JP2008180138A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2008180138A
JP2008180138A JP2007014015A JP2007014015A JP2008180138A JP 2008180138 A JP2008180138 A JP 2008180138A JP 2007014015 A JP2007014015 A JP 2007014015A JP 2007014015 A JP2007014015 A JP 2007014015A JP 2008180138 A JP2008180138 A JP 2008180138A
Authority
JP
Japan
Prior art keywords
resin
porous member
sliding member
sliding
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007014015A
Other languages
Japanese (ja)
Inventor
Hiroaki Takashima
宏明 高島
Toshihisa Shimo
俊久 下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2007014015A priority Critical patent/JP2008180138A/en
Publication of JP2008180138A publication Critical patent/JP2008180138A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight sliding member having both high strength and slidability. <P>SOLUTION: This sliding member is composed of a porous member 10 composed of foam metal or form ceramics, and a resin part 20 hardened by impregnating resin into a pore of at least a surface layer part 11 of the porous member 10, and is characterized in that a surface of the surface layer part 11 slidingly contacts with a mating material, or is composed of the porous member composed of the foam metal or the foam ceramics, and the resin part hardened by impregnating the resin into the pore of at least the surface layer part of the porous member and covering a surface of the surface layer part, and is characterized in that a surface of the resin part slidingly contacts with the mating material, and is lightweight by using the foam metal or the foam ceramics having porosity higher than a sintered body as the porous member. The foam metal and the foam ceramics are also superior in impregnating ability of the resin since the porosity is high and a pore diameter is large. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧縮機などの各種装置の可動部に使用される摺動部材に関するものである。   The present invention relates to a sliding member used for a movable part of various devices such as a compressor.

各種装置の可動部に用いられる摺動部材の一例として、斜板式圧縮機の斜板とピストンとの間に配設され、ピストンおよび斜板と摺接する外表面をもつ半球状のシューがある。特許文献1(たとえば[0017]段落参照)には、外表面全体にニッケル系メッキが施されたアルミニウム合金製の母材からなる金属製のシューが開示されている。このシューの母材は、アルミニウム合金製であるため、比較的軽量で駆動時の回転の安定性が高い。しかしながら、近年、斜板式圧縮機のさらなる小型化、軽量化が求められており、高い回転トルクで斜板が駆動されても安定した回転制御が可能となる軽量なシューが求められている。シューに限らず、摺動部材の軽量化は、装置の性能向上に繋がる重要な要因の1つである。   As an example of a sliding member used for a movable part of various devices, there is a hemispherical shoe having an outer surface that is disposed between a swash plate and a piston of a swash plate compressor and is in sliding contact with the piston and the swash plate. Patent Document 1 (see paragraph [0017], for example) discloses a metal shoe made of a base material made of an aluminum alloy having an entire outer surface plated with nickel. Since the base material of this shoe is made of an aluminum alloy, it is relatively light and has high rotational stability during driving. However, in recent years, there has been a demand for further downsizing and weight reduction of a swash plate compressor, and there is a need for a lightweight shoe capable of stable rotation control even when the swash plate is driven with high rotational torque. Not only the shoe but also the weight reduction of the sliding member is one of the important factors that lead to the improvement of the performance of the apparatus.

金属のかわりに樹脂を用いて軽量化を図った樹脂製摺動部品も用いられている。たとえば、特許文献2には、グラファイト、硫化モリブデン、ポリテトラフルオロエチレン等を含むポリブチレンナフタレンジカルボキシレート樹脂の成形体からなる樹脂製摺動部材が開示されている。摺動部材に樹脂を用いる利点として、部品の軽量化が図れることだけでなく、形状の自由度が大きいこと、耐蝕性、静音性に優れること、等が挙げられる。ところが、樹脂は、金属材料に比べて放熱性が低いため、斜板式圧縮機のシューのように、摺動により発熱する摺動部位では、良好に放熱が行われず、摺動部材自体が変形したり摺動特性が低下したりする虞がある。   Resin sliding parts that are reduced in weight by using resin instead of metal are also used. For example, Patent Document 2 discloses a resin sliding member made of a molded body of polybutylene naphthalene dicarboxylate resin containing graphite, molybdenum sulfide, polytetrafluoroethylene and the like. Advantages of using a resin for the sliding member include not only weight reduction of parts, but also a large degree of freedom in shape, excellent corrosion resistance, and quietness. However, since resin has low heat dissipation compared to metal materials, heat is not radiated well at sliding parts that generate heat by sliding, such as shoes of a swash plate compressor, and the sliding member itself is deformed. There is a risk that the sliding characteristics may deteriorate.

特許文献3には、裏金上に被着形成された多孔質金属焼結層と、多孔質金属焼結層に含浸された状態で被着形成された表面樹脂層と、を備える樹脂被覆摺動材が開示されている。この摺動材は、金属と樹脂との複合材となっており、金属および樹脂がそれぞれ単体で示す性質とは異なる、摺動材として好適な特性を示す。また、この摺動材は、多孔質金属焼結層をもつため、放熱性に優れるが、焼結体は、その気孔率が20〜50体積%程度であるため、複合材にしても軽量化の効果が小さい。さらに、気孔径が0.1〜40μm程度であると、樹脂の粘度が高かったり樹脂が繊維強化樹脂であったりする場合には、樹脂の含浸性が良くない。樹脂の含浸性が良くないと、焼結体の気孔内に樹脂が十分に含浸されなかったり、繊維強化樹脂の種類によっては焼結体の内部にまで強化繊維が含浸されなかったりして、所望の特性が得られない。
特開2003−138287号公報 特開平05−117677号公報 特開2000−141544号公報
Patent Document 3 discloses a resin-coated sliding comprising a porous metal sintered layer deposited on a back metal, and a surface resin layer deposited and impregnated in the porous metal sintered layer. A material is disclosed. This sliding material is a composite material of a metal and a resin, and exhibits characteristics suitable as a sliding material, which are different from the properties of the metal and the resin as a single substance. In addition, since this sliding material has a porous metal sintered layer, it is excellent in heat dissipation. However, since the porosity of the sintered body is about 20 to 50% by volume, the weight of the composite material is reduced. The effect of is small. Furthermore, when the pore diameter is about 0.1 to 40 μm, the resin impregnation property is not good when the resin viscosity is high or the resin is a fiber reinforced resin. If the resin impregnation is not good, the pores of the sintered body may not be sufficiently impregnated, or depending on the type of fiber reinforced resin, the reinforcing fiber may not be impregnated into the sintered body. The characteristics cannot be obtained.
JP 2003-138287 A JP 05-117677 A JP 2000-141544 A

既に述べたように、金属と樹脂との複合材は、摺動部材として望ましい優れた特性を有する。しかしながら、金属焼結体と樹脂との複合材では、焼結体を用いることにより上記のような問題が生じることが考えられるため、所望の特性が得られないことがある。   As already described, the composite material of metal and resin has excellent characteristics desirable as a sliding member. However, in a composite material of a metal sintered body and a resin, the use of the sintered body may cause the problems described above, so that desired characteristics may not be obtained.

