JP2008180540A - Hydrogen concentration measuring method and device in molten metal - Google Patents

Hydrogen concentration measuring method and device in molten metal Download PDF

Info

Publication number
JP2008180540A
JP2008180540A JP2007012737A JP2007012737A JP2008180540A JP 2008180540 A JP2008180540 A JP 2008180540A JP 2007012737 A JP2007012737 A JP 2007012737A JP 2007012737 A JP2007012737 A JP 2007012737A JP 2008180540 A JP2008180540 A JP 2008180540A
Authority
JP
Japan
Prior art keywords
molten metal
hydrogen concentration
container
splash
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007012737A
Other languages
Japanese (ja)
Inventor
Takamasa Araki
隆正 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007012737A priority Critical patent/JP2008180540A/en
Publication of JP2008180540A publication Critical patent/JP2008180540A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method and a device capable of determining a hydrogen concentration in a molten metal quickly and simply. <P>SOLUTION: A lidded sealed container 2 for storing a sampling container 1 of the molten metal M is connected to a depressurized container 3 depressurized by a vacuum pump 5 through a communicating path 4, and the sampling container 1 is put into the sealed container 2, and then an on-off valve 8A in the communicating path 4 is opened, to thereby depressurize quickly the inside of the sealed container 2. Then, discharge of hydrogen gas is generated from the molten metal M in the sampling container 1, and molten metal splash M' is scattered upward from the surface of the molten metal M accompanied thereby. A pressure sensor 11 is arranged on the back of an opening/closing lid 2a of the sealed container 2, and the pressure sensor 11 outputs a signal in response to collision with the molten metal splash M', and a scattering amount of the molten metal splash M' can be known from the output signals. Consequently, it can be specified that the hydrogen concentration in the molten metal is within an acceptable level when a generation amount of the molten metal splash M' from the molten metal M which is a measuring object is lower than a threshold, by acquiring beforehand the generation amount of the molten metal splash relative to a high-quality molten metal and by setting the threshold properly. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属溶湯中の水素濃度を把握するための水素濃度測定方法および装置に関する。   The present invention relates to a hydrogen concentration measuring method and apparatus for grasping the hydrogen concentration in a molten metal.

近年、自動車部品のアルミ化が進む中、アルミニウムまたはアルミニウム合金の鋳造品の使用も拡大している。ところで、鋳造欠陥の一つに、凝固時の水素ガスの放出に起因する巣の発生があり、特にアルミ系鋳造品においては、この巣の発生が不良品発生の大きな原因になっている。このため、従来一般には、溶解炉または保持炉内の溶湯からサンプルを採取して、密閉容器内で減圧しながら凝固させ、凝固後、サンプルを切断して、断面内の巣を限度見本と見比べて、溶湯中の水素濃度を定性的に評価していた。しかし、このような評価方法では、密閉容器内で凝固させてからサンプルを切断するまで結果が分らないため、生産ラインに待ちが生じ、その分、生産性が低下するという問題があった。また、限度見本との比較のため、その比較に熟練度を要し、場合によっては評価に誤りが生じて、大きな損害をもたらす虞もあった。   In recent years, the use of aluminum or aluminum alloy castings is expanding as automobile parts become aluminized. By the way, one of the casting defects is the generation of nests due to the release of hydrogen gas during solidification, and this generation of nests is a major cause of defective products, particularly in aluminum-based castings. Therefore, in general, a sample is generally taken from the molten metal in the melting furnace or holding furnace, solidified while reducing the pressure in a sealed container, and after solidification, the sample is cut and the nest in the cross section is compared with the limit sample. Thus, the hydrogen concentration in the molten metal was qualitatively evaluated. However, in such an evaluation method, since the result is not known until the sample is cut after being solidified in the sealed container, there is a problem that the production line waits and the productivity is lowered accordingly. In addition, for comparison with the limit sample, skill is required for the comparison, and in some cases, an error occurs in the evaluation and there is a possibility of causing great damage.

なお、従来より、溶湯中に測定ヘッド(プローブ)を浸漬して、直接溶湯中の水素濃度を測定する装置が知られており(例えば、特許文献1、2参照)、これら測定装置を用いることで、上記した問題発生を解消することが可能になる。しかしながら、これら測定装置は、取扱いが面倒である上、高価なプローブが消耗品となり、操作性並びにコスト面で問題が多い。   In addition, conventionally, an apparatus for directly measuring a hydrogen concentration in a molten metal by dipping a measuring head (probe) in the molten metal is known (for example, refer to Patent Documents 1 and 2), and these measuring apparatuses are used. Thus, it is possible to eliminate the above-described problem occurrence. However, these measuring devices are troublesome to handle and expensive probes become consumables, and there are many problems in terms of operability and cost.

特開平2−17441号公報Japanese Patent Laid-Open No. 2-17441 特開昭59−12348号公報JP 59-12348 A

本発明は、上記した従来技術の問題点に鑑みてなされたもので、その課題とするところは、迅速かつ簡易に金属溶湯中の水素濃度を把握できる測定方法および装置を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a measurement method and apparatus capable of quickly and easily grasping the hydrogen concentration in a molten metal.

上記課題を解決するため、本発明に係る溶湯中の水素濃度の測定方法および装置は、採取容器に採取した溶湯から減圧下で水素ガスを放出させ、このとき生じる溶湯飛沫の発生量から溶湯中の水素濃度を特定することを特徴とする。溶湯中の水素濃度と水素ガス放出に伴う溶湯飛沫の発生量との間には相関があるので、溶湯飛沫の発生量を測定することで溶湯中の水素濃度を特定できる。
以下に、本発明の態様をいくつか例示し、それらについて項分けして説明する。
In order to solve the above problems, the method and apparatus for measuring the hydrogen concentration in the molten metal according to the present invention releases hydrogen gas under reduced pressure from the molten metal collected in the collecting container, and the amount of molten droplets generated at this time It is characterized in that the hydrogen concentration of is specified. Since there is a correlation between the hydrogen concentration in the molten metal and the amount of molten metal droplets generated due to the release of hydrogen gas, the hydrogen concentration in the molten metal can be specified by measuring the amount of molten metal particles generated.
In the following, some aspects of the present invention will be illustrated and described.

