JP7477097B2 - Dissimilar material joint member and manufacturing method thereof - Google Patents
Dissimilar material joint member and manufacturing method thereof Download PDFInfo
- Publication number
- JP7477097B2 JP7477097B2 JP2020073831A JP2020073831A JP7477097B2 JP 7477097 B2 JP7477097 B2 JP 7477097B2 JP 2020073831 A JP2020073831 A JP 2020073831A JP 2020073831 A JP2020073831 A JP 2020073831A JP 7477097 B2 JP7477097 B2 JP 7477097B2
- Authority
- JP
- Japan
- Prior art keywords
- porous metal
- joining
- resin
- resin material
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 216
- 238000004519 manufacturing process Methods 0.000 title description 11
- 239000011347 resin Substances 0.000 claims description 114
- 229920005989 resin Polymers 0.000 claims description 114
- 238000005304 joining Methods 0.000 claims description 84
- 239000007769 metal material Substances 0.000 claims description 75
- 239000011148 porous material Substances 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 43
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 40
- 229910052782 aluminium Inorganic materials 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 20
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 20
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 10
- 238000005470 impregnation Methods 0.000 claims description 9
- 230000001737 promoting effect Effects 0.000 claims description 3
- 239000004925 Acrylic resin Substances 0.000 description 13
- 229920000178 Acrylic resin Polymers 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 8
- 238000009864 tensile test Methods 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 208000016261 weight loss Diseases 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 239000013585 weight reducing agent Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011359 shock absorbing material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Description
本発明は金属材と樹脂材との異材接合体及びその製造方法に関し、より具体的には、ポーラス金属材と樹脂材との異材接合体及びその効率的な製造方法に関する。 The present invention relates to a dissimilar material joint between a metal material and a resin material and a manufacturing method thereof, and more specifically, to a dissimilar material joint between a porous metal material and a resin material and an efficient manufacturing method thereof.
製造技術の研究開発が盛んに進められているポーラス金属は、緻密材の軽量化の限界を超える軽量化を実現するものである。近年、自動車におけるアルミニウム化、電機製品におけるマグネシウム化などの軽量化が進められているが、金属をポーラス化することにより、これを上回る超軽量化を達成することができる。 Porous metals, for which research and development into manufacturing technologies is currently underway, will achieve weight reductions that exceed the limits of dense materials. In recent years, weight reductions have been made through the use of aluminum in automobiles and magnesium in electrical products, but by making metals porous, it is possible to achieve ultra-lightweight products that exceed these limits.
また、ポーラス金属は、多孔質で比表面積が大きい構造のため、高いエネルギー吸収能、熱交換容量、断熱特性、吸音特性等を有する機能性材料としても有望視されている。各種自動車用部品をはじめとして、衝撃吸収材、防音材、生体医療材などの実用化開発が進められているが、ポーラス金属のみでは適用が困難な場合も多く、その他の材料との接合技術が切望されている。 In addition, because porous metals are porous and have a large specific surface area, they are also seen as promising functional materials with high energy absorption capacity, heat exchange capacity, insulation properties, sound absorption properties, etc. Practical development is underway for various automobile parts, as well as shock absorbing materials, soundproofing materials, biomedical materials, etc., but there are many cases where it is difficult to use porous metals alone, and there is a strong demand for bonding technologies to other materials.
特に、軽量かつ成形性に優れた樹脂材とポーラス金属とを接合することができれば、ポーラス金属の利用範囲は飛躍的に拡大すると考えられる。ここで、例えば、特許文献1(特開2019-166638号公報)では、樹脂とアルミニウム材を接合してなる樹脂金属接合体の製造方法において、前記アルミニウム材に、その表面側に開放する表面開放部が形成された多数の孔部を含むナノ凹凸構造を作製するナノ凹凸構造作製工程と、前記表面開放部から前記孔部内に溶融状態の前記樹脂を侵入させてから固化することで、前記アルミニウム材と前記樹脂を接合する接合工程とを順に行い、前記ナノ凹凸構造作製工程では、前記各孔部の内部で相互に連通する連通部が形成され、これら各孔部及び連通部で構成される内部空間を、前記各孔部の各表面開放部とは別の部位で外部に開放可能に形成することを特徴とする樹脂金属接合体の製造方法、が開示されている。 In particular, if it is possible to join a lightweight resin material with excellent moldability to a porous metal, the range of uses for the porous metal is expected to expand dramatically. Here, for example, Patent Document 1 (JP 2019-166638 A) discloses a method for manufacturing a resin-metal bonded body formed by joining a resin and an aluminum material, which includes a nano-relief structure production process for producing a nano-relief structure including a large number of holes in the aluminum material, each of which has a surface opening that opens to the surface side of the aluminum material, and a joining process for joining the aluminum material and the resin by infiltrating the molten resin from the surface opening into the holes and then solidifying the resin, and in the nano-relief structure production process, a communication part that communicates with each other is formed inside each of the holes, and an internal space composed of each of these holes and communication parts is formed so as to be openable to the outside at a site other than each of the surface openings of each of the holes.
上記特許文献1に記載の樹脂金属接合体の製造方法においては、樹脂との接合部分となるアルミニウム材の表面側に、相互に不規則に配置された多数の孔部を有するナノ凹凸構造が作製され、溶融状態の樹脂を各孔部に侵入させて固化することで、樹脂とアルミニウム材とが接合される。ここで、各孔部の内部は連通部を介して相互に連通した状態となっており、これら各孔部及び連通部で構成される内部空間は、それぞれの孔部の表面開放部とは別の部位で開放している。従って、各表面開放部から各孔部内に樹脂が侵入すると、各孔部内の空気が内部空間の開放部位から抜けながら、内部空間に樹脂を十分に行き渡らせることができる。しかも、各孔部が不規則な形状となることから、内部空間に充填された樹脂が、アルミニウム材の内部で複雑に絡み合って固化することになり、アルミニウム材と樹脂の接着面積が増大し、強固なアンカー効果を得ることができる。このため、本発明によれば、ボルトやリベット等の接合部材や接着剤を用いることなく、強固に接合された樹脂とアルミニウム材との接合体を得ることができる、とされている。 In the manufacturing method of a resin-metal bonded body described in the above Patent Document 1, a nano-relief structure having a large number of holes arranged irregularly with respect to each other is created on the surface side of the aluminum material that is to be bonded to the resin, and the resin and the aluminum material are bonded by infiltrating the molten resin into each hole and solidifying it. Here, the insides of the holes are in a mutually communicating state via the communicating parts, and the internal space formed by these holes and communicating parts is open at a site other than the surface opening of each hole. Therefore, when the resin infiltrates into each hole from each surface opening, the air in each hole escapes from the open part of the internal space, and the resin can be sufficiently distributed in the internal space. Moreover, since each hole has an irregular shape, the resin filled in the internal space is complicatedly entangled and solidified inside the aluminum material, increasing the bonding area between the aluminum material and the resin, and a strong anchor effect can be obtained. Therefore, according to the present invention, it is said that a bonded body of resin and aluminum material that is firmly bonded can be obtained without using bonding members such as bolts and rivets or adhesives.