本発明は、上記問題点に鑑み、新規な構成からなり、軽量であるとともに、高い強度や摺動性を持ち合わせる摺動部材を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a sliding member that has a novel structure, is lightweight, and has high strength and slidability.

すなわち、本発明の摺動部材は、発泡金属または発泡セラミックスからなる多孔質部材と、該多孔質部材の少なくとも表層部の気孔内に樹脂が含浸されて硬化されてなる樹脂部と、からなり、該表層部の表面が相手材と摺接することを特徴とする。   That is, the sliding member of the present invention comprises a porous member made of a foam metal or a foam ceramic, and a resin portion formed by impregnating and curing a resin in the pores of at least the surface layer portion of the porous member, The surface of the surface layer portion is in sliding contact with the counterpart material.

また、本発明の摺動部材は、発泡金属または発泡セラミックスからなる多孔質部材と、該多孔質部材の少なくとも表層部の気孔内に樹脂が含浸されて硬化されるとともに該表層部の表面を被覆してなる樹脂部と、からなり、該樹脂部の表面が相手材と摺接することを特徴とする。   Further, the sliding member of the present invention includes a porous member made of foam metal or ceramic foam, and at least a surface layer portion of the porous member is impregnated with a resin and cured, and covers the surface of the surface layer portion. And the surface of the resin portion is in sliding contact with the mating member.

なお、本発明の摺動部材において、発泡金属および発泡セラミックスは、金属またはセラミックスからなる原料粉末を単に成形して焼結してなる焼結体とは異なるものである。   In the sliding member of the present invention, the foam metal and the foam ceramic are different from a sintered body obtained by simply forming and sintering a raw material powder made of metal or ceramic.

本発明の摺動部材において、多孔質部材の気孔率は、55〜98体積%さらには80〜98体積%であるのが好ましい。また、多孔質部材の気孔径は、50μm〜3mmさらには100μm〜3mmであるのが好ましい。   In the sliding member of the present invention, the porosity of the porous member is preferably 55 to 98% by volume, more preferably 80 to 98% by volume. The pore diameter of the porous member is preferably 50 μm to 3 mm, more preferably 100 μm to 3 mm.

前記多孔質部材は、独立気孔を有するのが好ましい。また、前記多孔質部材は連続気孔を有してもよく、前記樹脂部は該多孔質部材全体に含浸されているのが好ましい。   The porous member preferably has independent pores. The porous member may have continuous pores, and the resin part is preferably impregnated in the entire porous member.

本発明の摺動部材は、斜板式圧縮機のシューであって、前記多孔質部材は、その外表面の一方が凸球面をなす球面部と、他方が略平面をなす平面部と、を有する球冠状形状であるのが望ましい。   The sliding member of the present invention is a shoe of a swash plate compressor, and the porous member has a spherical surface portion in which one of the outer surfaces forms a convex spherical surface and a flat surface portion in which the other forms a substantially flat surface. A spherical crown shape is desirable.

本発明の摺動部材は、多孔質部材として焼結体よりも気孔率の高い発泡金属または発泡セラミックスを用いるため、軽量である。また、発泡金属および発泡セラミックスは、気孔率が高いとともに、気孔径も大きいため、樹脂の含浸性に優れる。   The sliding member of the present invention is lightweight because a foam metal or foam ceramic having a higher porosity than the sintered body is used as the porous member. In addition, since the foam metal and the foam ceramic have a high porosity and a large pore diameter, they have excellent resin impregnation properties.

本発明の摺動部材は、多孔質部材の少なくとも表層部の気孔内に硬化した樹脂が存在するため、高い強度を示す。その一方、本発明の摺動部材の強度は、多孔質部材の気孔率が高くなるほど低下する傾向にある。気孔率の高い多孔質部材を用いる場合には、多孔質部材の全体に樹脂を含浸させることにより、摺動部材の強度は維持される。多孔質部材の気孔が連続気孔(開気孔)であれば、樹脂を多孔質部材全体に含浸させることができる。多孔質部材の表層部のみに樹脂を含浸させるのであれば、多孔質部材の気孔は、独立気孔(閉気孔)であってもよい。   The sliding member of the present invention exhibits high strength because the cured resin exists in at least the pores of the surface layer portion of the porous member. On the other hand, the strength of the sliding member of the present invention tends to decrease as the porosity of the porous member increases. When a porous member having a high porosity is used, the strength of the sliding member is maintained by impregnating the entire porous member with resin. If the pores of the porous member are continuous pores (open pores), the entire porous member can be impregnated with resin. If only the surface layer portion of the porous member is impregnated with the resin, the pores of the porous member may be independent pores (closed pores).

本発明の摺動部材では、気孔内に樹脂が含浸された多孔質部材の表層部の表面、または、表層部の表面を被覆する樹脂部の表面が、相手材と摺接する摺動面となる。この摺動面は、耐摩耗性に優れるとともに、低摩擦を示す。また、樹脂部のうち表層部の表面を被覆する部位(樹脂被覆層)は、多孔質部材の表面に開口する気孔に含浸され硬化した樹脂と連続的であるため、多孔質部材との密着性に優れる。   In the sliding member of the present invention, the surface of the surface of the porous member in which the pores are impregnated with the resin, or the surface of the resin portion that covers the surface of the surface layer is the sliding surface in sliding contact with the mating member. . This sliding surface is excellent in wear resistance and exhibits low friction. In addition, the portion (resin coating layer) that covers the surface of the surface portion of the resin portion is continuous with the resin that has been impregnated into the pores that open on the surface of the porous member and has been cured, and therefore has good adhesion to the porous member. Excellent.

また、本発明の摺動部材は、十分な強度を有し、軽量であるとともに、優れた放熱性を示すことから、斜板式圧縮機の摺動部、特にシューに好適である。   The sliding member of the present invention is suitable for a sliding portion of a swash plate compressor, particularly a shoe, because it has sufficient strength, is lightweight, and exhibits excellent heat dissipation.

以下、本発明の摺動部材について、図1〜図5を用いて詳細に説明する。なお、図1〜図4は、それぞれ、本発明の摺動部材の一例を模式的に示す断面図である。また、図5は、本発明の摺動部材の製造方法の一例を模式的に示す断面図である。   Hereinafter, the sliding member of the present invention will be described in detail with reference to FIGS. 1 to 4 are cross-sectional views each schematically showing an example of the sliding member of the present invention. FIG. 5 is a cross-sectional view schematically showing an example of the manufacturing method of the sliding member of the present invention.

本発明の摺動部材は、多孔質部材と、多孔質部材の気孔内に樹脂が含浸されて硬化されてなる樹脂部と、からなる。   The sliding member of the present invention comprises a porous member and a resin portion formed by impregnating a resin in the pores of the porous member and curing.