(1)溶湯を採取した採取容器を密閉容器に入れて減圧することにより、溶湯から水素ガスを放出させ、この水素ガス放出に伴って生じる溶湯飛沫の発生量を経時的に測定して、その測定結果に基づいて水素濃度を特定することを特徴とする金属溶湯中の水素濃度測定方法。 (1) Put a sampling container in which the molten metal is collected into a sealed container and reduce the pressure to release hydrogen gas from the molten metal, and measure the amount of molten metal droplets generated with this hydrogen gas release over time. A method for measuring a hydrogen concentration in a molten metal, wherein the hydrogen concentration is specified based on a measurement result.

本(1)項に記載の水素濃度測定方法においては、溶湯を採取した採取容器を密閉容器に入れて減圧するだけなので、面倒な操作を行うことなく溶湯中の水素濃度を迅速に把握することができる。また、高価な部品を消耗することもないので、測定に要するコスト負担もわずかとなる。   In the hydrogen concentration measurement method described in this item (1), the collection container for collecting the molten metal is simply put in a sealed container and depressurized, so that the hydrogen concentration in the molten metal can be quickly grasped without any troublesome operations. Can do. In addition, since expensive parts are not consumed, the cost burden for measurement is small.

本(1)項に記載の水素濃度測定方法において、水素濃度を特定する方法は任意であり、例えば、事前に巣の発生状況が規定内にある良質な溶湯について本方法と同様の処理を行って、溶湯飛沫の発生量を把握し、適当なしきい値を設定して、測定対象の溶湯についての溶湯飛沫の発生量が該しきい値より低い場合に、溶湯中の水素濃度が合格水準にあると特定してもよい。あるいは、事前に水素濃度が既知の溶湯について本方法と同様の処理を行って、溶湯飛沫の発生量を把握し、この溶湯飛沫の発生量と実際の水素濃度との相関を求めて、測定対象の溶湯についての溶湯飛沫の発生量を前記相関に照合して溶湯中の水素濃度を特定してもよい。   In the method for measuring the hydrogen concentration described in the item (1), the method for specifying the hydrogen concentration is arbitrary. For example, a high-quality molten metal whose nest generation state is within a specified range is processed in advance. The amount of molten metal generated is grasped, an appropriate threshold value is set, and when the amount of molten metal generated for the molten metal to be measured is lower than the threshold value, the hydrogen concentration in the molten metal reaches the acceptable level. You may specify that there is. Alternatively, the same process as this method is performed for a molten metal with a known hydrogen concentration in advance, the amount of molten metal splash is determined, and the correlation between the amount of molten metal splash and the actual hydrogen concentration is obtained, and the measurement target The generation amount of molten metal splash for the molten metal may be collated with the correlation to specify the hydrogen concentration in the molten metal.

(2)溶湯飛沫の発生量を、該飛沫の衝突に感応する圧力センサの出力信号に基づいて決定することを特徴とする上記(1)項に記載の金属溶湯中の水素濃度測定方法。   (2) The method for measuring a hydrogen concentration in a molten metal according to (1) above, wherein the amount of molten metal splash is determined based on an output signal of a pressure sensor sensitive to the collision of the splash.

本(2)項に記載の水素濃度測定方法において、圧力センサの種類は、圧力に感応するものであれば任意であり、圧力を受けて電荷を発生する圧電素子からなるものであっても、圧力を受けて静電容量が変化する平板コンデンサからなるものであっても、あるいは圧力を受けて抵抗値が変化する導電体からなるものであってもよい。何れの圧力センサを用いる場合でも、これを溶湯飛沫の飛散範囲に配置することで、該圧力センサが溶湯飛沫の衝突に感応する。したがって、該圧力センサの出力信号の変化を解析することで、溶湯飛沫の発生量を定量的に求めることができる。この場合、圧力センサを溶湯飛沫から保護するため、その表面に予め耐熱性を有するフィルムまたはシートを接合するのが望ましい。   In the method for measuring the hydrogen concentration described in the item (2), the type of the pressure sensor is arbitrary as long as it is sensitive to pressure, and even if it is composed of a piezoelectric element that generates electric charge under pressure, It may be composed of a plate capacitor whose capacitance changes under pressure, or may be composed of a conductor whose resistance value changes under pressure. Regardless of which pressure sensor is used, the pressure sensor is sensitive to the collision of the molten metal splash by disposing it in the splashed area of the molten metal droplet. Therefore, by analyzing the change in the output signal of the pressure sensor, the amount of molten metal splash can be determined quantitatively. In this case, in order to protect the pressure sensor from molten metal droplets, it is desirable to previously bond a heat-resistant film or sheet to the surface.

(3)溶湯飛沫の発生量を、該飛沫の接近に感応する渦電流センサの出力信号基づいて決定することを特徴とする上記(1)項に記載の金属溶湯中の水素濃度測定方法。   (3) The method for measuring a hydrogen concentration in a molten metal according to (1) above, wherein the amount of molten metal splash is determined based on an output signal of an eddy current sensor sensitive to the approach of the splash.

渦電流センサは、対象物に渦電流を発生させて磁界変化から対象物の位置を測定する機能を有しており、これを溶湯飛沫の飛散する領域の上方に配置することで、溶湯飛沫の飛散量(発生量)に応じて出力信号が変化する。したがって、該渦電流センサの出力信号の変化を解析することで溶湯飛沫の発生量を定量的に求めることができる。この場合。溶湯飛沫と非接触でその発生量を求めることができるので、特別の保護は不要となる。   The eddy current sensor has a function of generating an eddy current in the object and measuring the position of the object from a change in the magnetic field, and by arranging the eddy current sensor above the area where the molten metal splashes, The output signal changes according to the scattering amount (generated amount). Therefore, by analyzing the change in the output signal of the eddy current sensor, the amount of molten metal splash can be quantitatively determined. in this case. Since the amount of generation can be obtained without contact with molten metal splash, no special protection is required.