しかしながら、上記特許文献1に開示されている樹脂金属接合体の製造方法は、金属材の表面に孔部を設けることによって接合を達成するものであり、緻密な金属材と樹脂材を接合する方法である。また、当該接合方法では、ホットプレート等を用いて溶融状態とした樹脂材を孔部に流し込むものであり、樹脂材の流入量を制御することは極めて困難であり、基本的に孔部の全ての領域が樹脂材で充填されてしまう。 However, the manufacturing method of a resin-metal bonded body disclosed in the above Patent Document 1 achieves bonding by providing holes in the surface of the metal material, and is a method for bonding a dense metal material and a resin material. Furthermore, in this bonding method, the resin material in a molten state is poured into the hole using a hot plate or the like, and it is extremely difficult to control the amount of resin material that flows in, and essentially the entire area of the hole is filled with resin material.
軽量化を主たる目的としない緻密な金属材と樹脂材を接合する場合は孔部の全ての領域を樹脂材で充填しても問題にはならないが、接合体の軽量化を図る場合、十分な接合強度が得られる限りにおいて、孔部への樹脂材の充填量は抑制することが好ましい。 When joining dense metal and resin materials, where weight reduction is not the primary objective, there is no problem with filling the entire area of the hole with resin, but when trying to reduce the weight of the joined body, it is preferable to limit the amount of resin filling the hole as long as sufficient joining strength is obtained.
以上のような従来技術における問題点に鑑み、本発明の目的は、軽量化に関するポーラス金属材の利点を損なうことなく、樹脂材との強固な接合部を簡便かつ効率的に形成するための異材接合法及び、それにより得られる高い継手強度を有する異材接合部材を提供することにある。 In view of the problems with the conventional technology described above, the object of the present invention is to provide a dissimilar material joining method for easily and efficiently forming a strong joint with a resin material without compromising the advantage of porous metal materials in terms of weight reduction, and to provide a dissimilar material joint member having high joint strength obtained by the method.
本発明者は上記目的を達成すべく、ポーラス金属材と樹脂材との異材接合法等について鋭意研究を重ねた結果、ポーラス金属材と樹脂材との接触面で発生する摩擦熱を利用すること等が究めて有効であることを見出し、本発明に到達した。 In order to achieve the above objective, the inventors conducted extensive research into methods for joining dissimilar materials, such as porous metal and resin materials, and discovered that using the frictional heat generated at the contact surface between the porous metal and resin materials is extremely effective, leading to the creation of this invention.
即ち、本発明は、
ポーラス金属材と樹脂材との直接接合方法であって、
前記ポーラス金属材は気孔率が30~95体積%で、被接合面に開気孔を有し、
前記被接合面における前記開気孔の面積率が30~95%であり、
前記ポーラス金属材と前記樹脂材とを当接させて被接合界面を形成する第一工程と、
前記ポーラス金属材と前記樹脂材との摺動によって前記被接合界面の近傍に摩擦熱を発生させ、前記摩擦熱によって軟化又は溶融した樹脂材を前記開気孔に含侵させる第二工程と、を有すること、
を特徴とする異材接合方法、を提供する。
That is, the present invention provides:
A method for directly bonding a porous metal material to a resin material, comprising:
The porous metal material has a porosity of 30 to 95 volume % and has open pores on the joining surface,
the area ratio of the open pores on the bonded surfaces is 30 to 95%,
a first step of contacting the porous metal material with the resin material to form a joining interface;
a second step of generating frictional heat in the vicinity of the interface to be joined by sliding between the porous metal material and the resin material, and impregnating the resin material softened or melted by the frictional heat into the open pores;
The present invention provides a method for joining dissimilar materials, comprising the steps of:
本発明の異材接合方法においては、更に、前記摩擦熱によって軟化又は溶融した前記樹脂材の前記開気孔への含侵を促進させる第三工程を有すること、が好ましい。第三工程においては、第二工程における摺動速度を低下又は摺動を停止することや、被接合界面同士を当接させる押圧力を低下させ、これらの状態で一定時間保持することにより、樹脂材の含侵を促進することができる。 The dissimilar material joining method of the present invention preferably further includes a third step of promoting the impregnation of the resin material softened or melted by the frictional heat into the open pores. In the third step, the impregnation of the resin material can be promoted by reducing the sliding speed or stopping the sliding in the second step, or by reducing the pressing force that brings the interfaces to be joined together, and maintaining these conditions for a certain period of time.
気孔率が30~95体積%で、被接合面に開気孔を有し、被接合面における開気孔の面積率が30~95%である限りにおいて、ポーラス金属の材質や構造は特に限定されず、従来公知の種々のポーラス金属を使用することができる。例えば、ポーラス金属はオープンセルタイプであってもクローズドセルタイプであってもよい。 As long as the porosity is 30-95% by volume, the surfaces to be joined have open pores, and the area ratio of the open pores on the surfaces to be joined is 30-95%, the material and structure of the porous metal are not particularly limited, and various conventionally known porous metals can be used. For example, the porous metal may be an open-cell type or a closed-cell type.
本発明の異材接合方法においては、ポーラス金属材と樹脂材との摺動によって被接合界面の近傍に摩擦熱を発生させ、当該摩擦熱によって軟化又は溶融した樹脂材を開気孔に含侵させることにより、必要以上に樹脂材が充填されることを抑制することができる一方で、押圧力の印加により、充填された樹脂材とポーラス金属材を強固に接合することができる。 In the dissimilar material joining method of the present invention, frictional heat is generated near the interface between the porous metal material and the resin material by sliding between them, and the resin material softened or melted by the frictional heat is impregnated into the open pores, preventing the resin material from being filled more than necessary, while the application of a pressing force firmly joins the filled resin material and the porous metal material.
また、本発明の異材接合方法においては、前記第二工程及び/又は前記第三工程において、前記ポーラス金属材を前記樹脂材に5μm~1mm圧入すること、が好ましい。ポーラス金属材を樹脂材に5μm以上圧入することで、少なくとも1つの開気孔に相当する厚さの接合領域を形成することができる。また、当該圧入量を1mm以下とすることで、必要以上に厚い接合領域の形成を抑制し、気孔の低減によって接合体の重量が増加することを防ぐことができる。 In addition, in the dissimilar material joining method of the present invention, it is preferable that in the second step and/or the third step, the porous metal material is pressed into the resin material by 5 μm to 1 mm. By pressing the porous metal material into the resin material by 5 μm or more, a joining region with a thickness equivalent to at least one open pore can be formed. Furthermore, by setting the pressing amount to 1 mm or less, it is possible to suppress the formation of a joining region that is thicker than necessary and prevent an increase in the weight of the joined body due to a reduction in pores.