多孔質部材は、発泡金属または発泡セラミックスからなる。発泡金属および発泡セラミックスは、多孔質材料の中でも高気孔率であり、気孔径が大きい。本発明の摺動部材においては、多孔質部材の気孔率は、55体積%以上さらには80体積%以上であるのが好ましい。また、多孔質部材の気孔率は、摺動部材の強度の点から、98体積%以下であるのが好ましい。多孔質部材の気孔径は、気孔内に含浸される樹脂の含浸性から、50μm以上さらには100μm以上であるのが好ましい。気孔径が50μm以上であれば、後述の強化繊維や固体潤滑剤が樹脂に含まれる場合であっても、多孔質部材の気孔内に樹脂が良好に含浸される。多孔質部材は、気孔径が大きいほど含浸性が向上するが、気孔径は3mm以下であるのが好ましい。気孔径が3mmを超えると、摺動部材の強度の点から好ましくない。なお、気孔率および気孔径は、たとえば、水銀圧入法細孔分布測定(JIS R 1655)により算出される。   The porous member is made of foam metal or foam ceramic. Foam metal and ceramic foam have a high porosity and a large pore diameter among porous materials. In the sliding member of the present invention, the porosity of the porous member is preferably 55% by volume or more, more preferably 80% by volume or more. In addition, the porosity of the porous member is preferably 98% by volume or less from the viewpoint of the strength of the sliding member. The pore diameter of the porous member is preferably 50 μm or more, more preferably 100 μm or more, from the impregnation property of the resin impregnated in the pores. If the pore diameter is 50 μm or more, the resin is satisfactorily impregnated in the pores of the porous member even when the reinforcing fibers and solid lubricant described later are contained in the resin. As the porous member has a larger pore diameter, the impregnation property is improved, but the pore diameter is preferably 3 mm or less. When the pore diameter exceeds 3 mm, it is not preferable from the viewpoint of the strength of the sliding member. The porosity and pore diameter are calculated by, for example, mercury porosimetry pore distribution measurement (JIS R 1655).

多孔質部材の気孔は、独立気孔(閉気孔)であっても連続気孔(開気孔)であっても、いずれであってもよい。独立気孔であれば、樹脂は、主として多孔質部材の表面に開口する気孔に含浸される。連続気孔であれば、樹脂は、多孔質部材の表層部の気孔内のみに含浸されてもよいし、表層部の気孔内のみならず多孔質部材全体に含浸されてもよい。したがって、摺動部材に強度を与えたい場合には、気孔率が可能な程度小さく連続気孔をもつ多孔質部材の全体に、樹脂を含浸させるとよい。   The pores of the porous member may be independent pores (closed pores) or continuous pores (open pores). In the case of independent pores, the resin is mainly impregnated into pores that open to the surface of the porous member. In the case of continuous pores, the resin may be impregnated only in the pores of the surface layer portion of the porous member, or may be impregnated not only in the pores of the surface layer portion but also the entire porous member. Therefore, in order to give strength to the sliding member, it is preferable to impregnate the whole porous member having continuous pores as small as possible in porosity.

以上説明した多孔質部材は、一般的な発泡金属および発泡セラミックスの製造方法により作製可能である。たとえば、溶湯金属中にガスを吹き込む方法、溶湯金属中に発泡剤を添加して発泡させる方法、発泡プラスチック上にめっきした後にプラスチック部を取り去る方法、発泡材料や中空材などの密度の小さな材料を金属またはセラミックスと複合化させる方法、金属またはセラミックスからなる原料粉末に発泡剤を混合して成形後に発泡剤のガス発生温度付近で焼結させる方法、等が挙げられる。   The porous member described above can be produced by a general method for producing foam metal and foam ceramic. For example, a method of blowing gas into the molten metal, a method of adding a foaming agent into the molten metal and foaming, a method of removing the plastic part after plating on the foamed plastic, a material with a low density such as a foam material or a hollow material Examples thereof include a method of compounding with metal or ceramics, a method of mixing a foaming agent with a raw material powder made of metal or ceramics, and sintering after the molding at a temperature near the gas generation temperature of the foaming agent.

また、金属およびセラミックスの種類にも限定はなく、金属であれば、貴金属、貴金属合金、アルミニウム、銅、ニッケル、チタン、モリブデン、タングステン、鉄、コバルト、アルミニウム系材料、銅系材料、ニッケル系材料、チタン系材料、モリブデン系材料、タングステン系材料、鉄系材料、コバルト系材料、磁性合金、超硬合金、耐食合金、耐熱合金、導電用合金、超電導合金、摺動用合金、軸受用合金、防振合金、水素貯蔵用合金、形状記憶合金、電極用合金、金属間化合物、ステンレス鋼、炭素鋼、合金鋼、磁石鋼、工具鋼および高速度鋼などの鉄系材料の中から選ばれる少なくとも1種、セラミックスであれば、金属炭化物や金属酸化物、具体的には、シリカ、シリカ−アルミナ、シリカ−マグネシア、シリカ−チタニア、シリカ−ジルコニア、アルミナ、アルミナ−マグネシア、アルミナ−チタニア、アルミナ−ボリア、アルミナ−ジルコニア、アルミナ−ホスファ、チタニア、ジルコニア、ボリア、ケイ石、ケイ砂、カオリン、ベントナイト、マグネサイト、ドロマイト、長石、陶石、ゼオライト、炭化ケイ素、炭化クロム、炭化タングステン、チタン酸ジルコン酸鉛(PZT)および磁性セラミックスの中から選ばれる少なくとも1種、などが挙げられる。なかでも、強度向上と軽量化の点から、金属であれば、鉄、鉄を含む鉄系材料、アルミニウム、アルミニウムを含むアルミニウム系材料、ニッケルまたはニッケルを含むニッケル系材料などが好ましく、セラミックスであれば、アルミナ、炭化クロム、炭化タングステンなどが好ましい。   In addition, there is no limitation on the type of metal and ceramic, and if it is a metal, noble metal, noble metal alloy, aluminum, copper, nickel, titanium, molybdenum, tungsten, iron, cobalt, aluminum-based material, copper-based material, nickel-based material , Titanium materials, molybdenum materials, tungsten materials, iron materials, cobalt materials, magnetic alloys, cemented carbides, corrosion resistant alloys, heat resistant alloys, conductive alloys, superconducting alloys, sliding alloys, bearing alloys, anti-corrosion At least one selected from iron-based materials such as vibration alloys, hydrogen storage alloys, shape memory alloys, electrode alloys, intermetallic compounds, stainless steel, carbon steel, alloy steel, magnet steel, tool steel and high speed steel For seeds and ceramics, metal carbides and metal oxides, specifically silica, silica-alumina, silica-magnesia, silica-titania, silicon K-zirconia, alumina, alumina-magnesia, alumina-titania, alumina-boria, alumina-zirconia, alumina-phospha, titania, zirconia, boria, quartzite, quartz sand, kaolin, bentonite, magnesite, dolomite, feldspar, ceramic And at least one selected from stone, zeolite, silicon carbide, chromium carbide, tungsten carbide, lead zirconate titanate (PZT), and magnetic ceramics. Among these, from the viewpoint of strength improvement and weight reduction, if it is a metal, iron, an iron-based material containing iron, aluminum, an aluminum-based material containing aluminum, nickel or a nickel-based material containing nickel, and the like are preferable. For example, alumina, chromium carbide, tungsten carbide and the like are preferable.