(4)溶湯飛沫の発生量を、撮像手段による画像に基づいて決定することを特徴とする上記(1)項に記載の金属溶湯中の水素濃度測定方法。   (4) The method for measuring a hydrogen concentration in a molten metal as described in (1) above, wherein the amount of molten metal splash is determined based on an image taken by an imaging means.

溶湯飛沫の飛散領域を撮像手段により撮像することにより、溶湯飛沫の発生状況を画像上で確認することできる。したがって、例えば、撮像した画像をデータ解析して溶湯飛沫の数、面積率等を求めることで、溶湯飛沫の発生量を定量的に求めることができる。この場合、撮像手段としては、データ解析に有利なCCDカメラを用いるのが望ましい。   The state of occurrence of the molten metal splash can be confirmed on the image by imaging the splash region of the molten metal with the imaging means. Therefore, for example, by analyzing the captured image and obtaining the number of molten metal splashes, the area ratio, etc., the amount of molten metal splashes can be quantitatively obtained. In this case, it is desirable to use a CCD camera that is advantageous for data analysis as the imaging means.

(5)採取容器に採取した溶湯の重量を測定し、溶湯飛沫の発生量の測定結果を前記重量で平準化して水素濃度を特定することを特徴とする上記(1)乃至(4)の何れか1項に記載の金属溶湯中の水素濃度測定方法。   (5) Any one of (1) to (4) above, wherein the weight of the molten metal collected in the collection container is measured, and the measurement result of the amount of molten metal splash is leveled with the weight to identify the hydrogen concentration. The method for measuring the hydrogen concentration in the molten metal according to claim 1.

採取容器への溶湯の汲取り量にはバラツキがあるので、(5)項に記載のように採取容器に採取した溶湯の重量を測定して、溶湯飛沫の発生量の測定結果を前記重量で平準化することにより、測定精度を向上させることができる。   Since there is variation in the amount of molten metal pumped into the collection container, the weight of the molten metal collected in the collection container is measured as described in (5), and the measurement result of the amount of molten metal splash is expressed by the above weight. Measurement accuracy can be improved by leveling.

(6)溶湯を採取した採取容器を納める蓋付き密閉容器と、該密閉容器と連通路により接続された減圧容器と、該減圧容器内を真空引きする真空引き手段と、前記連通路を連通・遮断する開閉弁と、前記密閉容器に納めた採取容器内の溶湯表面からの溶湯飛沫の発生量を検出する検出手段と、該検出手段の出力信号に基づいて溶湯中の水素濃度を特定する信号処理手段とを備えていることを特徴とする金属溶湯中の水素濃度測定装置。   (6) A sealed container with a lid for storing a sampling container for collecting molten metal, a decompression container connected to the sealed container by a communication path, a vacuuming means for evacuating the inside of the decompression container, and the communication path communicating with each other. An on-off valve for shutting off, a detecting means for detecting the amount of molten metal splashing from the surface of the molten metal in the sampling container stored in the closed container, and a signal for specifying the hydrogen concentration in the molten metal based on the output signal of the detecting means And a hydrogen concentration measuring device in the molten metal.

本(6)項に記載の水素濃度測定装置においては、密閉容器と減圧容器とを連通路により接続しているので、密閉容器に溶湯を採取した採取容器を納めて蓋をした後、該連通路の開閉弁を開くと、密閉容器内が急速に減圧される。これにより凝固直前の水素ガスの放出が促進され、溶湯飛沫の発生も活発となって、測定結果に有意差が生じ易くなる。また、密閉容器内の圧力は、密閉容器の容積と減圧容器の容積とに依存するので、減圧容器内の圧力を適当に設定することにより密閉容器内の減圧条件を常に一定にすることができ、水素濃度測定に対する信頼性が向上する。   In the hydrogen concentration measuring apparatus described in this item (6), since the sealed container and the decompression container are connected by the communication path, the sampling container in which the molten metal is sampled is put in the sealed container and the lid is closed. When the opening / closing valve of the passage is opened, the inside of the sealed container is rapidly depressurized. As a result, the release of hydrogen gas immediately before solidification is promoted, the generation of molten metal splash becomes active, and a significant difference is likely to occur in the measurement result. In addition, since the pressure in the sealed container depends on the volume of the sealed container and the volume of the decompression container, the decompression condition in the sealed container can always be kept constant by appropriately setting the pressure in the decompression container. This improves the reliability of hydrogen concentration measurement.

(7)密閉容器内に、採取容器内の溶湯の重量を計測する重量計を配設したことを特徴とする上記(6)項に記載の金属溶湯中の水素濃度測定装置。   (7) The apparatus for measuring a hydrogen concentration in a molten metal as described in (6) above, wherein a weighing scale for measuring the weight of the molten metal in the collection container is disposed in the sealed container.

本(7)項に記載のように採取容器に採取した溶湯の重量を計測する重量計を設けた場合は、溶湯飛沫の発生量の測定結果を前記重量で平準化して、測定精度の向上を図ることができる。   When a weighing scale that measures the weight of the molten metal collected in the collection container is provided as described in this section (7), the measurement result of the amount of molten metal generated is leveled with the weight to improve the measurement accuracy. Can be planned.

本発明に係る溶湯中の水素濃度測定方法によれば、面倒な操作を行うことなく溶湯中の水素濃度を迅速に把握することができ、しかも、測定に要するコスト負担もわずかとなり、その利用価値は大なるものがある。   According to the method for measuring the hydrogen concentration in the molten metal according to the present invention, it is possible to quickly grasp the hydrogen concentration in the molten metal without performing a troublesome operation, and the cost burden required for the measurement becomes small, and its utility value is reduced. There is a great thing.

また、本発明に係る溶湯中の水素濃度測定装置によれば、常に同じ条件で測定を行うことができるので、測定精度に対する信頼性が向上する。   Moreover, according to the hydrogen concentration measuring apparatus in the molten metal which concerns on this invention, since it can always measure on the same conditions, the reliability with respect to a measurement precision improves.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。
図1は、本発明の第1の実施形態としての溶湯中の水素濃度測定装置を示したものである。同図中、1は、溶湯Mを採取するための採取容器、2は、採取容器1を納める密閉容器、3は、密閉容器と連通路4により接続された減圧容器、5は、前記連通路4の途中に配管6により接続された真空ポンプ(真空引き手段)である。前記連通路5の途中には、一端が大気に開放された配管7が接続されており、この配管7と前記真空ポンプ5に接続する配管6とは、連通路5の一箇所で合流している。また、連通路4には、前記配管6、7の合流部を挟んで2つの開閉弁8A、8Bが配設されると共に、各配管6、7にも開閉弁8C、8Dが配設されている。なお、以下では、説明の便宜のため、密閉容器2側の開閉弁8Aを第1の開閉弁、減圧容器3側の開閉弁8Bを第2の開閉弁、真空ポンプ5側の開閉弁8Cを真空弁、大気側の開閉弁8Dを大気弁とそれぞれ呼ぶこととする。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows an apparatus for measuring hydrogen concentration in a molten metal as a first embodiment of the present invention. In the figure, 1 is a collection container for collecting the molten metal M, 2 is a sealed container for housing the collection container 1, 3 is a decompression container connected to the sealed container by a communication path 4, and 5 is the communication path. 4 is a vacuum pump (evacuation means) connected in the middle of 4 by a pipe 6. A pipe 7 having one end opened to the atmosphere is connected to the middle of the communication path 5, and the pipe 7 and the pipe 6 connected to the vacuum pump 5 join at one place of the communication path 5. Yes. The communication passage 4 is provided with two on-off valves 8A and 8B across the junction of the pipes 6 and 7, and the on-off valves 8C and 8D are also provided on the pipes 6 and 7, respectively. Yes. In the following description, for convenience of explanation, the on-off valve 8A on the closed container 2 side is the first on-off valve, the on-off valve 8B on the decompression container 3 side is the second on-off valve, and the on-off valve 8C on the vacuum pump 5 side is. The vacuum valve and the open / close valve 8D on the atmosphere side will be referred to as the atmospheric valve.

上記した配管系において、いま、第1の開閉弁8Aおよび大気弁8Dを閉弁、第2の開閉弁8Bおよび真空弁8Cを開弁状態として真空ポンプ5を起動させると、減圧容器3内が減圧され、その後、真空弁8Cを閉じると、減圧容器3内には所定の真空圧が封じ込められる。一方、この状態から第1の開閉弁8Aを開くと、減圧容器3内の真空圧が連通路4を介して密閉容器2に導入される。密閉容器2は開閉蓋2aを有しており、この開閉蓋2aを閉じた状態で、前記第1の開閉弁8Aを開くと、密閉容器2内は急速に減圧される。このとき、密閉容器2内の圧力は、該密閉容器2の容積と減圧容器3の容積とに依存するので、減圧容器2内の圧力(真空圧)を適当に設定することにより、密閉容器2内の減圧条件は常に一定となる。   In the piping system described above, when the vacuum pump 5 is started with the first on-off valve 8A and the atmospheric valve 8D closed and the second on-off valve 8B and the vacuum valve 8C opened, the inside of the decompression vessel 3 is When the pressure is reduced and then the vacuum valve 8 </ b> C is closed, a predetermined vacuum pressure is contained in the pressure reducing container 3. On the other hand, when the first on-off valve 8A is opened from this state, the vacuum pressure in the decompression container 3 is introduced into the sealed container 2 through the communication path 4. The hermetic container 2 has an open / close lid 2a. When the first open / close valve 8A is opened with the open / close lid 2a closed, the inside of the hermetic container 2 is rapidly decompressed. At this time, since the pressure in the sealed container 2 depends on the volume of the sealed container 2 and the volume of the decompression container 3, by setting the pressure (vacuum pressure) in the decompression container 2 appropriately, the sealed container 2 The decompression condition is always constant.

本第1の実施形態において、上記密閉容器2内には重量計10が設置されており、溶湯Mの採取容器1は、この重量計10の上に載置されるようになっている。採取容器1としては、従来の切断による評価試験で用いられていたサンプル容器、いわゆるタマゴカップと同じものが用いられており、その内容積は直径40mm、高さ40mm程度の大きさとなっている。ただし、この採取容器1の大きさは任意であり、所望により前記タマゴカップよりも大きいまたは小さいものを用いてもよい。水素濃度の測定に際しては、溶湯Mを採取した採取容器1を重量計10の上に載せた状態で、密閉容器2内を減圧し、これにより採取容器1内の溶湯Mから水素ガスの放出が起こり、これに伴って溶湯Mの表面から溶湯飛沫M´が上方へ飛散する。   In the first embodiment, a weighing scale 10 is installed in the sealed container 2, and the collection container 1 for the molten metal M is placed on the weighing scale 10. The collection container 1 is the same as a sample container used in a conventional evaluation test by cutting, a so-called egg cup, and has an inner volume of about 40 mm in diameter and about 40 mm in height. However, the size of the collection container 1 is arbitrary, and a larger or smaller one than the egg cup may be used if desired. When measuring the hydrogen concentration, the inside of the sealed container 2 is depressurized while the collection container 1 from which the molten metal M has been collected is placed on the weighing scale 10, thereby releasing hydrogen gas from the molten metal M in the collection container 1. As a result, the molten metal splash M ′ scatters upward from the surface of the molten metal M.