また、本発明の異材接合方法においては、前記第二工程において、前記ポーラス金属材と前記樹脂材とを回転摺動又は線形摺動させること、が好ましい。ポーラス金属材と樹脂材とを回転摺動又は線形摺動させることで、摩擦熱によって軟化又は溶融した樹脂材を効率的かつ簡便に開気孔に含侵させることができる。ここで、ポーラス金属材と樹脂材とを回転摺動又は線形摺動させる方法は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の方法を用いることができるが、例えば、回転摺動の場合は摩擦圧接装置、線形摺動の場合は線形摩擦接合装置を好適に用いることができる。 In addition, in the dissimilar material joining method of the present invention, it is preferable that the porous metal material and the resin material are subjected to rotational or linear sliding in the second step. By subjecting the porous metal material and the resin material to rotational or linear sliding, the resin material softened or melted by frictional heat can be efficiently and easily impregnated into the open pores. Here, the method of subjecting the porous metal material and the resin material to rotational or linear sliding is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known methods can be used. For example, in the case of rotational sliding, a friction welding device can be preferably used, and in the case of linear sliding, a linear friction joining device can be preferably used.
また、本発明の異材接合方法においては、前記被接合面における前記開気孔の平均直径が5μm~5cmであること、が好ましい。接合に寄与する開気孔の平均直径が5μm~5cmとなっていることで、円滑な樹脂材の含侵と樹脂材の含侵による接合強度の担保を同時に達成することができる。 In addition, in the dissimilar material joining method of the present invention, it is preferable that the average diameter of the open pores in the joined surfaces is 5 μm to 5 cm. By setting the average diameter of the open pores contributing to the joining to 5 μm to 5 cm, it is possible to simultaneously achieve smooth impregnation of the resin material and ensure the joining strength due to the impregnation of the resin material.
また、本発明の異材接合方法においては、前記ポーラス金属材をポーラスアルミニウム材又はポーラスマグネシウム材とすること、が好ましい。アルミニウム材やマグネシウム材は軽量であることに加えて優れた機械的性質や成形性等を有しており、樹脂材と接合することにより多種多様な用途に用いることができる。 In addition, in the dissimilar material joining method of the present invention, it is preferable that the porous metal material is a porous aluminum material or a porous magnesium material. Aluminum and magnesium materials are lightweight and have excellent mechanical properties and formability, and can be used for a wide variety of purposes by joining them with resin materials.
更に、本発明の異材接合方法においては、前記樹脂材を繊維強化プラスチック(FRP)材とすること、が好ましい。繊維強化プラスチック(FRP)は構造材として高い機械的性質と信頼性を有しており、ポーラス金属材と接合することにより、例えば、軽量かつ高強度であることが要求される構造部材として好適に用いることができる。繊維強化プラスチック(FRP)としては、炭素繊維強化プラスチック(CFRP)を用いることがより好ましい。 Furthermore, in the dissimilar material joining method of the present invention, it is preferable that the resin material is a fiber reinforced plastic (FRP) material. Fiber reinforced plastic (FRP) has high mechanical properties and reliability as a structural material, and by joining it with a porous metal material, it can be suitably used, for example, as a structural member that requires light weight and high strength. It is more preferable to use carbon fiber reinforced plastic (CFRP) as the fiber reinforced plastic (FRP).
また、本発明は、
ポーラス金属材と樹脂材とが直接接合された接合部材であって、
前記ポーラス金属材は平均直径が5μm~5cmの開気孔を有し、気孔率が30~95体積%であり、
前記開気孔に前記樹脂材が含侵してなる接合領域を有し、
前記接合領域の厚さが5μm~1mmであること、
を特徴とする異材接合部材、も提供する。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
A joining member in which a porous metal material and a resin material are directly joined,
The porous metal material has open pores with an average diameter of 5 μm to 5 cm and a porosity of 30 to 95 vol. %,
a bonding region formed by impregnating the open pores with the resin material;
The thickness of the bonding area is 5 μm to 1 mm;
The present invention also provides a dissimilar material joining member, characterized in that
本発明の異材接合部材は、ポーラス金属の気孔率が30~95体積%となっており、緻密な金属材と比較して大幅な軽量化が図られている。また、樹脂材との接合に寄与する平均直径が5μm~5cmの開気孔を有し、当該開気孔に樹脂材が含侵してなる接合領域を有している。ポーラス金属はオープンセルタイプであってもクローズドセルタイプであってもよい。 The dissimilar material joining member of the present invention has a porosity of 30 to 95 volume percent for the porous metal, which is significantly lighter than dense metal materials. In addition, it has open pores with an average diameter of 5 μm to 5 cm that contribute to joining with the resin material, and has a joining region in which the open pores are impregnated with the resin material. The porous metal may be either an open cell type or a closed cell type.
また、接合領域の厚さが5μm以上となっていることで、十分な接合強度を発現させることができ、1mm以下となっていることで、異材接合部材の重量増加が抑制されている。 In addition, by making the thickness of the joint area 5 μm or more, sufficient joint strength can be achieved, and by making it 1 mm or less, the weight increase of the dissimilar material joint component is suppressed.
また、本発明の異材接合部材においては、ポーラス金属材がポーラスアルミニウム材又はポーラスマグネシウム材であること、が好ましい。アルミニウム材やマグネシウム材は軽量であることに加えて優れた機械的性質や成形性等を有しており、樹脂材と接合することにより多種多様な用途に用いることができる。 In addition, in the dissimilar material joining member of the present invention, it is preferable that the porous metal material is a porous aluminum material or a porous magnesium material. In addition to being lightweight, aluminum and magnesium materials have excellent mechanical properties and formability, and can be used for a wide variety of purposes by joining them with a resin material.
また、本発明の異材接合部材においては、前記樹脂材が繊維強化プラスチック(FRP)材であること、が好ましい。繊維強化プラスチック(FRP)は構造材として高い機械的性質と信頼性を有しており、ポーラス金属材と接合することにより、例えば、軽量かつ高強度であることが要求される構造部材として好適に用いることができる。繊維強化プラスチック(FRP)としては、炭素繊維強化プラスチック(CFRP)を用いることがより好ましい。 In addition, in the dissimilar material joining member of the present invention, it is preferable that the resin material is a fiber reinforced plastic (FRP) material. Fiber reinforced plastic (FRP) has high mechanical properties and reliability as a structural material, and by joining it with a porous metal material, it can be suitably used, for example, as a structural member that requires light weight and high strength. It is more preferable to use carbon fiber reinforced plastic (CFRP) as the fiber reinforced plastic (FRP).