樹脂部は、多孔質部材の少なくとも表層部の気孔内に樹脂が含浸されて硬化されてなる。樹脂が含浸される表層部は、少なくとも摺動面側の表層部であればよいが、多孔質部材の全表面を含む表層部に樹脂が含浸されてもよい。いずれにしても、多孔質部材の少なくとも表層部の気孔内に樹脂が含浸される。すなわち、図1に示すように、多孔質部材10の表層部11のみに樹脂Rが含浸されて硬化されて樹脂部20が形成されてもよいし、図2に示すように、多孔質部材10の全体に樹脂Rが含浸されて樹脂部20’が形成されてもよい。あるいは、樹脂部は、多孔質部材の少なくとも表層部の気孔内に樹脂が含浸されて硬化されるとともに表層部の表面を被覆してなる。すなわち、図3に示すように、多孔質部材10の表層部11に樹脂Rが含浸されて硬化されるとともに樹脂Rが表層部11の表面を被覆してなる樹脂被覆層21を有する樹脂部20が形成されてもよいし、図4に示すように、多孔質部材10の全体に樹脂Rが含浸されて硬化されるとともに樹脂Rが表層部11の表面を被覆してなる樹脂被覆層21を有する樹脂部20’が形成されてもよい。   The resin portion is formed by impregnating a resin into the pores of at least the surface layer portion of the porous member and curing. The surface layer portion impregnated with the resin may be at least the surface layer portion on the sliding surface side, but the surface layer portion including the entire surface of the porous member may be impregnated with the resin. In any case, the resin is impregnated in the pores of at least the surface layer portion of the porous member. That is, as shown in FIG. 1, only the surface layer portion 11 of the porous member 10 may be impregnated with the resin R and cured to form the resin portion 20, or as shown in FIG. The resin portion 20 ′ may be formed by impregnating the resin R with the resin R as a whole. Alternatively, the resin part is formed by impregnating a resin in at least pores of the surface layer part of the porous member and curing the resin part, and covering the surface of the surface layer part. That is, as shown in FIG. 3, a resin portion 20 having a resin coating layer 21 in which the surface layer portion 11 of the porous member 10 is impregnated with the resin R and cured, and the resin R covers the surface of the surface layer portion 11. As shown in FIG. 4, a resin coating layer 21 formed by impregnating and curing the resin R on the entire porous member 10 and coating the surface of the surface layer portion 11 with the resin R is provided. A resin portion 20 ′ may be formed.

本発明の摺動部材は、多孔質部材の表層部の表面または上記樹脂被覆層の表面が摺動面となって相手材と摺動する。多孔質部材の表層部の表面が摺動面である場合には、耐摩耗性に優れる。一方、樹脂被覆層の表面が摺動面である場合には、より低摩擦であり、相手攻撃性が低い。また、樹脂被覆層が摩耗しても、多孔質部材の表層部の表面が摺動面となって摺動し続けることができる。   In the sliding member of the present invention, the surface of the surface portion of the porous member or the surface of the resin coating layer becomes a sliding surface and slides with the counterpart material. When the surface of the surface layer portion of the porous member is a sliding surface, the wear resistance is excellent. On the other hand, when the surface of the resin coating layer is a sliding surface, the friction is lower and the opponent attack is low. Further, even when the resin coating layer is worn, the surface of the surface layer portion of the porous member becomes a sliding surface and can continue to slide.

多孔質部材に含浸される樹脂は、耐熱性の高い耐熱性樹脂であるのが好ましい。また、単体で所望の機械的強度をもつ樹脂であるのが好ましい。特に、シュー等の圧縮機に用いられる摺動部材であれば、機械的強度が高く耐熱性に優れるエンジニアリングプラスチックやさらに高い耐熱性を有するスーパーエンジニアリングプラスチックを用いるのがよい。なかでも、摺動性に優れる耐熱性樹脂として、ポリエーテルエーテルケトン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンスルフィド樹脂、フェノール樹脂およびコプナ樹脂が挙げられ、これらのうちの1種以上を単独でまたは混合して用いることができる。   The resin impregnated in the porous member is preferably a heat-resistant resin having high heat resistance. Moreover, it is preferable that it is resin with the desired mechanical strength by itself. In particular, as long as the sliding member is used in a compressor such as a shoe, it is preferable to use an engineering plastic having high mechanical strength and excellent heat resistance or a super engineering plastic having higher heat resistance. Among them, examples of the heat-resistant resin having excellent slidability include polyetheretherketone resin, polyamide resin, polyimide resin, polyamideimide resin, polyphenylene sulfide resin, phenol resin, and copna resin. These can be used alone or in combination.

樹脂部は、樹脂に保持された固体潤滑剤および/または強化繊維を含むのが好ましい。固体潤滑剤を含む樹脂部は、優れた摺動性を示す。また、多孔質部材の少なくとも表層部に繊維強化樹脂が含浸されて硬化されてなる樹脂部は、樹脂マトリックスに強化繊維が保持されてなるため、強度が向上する。なお、上述のように、本発明の摺動部材において、樹脂は、高気孔率であり気孔径が大きい発泡金属または発泡セラミックスからなる多孔質部材に含浸されるため、固体潤滑剤や強化繊維を含む樹脂であっても、多孔質部材に良好に含浸される。   The resin part preferably contains a solid lubricant and / or reinforcing fibers held by the resin. The resin part containing a solid lubricant exhibits excellent slidability. Further, the strength of the resin part obtained by impregnating and curing the fiber reinforced resin in at least the surface layer part of the porous member is improved because the reinforced fiber is held in the resin matrix. As described above, in the sliding member of the present invention, since the resin is impregnated into a porous member made of a foam metal or foam ceramic having a high porosity and a large pore diameter, a solid lubricant or a reinforcing fiber is used. Even if the resin is contained, the porous member is satisfactorily impregnated.

固体潤滑剤の種類に特に限定はなく、粉末状で用いられるのが望ましい。固体潤滑剤粉末は、グラファイトやタルクなどの層状構造物、Pb、Ag、Cu等の軟質金属やその化合物、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂やフッ化黒鉛、フッ化カルシウムなどのフッ素化合物など、固体潤滑剤として通常用いられているものであればよく、特に、二硫化モリブデン粉末、グラファイト粉末およびフッ素化合物粉末のうちの少なくとも1種であるのが好ましい。その他にも、酸化チタン、炭化タングステン、窒化ホウ素、メラミンシアヌレート等が使用できる。多孔質部材への樹脂の含浸性および摺動性の向上の点から、固体潤滑剤は、その平均一次粒径が500μm以下さらには200μm以下であるのがよい。   There are no particular limitations on the type of solid lubricant, and it is desirable to use it in powder form. Solid lubricant powder is composed of layered structures such as graphite and talc, soft metals such as Pb, Ag and Cu and their compounds, fluorine resins such as polytetrafluoroethylene (PTFE), fluorine such as graphite fluoride and calcium fluoride. Any compound or the like that is usually used as a solid lubricant may be used, and at least one of molybdenum disulfide powder, graphite powder, and fluorine compound powder is particularly preferable. In addition, titanium oxide, tungsten carbide, boron nitride, melamine cyanurate, etc. can be used. The solid lubricant preferably has an average primary particle size of 500 μm or less, further 200 μm or less, from the viewpoint of improving the impregnation property and sliding property of the resin to the porous member.