しかして、上記密閉容器2の開閉蓋2aの裏面には、圧力センサ11が接合されている。圧力センサ11としては、ここでは、圧力を受けて電荷を発生するシート状の圧電素子が用いられており、その表面は、耐熱性を有する樹脂フィルム(図示略)により覆われている。この圧力センサ11の大きさは、前記採取容器1の口径よりもわずか大きく設定されており、開閉蓋2aを閉じた状態で、採取容器1の開口に対向する位置に水平に配置される。一方、密閉容器2の開閉蓋2aは、上記溶湯飛沫M´の飛散高さよりも低くなるようにその設置高さが設定されており、これにより圧力センサ11に溶湯飛沫M´が衝突し、この衝突に圧力センサ11が感応する。したがって、圧力センサ11は、溶湯飛沫M´の発生量を検出する検出手段を構成している。   Thus, the pressure sensor 11 is joined to the back surface of the open / close lid 2a of the sealed container 2. Here, as the pressure sensor 11, a sheet-like piezoelectric element that generates an electric charge under pressure is used, and its surface is covered with a heat-resistant resin film (not shown). The size of the pressure sensor 11 is set slightly larger than the diameter of the collection container 1 and is horizontally disposed at a position facing the opening of the collection container 1 with the open / close lid 2a closed. On the other hand, the installation height of the open / close lid 2a of the sealed container 2 is set so as to be lower than the scattering height of the molten metal splash M ', whereby the molten metal droplet M' collides with the pressure sensor 11, and this The pressure sensor 11 is sensitive to the collision. Therefore, the pressure sensor 11 constitutes a detecting means for detecting the amount of molten metal splash M ′.

図2に示されるように、本水素濃度測定装置は、別途信号処理装置12を備えており、この信号処理装置12には、上記圧力センサ11の出力信号および重量計10の出力信号が入力されるようになっている。信号処理装置12は、ここでは、測定対象の溶湯Mについての溶湯飛沫M´の発生量から水素濃度が合格レベルにあるか否かを判定する機構を有しており、その判定結果は、表示装置13に表示される。   As shown in FIG. 2, the present hydrogen concentration measuring device is provided with a separate signal processing device 12, to which the output signal of the pressure sensor 11 and the output signal of the weigh scale 10 are input. It has become so. Here, the signal processing device 12 has a mechanism for determining whether or not the hydrogen concentration is at an acceptable level from the generation amount of the molten metal splash M ′ for the molten metal M to be measured. It is displayed on the device 13.

溶湯中の水素濃度の測定に際しては、予め真空ポンプ5により減圧容器3内を所定の真空度にしておく。そして、溶湯Mを採取した採取容器1を密閉容器2内の重量計10の上に載せ、その後、開閉蓋2aを閉じて上記第1の開閉弁8Aを開く。すると、密閉容器2内は急速に減圧され、採取容器1内の溶湯Mから水素ガスの放出が起こり、これに伴って溶湯Mの表面から溶湯飛沫M´が上方へ飛散し、圧力センサ11に衝突する。   In measuring the hydrogen concentration in the molten metal, the inside of the decompression vessel 3 is set to a predetermined degree of vacuum by the vacuum pump 5 in advance. Then, the collection container 1 from which the molten metal M has been collected is placed on the weighing scale 10 in the sealed container 2, and then the opening / closing lid 2a is closed to open the first opening / closing valve 8A. Then, the inside of the sealed container 2 is rapidly depressurized, and hydrogen gas is released from the molten metal M in the sampling container 1, and accordingly, the molten metal splash M ′ scatters upward from the surface of the molten metal M to the pressure sensor 11. collide.

圧力センサ11は、上記した溶湯飛沫M´の衝突に感応し、その出力信号を信号処理装置12へ送出する。信号処理装置12は、前記圧力センサ11の出力信号を増幅して、その信号波形を経時的に記憶し、かつこの信号波形をデータ処理して水素濃度を特定する。図3の実線は、圧力センサ11の信号波形の一例を示したもので、同図には、巣の発生状況が規定内にある良質な溶湯についての信号波形が一点鎖線で併記されている。信号処理装置12は、たとえば、前記信号波形のピーク値、ピーク数、積分量等から溶湯飛沫M´の発生量を決定し、前記良質な溶湯について事前に把握した溶湯飛沫の発生量との関係で予め設定したしきい値よりも低い場合に、溶湯中の水素濃度が合格水準にあると特定する。この場合、採取容器1への溶湯Mの汲取り量にはバラツキがあるので、重量計10により測定した溶湯重量で溶湯飛沫M´の発生量を平準化し、これによって溶湯中の水素濃度が合格水準にあるか否かを正確に特定することができる。   The pressure sensor 11 is sensitive to the collision of the molten metal splash M ′ and sends an output signal to the signal processing device 12. The signal processing device 12 amplifies the output signal of the pressure sensor 11, stores the signal waveform over time, and processes the signal waveform to specify the hydrogen concentration. The solid line in FIG. 3 shows an example of the signal waveform of the pressure sensor 11, and in the same figure, the signal waveform for a high-quality molten metal whose nest generation state is within the regulation is also shown by a one-dot chain line. For example, the signal processing device 12 determines the generation amount of the molten metal splash M ′ from the peak value, the number of peaks, the integrated amount, etc. of the signal waveform, and the relationship with the generated amount of the molten metal droplets obtained in advance for the high-quality molten metal. When the threshold value is lower than the preset threshold value, the hydrogen concentration in the molten metal is specified as being acceptable. In this case, since there is a variation in the amount of the molten metal M drawn into the collection container 1, the amount of molten metal M 'generated is equalized by the molten metal weight measured by the weigh scale 10, so that the hydrogen concentration in the molten metal passes. It is possible to accurately specify whether or not it is at the level.