更に、本発明の異材接合部材においては、前記ポーラス金属材がポーラス金属板材であり、前記樹脂材が樹脂板材であり、前記ポーラス金属板材の表面及び/又は裏面に前記樹脂板材が接合されていること、が好ましい。ポーラス金属材の表面及び/又は裏面に樹脂材を強固に貼り合わせることで、軽量かつ高強度な構造材として極めて好適に用いることができる。 Furthermore, in the dissimilar material joining member of the present invention, it is preferable that the porous metal material is a porous metal plate material, the resin material is a resin plate material, and the resin plate material is joined to the front and/or back surface of the porous metal plate material. By firmly bonding the resin material to the front and/or back surface of the porous metal material, it can be used extremely suitably as a lightweight, high-strength structural material.
なお、本発明の異材接合部材は、本発明の異材接合方法によって簡便かつ効率的に得ることができる。 The dissimilar material joining member of the present invention can be obtained simply and efficiently by the dissimilar material joining method of the present invention.
本発明によれば、軽量化に関するポーラス金属材の利点を損なうことなく、樹脂材との強固な接合部を簡便かつ効率的に形成するための異材接合法及び、それにより得られる高い継手強度を有する異材接合部材を提供することができる。 The present invention provides a dissimilar material joining method for easily and efficiently forming a strong joint with a resin material without compromising the weight-saving advantage of porous metal materials, and a dissimilar material joint member having high joint strength obtained by the method.
以下、図面を参照しながら本発明の異材接合方法及びそれにより得られる異材接合部材の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Below, we will explain in detail typical embodiments of the dissimilar material joining method of the present invention and the dissimilar material joined member obtained thereby with reference to the drawings, but the present invention is not limited to these. In the following explanation, the same or equivalent parts are given the same reference numerals, and duplicate explanations may be omitted. In addition, since the drawings are intended to conceptually explain the present invention, the dimensions of each component shown and their ratios may differ from the actual ones.
(1)異材接合方法
本発明の異材接合方法は、ポーラス金属材と樹脂材との直接接合方法であって、ポーラス金属材と樹脂材との摺動によって被接合界面の近傍に摩擦熱を発生させ、当該摩擦熱によって軟化又は溶融した樹脂材を開気孔に含侵させることを特徴とする異材接合方法である。
(1) Method for joining dissimilar materials The method for joining dissimilar materials of the present invention is a method for directly joining a porous metal material and a resin material, characterized in that frictional heat is generated in the vicinity of the joined interface by sliding between the porous metal material and the resin material, and the resin material softened or melted by the frictional heat is impregnated into the open pores.
(1-1)被接合材
本発明の異材接合方法に用いるポーラス金属材は、気孔率が30~95体積%で、被接合面に開気孔を有し、被接合面における開気孔の面積率が30~95%となっている。気孔率は50~90%であることが好ましく、60~80%であることがより好ましい。気孔率がこのような数値範囲となっていることで、軽量化と機械的性質を高いレベルで両立することができる。接合に寄与する開気孔がこのような数値範囲となっていることで、高い接合強度を得ることができることに加え、均質な接合領域を形成させることができる。
(1-1) Materials to be joined The porous metal material used in the method for joining dissimilar materials of the present invention has a porosity of 30 to 95% by volume, has open pores on the surfaces to be joined, and the area ratio of the open pores on the surfaces to be joined is 30 to 95%. The porosity is preferably 50 to 90%, and more preferably 60 to 80%. With the porosity in this range, it is possible to achieve both weight reduction and high levels of mechanical properties. With the open pores contributing to the joining in this range, it is possible to obtain high joining strength and form a homogeneous joining region.
ポーラス金属にはオープンセルタイプとクローズドセルタイプが存在するが、どちらを用いてもよい。ここで、被接合面に開気孔がない場合は、適当な断面を被接合面とし、当該断面における開気孔の面積率が30~95%となるように調整すればよい。 Porous metals come in open cell and closed cell types, and either can be used. If there are no open pores on the surfaces to be joined, a suitable cross section can be used as the surface to be joined, and the area ratio of the open pores on that cross section can be adjusted to 30-95%.
ポーラス金属の気孔の平均直径は、当該気孔がオープンセルタイプの場合であってもクローズドセルタイプの場合であっても、5μm~5cmであることが好ましく、200μm~2cmであることがより好ましい。被接合面に開気孔がない場合は適当な断面で切断して開気孔とすることで、接合に用いることができる。 The average diameter of the pores in the porous metal is preferably 5 μm to 5 cm, and more preferably 200 μm to 2 cm, whether the pores are of the open-cell type or the closed-cell type. If there are no open pores on the surfaces to be joined, they can be used for joining by cutting them at an appropriate cross section to create open pores.
また、本発明の効果を損なわない限りにおいて、ポーラス金属の材質は特に限定されず、例えば、アルミニウム、マグネシウム、チタン、ニッケル、銅、鋼、ステンレス鋼等を用いることができる。ここで、軽量化の観点からは、アルミニウムを用いることが好ましい。 In addition, the material of the porous metal is not particularly limited as long as it does not impair the effects of the present invention, and for example, aluminum, magnesium, titanium, nickel, copper, steel, stainless steel, etc. can be used. Here, from the viewpoint of weight reduction, it is preferable to use aluminum.
本発明の異材接合方法に用いる樹脂材は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の樹脂材を用いることができるが、摩擦熱によって軟化及び/又は溶融が生じる熱可塑性の樹脂材を用いることが好ましい。また、構造部材としての強度及び信頼性を担保する観点からは、繊維強化プラスチック(FRP)を用いることが好ましく、炭素繊維強化プラスチック(CFRP)を用いることがより好ましい。 The resin material used in the dissimilar material joining method of the present invention is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known resin materials can be used, but it is preferable to use a thermoplastic resin material that softens and/or melts due to frictional heat. In addition, from the viewpoint of ensuring strength and reliability as a structural member, it is preferable to use fiber reinforced plastic (FRP), and it is more preferable to use carbon fiber reinforced plastic (CFRP).
(1-2)接合方法
本発明の異材接合方法では、ポーラス金属材と樹脂材との摺動によって被接合界面の近傍に摩擦熱を発生させるが、以下、ポーラス金属材と樹脂材とを回転摺動させる場合を代表例として詳細に説明する。本発明の異材接合方法に関する接合行程の模式図を図1に示す。
(1-2) Joining method In the method for joining dissimilar materials of the present invention, frictional heat is generated near the interface between the porous metal material and the resin material by sliding between them, and the following will be described in detail as a representative example of the case where a porous metal material and a resin material are rotated and slid. A schematic diagram of the joining process in the method for joining dissimilar materials of the present invention is shown in Figure 1.