強化繊維は、繊維強化樹脂の分散材として通常用いられている繊維であればよい。したがって、ガラス繊維の他、ホウ素、炭化ケイ素、アルミナ、炭素、アラミド、鋼などの繊維を用いることができる。なかでも、摺動性に悪影響を与えない強化繊維として、ガラス繊維、炭素繊維およびアラミド繊維が挙げられ、これらのうちの1種以上を単独で使用または併用できる。また、強化繊維は、多孔質部材への樹脂の含浸性の点から短繊維であるのが望ましい。強化繊維の繊維長および繊維径は、使用する多孔質部材の気孔径よりも小さければ、含浸性が低下することはない。具体的には、繊維長が0.1μm〜500μmさらには1μm〜200μm、繊維径が0.05μm〜50μmさらには0.1μm〜30μmであるとよい。繊維長および繊維径が上記の範囲にあれば、繊維強化樹脂は、強化繊維による補強効果を保ちつつ多孔質部材に良好に含浸される。   The reinforcing fiber may be any fiber that is normally used as a dispersion material for fiber-reinforced resin. Therefore, fibers such as boron, silicon carbide, alumina, carbon, aramid, and steel can be used in addition to glass fibers. Especially, glass fiber, carbon fiber, and an aramid fiber are mentioned as a reinforced fiber which does not have a bad influence on slidability, One or more of these can be used individually or used together. The reinforcing fiber is preferably a short fiber from the viewpoint of resin impregnation into the porous member. If the fiber length and fiber diameter of the reinforcing fiber are smaller than the pore diameter of the porous member to be used, the impregnation property does not decrease. Specifically, the fiber length is preferably 0.1 μm to 500 μm, more preferably 1 μm to 200 μm, and the fiber diameter is 0.05 μm to 50 μm, further 0.1 μm to 30 μm. If the fiber length and fiber diameter are in the above ranges, the fiber reinforced resin is satisfactorily impregnated into the porous member while maintaining the reinforcing effect of the reinforcing fibers.

樹脂部が固体潤滑剤を含む場合には、樹脂部は、100質量部の樹脂に対して5〜120質量部の固体潤滑剤が樹脂に保持されてなるとよい。さらに、固体潤滑剤の配合量が100質量部以下であれば、樹脂および固体潤滑剤が多孔質部材の内部にまで良好に含浸されるため望ましい。樹脂部が強化繊維を含む場合には、樹脂部は、100質量部の樹脂に対して強化繊維を150質量部以下さらには10〜120質量部含むとよい。さらに、強化繊維の配合量が100質量部以下であれば、摺動面の相手攻撃性が低下し、摺動時に相手材を傷つけにくいため望ましい。なお、樹脂部が固体潤滑剤および強化繊維をともに含む場合には、含浸性の点から、固体潤滑剤および強化繊維の合計を、100質量部の樹脂に対して150質量部以下とするとよい。   When the resin part includes a solid lubricant, the resin part is preferably formed by holding 5 to 120 parts by mass of the solid lubricant with respect to 100 parts by mass of the resin. Furthermore, if the blending amount of the solid lubricant is 100 parts by mass or less, it is desirable because the resin and the solid lubricant are satisfactorily impregnated into the porous member. When the resin part includes reinforcing fibers, the resin part preferably includes 150 parts by mass or less of reinforcing fibers and further 10 to 120 parts by mass with respect to 100 parts by mass of resin. Furthermore, if the compounding amount of the reinforcing fiber is 100 parts by mass or less, it is desirable because the partner's aggression on the sliding surface is reduced and the partner material is hardly damaged during sliding. When the resin part includes both the solid lubricant and the reinforcing fiber, the total of the solid lubricant and the reinforcing fiber is preferably 150 parts by mass or less with respect to 100 parts by mass of the resin from the viewpoint of impregnation.

本発明の摺動部材は、各種装置の可動部であって摺動する部位に使用可能である。たとえば、本発明の摺動部材は、斜板式圧縮機のシューであるのが好ましい。シューは、斜板とピストンとの間に配設され、ピストンと摺接する凸球面をもつピストン側摺接部と、斜板と摺接する平面をもつ斜板側摺接部と、を備える球冠状を呈する。すなわち、本発明の摺動部材は、斜板式圧縮機のシューであって、多孔質部材は、その外表面の一方が凸球面をなす球面部と、他方が略平面をなす平面部と、を有する球冠状形状であるとよい。なお、図1〜図4は、それぞれ、本発明の摺動部材の一実施形態である斜板式圧縮機のシューの断面図である。図1〜図4のシューには、ピストン側摺接部の頂部に円形の凹部が形成されており、潤滑油を保持する油保持溝の役割を果たす。   The sliding member of the present invention is a movable part of various devices and can be used for a sliding part. For example, the sliding member of the present invention is preferably a shoe of a swash plate compressor. The shoe is disposed between the swash plate and the piston, and includes a piston side sliding contact portion having a convex spherical surface that is in sliding contact with the piston, and a swash plate side sliding contact portion having a flat surface that is in sliding contact with the swash plate. Presents. That is, the sliding member of the present invention is a shoe of a swash plate compressor, and the porous member has a spherical surface portion in which one of the outer surfaces forms a convex spherical surface and a flat surface portion in which the other forms a substantially flat surface. It is good that it has a spherical crown shape. 1 to 4 are sectional views of a shoe of a swash plate compressor, which is an embodiment of the sliding member of the present invention. The shoe shown in FIGS. 1 to 4 has a circular recess formed at the top of the piston-side sliding contact portion, and serves as an oil holding groove for holding lubricating oil.

斜板式圧縮機のシューは、近年の圧縮機の小型化、軽量化の要望に伴い、非常に厳しい条件下での摺動が求められ、軽量であるとともに厳しい条件であっても焼付きや摩耗などを起こさないことが望まれる。本発明の摺動部材をシューに適用することで、斜板式圧縮機に要求される条件を十分に満たすことができる。   The swash plate compressor shoe is required to slide under extremely severe conditions in response to recent demands for smaller and lighter compressors, and it is light and seizure and wear even under severe conditions. It is desirable not to cause such. By applying the sliding member of the present invention to the shoe, the conditions required for the swash plate compressor can be sufficiently satisfied.

本発明の摺動部材は、斜板式圧縮機のシューの他、斜板式圧縮機の斜板、圧縮機の駆動軸を支持するすべり軸受、ピストン式圧縮機のピストン等として用いてもよい。   The sliding member of the present invention may be used as a swash plate of a swash plate type compressor, a swash plate of a swash plate type compressor, a sliding bearing that supports a drive shaft of the compressor, a piston of a piston type compressor, or the like.