このように行う溶湯中の水素濃度測定装置、方法によれば、溶湯Mを採取した採取容器1を密閉容器2に入れて減圧するだけなので、面倒な操作を行うことなく溶湯中の水素濃度を迅速に把握することができる。本第1の実施形態においては特に、密閉容器2に減圧容器3の真空圧を導入して、密閉容器2内を急速に減圧できるようにしているので、凝固直前の水素ガスの放出が促進され、溶湯飛沫の発生も活発となって、測定結果に有意差が生じ易くなる。また、密閉容器2内の減圧条件は、密閉容器2の容積と、減圧容器3の容積と減圧容器3内の圧力とにより一義的に決まるので、常に一定の減圧条件を再現でき、水素濃度測定に対する信頼性が向上する。また、圧力センサ11についてはその表面を樹脂フィルムにて保護しているので、該樹脂フィルムを交換して再使用が可能になり、結果として高価な部品を消耗することもないので、測定に要するコスト負担もわずかとなる。なお、水素濃度の測定終了後は、減圧容器3側の第2の開閉弁8Bを閉弁する一方で、大気弁8Dを開放し、これにより密閉容器2に大気が導入され、密閉容器2からの採取容器1の取出しが可能になる。   According to the apparatus and method for measuring the hydrogen concentration in the molten metal thus performed, the sampling container 1 from which the molten metal M has been collected is simply placed in the sealed container 2 and depressurized, so that the hydrogen concentration in the molten metal can be determined without performing a cumbersome operation. It is possible to grasp quickly. Particularly in the first embodiment, the vacuum pressure of the decompression container 3 is introduced into the sealed container 2 so that the inside of the sealed container 2 can be rapidly decompressed, so that the release of hydrogen gas immediately before solidification is promoted. Further, the generation of molten metal splash becomes active, and a significant difference is easily generated in the measurement result. In addition, the decompression condition in the sealed container 2 is uniquely determined by the volume of the sealed container 2, the volume of the decompression container 3, and the pressure in the decompression container 3, so that the constant decompression condition can always be reproduced, and the hydrogen concentration measurement Reliability is improved. Further, since the surface of the pressure sensor 11 is protected by a resin film, it can be reused by replacing the resin film, and as a result, expensive parts are not consumed, so that measurement is required. Cost burden is also small. After the measurement of the hydrogen concentration, the second on-off valve 8B on the decompression vessel 3 side is closed while the atmospheric valve 8D is opened, whereby the atmosphere is introduced into the sealed vessel 2 and the The sampling container 1 can be taken out.

ここで、上記第1の実施形態においては、圧力センサ11の出力信号の波形をデータ処理してしきい値と比較し、水素濃度が所望のレベルにあるか否かを判断するようにしたが、前記データ処理の方法は任意である。たとえば、事前に水素濃度が既知の溶湯について上記方法により溶湯飛沫の発生量を把握し、この溶湯飛沫の発生量と実際の水素濃度との相関を予め求めて、測定対象の溶湯Mについての溶湯飛沫M´の発生量を前記相関に照合して、水素濃度を定量的に特定するようにしてもよい。   Here, in the first embodiment, the waveform of the output signal of the pressure sensor 11 is subjected to data processing and compared with a threshold value to determine whether or not the hydrogen concentration is at a desired level. The data processing method is arbitrary. For example, for a molten metal with a known hydrogen concentration in advance, the amount of molten metal splash is ascertained by the above method, and a correlation between the amount of molten metal splash generated and the actual hydrogen concentration is obtained in advance to obtain a molten metal for the molten metal M to be measured. The generation amount of the splash M ′ may be collated with the correlation, and the hydrogen concentration may be specified quantitatively.

図4は、本発明の第2の実施形態としての溶湯中の水素濃度測定装置を示したものである。なお、本水素濃度測定装置の全体構造は、上記第1の実施形態と同じであるので、ここでは、図1に示した部分と同一構成要素に同一符号を付し、重複する説明は省略する。本第2の実施形態の特徴とするところは,上記圧力センサ11に代えて、渦電流センサ20を密閉容器2の開閉蓋2aの裏面に固設した点にある。渦電流センサ20は、対象物に渦電流を発生させて磁界変化から対象物の位置を測定する機能を有しており、ここでは、溶湯飛沫M´と接触しない高さに設置され、溶湯飛沫M´の接近に感応するようになっている。したがって、該渦電流センサ20は、上記圧力センサ11と同様に溶湯飛沫M´の発生量を検出する検出手段を構成している。   FIG. 4 shows an apparatus for measuring hydrogen concentration in molten metal as a second embodiment of the present invention. Since the overall structure of the hydrogen concentration measuring apparatus is the same as that of the first embodiment, the same components as those shown in FIG. . The feature of the second embodiment is that an eddy current sensor 20 is fixed on the back surface of the open / close lid 2a of the hermetic container 2 instead of the pressure sensor 11 described above. The eddy current sensor 20 has a function of generating an eddy current in an object and measuring the position of the object from a magnetic field change. Here, the eddy current sensor 20 is installed at a height that does not come into contact with the molten metal splash M ′. It is sensitive to the approach of M '. Therefore, the eddy current sensor 20 constitutes detection means for detecting the generation amount of the molten metal splash M ′ similarly to the pressure sensor 11.

上記渦電流センサ20の出力信号は、第1の実施形態と同様に信号処理装置12に送出されるようになっており、信号処理装置12は、前記渦電流センサ20の出力信号を増幅して、その信号波形を経時的に記憶し、かつこの信号波形をデータ処理して水素濃度を特定する。この場合、データ処理の方法としては、上記したようにしきい値と比較する方法を採用しても、相関と照合する方法を採用してもよい。本第2の実施形態においては、渦電流センサ20の使用により、溶湯飛沫M´と非接触でその発生量を求めることができるので、特別の保護は不要となる。   The output signal of the eddy current sensor 20 is sent to the signal processing device 12 as in the first embodiment, and the signal processing device 12 amplifies the output signal of the eddy current sensor 20. The signal waveform is memorized over time, and the signal waveform is processed to identify the hydrogen concentration. In this case, as a data processing method, a method of comparing with a threshold value as described above may be employed, or a method of collating with a correlation may be employed. In the second embodiment, by using the eddy current sensor 20, the amount of generation can be obtained in a non-contact manner with the molten metal splash M ′, so that no special protection is required.