(A)第一工程
第一工程においては、ポーラス金属材2と樹脂材4とを当接させて、被接合界面6を形成させる。この際、ポーラス金属2と樹脂材4は両方又はどちらか一方を回転させた状態で当接させてもよく、両方共に回転させずに当接させてもよい。
(A) First Step In the first step, the porous metal material 2 and the resin material 4 are brought into contact with each other to form a joining interface 6. At this time, the porous metal material 2 and the resin material 4 may be brought into contact with each other while both or either one of them is rotated, or both may be brought into contact with each other without being rotated.
また、ポーラス金属材2と樹脂材4は、ポーラス金属材2及び樹脂材4が変形しない圧力で当接させ、ポーラス金属材2の被接合面と樹脂材4の被接合面が均等に密着するように被接合界面6を形成させることが好ましい。 It is also preferable that the porous metal material 2 and the resin material 4 are brought into contact with each other with a pressure that does not deform the porous metal material 2 and the resin material 4, and that the joining interface 6 is formed so that the joining surfaces of the porous metal material 2 and the resin material 4 are evenly in close contact with each other.
(B)第二工程
第二工程においては、ポーラス金属材2と樹脂材4との摺動によって、被接合界面6の近傍に摩擦熱を発生させる。ここでは、ポーラス金属材2のみを回転させる場合について説明するが、適当な回転速度で回転させたポーラス金属材2を、ポーラス金属材2の位置制御又はポーラス金属材2に印加する荷重制御によって、樹脂材4に圧入し、摩擦熱を発生させる。
(B) Second step In the second step, frictional heat is generated near the joining interface 6 by sliding between the porous metal material 2 and the resin material 4. Here, a case where only the porous metal material 2 is rotated will be described, but the porous metal material 2 rotated at an appropriate rotation speed is pressed into the resin material 4 by controlling the position of the porous metal material 2 or controlling the load applied to the porous metal material 2, thereby generating frictional heat.
第二工程において、ポーラス金属材2を樹脂材4に5μm~1mm圧入することが好ましい。ポーラス金属材2を樹脂材4に5μm以上圧入することで、少なくとも接合強度に寄与する量の樹脂材4が開気孔に充填され、良好な接合領域を形成することができる。また、当該圧入量を1mm以下とすることで、必要以上に厚い接合領域の形成を抑制し、気孔の低減によって接合体の重量が増加することを防ぐことができる。 In the second step, it is preferable to press the porous metal material 2 into the resin material 4 by 5 μm to 1 mm. By pressing the porous metal material 2 into the resin material 4 by 5 μm or more, at least an amount of the resin material 4 that contributes to the bonding strength is filled into the open pores, and a good bonding region can be formed. Furthermore, by setting the pressing amount to 1 mm or less, it is possible to suppress the formation of a bonding region that is thicker than necessary and prevent an increase in the weight of the bonded body due to a reduction in pores.
樹脂材4を外部加熱によって溶融してポーラス金属材2の開気孔に含侵させる場合、当該開気孔に必要以上に樹脂材4が充填され、ポーラス金属材2がポーラス構造を有していることに起因する利点が低減してしまう。これに対し、ポーラス金属材2と樹脂材4との摺動を用いた場合、樹脂材4が軟化又は溶融した領域(厚さ)を制御することが容易であり、摺動速度や圧入量等の調整によって、所望の厚さを有する接合領域を形成することができる。 When the resin material 4 is melted by external heating and impregnated into the open pores of the porous metal material 2, the open pores are filled with more resin material 4 than necessary, reducing the advantages of the porous structure of the porous metal material 2. In contrast, when sliding between the porous metal material 2 and the resin material 4 is used, it is easy to control the area (thickness) where the resin material 4 is softened or melted, and a joining area with the desired thickness can be formed by adjusting the sliding speed, amount of pressure, etc.
(C)第三工程
第三工程は必須の工程ではないが、摩擦熱によって軟化又は溶融した樹脂材の被接合界面に存在する開気孔への含侵を促進することができる。第二工程においても、摩擦熱によって軟化又は溶融した樹脂材が開気孔に含侵するが、第三工程は当該含侵を促進するための工程である。例えば、ポーラス金属材2を位置制御で樹脂材4に摩擦圧接する場合、所定の圧入量(接合位置)に到達後、当該位置において一定時間保持することによって、樹脂材の含侵を促進することができる。また、ポーラス金属材2を荷重制御で樹脂材4に摩擦圧接する場合、所定の圧入量(接合位置)に到達後、ポーラス金属2への印加圧力を低下させて一定時間保持することによって、樹脂材の含侵を促進することができる。
(C) Third step The third step is not essential, but it can promote the impregnation of the resin material softened or melted by frictional heat into the open pores present at the interface to be joined. In the second step, the resin material softened or melted by frictional heat also impregnates the open pores, but the third step is a step for promoting the impregnation. For example, when the porous metal material 2 is frictionally welded to the resin material 4 by position control, the impregnation of the resin material can be promoted by holding the porous metal material 2 at a predetermined position for a certain period of time after reaching a predetermined amount of press-in (joining position). In addition, when the porous metal material 2 is frictionally welded to the resin material 4 by load control, the impregnation of the resin material can be promoted by lowering the pressure applied to the porous metal 2 and holding the pressure for a certain period of time after reaching a predetermined amount of press-in (joining position).
接合位置における保持時間は、ポーラス金属材2の材質、気孔率、開気孔のサイズ、開気孔の面積率、及び樹脂材4の材質等に応じて適宜調整すればよい。また、ポーラス金属材2を回転させた状態で保持してもよく、ポーラス金属材2の回転を停止させた状態で保持してもよい。 The holding time at the joining position may be adjusted as appropriate depending on the material, porosity, size of the open pores, area ratio of the open pores, and material of the resin material 4 of the porous metal material 2. The porous metal material 2 may be held in a rotating state, or may be held with the rotation of the porous metal material 2 stopped.
(2)異材接合部材
本発明の一態様を示す異材接合部材の概略断面図を図2に示す。本発明の異材接合部材10は、ポーラス金属材2と樹脂材4とが直接接合された接合部材であって、ポーラス金属材2の開気孔に樹脂材4が含侵してなる接合領域12を有している。即ち、異材接合部材10は、例えば、接着剤等によってポーラス金属材2と樹脂材4とが間接的に接合されたものではない。
(2) Dissimilar material joint member A schematic cross-sectional view of a dissimilar material joint member showing one embodiment of the present invention is shown in Fig. 2. The dissimilar material joint member 10 of the present invention is a joint member in which a porous metal material 2 and a resin material 4 are directly joined, and has a joint region 12 in which the resin material 4 is impregnated into the open pores of the porous metal material 2. In other words, the dissimilar material joint member 10 is not one in which the porous metal material 2 and the resin material 4 are indirectly joined by, for example, an adhesive or the like.