以上詳説した本発明の摺動部材の製造方法は、特に限定されるものではない。以下に、斜板式圧縮機のシューを製造する方法を例にして、本発明の摺動部材の製造方法を図5を用いて説明する。なお、図5は、図2に示す斜板式圧縮機のシューの製造方法の一例を模式的に示す断面図である。   The manufacturing method of the sliding member of the present invention described in detail above is not particularly limited. Hereinafter, a method for manufacturing a sliding member according to the present invention will be described with reference to FIG. 5, taking a method for manufacturing a shoe of a swash plate compressor as an example. FIG. 5 is a cross-sectional view schematically showing an example of a method for manufacturing a shoe of the swash plate compressor shown in FIG.

多孔質部材10として、既に述べた製造方法により所定の形状に作製された連続気孔をもつ発泡アルミニウム等を準備する。また、多孔質部材10に含浸される樹脂Rとして、フェノール樹脂などを含む樹脂組成物、グラファイト粉末およびガラス繊維などの添加材料を準備する。樹脂組成物および添加材料は、たとえば押出機にて溶融混練した後、押出されたものをカットしてペレットとする。   As the porous member 10, foamed aluminum or the like having continuous pores prepared in a predetermined shape by the manufacturing method already described is prepared. Further, as the resin R impregnated in the porous member 10, an additive material such as a resin composition containing a phenol resin, graphite powder, and glass fiber is prepared. For example, the resin composition and the additive material are melt-kneaded by an extruder and then the extruded material is cut into pellets.

シューは、たとえば、多孔質部材10と同一形状のキャビティ55をもつ金型50により製造される。金型50は、主としてシューのピストン側摺接部16を成形する上部金型51と、主として斜板側摺接部17を成形する下部金型52と、からなる。上部金型51は、キャビティ55と連通し、キャビティ55内に樹脂Rを溶融した状態で供給する樹脂供給路56をもつ。また、下部金型52は、キャビティ55と連通する円柱形状の連通孔57をもち、連通孔57には、押しピン53が上下に摺動可能に挿通される。   The shoe is manufactured by, for example, a mold 50 having a cavity 55 having the same shape as the porous member 10. The mold 50 includes an upper mold 51 that mainly molds the piston side sliding contact portion 16 of the shoe and a lower mold 52 that mainly molds the swash plate side sliding contact portion 17. The upper mold 51 communicates with the cavity 55 and has a resin supply path 56 that supplies the resin R in a melted state in the cavity 55. The lower mold 52 has a columnar communication hole 57 that communicates with the cavity 55, and the push pin 53 is slidably inserted into the communication hole 57.

シューを製造する際には、キャビティ55に多孔質部材10を収め、その後、ペレットを加熱して溶融させた樹脂Rを樹脂供給路56よりキャビティ55内に供給する。こうして、多孔質部材10の気孔内に、樹脂Rが送り込まれて含浸される。含浸された樹脂Rは、冷却されて多孔質部材10の気孔内で固化し、樹脂部20’をなす(図2)。シューは、上部金型51を取り外してから押しピン53を上方に押し込むことで下部金型52から離型される。   When manufacturing the shoe, the porous member 10 is placed in the cavity 55, and then the resin R obtained by heating and melting the pellet is supplied into the cavity 55 from the resin supply path 56. Thus, the resin R is fed into the pores of the porous member 10 and impregnated. The impregnated resin R is cooled and solidified in the pores of the porous member 10 to form a resin portion 20 '(FIG. 2). The shoe is released from the lower mold 52 by removing the upper mold 51 and then pushing the push pin 53 upward.

なお、多孔質部材の表層部の表面に樹脂被覆層を形成する場合には、キャビティ55を樹脂被覆層の厚さに応じて多孔質部材10よりも一回り大きくすればよい。この場合には、キャビティの内面から突設された突出部を、樹脂被覆層を形成する必要のない多孔質部材の外表面(たとえば油保持溝など)に当接させて多孔質部材を支持することで、キャビティ内での多孔質部材の位置を固定するとよい。また、金型50を用いた注型成形を説明したが、多孔質部材の形状や気孔の形状に応じて、圧縮成形、射出成形、トランスファー成形などの方法を適宜選択して用いることができる。そして、樹脂の種類によっては、樹脂を溶媒に溶解または分散させた状態で、多孔質部材に含浸させてもよい。   In the case where the resin coating layer is formed on the surface of the surface layer portion of the porous member, the cavity 55 may be made slightly larger than the porous member 10 depending on the thickness of the resin coating layer. In this case, the protrusion protruding from the inner surface of the cavity is brought into contact with the outer surface (for example, oil retaining groove) of the porous member that does not require the resin coating layer to support the porous member. Thus, the position of the porous member in the cavity may be fixed. In addition, although casting molding using the mold 50 has been described, a method such as compression molding, injection molding, or transfer molding can be appropriately selected and used depending on the shape of the porous member and the shape of the pores. Depending on the type of resin, the porous member may be impregnated with the resin dissolved or dispersed in a solvent.

なお、本発明の摺動部材がシューとして用いられる斜板式圧縮機の具体例を図6に示す。図6において、シリンダブロック92の軸方向の一端面(図6の左側の端面)には、フロントハウジング91が取り付けられ、他方の端面(図6の右側の端面)には、リヤハウジング93がバルブプレート94を介して取り付けられている。フロントハウジング91、リヤハウジング93およびシリンダブロック92等により斜板式圧縮機のハウジングが構成されている。   A specific example of a swash plate compressor in which the sliding member of the present invention is used as a shoe is shown in FIG. In FIG. 6, a front housing 91 is attached to one end surface (the left end surface in FIG. 6) of the cylinder block 92 in the axial direction, and a rear housing 93 is connected to the other end surface (the right end surface in FIG. 6). It is attached via a plate 94. The front housing 91, the rear housing 93, the cylinder block 92, and the like constitute a swash plate compressor housing.

シリンダブロック92の中心軸線周りの一円周上には、軸方向に延びる複数のシリンダボア95が形成されている。シリンダボア95の各々には、片頭ピストン96(以下、ピストン96と略称する)が往復運動可能に配設されている。リヤハウジング93とバルブプレート94との間には、吸入室や吐出室が形成され、図示しない吸入ポートや供給ポートを経て冷凍回路に接続される。また、バルブプレート94には、図示しない吸入孔、吸入バルブ、吐出孔、吐出バルブ等が設けられている。   A plurality of cylinder bores 95 extending in the axial direction are formed on one circumference around the central axis of the cylinder block 92. In each of the cylinder bores 95, a single-headed piston 96 (hereinafter abbreviated as a piston 96) is disposed so as to be able to reciprocate. A suction chamber and a discharge chamber are formed between the rear housing 93 and the valve plate 94, and are connected to a refrigeration circuit via a suction port and a supply port (not shown). Further, the valve plate 94 is provided with a suction hole, a suction valve, a discharge hole, a discharge valve and the like (not shown).