図5は、本発明の第3の実施形態としての溶湯中の水素濃度測定装置を示したものである。なお、本水素濃度測定装置の全体構造は、上記第1の実施形態と同じであるので、ここでは、図1に示した部分と同一構成要素に同一符号を付し、重複する説明は省略する。本第3の実施形態の特徴とするところは,第1の実施形態における圧力センサ11に代えて、密閉容器2の開閉蓋2aの上面にCCDカメラ(撮像手段)25を設置し、このCCDカメラ25により、前記開閉蓋2aに設けたガラス窓2bを通して採取容器1からの溶湯飛沫M´の発生状況を撮影するようにした点にある。   FIG. 5 shows an apparatus for measuring the hydrogen concentration in a molten metal as a third embodiment of the present invention. Since the overall structure of the hydrogen concentration measuring apparatus is the same as that of the first embodiment, the same components as those shown in FIG. . A feature of the third embodiment is that a CCD camera (imaging means) 25 is installed on the upper surface of the open / close lid 2a of the hermetic container 2 instead of the pressure sensor 11 in the first embodiment, and this CCD camera 25, the occurrence state of the molten metal splash M ′ from the collection container 1 is photographed through the glass window 2b provided in the opening / closing lid 2a.

上記CCDカメラ25の出力信号は、画像解析装置26を介して上記信号処理装置12に送出されるようになっている。画像解析装置26は、CCDカメラ25で撮像された画像を解析して、溶湯飛沫M´の発生量を定量的に求め、その量に応じた信号を出力する機能を有している。この場合、溶湯飛沫M´の発生量の特定方法は任意であり、たとえば、画像上で認識される溶湯飛沫Mの数、面積率等を求めるようにしてもよい。信号処理装置12は、前記画像解析装置26の出力信号を経時的に取込んで記憶し、かつこの出力信号をデータ処理して水素濃度を特定する。この場合、データ処理の方法としては、上記したようにしきい値と比較する方法を採用しても、相関と照合する方法を採用してもよい。本第3の実施形態においては、密閉容器2の外部に設けたCCDカメラ25を検出手段として用いるので、汚染の心配がなく、結果としてメンテナンスが簡単となる。   The output signal of the CCD camera 25 is sent to the signal processing device 12 via the image analysis device 26. The image analysis device 26 has a function of analyzing an image picked up by the CCD camera 25, quantitatively obtaining the amount of molten metal splash M ', and outputting a signal corresponding to the amount. In this case, the method for specifying the generation amount of the molten metal splash M ′ is arbitrary. For example, the number of molten metal droplets M recognized on the image, the area ratio, and the like may be obtained. The signal processing device 12 captures and stores the output signal of the image analysis device 26 over time, and specifies the hydrogen concentration by data processing of the output signal. In this case, as a data processing method, a method of comparing with a threshold value as described above may be employed, or a method of collating with a correlation may be employed. In the third embodiment, since the CCD camera 25 provided outside the sealed container 2 is used as the detection means, there is no concern about contamination, and as a result, maintenance is simplified.

本発明の第1の実施形態である水素濃度測定装置の要部構造を示す模式図である。It is a schematic diagram which shows the principal part structure of the hydrogen concentration measuring apparatus which is the 1st Embodiment of this invention. 本第1の実施形態としての水素濃度測定装置における信号処理系を示すブロック図である。It is a block diagram which shows the signal processing system in the hydrogen concentration measuring apparatus as the 1st embodiment. 本第1の実施形態としての水素濃度測定装置における圧力センサの信号波形の一例を示すグラフである。It is a graph which shows an example of the signal waveform of the pressure sensor in the hydrogen concentration measuring apparatus as the 1st embodiment. 本発明の第2の実施形態である水素濃度測定装置の要部構造を示す模式図である。It is a schematic diagram which shows the principal part structure of the hydrogen concentration measuring apparatus which is the 2nd Embodiment of this invention. 本発明の第3の実施形態である水素濃度測定装置の要部構造を示す模式図である。It is a schematic diagram which shows the principal part structure of the hydrogen concentration measuring apparatus which is the 3rd Embodiment of this invention. 本第3の実施形態としての水素濃度測定装置における信号処理系を示すブロック図である。It is a block diagram which shows the signal processing system in the hydrogen concentration measuring apparatus as the 3rd embodiment.

符号の説明Explanation of symbols

1 採取容器
2 密閉容器
3 減圧容器
4 連通路
5 真空ポンプ(真空引き手段)
8A〜D 開閉弁
10 重量計
11 圧力センサ
12 信号処理装置
13 表示装置
20 渦電流センサ
25 CCDカメラ(撮像手段)
M 溶湯
M´ 溶湯飛沫
DESCRIPTION OF SYMBOLS 1 Sampling container 2 Sealed container 3 Depressurization container 4 Communication path 5 Vacuum pump (evacuation means)
8A to D On-off valve 10 Weigh scale 11 Pressure sensor 12 Signal processing device 13 Display device 20 Eddy current sensor 25 CCD camera (imaging means)
M Molten metal M 'Molten metal splash

Claims (7)

溶湯を採取した採取容器を密閉容器に入れて減圧することにより、溶湯から水素ガスを放出させ、この水素ガス放出に伴って生じる溶湯飛沫の発生量を経時的に測定して、その測定結果に基づいて水素濃度を特定することを特徴とする金属溶湯中の水素濃度測定方法。   By collecting the molten metal sampled in a sealed container and reducing the pressure, hydrogen gas is released from the molten metal, and the amount of molten metal droplets generated as a result of this hydrogen gas release is measured over time. A method for measuring a hydrogen concentration in a molten metal, wherein the hydrogen concentration is specified based on the method. 溶湯飛沫の発生量を、該飛沫の衝突に感応する圧力センサの出力信号に基づいて決定することを特徴とする請求項1に記載の金属溶湯中の水素濃度測定方法。   2. The method for measuring a hydrogen concentration in a molten metal according to claim 1, wherein the amount of molten metal splash is determined based on an output signal of a pressure sensor sensitive to the collision of the splash. 溶湯飛沫の発生量を、該飛沫の接近に感応する渦電流センサの出力信号に基づいて決定することを特徴とする請求項1に記載の金属溶湯中の水素濃度測定方法。   The method for measuring a hydrogen concentration in a molten metal according to claim 1, wherein the amount of molten metal splash is determined based on an output signal of an eddy current sensor that is sensitive to the approach of the splash. 溶湯飛沫の発生量を、撮像手段による画像に基づいて決定することを特徴とする請求項1に記載の金属溶湯中の水素濃度測定方法。   The method for measuring the hydrogen concentration in a molten metal according to claim 1, wherein the amount of molten metal splash is determined based on an image obtained by an imaging means. 採取容器に採取した溶湯の重量を測定し、溶湯飛沫の発生量の測定結果を前記重量で平準化して水素濃度を特定することを特徴とする請求項1乃至4の何れか1項に記載の金属溶湯中の水素濃度測定方法。   The weight of the molten metal collected in the collection container is measured, and the hydrogen concentration is specified by leveling the measurement result of the amount of molten metal splash by the weight. Method for measuring hydrogen concentration in molten metal. 溶湯を採取した採取容器を納める蓋付き密閉容器と、該密閉容器と連通路により接続された減圧容器と、該減圧容器内を真空引きする真空引き手段と、前記連通路を連通・遮断する開閉弁と、前記密閉容器に納めた採取容器内の溶湯表面からの溶湯飛沫の発生量を検出する検出手段と、該検出手段の出力信号に基づいて溶湯中の水素濃度を特定する信号処理手段とを備えていることを特徴とする金属溶湯中の水素濃度測定装置。   A sealed container with a lid for storing a sampling container for collecting molten metal, a decompression container connected to the sealed container by a communication path, a vacuum evacuation means for evacuating the inside of the decompression container, and an opening / closing for communicating and blocking the communication path A valve, a detecting means for detecting the amount of molten splash generated from the surface of the molten metal in the collection container stored in the closed container, and a signal processing means for specifying the hydrogen concentration in the molten metal based on an output signal of the detecting means; An apparatus for measuring the hydrogen concentration in a molten metal, comprising: 密閉容器内に、採取容器内の溶湯の重量を計測する重量計を配設したことを特徴とする請求項6に記載の金属溶湯中の水素濃度測定装置。   The apparatus for measuring a hydrogen concentration in a molten metal according to claim 6, wherein a weighing scale for measuring the weight of the molten metal in the collection container is disposed in the sealed container.
JP2007012737A 2007-01-23 2007-01-23 Hydrogen concentration measuring method and device in molten metal Pending JP2008180540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012737A JP2008180540A (en) 2007-01-23 2007-01-23 Hydrogen concentration measuring method and device in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012737A JP2008180540A (en) 2007-01-23 2007-01-23 Hydrogen concentration measuring method and device in molten metal

Publications (1)

Publication Number Publication Date
JP2008180540A true JP2008180540A (en) 2008-08-07

Family

ID=39724556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012737A Pending JP2008180540A (en) 2007-01-23 2007-01-23 Hydrogen concentration measuring method and device in molten metal

Country Status (1)

Country Link
JP (1) JP2008180540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004622A (en) * 2013-06-21 2015-01-08 アトナープ株式会社 Method and device for estimating quality of light alloy molten metal
CN111721598A (en) * 2020-06-19 2020-09-29 内蒙古第一机械集团股份有限公司 Chemical flux for determining rare earth magnesium silicon iron alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004622A (en) * 2013-06-21 2015-01-08 アトナープ株式会社 Method and device for estimating quality of light alloy molten metal
CN111721598A (en) * 2020-06-19 2020-09-29 内蒙古第一机械集团股份有限公司 Chemical flux for determining rare earth magnesium silicon iron alloy

Similar Documents

Publication Publication Date Title
US8661891B2 (en) Apparatus and method for measuring the liquid level of molten metal
US6606910B1 (en) Method and apparatus for evaluating damage of metal material
JP6656326B2 (en) Apparatus and method for gravitationally emptying a bottle containing a frozen blood product with a unit for monitoring emptying
SE1051175A1 (en) Multifunctional exhalation analyzer
US9163992B2 (en) Abnormal measurement detection device and method for infrared radiation thermometer
JP2018504752A (en) Sample transfer device
JP2008180540A (en) Hydrogen concentration measuring method and device in molten metal
JP5716333B2 (en) Slab surface quality prediction method and slab surface quality prediction apparatus
KR101318831B1 (en) Complex probe gathering sample of molten metal and slag simultaneously
CA2361798A1 (en) Fluid detection method
JP2007147513A (en) Quality inspection device
US6318178B1 (en) Cleanliness evaluation method for metallic materials based on ultrasonic flaw detection and metallic material affixed with evaluation of cleanliness
US6840668B1 (en) Thermogravimetrical analyzer autosampler sealed sample pan
JP2002048627A (en) Thermogravimetric apparatus
JP4549424B1 (en) Method for analyzing hydrogen in molten aluminum alloy
JP5534330B2 (en) Molten metal quality evaluation method and molten metal quality evaluation apparatus
RU2413221C1 (en) Procedure for determination of hydrogen contents in aluminium alloys
CN102890022A (en) Digital display tamping rod
JP2005098894A (en) Leak detection system for liquid storage tank
CN109932427B (en) Magnesium alloy overburning defect assessment method based on acoustic emission technology
US6463805B1 (en) Apparatus and method for measuring defect of sample
KR101228695B1 (en) Device and method for predicting nozzle clogging thickness of continuous casting process
JP2005134296A (en) Method and instrument for measuring amount of inclusion in molten aluminum
JP4588907B2 (en) Fracture inspection method and apparatus
Hills et al. In-situ measurement of dissolved hydrogen during low pressure die casting of aluminium