接合領域12の厚さは5μm~1mmとなっており、当該厚さは100~800μmとすることが好ましく、200~700μmとすることがより好ましい。接合領域12の厚さをこれらの範囲とすることで、引張試験において母材破断する高い接合強度と、異材接合部材10の重量増加の抑制を、共に達成することができる。 The thickness of the joining region 12 is 5 μm to 1 mm, and is preferably 100 to 800 μm, and more preferably 200 to 700 μm. By setting the thickness of the joining region 12 within this range, it is possible to achieve both high joining strength that breaks the base material in a tensile test and suppression of weight increase of the dissimilar material joining member 10.
ポーラス金属材2は、気孔率が30~95体積%となっている。当該気孔率は50~90%であることが好ましく、60~80%であることがより好ましい。気孔率がこのような数値範囲となっていることで、軽量化と機械的性質を高いレベルで両立することができる。 The porous metal material 2 has a porosity of 30 to 95% by volume. The porosity is preferably 50 to 90%, and more preferably 60 to 80%. With a porosity in this range, it is possible to achieve both lightweight and high levels of mechanical properties.
ポーラス金属にはオープンセルタイプとクローズドセルタイプが存在するが、ポーラス金属材2にはどちらを用いてもよい。ここで、被接合面に開気孔がない場合は、適当な断面を被接合面とし、当該断面における開気孔の面積率が30~95%となるように調整すればよい。 Porous metals come in open cell and closed cell types, and either may be used for the porous metal material 2. If there are no open pores on the surfaces to be joined, a suitable cross section can be used as the surface to be joined, and the area ratio of the open pores on that cross section can be adjusted to 30 to 95%.
ポーラス金属材2の気孔の平均直径は、当該気孔がオープンセルタイプの場合であってもクローズドセルタイプの場合であっても、5μm~5cmであることが好ましく、200μm~2cmであることがより好ましい。被接合面に存在する開気孔に樹脂材4が充填された接合領域12が形成される。 The average diameter of the pores in the porous metal material 2 is preferably 5 μm to 5 cm, and more preferably 200 μm to 2 cm, regardless of whether the pores are of the open cell type or closed cell type. A joining region 12 is formed in which the resin material 4 is filled into the open pores present on the joining surfaces.
また、本発明の効果を損なわない限りにおいて、ポーラス金属材2の材質は特に限定されず、例えば、アルミニウム、マグネシウム、チタン、ニッケル、銅、鋼、ステンレス鋼等を用いることができる。ここで、軽量化の観点からは、アルミニウム又はマグネシウムを用いることが好ましい。 In addition, the material of the porous metal material 2 is not particularly limited as long as it does not impair the effects of the present invention, and for example, aluminum, magnesium, titanium, nickel, copper, steel, stainless steel, etc. can be used. Here, from the viewpoint of weight reduction, it is preferable to use aluminum or magnesium.
樹脂材4は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の樹脂材を用いることができるが、摩擦熱によって軟化及び/又は溶融が生じる熱可塑性の樹脂材を用いることが好ましい。また、構造部材としての強度及び信頼性を担保する観点からは、繊維強化プラスチック(FRP)を用いることが好ましく、炭素繊維強化プラスチック(CFRP)を用いることがより好ましい。 The resin material 4 is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known resin materials can be used, but it is preferable to use a thermoplastic resin material that softens and/or melts due to frictional heat. In addition, from the viewpoint of ensuring strength and reliability as a structural member, it is preferable to use fiber reinforced plastic (FRP), and it is more preferable to use carbon fiber reinforced plastic (CFRP).
異材接合部材10において、ポーラス金属材2と樹脂材4のサイズや形状、接合領域12が形成される場所等については特に限定されないが、ポーラス金属材2がポーラス金属板材であり、樹脂材4が樹脂板材であり、ポーラス金属板材の表面及び/又は裏面に樹脂板材が接合されていることが好ましい。ポーラス金属材2の表面及び/又は裏面に樹脂材4を強固に貼り合わせることで、軽量かつ高強度な構造材として極めて好適に用いることができる。ここで、ポーラス金属板材と樹脂板材を接合する場合は、これらを線形に摺動させる線形摩擦接合を好適に用いることができる。 In the dissimilar material joining member 10, the size and shape of the porous metal material 2 and the resin material 4, the location where the joining region 12 is formed, etc. are not particularly limited, but it is preferable that the porous metal material 2 is a porous metal plate material, the resin material 4 is a resin plate material, and the resin plate material is joined to the front and/or back surface of the porous metal plate material. By firmly bonding the resin material 4 to the front and/or back surface of the porous metal material 2, it can be used extremely suitably as a lightweight, high-strength structural material. Here, when joining the porous metal plate material and the resin plate material, linear friction joining, in which they slide linearly, can be suitably used.
以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 The above describes representative embodiments of the present invention, but the present invention is not limited to these, and various design modifications are possible, all of which are included in the technical scope of the present invention.
≪ポーラス金属材の作製≫
出発材として純アルミニウム粉末(粒径:約20μm)とNaCl粉末(粒径:300~425μm)を用いた。ポーラスアルミニウムの気孔率が70%となるように、純アルミニウム粉末とNaCl粉末の混合粉末を作製した。
<Preparation of porous metal materials>
Pure aluminum powder (particle size: about 20 μm) and NaCl powder (particle size: 300 to 425 μm) were used as starting materials. A mixture of the pure aluminum powder and the NaCl powder was prepared so that the porosity of the porous aluminum was 70%.
作製した混合粉末を黒鉛型に充填し、放電プラズマ焼結を行った。焼結後、ポーラスアルミニウムを黒鉛型から取り出し、水洗することで、スペーサーであるNaClを除去し、オープンセル構造を有する直径20mmの円盤状のポーラスアルミニウムを得た。当該ポーラスアルミニウムはオープンセルタイプのポーラス金属であり、基本的にNaCl粉末のサイズ及び形状に対応する気孔が形成されている。 The prepared mixed powder was filled into a graphite mold and subjected to spark plasma sintering. After sintering, the porous aluminum was removed from the graphite mold and washed with water to remove the NaCl spacer, yielding a disk-shaped porous aluminum with an open cell structure and a diameter of 20 mm. The porous aluminum is an open-cell type porous metal, and pores are formed that basically correspond to the size and shape of the NaCl powder.