上記ハウジング内には、回転軸90が、シリンダブロック92の中心軸線を回転軸線として回転可能に設けられている。回転軸90は、その両端部においてそれぞれフロントハウジング91とシリンダブロック92にベアリングを介して回転可能に支持されている。回転軸90のフロントハウジング91側の端部は、駆動源に連結され、回転軸90は中心軸のまわりに回転する。   A rotation shaft 90 is provided in the housing so as to be rotatable about the central axis of the cylinder block 92 as a rotation axis. The rotating shaft 90 is rotatably supported at both ends by a front housing 91 and a cylinder block 92 via bearings. The end of the rotary shaft 90 on the front housing 91 side is connected to a drive source, and the rotary shaft 90 rotates around the central axis.

回転軸90には、斜板98が軸方向に相対移動可能かつ傾動可能に取り付けられている。斜板98には、中心線を通る貫通穴が形成され、この貫通穴を回転軸90が貫通している。回転軸90には、回転板90aが固定され、スラストベアリングを介してフロントハウジング91に受けられている。斜板98は、ヒンジ機構90bにより、回転軸90と一体的に回転するとともに、軸方向の移動を伴う傾動が可能となる。   A swash plate 98 is attached to the rotary shaft 90 so as to be relatively movable and tiltable in the axial direction. A through hole passing through the center line is formed in the swash plate 98, and the rotating shaft 90 passes through the through hole. A rotating plate 90 a is fixed to the rotating shaft 90 and is received by the front housing 91 via a thrust bearing. The swash plate 98 rotates integrally with the rotary shaft 90 by the hinge mechanism 90b and can be tilted with movement in the axial direction.

ピストン96は、斜板98の外周部を跨ぐ状態で係合させられる係合部と、係合部と一体に設けられ、シリンダボア95に摺動可能に嵌挿される頭部とを備えている。ピストン96の頭部、シリンダボア95およびバルブプレート94により圧縮室が区画されている。   The piston 96 includes an engaging portion that is engaged with the outer periphery of the swash plate 98 and a head that is provided integrally with the engaging portion and is slidably fitted into the cylinder bore 95. A compression chamber is defined by the head of the piston 96, the cylinder bore 95 and the valve plate 94.

図6に示される斜板式圧縮機において、球冠状のシュー99は、ピストン96の係合部と斜板98の外周部とを摺動可能に連結する。シュー99は、1つのピストンに対して一対で用いられ、斜板98の外周部を挟持する。ピストン96の係合部は、一対のシュー99を介して、斜板98に係合する。このとき、斜板98の外周面98pとシュー99の平面99p、ピストン96の係合部の摺動面96qとシュー99の凸球面99q、とが当接する。ピストン96、斜板98およびシュー99は、98p/99p間、96q/99q間で摺動することで、斜板98の回転運動が、シュー99を介してピストン96の往復直線運動に変換される。   In the swash plate compressor shown in FIG. 6, a crown-shaped shoe 99 connects the engaging portion of the piston 96 and the outer peripheral portion of the swash plate 98 so as to be slidable. The shoes 99 are used as a pair with respect to one piston, and sandwich the outer peripheral portion of the swash plate 98. The engaging portion of the piston 96 is engaged with the swash plate 98 via a pair of shoes 99. At this time, the outer peripheral surface 98p of the swash plate 98 and the flat surface 99p of the shoe 99, the sliding surface 96q of the engaging portion of the piston 96, and the convex spherical surface 99q of the shoe 99 abut. The piston 96, the swash plate 98, and the shoe 99 slide between 98p / 99p and 96q / 99q, so that the rotational motion of the swash plate 98 is converted into the reciprocating linear motion of the piston 96 via the shoe 99. .

以上、本発明の摺動部材の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。たとえば、多孔質部材に含浸される樹脂に、さらに、硬質粒子、極圧剤、界面活性剤、加工安定剤、酸化防止剤のうちの何れかまたは全ての添加剤を添加してもよい。   As mentioned above, although embodiment of the sliding member of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art. For example, any or all of hard particles, extreme pressure agents, surfactants, processing stabilizers, and antioxidants may be added to the resin impregnated in the porous member.

本発明の摺動部材の一実施形態である斜板式圧縮機のシューを示す断面図である。It is sectional drawing which shows the shoes of the swash plate type compressor which is one Embodiment of the sliding member of this invention. 本発明の摺動部材の一実施形態である斜板式圧縮機のシューを示す断面図である。It is sectional drawing which shows the shoes of the swash plate type compressor which is one Embodiment of the sliding member of this invention. 本発明の摺動部材の一実施形態である斜板式圧縮機のシューを示す断面図である。It is sectional drawing which shows the shoes of the swash plate type compressor which is one Embodiment of the sliding member of this invention. 本発明の摺動部材の一実施形態である斜板式圧縮機のシューを示す断面図である。It is sectional drawing which shows the shoes of the swash plate type compressor which is one Embodiment of the sliding member of this invention. 図2に示すシューの製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the shoes shown in FIG. 本発明の摺動部材がシューとして用いられる斜板式圧縮機を示す説明図である。It is explanatory drawing which shows the swash plate type compressor in which the sliding member of this invention is used as a shoe.

符号の説明Explanation of symbols

10:多孔質部材
11:表層部
16:ピストン側摺接部
17:斜板側摺接部
20、20’、21:樹脂部(21:樹脂被覆層)
10: Porous member 11: Surface layer portion 16: Piston side sliding contact portion 17: Swash plate side sliding contact portion 20, 20 ', 21: Resin portion (21: Resin coating layer)

Claims (16)

