface 20 can be continuously cut, so that it is not necessary to form a plurality of grooves concentrically as in the conventional case, and the diffractive optical that significantly reduces the number of manufacturing steps. An element mold can be provided.

なお、本実施形態では転写回折光学面を1つの連続した山の稜線(溝)にて形成したが、複数の連続した山の稜線(溝)にて形成することも可能である。
また、上記実施形態では光学部材として光学ガラスの加熱および加圧による金型形状の反転転写を行ったが、光学部材としてプラスチックを用いてもよい。さらに上記回折光学素子用金型は、プラスチックの射出成形用の金型として利用することも可能である。
In this embodiment, the transfer diffractive optical surface is formed by one continuous mountain ridgeline (groove), but may be formed by a plurality of continuous mountain ridgelines (grooves).
In the above-described embodiment, the mold shape is inverted and transferred by heating and pressurizing optical glass as the optical member. However, plastic may be used as the optical member. Furthermore, the diffractive optical element mold can be used as a plastic injection mold.

第1の実施形態における回折光学素子の構成を示す構成図であり、(a)は模式平面図、(b)は同図(a)のA−A断線に沿う模式断面図。It is a block diagram which shows the structure of the diffractive optical element in 1st Embodiment, (a) is a schematic plan view, (b) is a schematic cross section along the AA disconnection of the same figure (a). 超精密加工機の構成を示す構成図。The block diagram which shows the structure of a super precision processing machine. 切削刃具の構成を示す構成図であり、(a)は平面図、(b)は刃先部を拡大した斜視図。It is a block diagram which shows the structure of a cutting blade, (a) is a top view, (b) is the perspective view which expanded the blade edge | tip part. 第2の実施形態における回折光学素子用金型の構成を示す構成図であり、(a)は模式平面図、(b)は同図(a)のB−B断線に沿う模式断面図。It is a block diagram which shows the structure of the metal mold | die for diffractive optical elements in 2nd Embodiment, (a) is a schematic plan view, (b) is a schematic cross section along the BB broken line of the same figure (a). 回折光学素子用金型を用いて回折光学素子を製造する方法を説明する説明図であり、(a)は金型に形成された形状を転写する方法を説明する説明図、(b)は製造された回折光学素子の模式断面図。It is explanatory drawing explaining the method to manufacture a diffractive optical element using the metal mold | die for diffractive optical elements, (a) is explanatory drawing explaining the method to transcribe | transfer the shape formed in the metal mold | die, (b) is manufacturing. The schematic cross section of the diffractive optical element made.

符号の説明Explanation of symbols

1…回折光学素子、2…回折光学素子用金型、3…回折光学素子、10…回折光学面、12…ブレーズド形状の山の稜線、20…転写回折光学面、22…ブレーズド形状の山の稜線、30…回折光学面、32…ブレーズド形状の山の稜線、35…下型、36…光学部材、50…超精密加工機、51…ベッド、52…テーブル、53…ワーク、54…切削刃具、55…主軸、56…オンマシン計測装置、57…計測用プローブ、58…NC装置、59…データ処理・プログラミング装置、60…切削刃具、61…バイト部、62…刃先、65,66,67…刃先面。   DESCRIPTION OF SYMBOLS 1 ... Diffraction optical element, 2 ... Diffraction optical element metal mold, 3 ... Diffraction optical element, 10 ... Diffraction optical surface, 12 ... Edge of blazed ridge, 20 ... Transfer diffractive optical surface, 22 ... Blazed ridge Ridge line, 30 ... Diffraction optical surface, 32 ... Blade ridge line, 35 ... Lower mold, 36 ... Optical member, 50 ... Ultra-precision processing machine, 51 ... Bed, 52 ... Table, 53 ... Workpiece, 54 ... Cutting blade 55 ... Spindle, 56 ... On-machine measuring device, 57 ... Measurement probe, 58 ... NC device, 59 ... Data processing / programming device, 60 ... Cutting blade, 61 ... Byte part, 62 ... Cutting edge, 65, 66, 67 ... the cutting edge.