≪ポーラス金属材と樹脂材の接合≫
図1に示す方法で、ポーラスアルミニウム材とアクリル樹脂板(縦50mm×横50mm×厚さ5mm)を接合した。具体的には、構造用接着剤を用いて鉄棒(φ20mm)にポーラスアルミニウム材を貼り付け、当該鉄棒を汎用の摩擦圧接装置の主軸に取り付けた。また、アクリル樹脂板はポーラスアルミニウム材と対抗する位置に、万力で固定した。
<Joining porous metal and resin materials>
A porous aluminum material and an acrylic resin plate (50 mm long x 50 mm wide x 5 mm thick) were joined using the method shown in Figure 1. Specifically, the porous aluminum material was attached to an iron bar (φ20 mm) using a structural adhesive, and the iron bar was attached to the main shaft of a general-purpose friction welding device. The acrylic resin plate was fixed with a vice in a position opposite the porous aluminum material.
ポーラスアルミニウム材を先端に貼り付けた鉄棒を700rpmで回転させ、ポーラスアルミニウム材をアクリル樹脂板の表面に当接させた(第一工程)後、ポーラスアルミニウム材をアクリル樹脂板に0.5mm圧入し(第二工程)、当該状態で30秒又は15秒保持した(第三工程)。当該保持後、鉄棒を回転させたまま上昇させた。 The iron bar with the porous aluminum material attached to the tip was rotated at 700 rpm, and the porous aluminum material was brought into contact with the surface of the acrylic resin plate (first step), after which the porous aluminum material was pressed into the acrylic resin plate by 0.5 mm (second step), and this state was maintained for 30 or 15 seconds (third step). After this state was maintained, the iron bar was raised while still rotating.
ポーラスアルミニウム材及びアクリル樹脂板を配置した状況(接合前の状況)の写真を図3、ポーラスアルミニウム材をアクリル樹脂板に0.5mm圧入して保持している状況の写真を図4、接合後の状況の写真を図5に、それぞれ示す。 Figure 3 shows a photograph of the porous aluminum material and acrylic resin plate in place (before bonding), Figure 4 shows a photograph of the porous aluminum material pressed 0.5 mm into the acrylic resin plate to hold it in place, and Figure 5 shows a photograph of the situation after bonding.
≪評価≫
得られた異材接合部材について、引張速度1mm/minの条件で引張試験を実施し、破断面の観察を行った。
Evaluation
A tensile test was carried out on the obtained dissimilar material joint member at a tensile speed of 1 mm/min, and the fracture surface was observed.
保持時間を30秒として得られた異材接合部材の接合面と引張試験後の破面を図6に示す。なお、接合面はアクリル樹脂板側から観察している。接合面は中心部が黒くなり、その外側も円を描くように黒くなっている様子が確認できる。この黒くなっている箇所が強固な接合部が形成された領域であると考えられる。また、ポーラスアルミニウム材の破面において、中心部とその付近がえぐれている様子が確認できる。また、樹脂の破面において、ポーラスアルミニウム材が樹脂に付着している様子が確認できる。これらの観察結果は、引張試験において母材破断する良好な接合が達成されていることを意味している。 Figure 6 shows the joint surface of a dissimilar material joint obtained with a holding time of 30 seconds and the fracture surface after a tensile test. The joint surface was observed from the acrylic resin plate side. It can be seen that the center of the joint surface is black, with the outside of that also blackening in a circular pattern. This blackened area is thought to be the area where a strong joint was formed. It can also be seen that the center and its surrounding area are gouged out on the fracture surface of the porous aluminum material. It can also be seen that the porous aluminum material is attached to the resin on the fracture surface of the resin. These observation results mean that a good bond was achieved that caused the base material to fracture in the tensile test.
保持時間を15秒として得られた異材接合部材の接合面と引張試験後の外観写真を図7に示す。なお、接合面及び外観はアクリル樹脂板側から観察している。接合面において、中心部の広い範囲が黒くなっている様子が確認できる。保持時間が30秒の場合と同様に、当該領域においてポーラスアルミニウム材とアクリル樹脂板が強固に接合されていると考えられる。また、外観写真において、アクリル樹脂板に亀裂が生じて割れている様子が確認できる。これは引張試験時にポーラスアルミニウム材とアクリル樹脂材が破断する前に生じたものであり、中心部の接合が極めて強固であったことを示している。 Figure 7 shows a photograph of the joint surface of the dissimilar material joint obtained with a holding time of 15 seconds and the appearance after the tensile test. The joint surface and appearance were observed from the acrylic resin plate side. It can be seen that a wide area in the center of the joint surface is blackened. As with the case of a holding time of 30 seconds, it is believed that the porous aluminum material and the acrylic resin plate are firmly bonded in this area. In addition, in the external photograph, it can be seen that the acrylic resin plate has cracked and broken. This occurred before the porous aluminum material and the acrylic resin material broke during the tensile test, indicating that the bond in the center was extremely strong.
2・・・ポーラス金属材、
4・・・樹脂材、
6・・・被接合界面、
10・・・異材接合部材、
12・・・接合領域。
2...Porous metal material,
4...Resin material,
6...interface to be joined,
10... Dissimilar material joining member,
12...Joint area.
Claims (11)
前記ポーラス金属材は気孔率が30~95体積%で、被接合面に開気孔を有し、
前記被接合面における前記開気孔の面積率が30~95%であり、
前記ポーラス金属材と前記樹脂材とを当接させて被接合界面を形成する第一工程と、
前記ポーラス金属材と前記樹脂材との摺動によって前記被接合界面の近傍に摩擦熱を発生させ、前記摩擦熱によって軟化又は溶融した樹脂材を前記開気孔に含侵させる第二工程と、を有すること、
を特徴とする異材接合方法。 A method for directly bonding a porous metal material to a resin material, comprising:
The porous metal material has a porosity of 30 to 95 volume % and has open pores on the joining surface,
the area ratio of the open pores on the bonded surfaces is 30 to 95%,
a first step of contacting the porous metal material with the resin material to form a joining interface;
a second step of generating frictional heat in the vicinity of the interface to be joined by sliding between the porous metal material and the resin material, and impregnating the resin material softened or melted by the frictional heat into the open pores;
A method for joining dissimilar materials, comprising:
を特徴とする請求項1に記載の異材接合方法。 Further, the present invention includes a third step of promoting the impregnation of the resin material softened or melted by the frictional heat into the open pores.