発泡金属または発泡セラミックスからなる多孔質部材と、該多孔質部材の少なくとも表層部の気孔内に樹脂が含浸されて硬化されてなる樹脂部と、からなり、該表層部の表面が相手材と摺接することを特徴とする摺動部材。   A porous member made of a foam metal or a foam ceramic, and a resin part formed by impregnating and curing a resin in at least pores of the surface layer part of the porous member, the surface of the surface layer part being slid with the counterpart material. A sliding member characterized by contacting. 発泡金属または発泡セラミックスからなる多孔質部材と、該多孔質部材の少なくとも表層部の気孔内に樹脂が含浸されて硬化されるとともに該表層部の表面を被覆してなる樹脂部と、からなり、該樹脂部の表面が相手材と摺接することを特徴とする摺動部材。   A porous member made of a foam metal or a foamed ceramic, and a resin portion formed by impregnating and curing a resin in at least the surface layer portion of the porous member and covering the surface of the surface layer portion, A sliding member, wherein the surface of the resin portion is in sliding contact with a mating member. 前記多孔質部材の気孔率は、55〜98体積%である請求項1または2記載の摺動部材。   The sliding member according to claim 1 or 2, wherein the porosity of the porous member is 55 to 98% by volume. 前記多孔質部材の気孔率は、80〜98体積%である請求項1または2記載の摺動部材。   The sliding member according to claim 1 or 2, wherein the porosity of the porous member is 80 to 98% by volume. 前記多孔質部材の気孔径は、50μm〜3mmである請求項1または2記載の摺動部材。   The sliding member according to claim 1, wherein the porous member has a pore diameter of 50 μm to 3 mm. 前記多孔質部材の気孔径は、100μm〜3mmである請求項1または2記載の摺動部材。   The sliding member according to claim 1 or 2, wherein the porous member has a pore diameter of 100 µm to 3 mm. 前記多孔質部材は、独立気孔を有する請求項1または2記載の摺動部材。   The sliding member according to claim 1, wherein the porous member has independent pores. 前記多孔質部材は連続気孔を有し、前記樹脂部は該多孔質部材全体に含浸されている請求項1または2記載の摺動部材。   The sliding member according to claim 1, wherein the porous member has continuous pores, and the resin portion is impregnated in the entire porous member. 前記発泡金属は、鉄、鉄を含む鉄系材料、アルミニウム、アルミニウムを含むアルミニウム系材料、ニッケルまたはニッケルを含むニッケル系材料からなる請求項1または2記載の摺動部材。   The sliding member according to claim 1 or 2, wherein the foam metal is made of iron, an iron-based material including iron, aluminum, an aluminum-based material including aluminum, nickel, or a nickel-based material including nickel. 前記発泡セラミックスは、アルミナ、炭化クロムまたは炭化タングステンからなる請求項1または2記載の摺動部材。   The sliding member according to claim 1, wherein the ceramic foam is made of alumina, chromium carbide, or tungsten carbide. 前記樹脂は、耐熱性樹脂である請求項1または2記載の摺動部材。   The sliding member according to claim 1, wherein the resin is a heat resistant resin. 前記耐熱性樹脂は、ポリエーテルエーテルケトン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンスルフィド樹脂、フェノール樹脂およびコプナ樹脂のうちの少なくとも1種である請求項11記載の摺動部材。   The sliding member according to claim 11, wherein the heat-resistant resin is at least one of a polyether ether ketone resin, a polyamide resin, a polyimide resin, a polyamideimide resin, a polyphenylene sulfide resin, a phenol resin, and a copna resin. 前記樹脂部は、前記樹脂に保持された固体潤滑剤および/または強化繊維を含む請求項1または2記載の摺動部材。   The sliding member according to claim 1, wherein the resin portion includes a solid lubricant and / or a reinforcing fiber held by the resin. 前記固体潤滑剤は、二硫化モリブデン粉末、グラファイト粉末およびフッ素化合物粉末のうちの少なくとも1種である請求項13記載の摺動部材。   The sliding member according to claim 13, wherein the solid lubricant is at least one of molybdenum disulfide powder, graphite powder, and fluorine compound powder. 前記強化繊維は、ガラス繊維、炭素繊維およびアラミド繊維のうちの少なくとも1種である請求項13記載の摺動部材。   The sliding member according to claim 13, wherein the reinforcing fiber is at least one of glass fiber, carbon fiber, and aramid fiber. 斜板式圧縮機のシューであって、前記多孔質部材は、その外表面の一方が凸球面をなす球面部と、他方が略平面をなす平面部と、を有する球冠状形状である請求項1または2記載の摺動部材。   2. The shoe of a swash plate compressor, wherein the porous member has a spherical crown shape having a spherical surface portion in which one of the outer surfaces forms a convex spherical surface and a flat surface portion in which the other surface forms a substantially flat surface. Or the sliding member of 2.
JP2007014015A 2007-01-24 2007-01-24 Sliding member Pending JP2008180138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014015A JP2008180138A (en) 2007-01-24 2007-01-24 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014015A JP2008180138A (en) 2007-01-24 2007-01-24 Sliding member

Publications (1)

Publication Number Publication Date
JP2008180138A true JP2008180138A (en) 2008-08-07

Family

ID=39724228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014015A Pending JP2008180138A (en) 2007-01-24 2007-01-24 Sliding member

Country Status (1)

Country Link
JP (1) JP2008180138A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013558A1 (en) * 2014-07-23 2016-01-28 Ntn株式会社 Semispherical shoe for swash plate compressor, and swash plate compressor
CN109456578A (en) * 2018-10-12 2019-03-12 安徽胜利精密制造科技有限公司 Integrate the laptop D shell and its forming method of heat dissipation and electromagnetic shielding
US10760027B2 (en) 2014-05-16 2020-09-01 Nok Klueber Co., Ltd. Sliding member having coating film and method for forming coating film
JP7477097B2 (en) 2020-04-17 2024-05-01 国立大学法人大阪大学 Dissimilar material joint member and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760027B2 (en) 2014-05-16 2020-09-01 Nok Klueber Co., Ltd. Sliding member having coating film and method for forming coating film
WO2016013558A1 (en) * 2014-07-23 2016-01-28 Ntn株式会社 Semispherical shoe for swash plate compressor, and swash plate compressor
US10598167B2 (en) 2014-07-23 2020-03-24 Ntn Corporation Semispherical shoe for swash plate compressor and swash plate compressor
CN109456578A (en) * 2018-10-12 2019-03-12 安徽胜利精密制造科技有限公司 Integrate the laptop D shell and its forming method of heat dissipation and electromagnetic shielding
JP7477097B2 (en) 2020-04-17 2024-05-01 国立大学法人大阪大学 Dissimilar material joint member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2013145889A1 (en) Composite plain bearing, cradle guide, and sliding nut
JP2003138287A (en) Sliding material and sliding device
JP2007203125A (en) Sliding member
JP5925553B2 (en) Variable displacement axial piston pump cradle guide and variable displacement axial piston pump
WO2013022094A1 (en) Sliding nut, sliding bearing for compressor, and cradle guide
JP2008180138A (en) Sliding member
JP5938217B2 (en) Compressor plain bearings and compressors
JP2013185223A (en) Bent axis type hydraulic rotating machine and method for producing the same
JP2000073947A (en) Polymer metal coating for swash plate type compressor
CN111919041B (en) Bearing component
JP4844367B2 (en) Spherical crown shoe
JP2002174168A (en) Aluminum shoe
EP3184816B1 (en) Method for manufacturing hemispherical shoe for swash plate compressor and mold for injection molding same
JP2008082235A (en) Cradle carrier for variable displacement type axial piston pump
JP4941727B2 (en) Shoe for a swash plate compressor and a swash plate compressor provided with the shoe
JP2010037991A (en) Shoe
EP3173622B1 (en) Semispherical shoe for swash plate compressor, and swash plate compressor
CN106332550B (en) The production method of double end oblique tray type compressor and cylinder block
US7849783B2 (en) Plastic shoes for compressors
JP4496662B2 (en) Swash plate in swash plate compressor
JP2002174169A (en) Aluminium shoe
CN102536728A (en) Swash-plate compressor
JP6400419B2 (en) Injection mold of hemispherical shoe for swash plate compressor
JP6313682B2 (en) Swash plate compressor hemispherical shoe and swash plate compressor
JP6146969B2 (en) Variable displacement axial piston pump cradle guide and variable displacement axial piston pump