Claims (2)

表面に回折光学面を有し、該回折光学面の断面形状がブレーズド形状の回折光学素子であって、
前記ブレーズド形状の山の稜線が、らせん状に前記回折光学面の外周部から中心部に向かい連続して形成されていることを特徴とする回折光学素子。
The surface has a diffractive optical surface, and the diffractive optical surface has a blazed diffractive optical element having a cross-sectional shape,
4. A diffractive optical element, wherein the blazed mountain ridge line is continuously formed in a spiral shape from the outer peripheral portion to the central portion of the diffractive optical surface.
表面に回折光学面を有し、回折光学面の断面形状がブレーズド形状の回折光学素子を、金型に形成された転写回折光学面の反転転写により製造する回折光学素子用金型であって、
前記ブレーズド形状の山の稜線がらせん状に前記転写回折光学面の外周部から中心部に向かい連続して形成されていることを特徴とする回折光学素子用金型。
A diffractive optical element mold for producing a diffractive optical element having a diffractive optical surface on its surface and having a cross-sectional shape of the diffractive optical surface formed by reversal transfer of a transfer diffractive optical surface formed on the mold,
4. A diffractive optical element mold according to claim 1, wherein the ridge line of the blazed mountain is continuously formed in a spiral shape from the outer peripheral part to the central part of the transfer diffractive optical surface.
JP2007014663A 2007-01-25 2007-01-25 Diffraction optical element and mold for diffraction optical element Withdrawn JP2008180930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014663A JP2008180930A (en) 2007-01-25 2007-01-25 Diffraction optical element and mold for diffraction optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014663A JP2008180930A (en) 2007-01-25 2007-01-25 Diffraction optical element and mold for diffraction optical element

Publications (1)

Publication Number Publication Date
JP2008180930A true JP2008180930A (en) 2008-08-07

Family

ID=39724874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014663A Withdrawn JP2008180930A (en) 2007-01-25 2007-01-25 Diffraction optical element and mold for diffraction optical element

Country Status (1)

Country Link
JP (1) JP2008180930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147730A (en) * 2020-10-30 2020-12-29 郑州大学 Single-focus spiral zone plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147730A (en) * 2020-10-30 2020-12-29 郑州大学 Single-focus spiral zone plate

Similar Documents

Publication Publication Date Title
US8656815B2 (en) Transfer optical surface machining method, optical device producing mold and optical device
JP3249081B2 (en) Diffraction surface shape and optical element manufacturing method
JP5864920B2 (en) Manufacturing method of diffraction grating
JP5731811B2 (en) Method for manufacturing blazed diffraction grating and method for manufacturing mold for the same
JP4466956B2 (en) Diamond tool manufacturing method
EP2677350A1 (en) Method of manufacturing a diffraction grating
JP2003025118A (en) Diamond tool for cutting
CN101829888A (en) Method for machining encircling hole with meridian plane group nozzle
JP2007054945A (en) Diamond tool
KR101359118B1 (en) Metal mold, optical device, process for manufacturing metal mold for forming optical device
JP2008180930A (en) Diffraction optical element and mold for diffraction optical element
CN102328126A (en) Small helix-edge ball-end milling cutter
JP6173077B2 (en) Method for manufacturing blazed diffraction grating and method for manufacturing mold therefor
JP2003145321A (en) Monocrystal diamond turning tool
JPH1110401A (en) Working method for zonal lens forming die and cutting tool therefor
JP5183256B2 (en) Cutting tool and cutting method using the same
JP2010188525A (en) Machining method
JP2014030987A (en) Method for manufacturing metal mold for producing optical member
US9372289B2 (en) Method of manufacturing a diffraction grating
JP2008074675A (en) Method of producing die for forming optical element, and method for production of optical element
JP2006285011A (en) Diffraction optical element, metal mold for molding diffraction optical element, method for manufacturing diffraction optical element, and method for manufacturing metal mold for molding diffraction optical element
JP4469615B2 (en) Circular member cutting tool and circular member cutting method using this cutting tool
CN114985902A (en) Device for machining integral PCD cutter through laser linkage
JP2018202668A (en) Multilayer plated roll and manufacturing method thereof
CN109604720A (en) A kind of processing method of cutter and mold

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406