The method for joining dissimilar materials according to claim 1 ,
を特徴とする請求項1又は2に記載の異材接合方法。 In the second step and/or the third step, the porous metal material is press-fitted into the resin material by 5 μm to 1 mm;
The method for joining dissimilar materials according to claim 1 or 2,
を特徴とする請求項1~3のうちのいずれかに記載の異材接合方法。 In the second step, the porous metal material and the resin material are subjected to rotational or linear sliding;
The method for joining dissimilar materials according to any one of claims 1 to 3, characterized in that
を特徴とする請求項1~4のうちのいずれかに記載の異材接合方法。 the open pores on the bonded surfaces have an average diameter of 5 μm to 5 cm;
The method for joining dissimilar materials according to any one of claims 1 to 4, characterized in that
を特徴とする請求項1~5のうちのいずれかに記載の異材接合方法。 The porous metal material is a porous aluminum material or a porous magnesium material;
The method for joining dissimilar materials according to any one of claims 1 to 5, characterized in that
を特徴とする請求項1~6のうちのいずれかに記載の異材接合方法。 The resin material is a fiber reinforced plastic (FRP) material;
The method for joining dissimilar materials according to any one of claims 1 to 6, characterized in that
前記ポーラス金属材は平均直径が5μm~5cmの開気孔を有し、気孔率が30~95体積%であり、
前記開気孔に前記樹脂材が含侵してなる接合領域を有し、
前記接合領域の厚さが5μm~1mmであること、
を特徴とする異材接合部材。 A joining member in which a porous metal material and a resin material are directly joined,
The porous metal material has open pores with an average diameter of 5 μm to 5 cm and a porosity of 30 to 95 vol. %,
a bonding region formed by impregnating the open pores with the resin material;
The thickness of the bonding area is 5 μm to 1 mm;
A dissimilar material joining component characterized by the above.
を特徴とする請求項8に記載の異材接合部材。 The porous metal material is a porous aluminum material or a porous magnesium material;
The dissimilar material joint member according to claim 8 .
を特徴とする請求項8又は9に記載の異材接合部材。 The resin material is a fiber reinforced plastic (FRP) material;
The dissimilar material joint member according to claim 8 or 9,
前記樹脂材が樹脂板材であり、
前記ポーラス金属板材の表面及び/又は裏面に前記樹脂板材が接合されていること、
を特徴とする請求項8~10のうちのいずれかに記載の異材接合部材。 The porous metal material is a porous metal plate material,
The resin material is a resin plate material,
The resin plate is bonded to the front and/or back surface of the porous metal plate;
The dissimilar material joint member according to any one of claims 8 to 10, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020073831A JP7477097B2 (en) | 2020-04-17 | 2020-04-17 | Dissimilar material joint member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020073831A JP7477097B2 (en) | 2020-04-17 | 2020-04-17 | Dissimilar material joint member and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021169189A JP2021169189A (en) | 2021-10-28 |
JP7477097B2 true JP7477097B2 (en) | 2024-05-01 |
Family
ID=78150122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020073831A Active JP7477097B2 (en) | 2020-04-17 | 2020-04-17 | Dissimilar material joint member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7477097B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008180138A (en) | 2007-01-24 | 2008-08-07 | Toyota Industries Corp | Sliding member |
JP2010514590A (en) | 2006-12-28 | 2010-05-06 | ウッドウェルディング・アクチェンゲゼルシャフト | Method for securing a joining element to an object and joining element used in the method |
JP2017503680A (en) | 2013-12-13 | 2017-02-02 | ウッドウェルディング・アクチェンゲゼルシャフト | Method for strengthening and / or aligning materials |
JP2018058279A (en) | 2016-10-06 | 2018-04-12 | 学校法人早稲田大学 | Production method of resin-metal joined article and resin-metal joined article |
JP2018522765A (en) | 2015-07-29 | 2018-08-16 | ウッドウェルディング・アクチェンゲゼルシャフト | Method of joining a device to an object using ultrasonic vibration energy and equipment and equipment suitable for this method |
-
2020
- 2020-04-17 JP JP2020073831A patent/JP7477097B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010514590A (en) | 2006-12-28 | 2010-05-06 | ウッドウェルディング・アクチェンゲゼルシャフト | Method for securing a joining element to an object and joining element used in the method |
JP2008180138A (en) | 2007-01-24 | 2008-08-07 | Toyota Industries Corp | Sliding member |
JP2017503680A (en) | 2013-12-13 | 2017-02-02 | ウッドウェルディング・アクチェンゲゼルシャフト | Method for strengthening and / or aligning materials |
JP2018522765A (en) | 2015-07-29 | 2018-08-16 | ウッドウェルディング・アクチェンゲゼルシャフト | Method of joining a device to an object using ultrasonic vibration energy and equipment and equipment suitable for this method |
JP2018058279A (en) | 2016-10-06 | 2018-04-12 | 学校法人早稲田大学 | Production method of resin-metal joined article and resin-metal joined article |
Also Published As
Publication number | Publication date |
---|---|
JP2021169189A (en) | 2021-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754569B2 (en) | Functionally gradient material precursor, method of producing functionally gradient material, functionally gradient material precursor and functionally gradient material | |
JP4409425B2 (en) | Clad component manufacturing method | |
Rashid et al. | A comparative study of flexural properties of additively manufactured aluminium lattice structures | |
EP2214851A1 (en) | Open cell, porous material, and a method of, and mixture for, making same | |
CN105478994A (en) | Tailor-welding molding method for foamed aluminum sandwiched components | |
CN106476358B (en) | Fast preparation method based on ultrasonic consolidation forming aided composite Ti/Al3Ti | |
WO1998049001A1 (en) | Lightweight high damping porous metal/phthalonitrile composites | |
CN111215630A (en) | Foamed aluminum sandwich plate with high specific stiffness and manufacturing method thereof | |
JP5764506B2 (en) | Ceramic porous body-metal heat insulating material and manufacturing method thereof | |
CN103600169A (en) | Method for connecting Cf/Al composite with TiAl based on laser ignition and self-propagating reaction | |
CN106881923B (en) | A kind of preparation method of complex intensifying type foam metal battenboard | |
JP7477097B2 (en) | Dissimilar material joint member and manufacturing method thereof | |
CN112959012A (en) | Preparation method of foamed aluminum sandwich plate based on friction stir welding connection | |
CN106884159B (en) | The method that carbon-coating coats the preparation method and its assistant brazing C/C composite material and metal of foam carbon/carbon-copper composite material | |
JP4903383B2 (en) | Method for producing porous plate-like metal composite | |
JP2010117024A (en) | Composite damping metal sheet and method for producing the same | |
WO2010029864A1 (en) | Method of manufacturing precursor for foam metal and method of manufacturing foam metal, and precursor for foam metal and foam metal manufactured by the methods | |
JP4289775B2 (en) | Porous metal matrix composite | |
WO2006087973A1 (en) | Process for producing porous metal, porous metal, and porous metallic structure | |
CN112046099B (en) | Preparation method of magnesium-lithium/titanium composite board with high bonding strength and low density | |
JP2011106023A (en) | Porous metal laminated body and method for producing the same | |
JP2013151949A (en) | Composite damping metal sheet and method for producing the same | |
CN109369209B (en) | Method for auxiliary brazing of porous negative expansion ceramic interlayer | |
DE102005023595B4 (en) | Lightweight composite material, process for its production and use | |
JP2008248365A (en) | Method for strengthening metal foam compact having closed cells and metal foam compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7477097 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |