WO2013022094A1 - Sliding nut, sliding bearing for compressor, and cradle guide - Google Patents

Sliding nut, sliding bearing for compressor, and cradle guide Download PDF

Info

Publication number
WO2013022094A1
WO2013022094A1 PCT/JP2012/070524 JP2012070524W WO2013022094A1 WO 2013022094 A1 WO2013022094 A1 WO 2013022094A1 JP 2012070524 W JP2012070524 W JP 2012070524W WO 2013022094 A1 WO2013022094 A1 WO 2013022094A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
resin
resin layer
nut
sintered metal
Prior art date
Application number
PCT/JP2012/070524
Other languages
French (fr)
Japanese (ja)
Inventor
安田 健
靖史 大橋
福澤 覚
石井 卓哉
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011176079A external-priority patent/JP2013040628A/en
Priority claimed from JP2012006408A external-priority patent/JP5938217B2/en
Priority claimed from JP2012072406A external-priority patent/JP5925553B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2013022094A1 publication Critical patent/WO2013022094A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/54Hydrostatic or hydrodynamic bearing assemblies specially adapted for rotary positive displacement pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/20Resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/36Polyarylene ether ketones [PAEK], e.g. PEK, PEEK
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2210/00Fluids
    • F16C2210/02Fluids defined by their properties
    • F16C2210/04Fluids defined by their properties by viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/42Pumps with cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • F16C33/205Multilayer structures, e.g. sleeves comprising a plastic lining with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H2025/2481Special features for facilitating the manufacturing of spindles, nuts, or sleeves of screw devices

Definitions

  • the present invention relates to a sliding nut of a sliding screw device, a sliding bearing for a compressor, and a cradle guide, which are members obtained by thinly molding a resin layer on a sintered metal part. Furthermore, the present invention relates to a sliding screw device using the sliding nut, a compressor using the sliding bearing for the compressor, and a variable displacement axial piston pump using the cradle guide.
  • ⁇ Slide screw devices that convert rotational motion into linear motion have the advantage that they can be designed more compactly than ball screw devices, and are often used in industrial machine feeders and positioning devices.
  • a sliding screw device using a resin nut has been developed for maintenance-free purposes.
  • the screw groove portion (or the entire nut) screwed into the screw shaft is not made of polyphenylene sulfide resin and at least 280 ° C. with a tetrafluoroethylene resin.
  • a resin nut formed from a polyphenylene sulfide resin composition obtained by blending molten organic resin powder see Patent Document 1.
  • a sliding screw device in which a body coating film is formed has been proposed (see Patent Document 2).
  • a fixed mold having a mold surface that molds one end surface of the resin nut, or one end surface thereof and the vicinity thereof, and a cavity that molds the remaining outer surface of the resin nut are used.
  • an injection mold having a movable mold movable in the axial direction and a core pin provided on the movable mold and formed with a spiral groove for forming a thread groove on the outer diameter surface is used.
  • a manufacturing method in which a resin nut is formed by filling a molten resin and then opening a mold and rotating a core pin (see Patent Document 4).
  • a compressor used for an air conditioner or the like has a rotating member for driving the compression mechanism, and the rotating member is supported by a bearing.
  • a material in which a fluororesin is coated on the base material through a porous metal having a solid lubricating function has been proposed as the sliding bearing.
  • This sliding bearing is formed by coating the surface of a flat plate member with a fluororesin via a bronze sintered layer that is a porous metal and bending it into a cylindrical shape.
  • Patent Document 5 since a sliding bearing is used as a bearing that supports a rotating member, the number of parts is reduced as compared with the case where a rolling bearing is used, and the cost can be reduced. In addition, the interposition of the fluororesin and the porous metal makes it difficult for the sliding contact portion between the rotating member and the sliding bearing to be worn, thereby extending the life of the compressor. Since the fluororesin is coated on the base material through the porous metal, the fluororesin is hardly peeled off from the base material side when a part of the fluororesin enters the hole portion of the porous metal.
  • the sliding bearing that supports the rotating member for driving the compression mechanism has precise rotation accuracy and stably obtains low rotational torque, so it has excellent load resistance and creep resistance, and is dimensioned even under high surface pressure. It is required that it does not change.
  • a multilayer bearing disclosed in Patent Document 6 and Patent Document 7 can be cited.
  • the bearing (sliding member) of Patent Document 6 has a surface layer made of a polyether ether ketone (PEEK) resin on a porous sintered layer on a back metal layer.
  • PEEK polyether ether ketone
  • a variable displacement piston pump used as a hydraulic pressure generation source of a hydraulic circuit for example, the structure of a so-called cradle type pump (hereinafter also simply referred to as “pump”) is well known.
  • the cradle type pump a cylinder block that accommodates a piston is integrally rotated together with a rotating shaft, and the cradle is slidably contacted with the cradle guide and supported so as to be inclined with respect to the rotating shaft. It contacts the inclined surface of the cradle via the connected shoe. Therefore, the piston reciprocates with a stroke defined according to the inclination angle of the cradle with the rotation of the rotating shaft, and has a pump action.
  • the discharge capacity of the pump due to the stroke difference can be constantly changed by controlling the inclination angle of the cradle with respect to the rotation axis by hydraulic pressure or the like.
  • a thrust bush serving as a cradle guide a metal thrust bush having a sliding surface provided with a resin film, a nylon (polyamide resin), a polyacetal resin, a polytetrafluoroethylene (hereinafter referred to as PTFE) resin, or the like.
  • a thrust bush made of a dynamic resin is known (see Patent Document 8).
  • At least one of the cradle or the cradle guide made of an aluminum material is coated with a fluorine resin such as an ethylene-tetrafluoroethylene copolymer (ETFE) resin, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, or a PTFE resin.
  • a fluorine resin such as an ethylene-tetrafluoroethylene copolymer (ETFE) resin, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, or a PTFE resin.
  • ETFE ethylene-tetrafluoroethylene copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PTFE resin tetrafluoroethylene-hexafluoropropylene copolymer
  • An applied variable displacement piston pump is also known (see Patent Document 9).
  • a thrust bush serving as a cradle guide there are known a thrust bush in which a copper-based sintered film is formed on the surface of an iron base, and a thrust bush in which a resin film is further applied to the surface of the sintered film (see Patent Document 10). ).
  • the resin nut of Patent Document 1 can be used without lubrication, it is difficult to use at a high load (high surface pressure) of 1 kPa or more.
  • the sliding screw device of Patent Document 2 can be used even at a high load of 1 kPa or more, it is not easy to form a powder coating film of an aromatic polyimide resin uniformly on the female screw portion of the nut. Further, depending on the use conditions, there is a possibility that the adhesion (shear adhesion strength) between the powder coating film and the nut is not sufficient.
  • the outer peripheral part of the nut is made of metal, but the inner peripheral part including the female screw part is made of a synthetic resin. This is equivalent to the resin nut No. 1 and the female thread portion may be destroyed when used under a high load.
  • the manufacturing process of the sliding bearing described in Patent Document 6 is as follows.
  • a porous bronze layer is formed by spreading and sintering lead bronze powder to a thickness of 0.3 mm on a 0.8 mm thick back metal plated with copper.
  • a sheet of a resin composition containing PEEK resin as a main component is superimposed on the porous sintered layer and pressed between rolls to impregnate and coat the resin composition, thereby forming a multilayer having a thickness of 1.5 mm. .
  • the resin composition side is turned to the inside, for example, it is curved and formed into a cylindrical shape having an inner diameter of 20 mm and a width of 20 mm, and then finished by turning or grinding so that the inner diameter becomes a perfect circle.
  • Patent Document 5 and Patent Document 7 such as bending into a cylindrical shape (cylindrical shape) after forming and cutting the multilayer.
  • the cradle guide (thrust bush) described in Patent Document 8 cannot satisfy the load resistance due to the resin film. There's a problem.
  • the problem regarding the load resistance in this application is that a fluororesin coating such as PTFE resin described in Patent Document 9 is formed on the surface of a cradle guide made of aluminum, or an iron base material described in Patent Document 10 It can be improved if a fluororesin coating is formed on the surface of the film via a copper-based sintered film. However, in that case, the wear resistance and the low friction characteristics were not sufficient.
  • the present invention has been made to cope with these problems. That is, an object is to provide a sliding nut and a sliding screw device of a sliding screw device that are easy to manufacture and have excellent sliding characteristics such as seizure resistance and wear resistance even under high load conditions. In addition, it is easy to manufacture, has high dimensional accuracy, is excellent in heat resistance, low friction, wear resistance, load resistance, and creep resistance, and can stably obtain low rotational torque. It is an object of the present invention to provide a sliding bearing for a compressor and a compressor provided with the sliding bearing for the compressor.
  • a cradle guide for a variable displacement axial piston pump that can satisfy all of the load resistance, wear resistance, and low friction characteristics of 30 MPa or more while being easy to manufacture and low cost, and a variable capacity using the cradle guide The purpose is to provide a type axial piston pump.
  • the sliding nut of the present invention is a sliding nut that moves relatively while sliding on the shaft of the screw shaft as the screw shaft rotates in the sliding screw device, and the sliding nut is a nut
  • the main body is made of a sintered metal, and a resin layer of a resin composition having a synthetic resin as a base resin is formed as a screw groove portion on the surface of a female screw portion screwed into the screw shaft of the nut main body.
  • the resin layer is a resin layer that is injection-molded over the nut body.
  • the resin layer has a thickness of 0.1 to 1.5 mm.
  • the synthetic resin is an aromatic polyether ketone resin.
  • the resin composition is characterized in that an aromatic polyetherketone resin is used as a base resin, and a fibrous filler is contained in the resin. Further, the fibrous filler is a fibrous filler having an average fiber length of 0.02 to 0.2 mm.
  • the sintered metal of the nut body has a theoretical density ratio of 0.7 to 0.9.
  • the resin composition is a resin composition having a melt temperature of 50 to 200 Pa ⁇ s at a resin temperature of 380 ° C. and a shear rate of 1000 s ⁇ 1 .
  • the resin composition uses an aromatic polyetherketone resin as a base resin and contains a fibrous filler
  • 5 to 30 volumes of carbon fiber is used as the fibrous filler with respect to the entire resin composition.
  • the carbon fiber is a PAN-based carbon fiber.
  • the sliding screw device of the present invention includes a screw shaft and a sliding nut that moves relatively while sliding on the shaft of the screw shaft as the screw shaft rotates.
  • the above-mentioned sliding nut of the present invention is characterized by the above.
  • the slide screw device is lubricated with oil or grease.
  • a sliding bearing for a compressor according to the present invention is a sliding bearing for a compressor that rotatably supports a rotating member for driving a compression mechanism of the compressor, and the sliding bearing is formed on a sintered metal substrate, A sliding surface of a resin layer made of a resin composition comprising an aromatic polyetherketone resin as a base resin, the resin layer being 0.1 to 0.7 mm on the surface of the sintered metal base material; It is characterized in that it is provided integrally by being laminated by injection molding with a thickness.
  • the resin composition includes a fibrous filler, and in the resin layer, the fibrous filler is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the sliding bearing. It is characterized by being.
  • the sliding bearing is a bearing that supports the rotating member in the radial direction (radial sliding), and is arranged to pressure-isolate the internal space in the housing of the compression mechanism.
  • the sliding bearing is a bearing that supports the rotating member in a thrust direction (thrust sliding), and is disposed on a side that receives a compression reaction force generated in the compression mechanism via the rotating member. To do.
  • the compressor of the present invention is characterized by comprising the above-described slide bearing of the present invention that rotatably supports a rotating member for driving the compression mechanism.
  • a cradle guide according to the present invention is a cradle guide that is slidably contacted with a cradle that adjusts a piston stroke in a variable displacement axial piston pump and holds the cradle so that the cradle can swing.
  • a resin layer made of a resin composition having an aromatic polyetherketone resin as a base resin, and the resin layer has a surface in contact with at least the cradle of the sintered metal member. It has a thickness of 1 to 0.7 mm and is integrally provided by injection molding.
  • the resin composition includes a fibrous filler, and in the resin layer, the fibrous filler is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the cradle guide. It is characterized by being.
  • the sintered metal member is a cradle guide body.
  • the cradle guide has a cradle guide main body made of molten metal, and the sintered metal member is installed on the cradle guide main body.
  • a variable displacement axial piston pump according to the present invention includes the cradle guide according to the present invention.
  • the nut body is made of a sintered metal, and a resin layer of a resin composition having a synthetic resin as a base resin is formed as a thread groove on the surface of the female thread that is screwed onto the screw shaft of the nut body.
  • the resin layer bites into the pores (surface irregularities) of the sintered metal, and the resin layer and the nut body can be firmly adhered.
  • it is excellent in the mechanical strength, heat dissipation characteristics, and durability of the tooth base of the female thread portion of the nut body. As a result, the real contact area on the friction surface is reduced, the frictional force and frictional heat generation are reduced, and there is an advantage that wear is reduced and the increase in the friction surface temperature is suppressed.
  • the resin layer that is the thread groove portion is a resin layer that is injection molded over the nut body, it can be easily and accurately formed on the surface of the female thread portion. Further, the resin layer deeply penetrates into the pores on the surface of the sintered metal during injection molding, the true bonding area is increased, and the adhesion strength between the resin layer and the nut body is improved. Further, there is no gap in the joint surface between the resin layer and the internal thread portion (sintered metal), and the heat of the resin layer is easily transmitted to the nut body.
  • the resin layer is thin with a layer thickness of 0.1 to 1.5 mm, the heat generated by frictional heat easily escapes from the friction surface to the nut body, is difficult to store heat, has high load resistance, and can be deformed even under high surface pressure. Becomes smaller.
  • the base resin of the resin composition forming the resin layer is an aromatic polyether ketone resin, it is excellent in load resistance, heat resistance, low friction characteristics, and wear resistance characteristics.
  • the resin composition for forming the resin layer contains a fibrous filler in an aromatic polyether ketone resin, it is excellent in friction and wear characteristics and creep resistance characteristics.
  • the fibrous filler is a fibrous filler having an average fiber length of 0.02 to 0.2 mm, the resin layer is excellent in friction and wear characteristics and creep resistance, and has a female thread portion (screw groove portion). There is no hindrance to precision molding.
  • the sintered metal of the nut main body has a theoretical density ratio of 0.7 to 0.9, it has a required denseness while ensuring unevenness of the surface to obtain adhesion to the resin layer, and the nut The thermal conductivity of the main body can be secured.
  • the resin composition is a resin composition having a melt temperature of 50 to 200 Pa ⁇ s at a resin temperature of 380 ° C. and a shear rate of 1000 s ⁇ 1 , 0.1 to 1.5 mm is formed on the surface of the nut body made of sintered metal. Thin insert molding can be performed smoothly.
  • the resin composition uses an aromatic polyetherketone resin as a base resin and contains a fibrous filler
  • 5 to 30 volumes of carbon fiber is used as the fibrous filler with respect to the entire resin composition.
  • %, And PTFE resin is contained in an amount of 1 to 30% by volume. Therefore, even under high PV conditions, deformation and wear of the resin layer, damage to the counterpart material are small, and resistance to oil and the like is high.
  • the carbon fiber is a PAN-based carbon fiber, the elastic modulus of the resin layer is increased, and deformation and wear of the resin layer are reduced. Furthermore, the true contact area of the friction surface is reduced, and frictional heat generation is reduced.
  • the sliding screw device of the present invention comprises a screw shaft and the sliding nut of the present invention that moves relatively while sliding on the shaft of the screw shaft as the screw shaft rotates. Although it is easy and inexpensive, it has excellent sliding characteristics such as seizure resistance and wear resistance even under high load conditions. Further, by being lubricated with oil or grease, it is possible to withstand a high load and to ensure high-precision rotational stability.
  • the sliding bearing for a compressor of the present invention has a sliding surface of a resin layer made of a resin composition having an aromatic polyether ketone resin as a base resin on a sintered metal base material, so that it has heat resistance and low friction.
  • a resin layer made of a resin composition having an aromatic polyether ketone resin as a base resin on a sintered metal base material, so that it has heat resistance and low friction.
  • the resin layer is integrally provided by injection molding on the surface of the sintered metal base material with a thickness of 0.1 to 0.7 mm, it is excellent in load resistance and creep resistance. It is possible to stably obtain a low rotational torque without changing the dimensions even under high surface pressure.
  • the resin layer is provided integrally with the surface of the sintered metal base material by injection molding, that is, the resin metal layer is formed by injection molding by inserting the sintered metal base material into the mold.
  • the resin metal layer is formed by injection molding by inserting the sintered metal base material into the mold.
  • the resin composition contains a fibrous filler, the heat resistance, wear resistance, load resistance, and creep resistance of the resin layer can be further increased. Further, the fibrous filler in the resin layer is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the sliding bearing. Aggressiveness to the mating material surface can be reduced, and fluctuations in rotational torque can be prevented.
  • the sliding bearing for a compressor of the present invention has the same bearing size as that of a conventional sliding bearing for a compressor, but is excellent in wear resistance, low friction, dimensional stability, and the like. For this reason, it can be used suitably for the radial sliding bearing which supports the rotating member of a compressor in a radial direction.
  • the compressor of the present invention is a compressor provided with a sliding bearing that rotatably supports a rotating member for driving a compression mechanism, and the sliding bearing for a compressor of the present invention is adopted as this sliding bearing.
  • the compressor can be excellent in energy saving and long life.
  • the cradle guide of the variable capacity type piston pump of the present invention uses, as a base resin, a sintered metal member and an aromatic polyetherketone resin formed on the surface of the sintered metal member at least in contact with the cradle. Therefore, there is an advantage that the cradle guide is excellent in heat resistance, low friction and wear resistance.
  • the resin layer is integrally formed by injection molding on the surface of the sintered metal member with a thickness of 0.1 to 0.7 mm, it is excellent in load resistance and creep resistance, It is possible to stably obtain a low torque without changing dimensions even under surface pressure.
  • the cradle guide can be used for a long period of time by satisfying all of the load resistance, wear resistance and low friction characteristics even in a high-pressure sliding state of 30 MPa or more.
  • the resin layer is integrally provided on the surface of the sintered metal member by injection molding, that is, the resin layer is formed by injection molding by inserting the sintered metal member into the mold. There is no need to form a coating layer (spraying, drying, firing, etc.) on a steel plate like a cradle guide, and there is no need for processing with a lathe or a polishing machine.
  • the sliding surface has high dimensional accuracy.
  • the resin composition contains a fibrous filler, the heat resistance, wear resistance, load resistance, and creep resistance of the resin layer can be further increased. Further, in the resin layer, the fibrous filler is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the cradle guide. Aggressiveness to the mating material surface can be reduced, and fluctuations in sliding torque can be prevented.
  • the sintered metal member is a cradle guide body, the number of parts is small, the structure is simple, and the manufacturing cost is low.
  • a cradle guide body made of molten metal by installing the sintered metal member in the cradle guide body, while ensuring high mechanical strength as a whole cradle guide,
  • the above-mentioned effect can be obtained by using a sintered metal member and a thin-walled injection molded resin layer.
  • the conventional cradle guide main body can be used, a design change etc. are unnecessary and it can prevent a cost increase.
  • variable displacement axial piston pump of the present invention includes the cradle guide of the present invention, it is possible to precisely control the tilt angle of the cradle, thereby performing a precise hydraulic control operation, etc. Become a high pump.
  • FIG. 1 It is sectional drawing which shows 4th Embodiment of the compressor using the sliding bearing for compressors. It is a longitudinal section of a variable capacity type axial piston pump using a cradle guide of the present invention. It is a perspective view which shows an example of a cradle guide. It is a perspective view which shows the other example of a cradle guide. It is a disassembled perspective view of the cradle guide of FIG. It is a perspective view which shows the other example of a cradle guide. It is sectional drawing of a cradle guide.
  • FIG. 1 is a perspective view of a sliding screw device
  • FIG. 2 is an axial sectional view of a sliding nut.
  • the sliding screw device 71 of the present invention is composed of a screw shaft 72 and a sliding nut 73 of the present invention which is screwed into a screw groove of the screw shaft 72 and moves relatively while sliding on the screw shaft. Is done.
  • the rotational movement of the screw shaft 72 is converted into the linear movement of the sliding nut 73.
  • screw shaft 72 stainless steel, carbon steel, or the like, or a metal shaft such as an iron-based metal or aluminum alloy obtained by applying zinc plating, nickel plating, steel chrome plating, or the like, or a resin shaft such as polyimide resin or phenol resin.
  • a metal shaft such as an iron-based metal or aluminum alloy obtained by applying zinc plating, nickel plating, steel chrome plating, or the like, or a resin shaft such as polyimide resin or phenol resin.
  • Corrosion-resistant metals such as stainless steel and aluminum alloys or resins are preferred because they do not generate rust, and are also suitable from the point that rust prevention treatment can be omitted. In the present invention, corrosion-resistant metals that can ensure dimensional accuracy and have excellent durability are most preferable.
  • the screw shaft 72 can be used without lubrication.
  • a lubricant such as oil or grease may be used for the sliding portion between the screw shaft 72 and the sliding nut 73.
  • it is preferable to take a measure so as to suppress the aggressive wear by forming a linear groove in the axial direction of the female thread portion of the sliding nut so as to hold the wear powder there.
  • the sliding nut has a nut body 73a made of sintered metal, and a synthetic resin, which will be described later, is used as a base resin on the surface of a female thread portion that is screwed onto a screw shaft in the nut body 73a.
  • a resin layer 73b of the resin composition is formed.
  • the female thread portion is a part of the nut main body 73a and is formed on the inner diameter portion of the nut main body 73a, and the resin layer 73b, which is a thread groove portion, is formed so as to cover the surface of the female thread portion.
  • the resin layer 73b, which is a screw groove is in direct sliding contact with the screw shaft 72 (see FIG. 1).
  • the resin layer 73b should just be formed in the surface of the internal thread part at least, and may be formed in the other surface of the nut main body 73a.
  • the resin layer 73b bites into the pores of the sintered metal of the nut body 73a, so that the resin layer 73b and the nut body 73a are firmly attached.
  • the resin layer 73b deeply bites into the irregularities on the surface of the nut body (sintered metal) during injection molding, and the true bonding area increases, so the resin layer 73b and the nut body 73a The adhesion strength with is improved.
  • the true bonding area between the resin layer 73b and the nut main body 73a is increased, and there is no gap in the bonding surface between the resin layer and the internal thread portion (sintered metal), so that the heat of the resin layer 73b is easily transmitted to the nut main body 73a. .
  • the thread shape is, for example, a triangular screw such as a miniature screw, metric coarse screw, metric fine screw, unified coarse screw, or unified fine screw, a trapezoidal screw such as a 29 degree trapezoidal screw or a metric trapezoidal screw, or a round screw. Any screw shape may be applied. Further, it may be a single thread, a double thread, or a multiple thread.
  • the material of the sintered metal constituting the nut body iron-based, copper-iron-based, copper-based, stainless-based materials, and the like can be given. Since adhesion between the resin layer and the nut body can be enhanced, it is preferable to use a sintered metal containing iron as a main component, and further an iron-based sintered metal having a copper content of 10% by weight or less. In addition, since copper is inferior to adhesiveness (adhesiveness) with resin rather than iron, 10 weight% or less of copper content is preferable. More preferably, the copper content is 5% by weight or less.
  • the sintered metal that makes up the nut body contains oil or other oil, oil residue that decomposes and gasifies during injection molding of the resin layer is present at the interface. May deteriorate. Therefore, it is preferable to use a sintered metal not impregnated with oil for the nut body. Moreover, when using oil in the process of shaping
  • the density of the sintered metal is preferably a theoretical density ratio of the material of 0.7 to 0.9.
  • the theoretical density ratio of the material is the ratio of the density of the nut body when the theoretical density of the material (density when the porosity is 0%) is 1. If the theoretical density ratio is less than 0.7, the strength of the sintered metal is lowered, and the sintered metal may be broken by the injection molding pressure at the time of insert molding. When the theoretical density ratio exceeds 0.9, the unevenness is reduced, so that the surface area and the anchor effect are lowered, and the adhesion with the resin layer is lowered. More preferably, the theoretical density ratio of the materials is 0.72 to 0.84.
  • Sintered metal with iron as its main component is an effect that removes oil and deposits adhering to the sintered surface or penetrating into the sintered body unintentionally during the molding or re-pressing (sizing) process by applying steam treatment Therefore, variation in adhesion with the resin layer is small and stable. Moreover, rust prevention can also be provided to the nut body.
  • the conditions for the steam treatment are not particularly limited, but a method of spraying steam heated to about 500 ° C. is common.
  • the resin layer As a method for forming the resin layer, there are coating by dipping and injection molding (insert molding). Moreover, you may interpose an adhesive agent in a joint surface. Considering screw dimensional accuracy, adhesion between the resin layer and the nut body, ease of manufacturing, etc., there is a method of injection molding over the nut body, that is, injection molding in which the resin layer is insert-molded to the nut body. preferable.
  • the thickness of the resin layer is preferably 0.1 to 1.5 mm.
  • the thickness of the resin layer is the thickness of the surface portion that does not enter the nut body of the sintered metal. If the resin thickness is less than 0.1 mm, insert molding is difficult. In addition, durability during long-term use, that is, life may be shortened. On the other hand, if the resin thickness exceeds 1.5 mm, sink marks may occur and dimensional accuracy may be reduced. Further, heat due to friction is difficult to escape from the friction surface to the nut body side, and the friction surface temperature becomes high. In addition, the amount of deformation due to the load increases, the true contact area on the friction surface also increases, the frictional force and frictional heat generation increase, and the seizure resistance may decrease.
  • the resin thickness is more preferably 0.2 to 0.7 mm.
  • a sliding nut with high dimensional accuracy is formed by insert molding a thin resin layer (0.1 to 1.5 mm) on the surface of the internal thread of the nut body made of sintered metal with high dimensional accuracy. Can do.
  • the resin composition forming the resin layer is based on a synthetic resin.
  • the synthetic resin is preferably a synthetic resin that can be injection-molded and has excellent lubricating properties. Further, a synthetic resin having high heat resistance is preferable so that it can be used in a part having a high atmospheric temperature.
  • synthetic resins include aromatic polyether ketone (PEK) resins, polyacetal (POM) resins, polyphenylene sulfide (PPS) resins, injection-moldable polyimide resins, polyamide imide (PAI) resins, polyamides ( PA) resin, injection-moldable fluororesin, and the like.
  • PES polyether ketone
  • PPS polyphenylene sulfide
  • PAI polyamide imide
  • PA polyamides
  • injection-moldable fluororesin and the like.
  • Each of these synthetic resins may be used alone or may be a polymer alloy in which two or more kinds are mixed.
  • PEK resin As the base resin of the resin composition that forms the resin layer, the continuous use temperature is 250 ° C, and it has excellent heat resistance, oil / chemical resistance, creep resistance, and friction and wear characteristics. It becomes the sliding nut of the screw device.
  • PEK-based resin has high toughness, high mechanical properties at high temperatures, and excellent fatigue resistance and impact resistance. Therefore, from the nut body made of sintered metal due to frictional force, impact, vibration, etc. during use There is no worry of peeling.
  • PEK resin examples include polyether ether ketone (PEEK) resin, polyether ketone (PEK) resin, and polyether ketone ether ketone (PEKEKK) resin.
  • PEEK resins examples include: Victorex Corporation: PEEK (90P, 150P, 380P, 450P, 90G, 150G, etc.), Solvay Advanced Polymers Corporation: KetaSpire (KT-820P, KT-880P) Etc., manufactured by Daicel Degussa, Inc .: VESTAKEEEP (1000G, 2000G, 3000G, 4000G, etc.).
  • Examples of the PEK resin include Victrex-HT manufactured by Victrex, and examples of the PEKKK resin include Victrex-ST manufactured by Victrex.
  • the resin composition forming the resin layer preferably has a melt viscosity of 50 to 200 Pa ⁇ s at a resin temperature of 380 ° C. and a shear rate of 1000 s ⁇ 1 .
  • a melt viscosity is within this range, a thin insert molding of 0.1 to 1.5 mm can be smoothly performed on the surface of the nut body made of sintered metal. If the melt viscosity is less than the predetermined range or exceeds the predetermined range, it is not easy to ensure accurate moldability. By making thin insert molding possible and making post-processing after insert molding unnecessary, manufacturing becomes easy and manufacturing costs can be reduced.
  • the melt viscosity under these conditions is 150 Pa ⁇ s or less.
  • PEK resin examples include Victorex Corporation: PEEK (150P, 90P, 150G, 90G), Solvay Advanced Polymers Corporation: KetaSpire (KT-880P), and the like.
  • a PEK-based resin having a melt viscosity of 130 Pa ⁇ s or less under the above conditions such as PEEK (90P, 90G) manufactured by Victrex. Can be illustrated.
  • the resin composition forming the resin layer uses the PEK-based resin as a base resin, and fiber fillers such as glass fiber, carbon fiber, aramid fiber, and whisker, PTFE resin, graphite, molybdenum disulfide, and disulfide.
  • Solid lubricants such as tungsten and inorganic fillers such as calcium carbonate, calcium sulfate, mica and talc can be blended. By blending these, the creep resistance characteristics, the friction and wear characteristics with no lubrication or oil lubrication can be further improved.
  • the fibrous filler, the inorganic solid lubricant (graphite, molybdenum disulfide, etc.), and the inorganic filler have an effect of reducing the molding shrinkage of the PEK resin. Therefore, there is an effect of suppressing the internal stress of the resin layer at the time of insert molding with the nut body. Further, the solid lubricant is non-lubricated and has low friction even under the condition where the lubricating oil is dilute, thereby improving the seizure property.
  • the average fiber length of the fibrous filler is preferably 0.02 to 0.2 mm. If the thickness is less than 0.02 mm, a sufficient reinforcing effect cannot be obtained, and the creep resistance and wear resistance may be inferior. When the thickness exceeds 0.2 mm, the ratio of the fiber length to the layer thickness of the resin layer becomes large, so that the thin formability is inferior. In particular, when insert molding is performed with a resin thickness of approximately 0.1 to 1.5 mm, thin-wall moldability is hindered if the fiber length exceeds 0.2 mm. In order to further improve the stability of thin-wall molding, an average fiber length of 0.02 to 0.1 mm is more preferable.
  • Carbon fiber has a strong orientation in the melt flow direction of the resin when the resin layer is molded.
  • the carbon fibers may be either pitch-based or PAN-based ones classified from raw materials, but PAN-based carbon fibers having a high elastic modulus are more preferable.
  • the calcining temperature is not particularly limited, but a carbonized material calcined at about 1000 to 1500 ° C. is higher than that calcined at a high temperature of 2000 ° C. or higher to be converted into graphite. Even under PV, it is preferable because the screw shaft is not easily damaged by wear.
  • the average fiber diameter of the carbon fiber is 20 ⁇ m or less, preferably 5 to 15 ⁇ m.
  • a thick carbon fiber exceeding this range is not preferable because extreme pressure is generated, and the effect of improving load resistance is poor, and in the case of a steel material whose screw shaft is not quenched, wear damage increases.
  • the carbon fiber may be a chopped fiber or a milled fiber, but a milled fiber having a fiber length of less than 1 mm is preferable in order to obtain stable thin-wall formability.
  • the resin composition forming the resin layer preferably uses the PEK-based resin as a base resin, and contains the carbon fiber and a PTFE resin that is a solid lubricant as essential components.
  • any of molding powder by suspension polymerization method, fine powder by emulsion polymerization method, and recycled PTFE may be adopted.
  • Regenerated PTFE is a heat-treated (heat history added) powder, a powder irradiated with ⁇ rays or electron beams.
  • a powder obtained by heat-treating molding powder or fine powder a powder obtained by further irradiating this powder with ⁇ -rays or an electron beam, a powder obtained by pulverizing a molding powder or a molded product of fine powder, and then a ⁇ -ray or electron beam.
  • irradiated powder molding powder or fine powder irradiated with gamma rays or electron beams.
  • the regenerated PTFE does not aggregate, does not fiberize at the melting temperature of the PEK resin, has an internal lubricating effect, and stably improves the fluidity of the resin composition containing the PEK resin as a base resin. Therefore, it is more preferable to use PTFE resin irradiated with ⁇ rays or electron beams.
  • Examples of commercially available PTFE resins that can be used in the present invention include Kitamura Co., Ltd .: KTL-610, KTL-450, KTL-350, KTL-8N, KTL-400H, Mitsui DuPont Fluorochemical Co., Ltd .: Teflon (registered trademark). 7-J, TLP-10, Asahi Glass Co., Ltd .: Fullon G163, L150J, L169J, L170J, L172J, L173J, Daikin Industries, Ltd .: Polyflon M-15, Lubron L-5, Hoechst: Hostaflon TF9205, TF9207, etc. Can be mentioned.
  • PTFE modified with a side chain group having a perfluoroalkyl ether group, a fluoroalkyl group, or other fluoroalkyl may be used.
  • Kitamura Co., Ltd .: KTL-610, KTL-450, KTL-350, KTL-8N, KTL-8F, Asahi Glass Co., Ltd .: Fullon L169J, L170J, L172J, L173J, etc. are mentioned.
  • ком ⁇ онент such as boron nitride, colorants such as carbon powder, iron oxide, and titanium oxide, and thermal conductivity improvers such as graphite and metal oxide powder.
  • the resin composition forming the resin layer preferably contains 5 to 30% by volume of carbon fiber and 1 to 30% by volume of PTFE resin as essential components when a PEK resin is used as a base resin.
  • the balance excluding this essential component and other additives is PEK-based resin.
  • the carbon fiber is more preferably 5 to 20% by volume, and the PTFE resin is more preferably 2 to 25% by volume.
  • the blending ratio of the carbon fiber exceeds 30% by volume, the melt fluidity is remarkably lowered, it becomes difficult to form a thin wall, and there is a risk of wear damage when the screw shaft is a steel material without quenching. Moreover, when the blending ratio of the carbon fiber is less than 5% by volume, the effect of reinforcing the resin layer is poor, and sufficient creep resistance and wear resistance may not be obtained.
  • the wear resistance and creep resistance may be lowered from the required levels.
  • the blending ratio of the PTFE resin is less than 1% by volume, the effect of imparting the required lubricity to the composition is poor, and sufficient sliding characteristics may not be obtained.
  • the means for mixing and kneading the above raw materials is not particularly limited, and only the powder raw material is dry-mixed with a Henschel mixer, ball mixer, ribbon blender, ladyge mixer, ultra Henschel mixer, etc. Melting and kneading can be performed with a melt extruder such as an extruder to obtain molding pellets (granules). In addition, a side feed may be used for charging the filler when melt kneading with a twin screw extruder or the like. Moreover, you may employ
  • the resin layer is preferably injection-molded by insert molding on the nut body using the molding pellets. As this specific method, for example, the manufacturing method described in Patent Document 4 can be used.
  • the shear adhesion strength between the sintered metal of the nut body and the resin layer is 2 MPa or more (at a surface pressure of 10 MPa and a friction coefficient of 0.1).
  • the safety factor is preferably 2 times or more.
  • 3 Mpa or more is preferable.
  • the sintered metal surface on which the resin layer is formed may be provided with physical stoppers such as irregularities and grooves, and rotation prevention. Good.
  • the compressor 5 includes a cylinder block 6, a front housing 7, and a rear housing 9 that constitute the housing.
  • the rear housing 9 is joined and fixed to the cylinder block 6 via the valve forming body 8.
  • the crank chamber 10 is located in a portion surrounded by the cylinder block 6 and the front housing 7.
  • a drive shaft 11 is rotatably supported by the housing so as to penetrate the crank chamber 10.
  • the drive shaft 11 is made of metal or the like.
  • One end side (left side in the figure) of the drive shaft 11 is directly connected to the vehicle engine via a power transmission mechanism.
  • An iron lug plate 12 is fixed to the drive shaft 11 in the crank chamber 10 so as to be integrally rotatable.
  • the drive shaft 11 and the lug plate 12 constitute a rotating member.
  • One end of the drive shaft 11 is rotatably supported by a radial sliding bearing 1a fitted in a through hole 7a provided in the front housing 7.
  • the other end of the drive shaft 11 is rotatably supported by a radial slide bearing 1 b fitted in a through hole 6 a provided in the cylinder block 6.
  • the radial sliding bearings 1a and 1b are the sliding bearings for the compressor of the present invention.
  • the swash plate 13 as a cam plate is accommodated in the crank chamber 10.
  • the swash plate 13 can be rotated synchronously with the lug plate 12 and the drive shaft 11 by the operation connection with the lug plate 12 via the hinge mechanism 14 and the support of the drive shaft 11, and in the direction of the rotation center axis of the drive shaft 11. It is configured to be tiltable with respect to the drive shaft 11 while being accompanied by the sliding movement.
  • a plurality of cylinder bores 15 are formed in the cylinder block 6, and a single-headed piston 16 is accommodated in the cylinder bore 15 so as to be capable of reciprocating.
  • the front and rear openings of the cylinder bore 15 are closed by the valve forming body 8 and the piston 16, and a compression chamber whose volume changes according to the reciprocation of the piston 16 is formed in the cylinder bore 15.
  • Each piston 16 is anchored to the outer peripheral portion of the swash plate 13 via a shoe 17. With this configuration, the rotational motion of the swash plate 13 accompanying the rotation of the drive shaft 11 is converted into the reciprocating linear motion of the piston 16 via the shoe 17.
  • the piston 16, the shoe 17, the swash plate 13, the hinge mechanism 14 and the lug plate 12 constitute a crank mechanism, and the crank mechanism, the cylinder block 6 and the drive shaft 11 constitute a compression mechanism.
  • a thrust rolling bearing 18 a is disposed between the lug plate 12 and the front housing 7.
  • the thrust rolling bearing 18 a is disposed on the side that supports the rotating member (the drive shaft 11 and the lug plate 12) in the thrust direction and receives the compression reaction force generated in the compression mechanism via the lug plate 12.
  • the drive shaft 11 is supported at its rear end portion by a thrust rolling bearing 18b disposed in the through hole 6a of the cylinder block 6, so that the thrust movement to the rear is restricted.
  • a suction chamber 19 and a discharge chamber 20 are formed in the rear housing 9, a suction chamber 19 and a discharge chamber 20 are formed.
  • the refrigerant gas in the suction chamber 19 is introduced into the cylinder bore 15 through the valve forming body 8 by the movement of each piston 16.
  • the low-pressure refrigerant gas introduced into the cylinder bore 15 is compressed to a predetermined pressure by the movement of the piston 16 and is introduced into the discharge chamber 20 via the valve forming body 8.
  • the suction chamber 19, the discharge chamber 20, the cylinder bore 15, and the valve forming body 8 constitute a refrigerant path.
  • each piston 16 is reciprocated at a stroke corresponding to the inclination angle of the swash plate 13, and refrigerant suction, compression, and discharge are sequentially repeated in each cylinder bore 15.
  • FIG. 4 is a perspective view and a sectional view of a radial plain bearing which is a slide bearing for a compressor according to the present invention.
  • the radial plain bearing 1 is a multi-layered plain bearing comprising a cylindrical sintered metal base 2 and a resin layer 3 provided on the inner peripheral surface thereof.
  • the resin layer 3 is made of a resin composition having a PEK-based resin as a base resin, and is integrally provided by injection molding on the inner peripheral surface of the sintered metal base 2 with a thickness of 0.1 to 0.7 mm. It is formed by being.
  • the inner peripheral surface of the resin layer 3 is a sliding surface that supports the drive shaft 11 (see FIG. 3).
  • the outer diameter shape of the radial plain bearing 1 is set to a shape along the through holes 6a and 7a (see FIG. 3) in the compressor.
  • the outer peripheral surface of the radial plain bearing 1 and the inner peripheral surfaces of the through holes 6a and 7a (see FIG. 3) are set to be in close contact with each other as much as possible.
  • the inner diameter shape is a shape along the drive shaft 11 (see FIG. 3) so that the clearance with the peripheral surface of the drive shaft is the minimum necessary for rotation support in a state where the drive shaft 11 is supported. Is set to
  • Conventional radial plain bearings perform machining such as cutting or grinding on the inner peripheral surface to finish the inner diameter of the sliding surface, improve roundness, and expose the bronze sintered layer.
  • the sliding bearing for a compressor of the present invention finishes the sliding surface (resin layer) by injection molding, it is not necessary to perform machining such as cutting or grinding.
  • the conventional multi-layer bearing it is not necessary to process the cutting part or bend with a lathe or a grinding machine after forming and cutting the multi-layer. As a result, the sliding surface has high dimensional accuracy while being easy to manufacture and low cost.
  • the radial sliding bearing 1 uses the sintered metal base material 2 as a bearing base material, the PEK-based resin molten resin penetrates deeply into the irregularities on the surface of the sintered metal base material 2 at the time of injection molding.
  • the resin layer 3 can be firmly adhered to the substrate 2.
  • the resin is likely to enter the unevenness (holes) of the porous sintered layer by shearing force while using the PEK resin as the base resin. Therefore, sufficient adhesion strength between the sintered metal substrate 2 and the resin layer 3 can be secured.
  • the continuous use temperature is 250 ° C, and it has excellent heat resistance, oil / chemical resistance, creep resistance, and friction and wear characteristics. It becomes a sliding bearing.
  • PEK-based resins have high toughness and mechanical properties at high temperatures, and are excellent in fatigue resistance and impact resistance. Therefore, even when frictional force, impact, vibration, etc. are applied during use, the resin layer is baked. It is difficult to peel off from the metal base.
  • the resin composition mainly composed of PTFE resin was a sliding surface, it was not possible to prevent the resin composition from peeling from the porous sintered layer at the time of abnormality. .
  • the thickness of the resin layer is set to 0.1 to 0.7 mm.
  • the thickness of the resin layer is the thickness of the surface portion that does not enter the sintered metal base material. In the case of a radial slide bearing, it is the thickness in the radial direction, and in the case of a thrust slide bearing, the thickness in the axial direction. That's it.
  • This thickness range is set in consideration of the insert molding surface and physical properties. When the thickness of the resin layer is less than 0.1 mm, insert molding is difficult. In addition, durability during long-term use, that is, life may be shortened. On the other hand, if the thickness of the resin layer exceeds 0.7 mm, sink marks may occur and dimensional accuracy may be reduced.
  • the thickness of the resin layer is preferably 0.2 to 0.5 mm.
  • the thickness of the resin layer is preferably 1/8 to 1/2 of the thickness of the sintered metal substrate.
  • the thickness of the resin layer is less than 1/8 of the thickness of the sintered metal base material, the resin layer becomes too thin relative to the base material, which may deteriorate durability during long-term use.
  • the thickness of the resin layer exceeds 1 ⁇ 2 of the thickness of the sintered metal base material, the resin layer becomes too thick relative to the base material, and heat from friction is generated from the friction surface to the sintered metal. It is difficult to escape to the base material and the friction surface temperature becomes high. Further, the amount of deformation due to the load increases, the true contact area on the friction surface also increases, the frictional force and the frictional heat generation increase, and the seizure resistance may decrease.
  • the material of the sintered metal substrate examples include iron, copper iron, copper, and stainless steel. Since the adhesion between the sintered metal substrate and the resin layer is excellent, it is preferable to employ a sintered metal whose main component is iron (which may include copper). Moreover, higher bearing strength can be obtained by employing a sintered metal mainly composed of iron. In addition, since copper is inferior to adhesiveness (adhesiveness) with resin rather than iron, when copper is included, the content of copper is preferably 10% by weight or less. More preferably, the copper content is 5% by weight or less.
  • a sintered metal not impregnated with oil for the sintered metal base material before forming the resin layer.
  • molding or re-pressing (sizing) of a sintered metal it is preferable to set it as the non-oil-containing sintered metal which removed oil by solvent washing etc.
  • the theoretical density ratio of the sintered metal substrate is preferably 0.7 to 0.9, as in the case of using the sliding nut described above. More preferably, the theoretical density ratio of the materials is 0.72 to 0.84.
  • the theoretical density ratio of the sintered metal base material is 0.7 to 0.9, the required density for securing the bearing strength of the sintered metal base material is obtained and the resin layer is sintered. Unevenness on the surface for firmly adhering to the base material made of sintered metal can be secured. It is also possible to hold the lubricating oil on the sintered metal substrate. Furthermore, the thermal conductivity of the sintered metal substrate can be ensured.
  • the resin composition forming the resin layer uses the PEK-based resin as a base resin, and a fiber filler such as glass fiber, carbon fiber, aramid fiber, or whisker can be blended in a dispersed state. Thereby, the mechanical strength of the resin layer can be further improved.
  • a fiber filler such as glass fiber, carbon fiber, aramid fiber, or whisker
  • the mechanical strength of the resin layer can be further improved.
  • the resin layer is thin with a thickness of 0.1 to 0.7 mm, it is desirable to improve the mechanical strength.
  • a solid lubricant such as PTFE resin, graphite and molybdenum disulfide, and an inorganic filler such as calcium carbonate, calcium sulfate, mica and talc can be blended.
  • an inorganic filler such as calcium carbonate, calcium sulfate, mica and talc
  • Fibrous fillers, inorganic solid lubricants (graphite, molybdenum disulfide, etc.) and inorganic fillers have the effect of reducing the molding shrinkage of the PEK resin. Therefore, there is also an effect of suppressing the internal stress of the resin layer at the time of insert molding with the sintered metal base material.
  • FIG. 5 shows a radial sliding bearing having a resin layer made of a resin composition containing a fibrous filler.
  • FIG. 5 is a perspective view and a cross-sectional view of a radial plain bearing (combination of fibrous filler in a resin layer) which is a slide bearing for a compressor according to the present invention.
  • the radial plain bearing 1 has the same configuration as that of FIG. 4 except that the fibrous filler 4 is blended in the resin layer 3.
  • the fibrous filler 4 In forming the resin layer 3 by injection molding, by adjusting the melt flow direction of the resin composition, the fibrous filler 4 (in its length direction) is moved in the sliding direction of the slide bearing 1 (arrow in the figure). On the other hand, it is preferable to orient at an intersection angle as close to a right angle as possible at 45 degrees or more. In order to improve the mechanical strength of the resin layer, it is preferable to add a fibrous filler. However, since the end of the fiber of the fibrous filler is an edge, the end of the fiber is A certain drive shaft 11 (see FIG. 3) is easily physically damaged by wear, and the friction coefficient is difficult to stabilize.
  • the edges at both ends of the fiber are 45 to 90 with respect to the sliding direction. Suitable for degrees.
  • the orientation of the fibrous filler is preferably closer to 90 degrees because there is less abrasion damage due to the fiber edge and the friction coefficient is stabilized. 80 to 90 degrees is particularly preferable.
  • the average fiber length of the fibrous filler is preferably 0.02 to 0.2 mm. If the thickness is less than 0.02 mm, a sufficient reinforcing effect cannot be obtained, and creep resistance and wear resistance may not be satisfied. When the thickness exceeds 0.2 mm, the ratio of the fiber length to the layer thickness of the resin layer becomes large, so that the thin formability is inferior. In particular, when insert molding is performed with a resin thickness of about 0.2 to 0.7 mm, if the fiber length exceeds 0.2 mm, thin-wall moldability is hindered. An average fiber length of 0.02 to 0.1 mm is desirable for further improving the stability of thin-wall molding.
  • carbon fibers By using carbon fibers, the reinforcing effect, abrasion resistance, and low friction properties of the resin layer are particularly excellent.
  • Carbon fiber has a strong orientation in the melt flow direction of the resin when the resin layer is molded.
  • a carbon fiber having a small diameter and a relatively short length is selected.
  • both edges of the carbon fiber are along the sliding direction of the sliding bearing for the compressor.
  • the orientation direction is 0 to less than 45 degrees. If it exists, the drive shaft which is a counterpart material may be damaged.
  • the flow direction of the molten resin is set to be perpendicular or close to the sliding direction of the sliding bearing for the compressor, and the length of the fiber Orienting the direction to be 45 to 90 degrees with respect to the sliding direction of the sliding bearing for the compressor is extremely advantageous in order to stabilize the durability and the bearing torque low.
  • the carbon fiber used in the sliding bearing for the compressor may be either a pitch type or a PAN type classified from raw materials, but a PAN type carbon fiber having a high elastic modulus is preferable.
  • the calcining temperature is not particularly limited, but a carbonized product calcined at about 1000 to 1500 ° C. is higher than that calcined at a high temperature of 2000 ° C. or higher to be converted into graphite. Even under PV, the drive shaft is less susceptible to wear damage, which is preferable.
  • PAN-based carbon fiber among the carbon fibers the elastic modulus of the resin layer is increased, and deformation and wear of the resin layer are reduced. Furthermore, the true contact area of the friction surface is reduced, and frictional heat generation is also reduced.
  • the average fiber diameter of the carbon fiber is 20 ⁇ m or less, preferably 5 to 15 ⁇ m. Thick carbon fiber exceeding this range generates extreme pressure, so the effect of improving load resistance is poor, and when the drive shaft is an aluminum alloy or non-quenched steel material, wear damage of the drive shaft increases, which is not preferable.
  • the carbon fiber may be a chopped fiber or a milled fiber, but a milled fiber having a fiber length of less than 1 mm is preferable in order to obtain stable thin-wall formability.
  • the resin composition forming the resin layer preferably uses the PEK-based resin as a base resin, and contains the carbon fiber and a PTFE resin that is a solid lubricant as essential components.
  • ком ⁇ онент such as boron nitride, colorants such as carbon powder, iron oxide, and titanium oxide, and thermal conductivity improvers such as graphite and metal oxide powder.
  • the resin composition forming the resin layer preferably contains PEK-based resin as a base resin, 5 to 30% by volume of carbon fiber, and 1 to 30% by volume of PTFE resin as essential components.
  • the balance excluding this essential component and other additives is PEK-based resin.
  • the carbon fiber is more preferably 5 to 20% by volume
  • the PTFE resin is more preferably 2 to 25% by volume.
  • the blending ratio of carbon fiber exceeds 30% by volume, the melt fluidity will be significantly reduced, making it difficult to form a thin wall, and if the drive shaft that is the counterpart material is an aluminum alloy or non-quenched steel, there is a risk of wear damage. There is. Moreover, when the blending ratio of the carbon fiber is less than 5% by volume, the effect of reinforcing the resin layer is poor, and sufficient creep resistance and wear resistance may not be obtained.
  • the wear resistance and creep resistance may be lowered from the required levels.
  • the blending ratio of the PTFE resin is less than 1% by volume, the effect of imparting the required lubricity to the composition is poor, and sufficient sliding characteristics may not be obtained.
  • the means for mixing and kneading the above raw materials is not particularly limited, and only the powder raw material is dry-mixed with a Henschel mixer, ball mixer, ribbon blender, ladyge mixer, ultra Henschel mixer, etc. Melting and kneading can be performed with a melt extruder such as an extruder to obtain molding pellets (granules). In addition, a side feed may be used for charging the filler when melt kneading with a twin screw extruder or the like. Using this molding pellet, a resin layer is injection-molded by insert molding on a sintered metal substrate. By adopting injection molding, it is excellent in precision moldability and manufacturing efficiency. Moreover, you may employ
  • the resin composition forming the resin layer preferably has a melt viscosity of 50 to 200 Pa ⁇ s at a resin temperature of 380 ° C. and a shear rate of 1000 s ⁇ 1 .
  • a melt viscosity of 50 to 200 Pa ⁇ s at a resin temperature of 380 ° C. and a shear rate of 1000 s ⁇ 1 .
  • the melt viscosity is within this range, it becomes possible to precisely form and align the fibrous filler at a predetermined angle, and a thin insert molding of 0.1 to 0.7 mm is formed on the surface of the sintered metal substrate. It can be done smoothly.
  • the melt viscosity is less than the predetermined range or exceeds the predetermined range, it is not easy to reliably obtain a precise moldability and to orient the fibrous filler at a predetermined angle.
  • a PEK resin having a melt viscosity of 130 Pa ⁇ s or less under these conditions is manufactured by Victrex: PEEK (90P, 90G).
  • the shear adhesion strength between the sintered metal substrate and the resin layer is 2 MPa or more (at a surface pressure of 10 MPa and a friction coefficient of 0.1).
  • the safety factor is preferably 2 times or more. Furthermore, in order to raise a safety factor, 3 Mpa or more is preferable.
  • the sintered metal surface on which the resin layer is formed may be provided with physical stoppers such as irregularities and grooves, and rotation prevention. Good.
  • the drive shaft 11 is formed by sliding the resin layers of the radial bearings 1a and 1b having excellent heat resistance, low friction, wear resistance, load resistance, creep resistance, and the like. It is supported in sliding contact with the moving surface (inner peripheral surface). For this reason, wear on the sliding contact surface and deformation of the resin layer can be prevented, and low rotational torque can be stably obtained.
  • a lip seal 7b is provided in a portion of the through hole 7a in front of the radial sliding bearing 1a (left side in the figure) to prevent the refrigerant gas in the housing from leaking outside through the through hole 7a.
  • the radial plain bearing 1a is excellent in dimensional accuracy, and is set in a shape along this so that the clearance with the peripheral surface of the drive shaft 11 is the minimum necessary for rotation support, and
  • the outer peripheral surface of the radial sliding bearing 1a and the inner peripheral surface of the through hole 7a are set so as to be in close contact with each other as much as possible.
  • the radial plain bearings 1a and 1b are disposed in the crank chamber 10 that is not included in the refrigerant path in the housing. According to these radial sliding bearings 1a and 1b, even in the crank chamber 10 where the circulation amount of the refrigerant gas is relatively small and the lubricating effect by the mist-like lubricating oil mixed in the refrigerant gas is low, the radial sliding is caused by the sliding surface of the resin layer. Wear of the sliding contact portion between the slide bearings 1a and 1b and the drive shaft 11 can be suppressed. As a result, the life of the compressor can be extended. Therefore, it is particularly useful to employ the radial plain bearings 1a and 1b in the compressor of this embodiment.
  • FIG. 3 A second embodiment of a compressor using a sliding bearing for a compressor according to the present invention will be described with reference to FIG.
  • the configuration of the compressor in the first embodiment shown in FIG. 3 is replaced with a thrust rolling bearing 18a, and a thrust sliding bearing 21 that is a sliding bearing for a compressor according to the present invention is used. It has been changed to.
  • Other configurations are the same as those of the first embodiment.
  • a thrust sliding bearing 21 is disposed between the front housing 7 and the lug plate 12.
  • the thrust slide bearing 21 is fixed to the lug plate 12 and is in sliding contact with an iron ring-shaped plate 24 fixed to the front housing 7.
  • FIG. 7 is a perspective view and a sectional view of a thrust sliding bearing which is a sliding bearing for a compressor according to the present invention.
  • the thrust sliding bearing 21 is a multi-layered sliding composed of a ring-shaped sintered metal base material 22 and a resin layer 23 provided on a surface facing the plate 24 (see FIG. 6) of the base material. It is a bearing.
  • the resin layer 23 is made of a resin composition having a PEK-based resin as a base resin, and is provided integrally with the surface of the sintered metal base 22 by injection molding so as to have a thickness of 0.1 to 0.7 mm. It is formed by that.
  • the surface of the resin layer 23 (the side opposite to the base material) is a sliding surface that is in sliding contact with the plate 24 (see FIG. 6).
  • the sintered metal substrate, the resin composition, the method for forming the resin layer, and the like are the same as in the case of the first embodiment.
  • the thrust sliding bearing 21 is employed as a bearing that supports the rotating member on the side that receives the compression reaction force generated in the compression mechanism through the lug plate 12 in the thrust direction.
  • the cost can be reduced as compared with the case where a rolling bearing is employed.
  • this thrust slide bearing is provided in the crank chamber 10 having a low lubrication effect that is not included in the refrigerant path, as in the case of the radial slide bearing of the first embodiment. Wear of the sliding contact portion between the bearing 21 and the plate 24 can be suppressed. As a result, the life of the compressor can be extended. Therefore, it is particularly useful to employ the thrust slide bearing 21 in the compressor of this embodiment.
  • a thrust sliding bearing which is a sliding bearing for a compressor according to the present invention may be employed in place of the thrust rolling bearing 18b.
  • a housing is constituted by a pair of cylinder blocks 33, a front housing 34, and a rear housing 35.
  • the drive shaft 32 and the swash plate 36 fixed to the drive shaft 32 in the crank chamber 37 constitute a rotating member.
  • the plurality of cylinder bores 33a are formed at predetermined intervals on the same circumference between both ends of each cylinder block 33 so as to extend in parallel with the drive shaft 32.
  • the double-headed piston 39 is inserted into and supported by each cylinder bore 33a so as to reciprocate, and a compression chamber is formed between the both end faces and the corresponding valve forming bodies 40.
  • the shoe 38 and the swash plate 36 constitute a crank mechanism, and the crank mechanism, the cylinder block 33 (cylinder bore 33a), the piston 39, and the drive shaft 32 constitute a compression mechanism.
  • the drive shaft 32 is rotatably supported at the center of the cylinder block 33 and the front housing 34 via a pair of radial slide bearings 31a and 31b, and operates on an external drive source such as a vehicle engine via a power transmission mechanism. It is connected.
  • the radial slide bearings 31 a and 31 b are inserted into a receiving hole 33 b formed in the center of the cylinder block 33 so as to communicate with a crank chamber 37 formed inside the cylinder block 33.
  • the radial sliding bearings 31a and 31b are the sliding bearings for the compressor of the present invention.
  • the specific configuration is the same as that of the first embodiment except for the dimensions in the radial direction and the axial direction, and is manufactured by the same manufacturing method.
  • the pair of thrust rolling bearings 44 is provided between the front and rear end surfaces of the support cylindrical portion of the swash plate 36 and the central portion of each cylinder block 33 facing each other, and through the thrust rolling bearing 44.
  • a swash plate 36 is held in a state of being sandwiched between the cylinder blocks 33.
  • the insertion hole 34a of the drive shaft and the accommodation hole 33b formed in the cylinder block 33 are in communication with each other via a through-hole formed in the valve forming body 40 (left side in the figure).
  • a lip seal 34b is provided in the insertion hole 34a to prevent leakage of refrigerant gas in the housing to the outside through the insertion hole 34a.
  • the radial plain bearing 31a is set to a shape along this so that the dimensional accuracy is excellent, and the clearance with the peripheral surface of the drive shaft 32 becomes the minimum necessary for rotation support, and
  • the outer peripheral surface of the radial sliding bearing 31a and the inner peripheral surface of the accommodation hole 33b are set so as to be in close contact with each other as much as possible.
  • the crank chamber 37, the bolt insertion hole 43, the suction chamber 41, the compression chamber, the discharge chamber 42, and the like constitute a refrigerant path in the housing.
  • Each part in the refrigerant path in the housing is lubricated by mist-like lubricating oil or the like mixed in the refrigerant gas flowing through the path.
  • the sliding contact portion between the radial slide bearings 31a and 31b and the drive shaft 32 disposed in the crank chamber 37 (specifically, the accommodation hole 33b) constituting the refrigerant path has a solid resin layer of the slide bearing.
  • the lubricating action by the lubricating oil works greatly. Thereby, the sliding contact portion between the drive shaft 32 and the sliding bearings 31a and 31b is well lubricated, and the life of the compressor can be extended.
  • a thrust sliding bearing which is a sliding bearing for a compressor according to the present invention may be employed in place of the thrust rolling bearing 44.
  • the fixed scroll 51, the center housing 52, and the motor housing 53 constitute a housing.
  • the center housing 52 and the motor housing 53 support a shaft 54 made of iron as a rotating shaft so as to be rotatable via radial sliding bearings 55 and 56.
  • an eccentric shaft 54a is formed integrally with the shaft 54, and a balance weight 57 is supported on the shaft 54a.
  • the shaft 54 and the balance weight 57 constitute a rotating member.
  • the eccentric shaft 54a is supported through a radial sliding bearing 59 and a bush 60 so as to be relatively rotatable so that the movable scroll 58 faces the fixed scroll 51.
  • the radial plain bearing 59 is fitted and accommodated in a substantially cylindrical bush 60 fitted in a boss portion 58c projecting from the movable substrate 58a.
  • the inner peripheral surface of the radial sliding bearing 59 becomes a sliding contact surface with the outer peripheral surface of the eccentric shaft 54a.
  • a movable spiral wall 58b is formed on the movable substrate 58a of the movable scroll 58, and a fixed spiral wall 51b that meshes with the movable spiral wall 58b is formed on the fixed substrate 51a of the fixed scroll 51.
  • a region defined by the fixed substrate 51 a, the fixed spiral wall 51 b, the movable substrate 58 a, and the movable spiral wall 58 b becomes the sealed chamber 61 whose volume decreases as the movable scroll 58 rotates.
  • the fixed scroll 51, the movable scroll 58, the center housing 52, the bush 60, the radial sliding bearings 55 and 59, the shaft 54, the balance weight 57, and the like constitute a scroll type compression mechanism.
  • a stator 62 as a stator is fixed to the inner peripheral surface of the motor housing 53, and a rotor 63 as a rotor is fixed to the outer peripheral surface of the shaft 54 at a position facing the stator 62.
  • the stator 62 and the rotor 63 constitute an electric motor, and the rotor 63 and the shaft 54 are integrally rotated by energizing the stator 62.
  • the center housing 52 is provided with a partition wall portion 52a, and the radial sliding bearing 55 is fitted into a through hole 52b formed at the center of the partition wall portion 52a.
  • the inner peripheral surface of the radial sliding bearing 55 is a sliding contact surface with the outer peripheral surface of the shaft 54.
  • the shaft 54 is formed therein with a fluid passage 54 b that communicates the discharge chamber 64 and the motor chamber 65, and a fluid passage 54 c that communicates the motor chamber 65 and the outside of the motor housing 53.
  • the refrigerant gas that has flowed into the sealed chamber 61 from the inlet of the fixed scroll 51 passes through the discharge port 58d, the discharge chamber 64, the fluid passage 54b, the motor chamber 65, and the fluid passage 54c, and passes through the motor housing. It flows out to the outside through an outlet 53 a provided in the wall portion of 53.
  • the discharge chamber 64, the fluid passage 54b, the motor chamber 65, and the fluid passage 54c become a high pressure region having a pressure value substantially equal to the discharge pressure.
  • the outer side of the ring-shaped seal member 66 is a low pressure chamber 67 having a pressure value close to the suction pressure.
  • Radial plain bearings 55, 56, and 59 are the plain bearings for a compressor of the present invention.
  • the specific configuration is the same as that of the first embodiment except for the dimensions in the radial direction and the axial direction, and is manufactured by the same manufacturing method.
  • the radial sliding bearings 55 and 59 are inserted into the through hole 52b and the bush 60, respectively, and the clearance with the peripheral surface of the shaft 54 is maintained when the shaft 54 (the bearing 59 is specifically the eccentric shaft 54a) is inserted.
  • the shape along this is set so as to be the minimum necessary for the rotation support.
  • the outer peripheral surface of the radial sliding bearing 55 and the inner peripheral surface of the through hole 52b are in close contact with the outer peripheral surface of the radial sliding bearing 59 and the inner peripheral surface of the bush 60 as much as possible. Is set to
  • the space 68 is formed by adjusting the pressure of the regulating valve or leaking refrigerant gas from the high pressure region (the motor chamber 65 or the discharge chamber 64) through a slight gap between the radial slide bearings 55 and 59 and the shaft 54.
  • the intermediate pressure is maintained at a lower pressure than that of the low pressure chamber 67.
  • the radial slide bearings 55 and 59 are excellent in wear resistance as described above, the wear of the sliding contact portion with the shaft 54 can be reduced, and the reduction of the pressure isolation effect due to the widening of the gap between the two due to this wear is suppressed. it can.
  • the radial plain bearings 55 and 59 can exhibit good sealing performance with the shaft 54, and it is easy to maintain the effect high. For this reason, the discharge chamber 64 and the space 68 can be effectively separated from the motor chamber 65 and the space 68 by pressure without providing a special seal member.
  • FIG. 10 is a longitudinal sectional view of a variable displacement axial piston pump.
  • the cradle guide 81 of the variable displacement axial piston pump is in sliding contact with a cradle 83 that adjusts the stroke of the piston 82, and holds the cradle 83 so that it can swing.
  • the cradle guide 81 has a resin layer 81b made of a resin composition containing a PEK-based resin as a base resin on the surface side of the sintered metal member 81a, that is, the sliding surface with respect to the cradle 83. It is 7 mm thick and is provided integrally by injection molding.
  • the resin layer 81b is thin with the thickness of the said range, in FIG. 10, it has described thicker than actual for description.
  • a rotary shaft 87 is rotatably supported between the end walls of a pair of joined housings 85 and 86.
  • a cylinder block 88 is supported on the rotating shaft 87 so as not to be relatively rotatable.
  • a plurality of pistons 82 are accommodated in a cylinder block 88 that rotates integrally with the rotating shaft 87 so as to be slidable in the axial direction of the rotating shaft 87.
  • the piston accommodating chamber 88 a in the cylinder block 88 is alternately connected to the arc-shaped suction port 89 a and the discharge port 89 b formed in the valve plate 89 in conjunction with the rotation of the rotating shaft 87.
  • the pressing spring 90 urges the cylinder block 88 toward the cradle 83 side.
  • the shoe 92 made of an aluminum material held by the retainer 91 is in close contact with the flat portion of the cradle 83 around the rotation shaft 87.
  • the piston 82 fitted to the shoe 92 is reciprocated at a stroke corresponding to the inclination angle of the cradle 83 as the rotating shaft 87 rotates.
  • the tilt angle of the cradle 83 is always controlled to an appropriate angle by the pressing force of the pressing spring 93 in the housing 85 and the hydraulic pressure from the cylinder 95 adjusted by the hydraulic control device 94.
  • FIG. 11 is a perspective view of the cradle guide 81. As shown in FIGS. 10 and 11, two cradle guides 81 are fixed and provided in a housing 85 made of aluminum alloy. A rotating shaft 87 is disposed between the two cradle guides 81 so as to pass through the shaft hole of the cradle 83.
  • the cradle guide 81 has a main body composed of a sintered metal member 81a.
  • the support surface of the cradle 83 is formed in an arcuate shape, and a resin layer 81b having a predetermined composition is formed on the support surface with a thin wall and a constant thickness by injection molding.
  • the arc surface on which the resin layer 81 b is formed becomes a sliding surface with respect to the cradle 83.
  • the cradle guide 81 includes a molten metal main body 81c, and a sintered metal member 81a in which a resin layer 81b is formed is installed on the main body 81c.
  • the sintered metal member 81a is an arc-shaped (partially cylindrical) sintered bush formed with a resin layer 81b, and is set on a support surface of a cradle 83 formed in an arc surface shape in the main body 81c. .
  • the surface on the main body 81c side of the sintered metal member 81a is formed in the same shape corresponding to the arc surface shape of the support surface of the main body 81c.
  • the arc surface on which the resin layer 81 b of the sintered bush is formed becomes a sliding surface with respect to the cradle 83.
  • the pair of recessed bushes 81f and the projecting portions 81g are fitted so that the pair of sintered bushes (81a + 81b) does not deviate from the support surfaces 81d, 81e of the cradle guide of the main body 81c. It is fixed with.
  • grooved part for fixing a sintered bush may make the uneven
  • the cradle 83 is formed of, for example, a silicon-containing aluminum alloy, and a pair of arcuate sliding contact portions 83a and 83b corresponding to the support surfaces 81d and 81e of the cradle guides are provided on the back surface thereof.
  • both sliding contact portions 83a and 83b are assembled so as to be in contact with the support surfaces 81d and 81e via a pair of sintered bushes (81a + 81b).
  • the material of the cradle guide main body 81 c is not particularly limited as long as it is a molten metal.
  • a molten metal For example, high carbon chromium bearing steel, chromium molybdenum steel, carbon steel for machine structure, stainless steel, cast iron, aluminum alloy, brass and the like can be used.
  • the main body 81c made of molten metal, the mechanical strength of the entire cradle guide can be increased as compared with the case where the whole main body is made of a sintered metal member.
  • the resin layer 81b is made of a resin composition having a PEK-based resin as a base resin, and is integrally laminated by injection molding at a thickness of 0.1 to 0.7 mm on the surface of the sintered metal member 81a that is in sliding contact with the cradle. It is formed by being provided.
  • the resin layer 81b is formed on the surface of the sintered metal member 81a, the molten resin of the PEK resin penetrates deeply into the irregularities on the surface of the sintered metal member 81a at the time of injection molding, and the resin layer 81b is inserted into the member 81a. Can be firmly attached.
  • the resin is likely to enter the irregularities (holes) of the porous sintered layer by shearing force while using the PEK resin as the base resin. Therefore, sufficient adhesion strength between the sintered metal member 81a and the resin layer 81b can be secured.
  • the continuous use temperature is 250 ° C, and variable with excellent heat resistance, oil / chemical resistance, creep resistance, and friction and wear characteristics. Become a cradle guide for displacement axial piston pumps.
  • PEK-based resins have high toughness and mechanical properties at high temperatures, and are excellent in fatigue resistance and impact resistance. Therefore, even when frictional force, impact, vibration, etc. are applied during use, the resin layer is baked. It is difficult to peel off from the metal member.
  • the resin composition mainly composed of a fluororesin such as PTFE resin is a sliding surface, the resin composition peels off from the porous sintered layer at the time of abnormality. I could't prevent that.
  • the thickness of the resin layer is set to 0.1 to 0.7 mm.
  • the thickness of the resin layer is the thickness of the surface portion that does not enter the sintered metal member. This thickness range is set in consideration of the insert molding surface and physical properties. When the thickness of the resin layer is less than 0.1 mm, insert molding is difficult. In addition, durability during long-term use, that is, life may be shortened. On the other hand, if the thickness of the resin layer exceeds 0.7 mm, sink marks may occur and dimensional accuracy may be reduced. In addition, heat due to friction is difficult to escape from the friction surface to the sintered metal member, and the friction surface temperature increases.
  • the thickness of the resin layer is preferably 0.2 to 0.5 mm.
  • the thickness of the resin layer is preferably 1/8 to 1/2 of the thickness of the sintered metal member. If the thickness of the resin layer is less than 1/8 of the thickness of the sintered metal member, the resin layer becomes too thin relative to the sintered metal member, which may be inferior in durability during long-term use. . On the other hand, if the thickness of the resin layer exceeds 1 ⁇ 2 of the thickness of the sintered metal member, the resin layer becomes too thick relative to the sintered metal member, and heat due to friction is burned from the friction surface. It is difficult to escape to the metal member, and the friction surface temperature becomes high. Further, the amount of deformation due to the load increases, the true contact area on the friction surface also increases, the frictional force and the frictional heat generation increase, and the seizure resistance may decrease.
  • the material of the sintered metal member examples include iron, copper iron, copper, and stainless steel. Since the adhesion between the sintered metal member and the resin layer is excellent, it is preferable to employ a sintered metal whose main component is iron (which may include copper). In addition, higher mechanical strength can be obtained by employing a sintered metal mainly composed of iron. In addition, since copper is inferior to adhesiveness (adhesiveness) with resin rather than iron, when copper is included, the content of copper is preferably 10% by weight or less. More preferably, the copper content is 5% by weight or less.
  • a sintered metal not impregnated with oil for the sintered metal member before forming the resin layer.
  • molding or re-pressing (sizing) of a sintered metal it is preferable to set it as the non-oil-containing sintered metal which removed oil by solvent washing etc.
  • the theoretical density ratio of the sintered metal member is preferably 0.7 to 0.9, as in the case of using the sliding nut described above. More preferably, the theoretical density ratio of the materials is 0.72 to 0.84.
  • the strength of the cradle guide carried by the sintered metal member In addition to having the required denseness to ensure, it is possible to ensure surface irregularities for firmly attaching the resin layer to the sintered metal member. It is also possible to hold the lubricating oil on the sintered metal member. Furthermore, the thermal conductivity of the sintered metal member can be ensured.
  • the resin composition forming the resin layer uses a PEK-based resin as a base resin, and a fibrous filler such as glass fiber, carbon fiber, aramid fiber, or whisker can be blended in a dispersed state. Thereby, the mechanical strength of the resin layer can be further improved.
  • a fibrous filler such as glass fiber, carbon fiber, aramid fiber, or whisker
  • the mechanical strength of the resin layer can be further improved.
  • the resin layer is thin with a thickness of 0.1 to 0.7 mm, it is desirable to improve the mechanical strength.
  • a solid lubricant such as PTFE resin, graphite and molybdenum disulfide, and an inorganic filler such as calcium carbonate, calcium sulfate, mica and talc can be blended.
  • an inorganic filler such as calcium carbonate, calcium sulfate, mica and talc
  • Fibrous fillers, inorganic solid lubricants (graphite, molybdenum disulfide, etc.) and inorganic fillers have the effect of reducing the molding shrinkage of the PEK resin. Therefore, there is also an effect of suppressing the internal stress of the resin layer at the time of insert molding with a sintered metal member.
  • FIG. 14 shows a cradle guide having a resin layer made of a resin composition containing a fibrous filler.
  • FIG. 14 is a perspective view of a cradle guide (containing a fibrous filler in a resin layer).
  • the cradle guide 81 has the same configuration as that of FIG. 11 except that the fibrous filler 84 is blended in the resin layer 81b.
  • the fibrous filler 84 (in its length direction) is adjusted with respect to the sliding direction of the cradle guide 81 (arrow in the figure) by adjusting the melt flow direction of the resin composition. It is preferable to align at an intersecting angle as close to a right angle as possible at 45 degrees or more. In order to improve the mechanical strength of the resin layer 81b, it is preferable to mix a fibrous filler. However, since the end of the fiber of the fibrous filler has an edge shape, the end of the fiber is used as a counterpart material. The cradle 83 is easily subject to physical wear damage and the friction coefficient is difficult to stabilize.
  • the edges at both ends of the fiber are 45 to 90 with respect to the sliding direction. Suitable for degrees.
  • the orientation of the fibrous filler is preferably closer to 90 degrees because there is less abrasion damage due to the fiber edge and the friction coefficient is stabilized. 80 to 90 degrees is particularly preferable.
  • the average fiber length of the fibrous filler is preferably 0.02 to 0.2 mm. If the thickness is less than 0.02 mm, a sufficient reinforcing effect cannot be obtained, and creep resistance and wear resistance may not be satisfied. When the thickness exceeds 0.2 mm, the ratio of the fiber length to the layer thickness of the resin layer becomes large, so that the thin formability is inferior. In particular, in the case of insert molding with a resin thickness of 0.2 to 0.7 mm, if the fiber length exceeds 0.2 mm, the thin-wall moldability is hindered. An average fiber length of 0.02 to 0.1 mm is desirable for further improving the stability of thin-wall molding.
  • carbon fibers By using carbon fibers, the reinforcing effect, abrasion resistance, and low friction properties of the resin layer are particularly excellent.
  • Carbon fiber has a strong orientation in the melt flow direction of the resin when the resin layer is molded.
  • a carbon fiber having a small diameter and a relatively short length is selected.
  • the edges of both ends of the carbon fiber are along the sliding direction of the cradle guide.
  • the orientation direction is 0 to less than 45 degrees. The opponent's cradle may be damaged.
  • the flow direction of the molten resin is set to a right angle or a near right angle with the sliding direction of the cradle guide, and the length direction of the fiber is set to the cradle. It is extremely advantageous to orient at 45 to 90 degrees with respect to the sliding direction of the guide in order to stabilize the durability and sliding torque low.
  • the carbon fiber used in this cradle guide may be either a pitch-based or PAN-based one classified from raw materials, but a PAN-based carbon fiber having a high elastic modulus is preferred.
  • the calcining temperature is not particularly limited, but a carbonized material calcined at about 1000 to 1500 ° C. is higher than that calcined at a high temperature of 2000 ° C. or higher to be converted into graphite. Even under PV, it is preferable because the mating material is hardly damaged by wear.
  • the average fiber diameter of the carbon fiber is 20 ⁇ m or less, preferably 5 to 15 ⁇ m. Thick carbon fiber exceeding this range generates extreme pressure, so the effect of improving load resistance is poor, and when the cradle, which is the counterpart material, is an aluminum alloy or non-quenched steel material, the wear damage of the counterpart material increases. Therefore, it is not preferable.
  • the carbon fiber may be a chopped fiber or a milled fiber, but a milled fiber having a fiber length of less than 1 mm is preferable in order to obtain stable thin-wall formability.
  • the resin composition forming the resin layer preferably uses a PEK-based resin as a base resin and contains the carbon fiber and a PTFE resin as a solid lubricant as essential components.
  • ком ⁇ онент such as boron nitride, colorants such as carbon powder, iron oxide, and titanium oxide, and thermal conductivity improvers such as graphite and metal oxide powder.
  • the resin composition forming the resin layer preferably contains PEK-based resin as a base resin, 5 to 30% by volume of carbon fiber, and 1 to 30% by volume of PTFE resin as essential components.
  • the balance excluding this essential component and other additives is PEK-based resin.
  • the mixing ratio of the carbon fiber exceeds 30% by volume, the melt fluidity is remarkably lowered, making it difficult to form a thin wall, and when the cradle as the counterpart material is an aluminum alloy or non-quenched steel, there is a risk of wear damage. is there. Moreover, when the blending ratio of the carbon fiber is less than 5% by volume, the effect of reinforcing the resin layer is poor, and sufficient creep resistance and wear resistance may not be obtained.
  • the wear resistance and creep resistance may be lowered from the required levels.
  • the blending ratio of the PTFE resin is less than 1% by volume, the effect of imparting the required lubricity to the composition is poor, and sufficient sliding characteristics may not be obtained.
  • the means for mixing and kneading the above raw materials is not particularly limited, and only the powder raw material is dry-mixed with a Henschel mixer, ball mixer, ribbon blender, ladyge mixer, ultra Henschel mixer, etc. Melting and kneading can be performed with a melt extruder such as an extruder to obtain molding pellets (granules). In addition, a side feed may be used for charging the filler when melt kneading with a twin screw extruder or the like. Using this pellet for molding, a resin layer is injection-molded by insert molding on a sintered metal member. By adopting injection molding, it is excellent in precision moldability and manufacturing efficiency. Moreover, you may employ
  • the resin composition forming the resin layer has a melt viscosity of 50 to 200 Pa ⁇ s at a resin temperature of 380 ° C. and a shear rate of 1000 s ⁇ 1 , similar to the resin composition forming the resin layer of the sliding bearing for a compressor described above. Preferably there is.
  • the shear adhesion strength between the sintered metal member and the resin layer is preferably 2 MPa or more. Furthermore, in order to raise a safety factor, 3 Mpa or more is preferable. Further, in order to further increase the shear adhesion strength between the sintered metal member and the resin layer, physical peeling measures such as unevenness and grooves may be taken on the sintered metal surface on which the resin layer is formed.
  • irregularities can be provided on the boundary surface.
  • the left figure shows a cross-sectional view of the cradle guide of the embodiment shown in FIG. 11, and the right figure shows a cross-sectional view of the cradle guide of the embodiment shown in FIG.
  • grooved part may make the uneven
  • the embodiment of the present invention is not limited to this.
  • Examples A1 to A28 and Comparative Examples A1 to A3 The materials for the sliding nut main body used in the examples and comparative examples are collectively shown in Table 1, and the raw materials for the resin layers used in the examples and comparative examples are collectively shown below.
  • the melt viscosity of the PEK resin is a value measured at a Capillograph manufactured by Toyo Seiki Co., Ltd., ⁇ 1 ⁇ 10 (mm) capillary, a resin temperature of 380 ° C., and a shear rate of 1000 s ⁇ 1 .
  • the raw materials were dry blended using a Henschel dry mixer at a blending ratio (volume%) shown in Table 2, and melt-kneaded using a twin screw extruder to produce pellets for the resin layer.
  • a resin temperature 380 ° C. to 400 ° C. and a mold temperature of 180 ° C.
  • the inner diameter of the test cylinder of ⁇ 30 ⁇ ⁇ 35 ⁇ 20 (mm) made of the sliding nut body material shown in Table 1
  • a resin layer having a thickness of 0.2 to 1 mm was produced by insert molding.
  • Shear adhesion strength test Resin layer-A test piece in which a in Table 2 is inserted with a thickness of 0.5 mm is used for the test cylinder inner diameter ( ⁇ 30 x ⁇ 35 x 20 (mm)) in Table 1. Then, a shear adhesion strength test was conducted. The test cylinder was fixed, an axial shear force was applied to the inner diameter resin layer, and the load at which the resin layer peeled from the test cylinder was measured. Table 3 shows the value obtained by dividing the load by the apparent bonding area between the resin layer and the test cylinder, which is the shear adhesion strength. Table 3 also shows the presence or absence of cracks (none: ⁇ , present (one or more): x) in the test cylinder when 30 test pieces were produced by insert molding.
  • Example A1 As shown in Table 3, in Examples A1 to A9, there was no cracking of the test cylinder during insert molding, and the shear adhesion strength was 1.5 MPa or more. In particular, in Examples A1 to A8 in which the density of the sintered metal is 0.7 to 0.9 of the theoretical density ratio of the materials, the shear adhesion strength is 2 MPa or more. In Example A10, in which the density of the sintered metal is the theoretical density ratio of 0.67, cracking of the test cylinder occurred during insert molding, but the resin layer can be formed by adhesion. On the other hand, in the steel machined product, the shear adhesion strength was a very low value (Comparative Example A1).
  • Examples A11 to A23 As shown in Tables 5 and 6, in Examples A11 to A23, the seizure time was 30 minutes or more, the wear amount was 10 ⁇ m or less, and the seizure resistance and the wear resistance were excellent.
  • the comparative example A2 in which the nut body and the resin layer are integrated with resin is the comparative example A2, and the comparative example A3 in which the resin layer does not contain the solid lubricant or the reinforcing material, the seizure time is less than 1 minute, and the amount of wear is very high. It was a lot.
  • Examples B1 to B20, Comparative Examples B1 to B4 The sintered metal base material used in the examples and comparative examples is the same as the sliding nut body material shown in Table 1 above.
  • cylindrical base materials ( ⁇ 30 ⁇ ⁇ 35 ⁇ 20 (mm)) of base materials A to I and K were prepared.
  • the raw material of the resin layer used for the Example and the comparative example is also the same as that used for the resin layer of the above-described sliding nut.
  • the raw material of the resin layer was dry blended using a Henschel dry mixer at a blending ratio (volume%) shown in Table 7, and melt-kneaded using a twin screw extruder to produce pellets for injection molding.
  • the pellets were used, and a resin layer was formed on the inner diameter of the cylindrical base material by insert molding (resin temperature 380 ° C. to 400 ° C., mold temperature 180 ° C.), as shown in FIG.
  • a cylindrical slide bearing ( ⁇ 30 ⁇ ⁇ 35 ⁇ 20 (mm)) supporting a radial load was manufactured.
  • the sintered dimension of the cylindrical base material is ⁇ 30 ⁇ ⁇ 35 ⁇ 20 (mm).
  • the inner surface of the cylindrical base material is turned and insert-molded. I did it.
  • nine pin gates were provided on the bearing end face so that the melt flow direction of the resin layer was perpendicular to the direction of motion of the sliding bearing.
  • pellets of the resin composition a (Table 7) are used on the inner diameter ( ⁇ 31 mm) of the cylindrical base material composed of the base materials A to I and the base material K (Table 1).
  • a cylindrical sliding bearing with a resin layer thickness of 0.5 mm was manufactured by insert molding.
  • the resin layer thickness is determined by using pellets of the resin composition a to the resin composition h (Table 7) on the inner diameter of the cylindrical substrate made of the substrate E (Table 1).
  • a cylindrical sliding bearing ( ⁇ 30 ⁇ ⁇ 35 ⁇ 20 (mm)) of 0.2 to 1.0 mm was manufactured by insert molding.
  • Comparative Example B3 is a plain bearing made of a single resin injection molded into a shape of ⁇ 30 ⁇ ⁇ 35 ⁇ 20 (mm) using the resin composition a (Table 7).
  • Comparative Example B4 is a three-layer sliding bearing ( ⁇ 30 ⁇ ⁇ 35 ⁇ 20 mm, resin layer 0) in which a porous sintered layer (Cu + Sn) with a back metal (SPCC) is impregnated with a PTFE resin composition (10% by volume of carbon fiber). 0.05 mm).
  • Shear adhesion strength test A shear adhesion strength test was conducted using the sliding bearings of Examples B1 to B9 and Comparative Example B1. In this shear adhesion strength test, a cylindrical substrate is fixed, an axial shear force is applied to the resin layer, a load at which the resin layer peels from the sintered metal substrate is measured, and the resin layer Table 8 shows the value obtained by dividing the apparent bonding area of the sintered metal substrate and the shear adhesion strength. In addition, 30 slide bearings were insert-molded, and the presence or absence of cracks in the cylindrical base material due to the molding pressure was confirmed.
  • Examples B1 to B9 had no shearing of the sintered metal base material during insert molding, and had a shear adhesion strength of 1.5 MPa or more.
  • Examples B1 to B8 using the base materials A to H in which the density of the sintered metal base material is 0.7 to 0.9 in terms of the theoretical density ratio of the materials had a shear adhesion strength of 2 MPa or more.
  • the shear adhesion strength was a very low value (Comparative Example B1).
  • melt Viscosity The melt viscosity was measured at Toyo Seiki Co. Capiragraph, ⁇ 1 ⁇ 10 (mm) capillary, resin temperature 380 ° C., shear rate 1000 s ⁇ 1 , and are shown in Table 9 and Table 10.
  • the seizure time was 30 minutes or more, the wear amount was 10 ⁇ m or less, and the seizure resistance and the wear resistance were excellent.
  • Comparative Example B2 In Comparative Example B2 in which the thickness of the resin layer exceeds 0.7 mm, the seizure time was less than 1 minute and the wear amount was very large. Since Comparative Example B3 was abnormally worn within 30 minutes, the seizure resistance test could not be performed. The sliding bearing of Comparative Example B4 seized immediately after a seizure time of less than 1 minute, and the amount of wear was large.
  • Examples C1 to C21, Comparative Examples C1 to C4 The sintered metal base material used in the examples and comparative examples is the same as the sliding nut body material shown in Table 1 above. Moreover, the raw material of the resin layer used for the Example and the comparative example is also the same as that used for the resin layer of the above-described sliding nut.
  • the raw material of the resin layer was dry blended using a Henschel dry mixer at a blending ratio (volume%) shown in Table 11, and melt-kneaded using a twin screw extruder to produce pellets for injection molding.
  • Shear adhesion strength test (Examples C1 to C9, Comparative Example C1) The shear adhesion strength test was performed using a cylindrical test piece.
  • a cylindrical test piece was formed from a base material A to a base material I and a base material K described in Table 1 above, and a cylindrical base material of ⁇ 31 ⁇ ⁇ 35 ⁇ 20 (mm) was formed.
  • a resin layer having a thickness of 0.5 mm was produced by insert molding (resin temperature: 380 ° C. to 400 ° C., mold temperature: 180 ° C.) using the pellets described above. At the time of insert molding, nine pin gates were provided on the end surface of the cylindrical test piece so that the melt flow direction of the resin layer was the axial direction of the cylindrical test piece.
  • this cylindrical test piece is fixed, an axial shear force is applied to the resin layer, the load at which the resin layer peels from the sintered metal substrate is measured, and the resin layer Table 12 shows the values obtained by dividing the apparent bonding area of the sintered metal substrate and the shear adhesion strength.
  • 30 cylindrical test pieces were insert-molded, and the presence or absence of cracks in the cylindrical base material due to the molding pressure was confirmed.
  • the sintered metal base material was not cracked at the time of insert molding, and the shear adhesion strength was 1.5 MPa or more.
  • the shear adhesion strength is 2 MPa or more. It was.
  • the shear adhesion strength was very low (Comparative Example C1).
  • Example C10 to C20 The seizure resistance test using an in-oil radial type tester was performed using a cylindrical test piece.
  • the cylindrical test piece is manufactured in the same manner as the cylindrical test piece used for the shear adhesion strength test.
  • Comparative Example C3 is a three-layer type slide bearing ( ⁇ 30 ⁇ ⁇ 35 ⁇ 20 mm, resin, impregnated with PTFE resin composition (10% by volume of carbon fiber) in a porous sintered layer (Cu + Sn) with a back metal (SPCC) Layer 0.05 mm).
  • SPCC back metal
  • Example C10 to C20 the seizure time was 30 minutes or more, the wear amount was 10 ⁇ m or less, and the seizure resistance and the wear resistance were excellent.
  • Comparative Example C2 in which the thickness of the resin layer exceeds 0.7 mm has a seizure time of less than 1 minute and a very large wear amount. Further, Comparative Example C3 was seized immediately after a seizure time of less than 1 minute, and the amount of wear was large.
  • Example C21 Comparative Example C4
  • a test piece was manufactured by forming a resin layer of a resin composition d (Table 11) by insert molding on the surface of a base material E (Table 1) molded to a length of 25 mm, a width of 50 mm, and a height of 20 mm. .
  • the reciprocation test was done on the following conditions using the counterpart material made from an aluminum alloy, and the result was shown in Table 14. In insert molding, the melt flow direction of the resin layer was perpendicular to the direction of movement of the test piece.
  • Comparative Example C4 is a three-layer slide bearing (plate thickness: 2.5 mm, resin, impregnated with PTFE resin composition (10% by volume of carbon fiber) in a porous sintered layer (Cu + Sn) with a back metal (SPCC).
  • a test piece was manufactured by fixing a layer (0.05 mm) to a pedestal having a length of 25 mm, a width of 50 mm, and a height of 17 mm, and a similar reciprocating test was performed using an aluminum alloy mating member. The results are shown in Table 14. It was.
  • Testing machine NTN reciprocating testing machine Surface pressure: 45MPa Maximum excitation speed: 3m / min Amplitude: + -50mm Temperature: Room temperature (25 ° C) Lubrication conditions: Oil lubrication Test time: 2000 reciprocations (initially, 500 times, 1000 times, coefficient of friction is measured)
  • Example C21 had a low coefficient of friction until the end of the test in the reciprocation test, and no change was observed in the state of the resin layer. As a result, it was confirmed that the cradle guide of the example can withstand long-term use of the variable displacement piston pump and can satisfy all of the load resistance, wear resistance and low friction characteristics of 30 MPa or more. . On the other hand, in Comparative Example C4, the test was stopped because the friction coefficient increased after 1000 reciprocations.
  • the slide screw device provided with the sliding nut of the present invention is easy to manufacture and has excellent sliding characteristics such as seizure resistance and wear resistance even under high load conditions. Can be suitably used as a sliding screw device used in the above.
  • the sliding bearing for a compressor according to the present invention has high dimensional accuracy and is excellent in heat resistance, low friction, wear resistance, load resistance, and creep resistance while being easy to manufacture. Since the rotational torque can be stably obtained, it can be suitably used as a sliding bearing that rotatably supports a rotating member for driving the compression mechanism in a compressor for a room air conditioner or a car air conditioner. .
  • the cradle guide of the present invention is easy to manufacture and low in cost, but can satisfy all of the load resistance, wear resistance and low friction characteristics of 30 MPa or more, so that it can be used for construction machines such as hydraulic excavators and general industrial machines.
  • the present invention can be suitably used in a variable displacement axial piston pump used for a hydraulic pump or a hydraulic motor provided as a hydraulic source.

Abstract

Provided is a sliding nut for a sliding screw device, a sliding screw device, and so on that are easy to manufacture and have outstanding sliding properties, including seize resistance and abrasion resistance, even under high-load conditions. A sliding nut in a sliding screw device moves relative to the screw shaft while sliding along the screw shaft as the screw shaft rotates. A nut body (73a) is made of sintered metal, and a thin resin layer (73b), made of a resin composition having a synthetic resin such as aromatic polyether ketone resin as a base resin, is formed by injection molding and serves as a thread groove section in an internally threaded surface on the body of the nut for screwing together with the screw shaft.

Description

摺動ナット、圧縮機用滑り軸受、およびクレイドルガイドSliding nuts, plain bearings for compressors, and cradle guides
 本発明は、焼結金属部品に樹脂層を薄肉成形した部材である、すべりねじ装置の摺動ナット、圧縮機用滑り軸受、およびクレイドルガイドに関する。さらに、上記摺動ナットを用いたすべりねじ装置、上記圧縮機用滑り軸受を用いた圧縮機、上記クレイドルガイドを用いた可変容量型アキシャルピストンポンプに関する。 The present invention relates to a sliding nut of a sliding screw device, a sliding bearing for a compressor, and a cradle guide, which are members obtained by thinly molding a resin layer on a sintered metal part. Furthermore, the present invention relates to a sliding screw device using the sliding nut, a compressor using the sliding bearing for the compressor, and a variable displacement axial piston pump using the cradle guide.
 回転運動を直線運動に変換するすべりねじ装置は、ボールねじ装置と比較してコンパクトに設計できるという利点があり、産業機械の送り装置や位置決め装置などに多用されている。従来、メンテナンスフリー等の目的で樹脂製ナットを用いたすべりねじ装置などが開発されている。 ¡Slide screw devices that convert rotational motion into linear motion have the advantage that they can be designed more compactly than ball screw devices, and are often used in industrial machine feeders and positioning devices. Conventionally, a sliding screw device using a resin nut has been developed for maintenance-free purposes.
 ナット全体または摺動部分となるねじ溝部を樹脂製にしたものとして、例えば、ねじ軸に螺合するねじ溝部(またはナット全体)が、ポリフェニレンスルフィド樹脂に少なくとも四フッ化エチレン樹脂と280℃で非溶融の有機樹脂粉末とを配合してなるポリフェニレンスルフィド樹脂組成物から形成されてなる樹脂製ナットが提案されている(特許文献1参照)。また、ねじ軸と、このねじ軸の回転に伴い、該ねじ軸の軸上を摺動しながら相対的に移動するナットとを備えてなり、ナットの少なくともめねじ部に芳香族ポリイミド樹脂の粉体塗装膜が形成されてなるすべりねじ装置が提案されている(特許文献2参照)。 For example, the screw groove portion (or the entire nut) screwed into the screw shaft is not made of polyphenylene sulfide resin and at least 280 ° C. with a tetrafluoroethylene resin. There has been proposed a resin nut formed from a polyphenylene sulfide resin composition obtained by blending molten organic resin powder (see Patent Document 1). The screw shaft and a nut that moves relatively while sliding on the shaft of the screw shaft as the screw shaft rotates, and at least the female screw portion of the nut has an aromatic polyimide resin powder. A sliding screw device in which a body coating film is formed has been proposed (see Patent Document 2).
 また、金属部分と樹脂部分とからなるものとして、例えば、ねじ軸に螺合され、ねじ軸と軸方向に相対移動するフランジ付きナットであり、フランジを含む外周部を金属で形成し、ねじ軸に螺合される内周部を潤滑性樹脂で形成して、これらの外周部と内周部との間の回り止めと抜け止めをする手段を設けたフランジ付きナットが提案されている(特許文献3参照)。 Moreover, as a thing which consists of a metal part and a resin part, for example, it is a nut with a flange that is screwed to a screw shaft and moves relative to the screw shaft in the axial direction. The outer periphery including the flange is made of metal, and the screw shaft A flanged nut has been proposed in which an inner peripheral portion to be screwed to the inner peripheral portion is formed of a lubricating resin, and a means for preventing rotation and retaining between the outer peripheral portion and the inner peripheral portion is provided (patent) Reference 3).
 その他、樹脂製ナットの製造方法として、樹脂ナットの一端面、または一端面およびその付近を成形する型面を有する固定型と、樹脂ナットの残りの外形面を成形するキャビティを有し固定型に対して軸方向に移動可能な可動型と、上記可動型に設けられて外径面にねじ溝成形用の螺旋溝が形成されたコアピンとを備える射出成形金型を用い、この金型内に溶融樹脂を充填して樹脂ナットを成形した後、金型を型開きしてコアピンを回転させることにより樹脂ナットを取り出す製造方法が提案されている(特許文献4参照)。 In addition, as a method for manufacturing a resin nut, a fixed mold having a mold surface that molds one end surface of the resin nut, or one end surface thereof and the vicinity thereof, and a cavity that molds the remaining outer surface of the resin nut are used. In contrast, an injection mold having a movable mold movable in the axial direction and a core pin provided on the movable mold and formed with a spiral groove for forming a thread groove on the outer diameter surface is used. There has been proposed a manufacturing method in which a resin nut is formed by filling a molten resin and then opening a mold and rotating a core pin (see Patent Document 4).
 空調装置等に用いられる圧縮機は、その圧縮機構を駆動するための回転部材を有し、この回転部材を軸受により支持している。従来、例えば、この回転部材を回転可能に支持する滑り軸受を備えた圧縮機において、その滑り軸受として、基材に固体潤滑機能を有する多孔質金属を介してフッ素樹脂がコーティングされたものが提案されている(特許文献5参照)。この滑り軸受は、平板状部材の表面に多孔質金属である青銅焼結層を介してフッ素樹脂をコーティングし、これを円筒状に曲げ加工することで形成されている。 A compressor used for an air conditioner or the like has a rotating member for driving the compression mechanism, and the rotating member is supported by a bearing. Conventionally, for example, in a compressor provided with a sliding bearing that rotatably supports this rotating member, a material in which a fluororesin is coated on the base material through a porous metal having a solid lubricating function has been proposed as the sliding bearing. (See Patent Document 5). This sliding bearing is formed by coating the surface of a flat plate member with a fluororesin via a bronze sintered layer that is a porous metal and bending it into a cylindrical shape.
 特許文献5では、回転部材を支持する軸受に滑り軸受を採用するため、転がり軸受を採用した場合に比較して、部品点数等が少なく、コストダウンを図ることが可能になる。また、フッ素樹脂および多孔質金属の介在により、回転部材と滑り軸受との摺接部分が摩耗しにくくなるため、圧縮機の寿命が延長される。フッ素樹脂は、多孔質金属を介して基材にコーティングされているため、フッ素樹脂の一部が多孔質金属の孔部分に入り込むことで、フッ素樹脂が基材側から剥がれ難くなる。 In Patent Document 5, since a sliding bearing is used as a bearing that supports a rotating member, the number of parts is reduced as compared with the case where a rolling bearing is used, and the cost can be reduced. In addition, the interposition of the fluororesin and the porous metal makes it difficult for the sliding contact portion between the rotating member and the sliding bearing to be worn, thereby extending the life of the compressor. Since the fluororesin is coated on the base material through the porous metal, the fluororesin is hardly peeled off from the base material side when a part of the fluororesin enters the hole portion of the porous metal.
 圧縮機構を駆動するための回転部材を支持する滑り軸受には、精密な回転精度を有し、低回転トルクを安定的に得るため、耐荷重性、耐クリープ性に優れ、高面圧下でも寸法変化しないこと等が要求される。同用途に用いられる滑り軸受としては、特許文献5以外に、例えば、特許文献6や特許文献7に開示された複層軸受などが挙げられる。特許文献6の軸受(摺動部材)は、裏金層上の多孔質焼結層上にポリエーテルエーテルケトン(PEEK)樹脂からなる表面層を設けている。特許文献7における円筒軸受ブッシュは、その内周面において、青銅焼結層と、この層に充填被覆された合成樹脂組成物とが混在して露出している。 The sliding bearing that supports the rotating member for driving the compression mechanism has precise rotation accuracy and stably obtains low rotational torque, so it has excellent load resistance and creep resistance, and is dimensioned even under high surface pressure. It is required that it does not change. As the sliding bearing used for the same application, in addition to Patent Document 5, for example, a multilayer bearing disclosed in Patent Document 6 and Patent Document 7 can be cited. The bearing (sliding member) of Patent Document 6 has a surface layer made of a polyether ether ketone (PEEK) resin on a porous sintered layer on a back metal layer. In the cylindrical bearing bush in Patent Document 7, the bronze sintered layer and the synthetic resin composition filled and coated on this layer are exposed on the inner peripheral surface thereof.
 油圧回路の油圧発生源に用いられる可変容量型ピストンポンプとしては、例えば、いわゆるクレイドル型ポンプ(以下、単に「ポンプ」ともいう)の構造が周知である。クレイドル型ポンプは、ピストンを収容するシリンダブロックが、回転軸と共に一体的に回転されるものであり、クレイドルはクレイドルガイドに摺接して回転軸に対して傾斜可能に支持され、ピストンの端部に連結されたシューを介してクレイドルの傾斜面に接している。従って、ピストンは、回転軸の回転に伴いクレイドルの傾角に応じて規定されるストロークで往復動し、ポンプ作用を奏するようになっている。そして、ストローク差によるポンプの吐出容量は、上記クレイドルの回転軸に対する傾角を油圧等で制御することによって常時変更することができる。 As a variable displacement piston pump used as a hydraulic pressure generation source of a hydraulic circuit, for example, the structure of a so-called cradle type pump (hereinafter also simply referred to as “pump”) is well known. In the cradle type pump, a cylinder block that accommodates a piston is integrally rotated together with a rotating shaft, and the cradle is slidably contacted with the cradle guide and supported so as to be inclined with respect to the rotating shaft. It contacts the inclined surface of the cradle via the connected shoe. Therefore, the piston reciprocates with a stroke defined according to the inclination angle of the cradle with the rotation of the rotating shaft, and has a pump action. The discharge capacity of the pump due to the stroke difference can be constantly changed by controlling the inclination angle of the cradle with respect to the rotation axis by hydraulic pressure or the like.
 ところが、アルミニウム材(アルミニウム合金を含む)からなるクレイドルを、同材料のアルミニウム材からなるクレイドルガイドに摺接させて保持すると、クレイドルの回転軸に対する傾角を油圧等で常時制御する使用状態で両者は摺接摩耗を起こし、焼き付き等の問題を起こす。このため、クレイドルとクレイドルガイドとの間に合成樹脂製のスラストブッシュを介在させる手段が採られていた。 However, when a cradle made of an aluminum material (including an aluminum alloy) is held in sliding contact with a cradle guide made of the same aluminum material, both of them are used in a state where the tilt angle with respect to the rotation axis of the cradle is constantly controlled by hydraulic pressure or the like. Causes sliding contact wear and causes problems such as seizure. For this reason, a means has been adopted in which a synthetic resin thrust bushing is interposed between the cradle and the cradle guide.
 例えば、クレイドルガイドとなるスラストブッシュとしては、摺動面に樹脂膜を施した金属製スラストブッシュや、ナイロン(ポリアミド樹脂)、ポリアセタール樹脂、ポリテトラフルオロエチレン(以下、PTFEと記す)樹脂などの摺動性樹脂からなるスラストブッシュが公知である(特許文献8参照)。 For example, as a thrust bush serving as a cradle guide, a metal thrust bush having a sliding surface provided with a resin film, a nylon (polyamide resin), a polyacetal resin, a polytetrafluoroethylene (hereinafter referred to as PTFE) resin, or the like. A thrust bush made of a dynamic resin is known (see Patent Document 8).
 アルミニウム材からなるクレイドルまたはクレイドルガイドの少なくとも一方に、エチレン-テトラフルオロエチレン共重合体(ETFE)樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)樹脂、PTFE樹脂等のフッ素樹脂のコーティングが施された可変容量型ピストンポンプも知られている(特許文献9参照)。 At least one of the cradle or the cradle guide made of an aluminum material is coated with a fluorine resin such as an ethylene-tetrafluoroethylene copolymer (ETFE) resin, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, or a PTFE resin. An applied variable displacement piston pump is also known (see Patent Document 9).
 また、クレイドルガイドとなるスラストブッシュとして、鉄製基材の表面に銅系の焼結膜を形成したものや、その焼結膜表面に更に樹脂膜を施したスラストブッシュが知られている(特許文献10参照)。 Further, as a thrust bush serving as a cradle guide, there are known a thrust bush in which a copper-based sintered film is formed on the surface of an iron base, and a thrust bush in which a resin film is further applied to the surface of the sintered film (see Patent Document 10). ).
特開2003-239932号公報JP 2003-239932 A 特開2004-204989号公報JP 2004-204989 A 特開2006-138405号公報JP 2006-138405 A 特開2004-25527号公報JP 2004-25527 A 特開2002-349437号公報JP 2002-349437 A 特開平8-210357号公報JP-A-8-210357 特開2007-205254号公報JP 2007-205254 A 実用新案登録第2559510号公報Utility Model Registration No. 2559510 特開平08-334081号公報Japanese Unexamined Patent Publication No. 08-334081 実用新案登録第2584135号公報Utility Model Registration No. 2584135
 しかしながら、特許文献1の樹脂製ナットは、無潤滑で使用できるものの、1kPa以上の高負荷(高面圧)では使用困難である。一方、特許文献2のすべりねじ装置では、1kPa以上の高負荷でも使用可能であるが、芳香族ポリイミド樹脂の粉体塗装膜をナットのめねじ部に精度良く均一に形成することが容易でない。また、使用条件によっては、粉体塗装膜とナットとの密着性(せん断密着強さ)が十分でない可能性がある。 However, although the resin nut of Patent Document 1 can be used without lubrication, it is difficult to use at a high load (high surface pressure) of 1 kPa or more. On the other hand, although the sliding screw device of Patent Document 2 can be used even at a high load of 1 kPa or more, it is not easy to form a powder coating film of an aromatic polyimide resin uniformly on the female screw portion of the nut. Further, depending on the use conditions, there is a possibility that the adhesion (shear adhesion strength) between the powder coating film and the nut is not sufficient.
 また、特許文献3のフランジ付きナットは、ナットの外周部が金属であるが、めねじ部を含む内周部が合成樹脂製であるため、めねじ部の歯元の機械的強度は特許文献1の樹脂製ナットと同等であり、高負荷での使用においてめねじ部が破壊されるおそれがある。 Further, in the nut with flange of Patent Document 3, the outer peripheral part of the nut is made of metal, but the inner peripheral part including the female screw part is made of a synthetic resin. This is equivalent to the resin nut No. 1 and the female thread portion may be destroyed when used under a high load.
 特許文献6に記載される滑り軸受の製造工程は以下のとおりである。銅メッキを施した厚さ0.8mmの裏金上に鉛青銅粉末を0.3mmの厚さに散布して焼結し多孔質焼結層を形成する。この多孔質焼結層の上にPEEK樹脂を主成分とする樹脂組成物のシートを重ね合わせてロール間で圧接して樹脂組成物を含浸被覆し、厚さ1.5mmの複層体とする。これを切断した後、樹脂組成物側を内側にして、例えば内径が20mm、幅20mmの筒形に湾曲成形し、その後に旋盤や研磨によって内径が真円となるように仕上げ加工をする。複層形成・切断後に筒型(円筒状)に曲げ加工するなどの点は、特許文献5および特許文献7における滑り軸受でも同様である。 The manufacturing process of the sliding bearing described in Patent Document 6 is as follows. A porous bronze layer is formed by spreading and sintering lead bronze powder to a thickness of 0.3 mm on a 0.8 mm thick back metal plated with copper. A sheet of a resin composition containing PEEK resin as a main component is superimposed on the porous sintered layer and pressed between rolls to impregnate and coat the resin composition, thereby forming a multilayer having a thickness of 1.5 mm. . After cutting this, the resin composition side is turned to the inside, for example, it is curved and formed into a cylindrical shape having an inner diameter of 20 mm and a width of 20 mm, and then finished by turning or grinding so that the inner diameter becomes a perfect circle. The same applies to the sliding bearings in Patent Document 5 and Patent Document 7, such as bending into a cylindrical shape (cylindrical shape) after forming and cutting the multilayer.
 このため、特許文献7の図3に示すように、滑り軸受の周方向の一ヶ所には切断部が残っており、旋盤や研磨機で加工しても、切断部近辺の形状がいびつになるという問題がある。また、旋盤加工の場合、切断部によってバイトの摩耗が激しく、所用時間が多くなるという問題がある。研磨加工の場合も、研磨対象が樹脂であるため、砥石の目詰まりが頻繁にあり、やはり所用時間が多くなるという問題がある。 For this reason, as shown in FIG. 3 of Patent Document 7, a cutting portion remains in one place in the circumferential direction of the sliding bearing, and the shape in the vicinity of the cutting portion becomes distorted even if processed by a lathe or a polishing machine. There is a problem. Further, in the case of lathe processing, there is a problem in that the cutting tool is heavily worn by the cutting tool and the required time is increased. Also in the case of polishing, since the object to be polished is a resin, there is a problem that the grindstone is frequently clogged, and the required time is also increased.
 通常、クレイドルがクレイドルガイドに対し、30MPa程度の高面圧で接触して常時摺動する場合、特許文献8に記載されているクレイドルガイド(スラストブッシュ)では樹脂膜による耐荷重性が満足できないという問題がある。この用途での耐荷重性についての問題は、特許文献9に記載されたPTFE樹脂等のフッ素樹脂コーティングをアルミニウム材製のクレイドルガイド表面に形成するか、または、特許文献10に記載の鉄製基材の表面に銅系焼結膜を介してフッ素樹脂コーティングを形成すれば改善され得る。しかし、その場合には、耐摩耗性および低摩擦特性が充分でなかった。 Normally, when the cradle contacts the cradle guide at a high surface pressure of about 30 MPa and always slides, the cradle guide (thrust bush) described in Patent Document 8 cannot satisfy the load resistance due to the resin film. There's a problem. The problem regarding the load resistance in this application is that a fluororesin coating such as PTFE resin described in Patent Document 9 is formed on the surface of a cradle guide made of aluminum, or an iron base material described in Patent Document 10 It can be improved if a fluororesin coating is formed on the surface of the film via a copper-based sintered film. However, in that case, the wear resistance and the low friction characteristics were not sufficient.
 また、鋼板に塗膜(コーティング)層を形成する場合、吹付け、乾燥、焼成等が必要である。また、形成後に旋盤や研磨機による加工などが必要である。このため、製造コストが高くなる。 Also, when forming a coating (coating) layer on a steel plate, spraying, drying, firing, etc. are necessary. Further, it is necessary to perform processing with a lathe or a polishing machine after the formation. For this reason, a manufacturing cost becomes high.
 本発明はこれらの問題に対処するためになされたものである。すなわち、製造が容易であり、高負荷条件でも耐焼き付き性や耐摩耗性などの摺動特性に優れるすべりねじ装置の摺動ナットおよびすべりねじ装置の提供を目的とする。また、製造が容易でありながら、高い寸法精度を有し、かつ、耐熱性、低摩擦性、耐摩耗性、耐荷重性、耐クリープ性に優れ、低回転トルクを安定的に得ることができる圧縮機用滑り軸受、および、該圧縮機用滑り軸受を備えた圧縮機の提供を目的とする。また、製造が容易で低コストでありながら、30MPa以上の耐荷重性、耐摩耗性および低摩擦特性を全て満足できる可変容量型アキシャルピストンポンプのクレイドルガイド、および、該クレイドルガイドを用いた可変容量型アキシャルピストンポンプの提供を目的とする。 The present invention has been made to cope with these problems. That is, an object is to provide a sliding nut and a sliding screw device of a sliding screw device that are easy to manufacture and have excellent sliding characteristics such as seizure resistance and wear resistance even under high load conditions. In addition, it is easy to manufacture, has high dimensional accuracy, is excellent in heat resistance, low friction, wear resistance, load resistance, and creep resistance, and can stably obtain low rotational torque. It is an object of the present invention to provide a sliding bearing for a compressor and a compressor provided with the sliding bearing for the compressor. Also, a cradle guide for a variable displacement axial piston pump that can satisfy all of the load resistance, wear resistance, and low friction characteristics of 30 MPa or more while being easy to manufacture and low cost, and a variable capacity using the cradle guide The purpose is to provide a type axial piston pump.
 本発明の摺動ナットは、すべりねじ装置において、ねじ軸の回転に伴い、該ねじ軸の軸上を摺動しながら相対的に移動する摺動ナットであって、上記摺動ナットは、ナット本体が焼結金属からなり、該ナット本体における上記ねじ軸に螺合するめねじ部表面に、ねじ溝部として合成樹脂をベース樹脂とする樹脂組成物の樹脂層が形成されていることを特徴とする。特に、上記樹脂層は、上記ナット本体に重ねて射出成形された樹脂層であることを特徴とする。また、上記樹脂層の層厚が、0.1~1.5mmであることを特徴とする。 The sliding nut of the present invention is a sliding nut that moves relatively while sliding on the shaft of the screw shaft as the screw shaft rotates in the sliding screw device, and the sliding nut is a nut The main body is made of a sintered metal, and a resin layer of a resin composition having a synthetic resin as a base resin is formed as a screw groove portion on the surface of a female screw portion screwed into the screw shaft of the nut main body. . In particular, the resin layer is a resin layer that is injection-molded over the nut body. The resin layer has a thickness of 0.1 to 1.5 mm.
 上記合成樹脂が、芳香族ポリエーテルケトン系樹脂であることを特徴とする。また、上記樹脂組成物が、芳香族ポリエーテルケトン系樹脂をベース樹脂とし、これに繊維状充填材を含むことを特徴とする。また、上記繊維状充填材が、平均繊維長0.02~0.2mmの繊維状充填材であることを特徴とする。 The synthetic resin is an aromatic polyether ketone resin. The resin composition is characterized in that an aromatic polyetherketone resin is used as a base resin, and a fibrous filler is contained in the resin. Further, the fibrous filler is a fibrous filler having an average fiber length of 0.02 to 0.2 mm.
 上記ナット本体の焼結金属が、理論密度比0.7~0.9であることを特徴とする。 The sintered metal of the nut body has a theoretical density ratio of 0.7 to 0.9.
 上記樹脂組成物が、樹脂温度380℃、せん断速度1000s-1における溶融粘度50~200Pa・sの樹脂組成物であることを特徴とする。 The resin composition is a resin composition having a melt temperature of 50 to 200 Pa · s at a resin temperature of 380 ° C. and a shear rate of 1000 s −1 .
 上記樹脂組成物が、芳香族ポリエーテルケトン系樹脂をベース樹脂とし、これに繊維状充填材を含む場合において、樹脂組成物全体に対して、該繊維状充填材として炭素繊維を5~30体積%、PTFE樹脂を1~30体積%含むことを特徴とする。特に、上記炭素繊維が、PAN系炭素繊維であることを特徴とする。 In the case where the resin composition uses an aromatic polyetherketone resin as a base resin and contains a fibrous filler, 5 to 30 volumes of carbon fiber is used as the fibrous filler with respect to the entire resin composition. And 1 to 30% by volume of PTFE resin. In particular, the carbon fiber is a PAN-based carbon fiber.
 本発明のすべりねじ装置は、ねじ軸と、このねじ軸の回転に伴い、該ねじ軸の軸上を摺動しながら相対的に移動する摺動ナットとを備えてなり、上記摺動ナットが、上記本発明の摺動ナットであることを特徴とする。また、上記すべりねじ装置が、油またはグリースで潤滑されることを特徴とする。 The sliding screw device of the present invention includes a screw shaft and a sliding nut that moves relatively while sliding on the shaft of the screw shaft as the screw shaft rotates. The above-mentioned sliding nut of the present invention is characterized by the above. The slide screw device is lubricated with oil or grease.
 本発明の圧縮機用滑り軸受は、圧縮機の圧縮機構を駆動するための回転部材を回転可能に支持する圧縮機用滑り軸受であって、上記滑り軸受は、焼結金属製基材に、芳香族ポリエーテルケトン系樹脂をベース樹脂とする樹脂組成物からなる樹脂層の摺動面を有し、上記樹脂層は、上記焼結金属製基材の表面に0.1~0.7mmの厚さで射出成形により重ねて一体に設けられたことを特徴とする。 A sliding bearing for a compressor according to the present invention is a sliding bearing for a compressor that rotatably supports a rotating member for driving a compression mechanism of the compressor, and the sliding bearing is formed on a sintered metal substrate, A sliding surface of a resin layer made of a resin composition comprising an aromatic polyetherketone resin as a base resin, the resin layer being 0.1 to 0.7 mm on the surface of the sintered metal base material; It is characterized in that it is provided integrally by being laminated by injection molding with a thickness.
 上記樹脂組成物が繊維状充填材を含み、上記樹脂層において該繊維状充填材が、繊維の長さ方向を滑り軸受の摺動方向に対して45~90度に交差するように配向していることを特徴とする。 The resin composition includes a fibrous filler, and in the resin layer, the fibrous filler is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the sliding bearing. It is characterized by being.
 上記滑り軸受は、上記回転部材をラジアル方向に支持する(ラジアル滑り)軸受であり、上記圧縮機構のハウジング内の内部空間を圧力的に隔絶するように配設されていることを特徴とする。 The sliding bearing is a bearing that supports the rotating member in the radial direction (radial sliding), and is arranged to pressure-isolate the internal space in the housing of the compression mechanism.
 上記滑り軸受は、上記回転部材をスラスト方向に支持する(スラスト滑り)軸受であり、上記圧縮機構において発生する圧縮反力を上記回転部材を介して受ける側に配設されていることを特徴とする。 The sliding bearing is a bearing that supports the rotating member in a thrust direction (thrust sliding), and is disposed on a side that receives a compression reaction force generated in the compression mechanism via the rotating member. To do.
 本発明の圧縮機は、圧縮機構を駆動するための回転部材を回転可能に支持する、上記本発明の滑り軸受を備えることを特徴とする。 The compressor of the present invention is characterized by comprising the above-described slide bearing of the present invention that rotatably supports a rotating member for driving the compression mechanism.
 本発明のクレイドルガイドは、可変容量型アキシャルピストンポンプにおけるピストンストロークを調整するクレイドルに摺接し、このクレイドルが揺動可能であるように保持するクレイドルガイドであって、該クレイドルガイドは、焼結金属製部材と、芳香族ポリエーテルケトン系樹脂をベース樹脂とする樹脂組成物からなる樹脂層とを有し、上記樹脂層は、上記焼結金属製部材の少なくとも上記クレイドルと摺接する表面に0.1~0.7mmの厚さで射出成形により重ねて一体に設けられたことを特徴とする。 A cradle guide according to the present invention is a cradle guide that is slidably contacted with a cradle that adjusts a piston stroke in a variable displacement axial piston pump and holds the cradle so that the cradle can swing. And a resin layer made of a resin composition having an aromatic polyetherketone resin as a base resin, and the resin layer has a surface in contact with at least the cradle of the sintered metal member. It has a thickness of 1 to 0.7 mm and is integrally provided by injection molding.
 上記樹脂組成物が繊維状充填材を含み、上記樹脂層において該繊維状充填材が、繊維の長さ方向をクレイドルガイドの摺動方向に対して45~90度に交差するように配向していることを特徴とする。 The resin composition includes a fibrous filler, and in the resin layer, the fibrous filler is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the cradle guide. It is characterized by being.
 上記焼結金属製部材が、クレイドルガイド本体であることを特徴とする。また、別の態様として、上記クレイドルガイドが、溶製金属製のクレイドルガイド本体を有し、該クレイドルガイド本体に上記焼結金属製部材が設置されていることを特徴とする。 The sintered metal member is a cradle guide body. As another aspect, the cradle guide has a cradle guide main body made of molten metal, and the sintered metal member is installed on the cradle guide main body.
 本発明の可変容量型アキシャルピストンポンプは、上記本発明のクレイドルガイドを備えることを特徴とする。 A variable displacement axial piston pump according to the present invention includes the cradle guide according to the present invention.
 本発明の摺動ナットは、ナット本体が焼結金属からなり、該ナット本体におけるねじ軸に螺合するめねじ部表面に、ねじ溝部として合成樹脂をベース樹脂とする樹脂組成物の樹脂層が形成されているので、樹脂層が焼結金属の空孔(表面の凹凸)に食い込み、樹脂層とナット本体とが強固に密着することができる。また、ナット本体のめねじ部の歯元の機械的強度、放熱特性、耐久性に優れる。これにより、摩擦面における真実接触面積も小さくなり、摩擦力、摩擦発熱が低減され、摩耗の軽減、摩擦面温度の上昇を抑えるという利点がある。 In the sliding nut of the present invention, the nut body is made of a sintered metal, and a resin layer of a resin composition having a synthetic resin as a base resin is formed as a thread groove on the surface of the female thread that is screwed onto the screw shaft of the nut body. As a result, the resin layer bites into the pores (surface irregularities) of the sintered metal, and the resin layer and the nut body can be firmly adhered. Moreover, it is excellent in the mechanical strength, heat dissipation characteristics, and durability of the tooth base of the female thread portion of the nut body. As a result, the real contact area on the friction surface is reduced, the frictional force and frictional heat generation are reduced, and there is an advantage that wear is reduced and the increase in the friction surface temperature is suppressed.
 ねじ溝部である樹脂層が、ナット本体に重ねて射出成形された樹脂層であるので、めねじ部表面に容易に精度よく形成することができる。また、射出成形時に樹脂層が焼結金属表面の空孔に深く食い込んで、真の接合面積が増大し、樹脂層とナット本体との密着強さが向上する。また、樹脂層とめねじ部(焼結金属)との接合面に隙間がなく、樹脂層の熱がナット本体に伝わりやすくなる。 Since the resin layer that is the thread groove portion is a resin layer that is injection molded over the nut body, it can be easily and accurately formed on the surface of the female thread portion. Further, the resin layer deeply penetrates into the pores on the surface of the sintered metal during injection molding, the true bonding area is increased, and the adhesion strength between the resin layer and the nut body is improved. Further, there is no gap in the joint surface between the resin layer and the internal thread portion (sintered metal), and the heat of the resin layer is easily transmitted to the nut body.
 上記樹脂層が、層厚0.1~1.5mmの薄肉であるので、摩擦発熱による熱が摩擦面からナット本体に逃げ易く、蓄熱し難く、耐荷重性が高く、高面圧下でも変形量が小さくなる。 Since the resin layer is thin with a layer thickness of 0.1 to 1.5 mm, the heat generated by frictional heat easily escapes from the friction surface to the nut body, is difficult to store heat, has high load resistance, and can be deformed even under high surface pressure. Becomes smaller.
 上記樹脂層を形成する樹脂組成物のベース樹脂が、芳香族ポリエーテルケトン系樹脂であるので、耐荷重性、耐熱性、低摩擦特性、および耐摩耗特性に優れる。 Since the base resin of the resin composition forming the resin layer is an aromatic polyether ketone resin, it is excellent in load resistance, heat resistance, low friction characteristics, and wear resistance characteristics.
 上記樹脂層を形成する樹脂組成物が、芳香族ポリエーテルケトン系樹脂に繊維状充填材を含むものであるので、摩擦摩耗特性、耐クリープ特性に優れる。特に、上記繊維状充填材が、平均繊維長0.02~0.2mmの繊維状充填材であるので、樹脂層の摩擦摩耗特性、耐クリープ特性に優れるとともに、めねじ部(ねじ溝部)の精密成形に支障を及ぼすことがない。 Since the resin composition for forming the resin layer contains a fibrous filler in an aromatic polyether ketone resin, it is excellent in friction and wear characteristics and creep resistance characteristics. In particular, since the fibrous filler is a fibrous filler having an average fiber length of 0.02 to 0.2 mm, the resin layer is excellent in friction and wear characteristics and creep resistance, and has a female thread portion (screw groove portion). There is no hindrance to precision molding.
 上記ナット本体の焼結金属が、理論密度比0.7~0.9であるので、樹脂層との密着性を得るための表面の凹凸を確保すると同時に、所要の緻密性を有し、ナット本体の熱伝導性を確保できる。 Since the sintered metal of the nut main body has a theoretical density ratio of 0.7 to 0.9, it has a required denseness while ensuring unevenness of the surface to obtain adhesion to the resin layer, and the nut The thermal conductivity of the main body can be secured.
 上記樹脂組成物が、樹脂温度380℃、せん断速度1000s-1における溶融粘度50~200Pa・sの樹脂組成物であるので、焼結金属からなるナット本体の表面に0.1~1.5mmの薄肉インサート成形が円滑に行なえる。 Since the resin composition is a resin composition having a melt temperature of 50 to 200 Pa · s at a resin temperature of 380 ° C. and a shear rate of 1000 s −1 , 0.1 to 1.5 mm is formed on the surface of the nut body made of sintered metal. Thin insert molding can be performed smoothly.
 上記樹脂組成物が、芳香族ポリエーテルケトン系樹脂をベース樹脂とし、これに繊維状充填材を含む場合において、樹脂組成物全体に対して、該繊維状充填材として炭素繊維を5~30体積%、PTFE樹脂を1~30体積%含むので、高PV条件においても、樹脂層の変形および摩耗、相手材の損傷が小さく、油などに対する耐性も高い。特に、上記炭素繊維が、PAN系炭素繊維であるので、樹脂層の弾性率が高くなり、樹脂層の変形、摩耗が小さくなる。さらには、摩擦面の真実接触面積が小さくなり、摩擦発熱も軽減する。 In the case where the resin composition uses an aromatic polyetherketone resin as a base resin and contains a fibrous filler, 5 to 30 volumes of carbon fiber is used as the fibrous filler with respect to the entire resin composition. %, And PTFE resin is contained in an amount of 1 to 30% by volume. Therefore, even under high PV conditions, deformation and wear of the resin layer, damage to the counterpart material are small, and resistance to oil and the like is high. In particular, since the carbon fiber is a PAN-based carbon fiber, the elastic modulus of the resin layer is increased, and deformation and wear of the resin layer are reduced. Furthermore, the true contact area of the friction surface is reduced, and frictional heat generation is reduced.
 本発明のすべりねじ装置は、ねじ軸と、このねじ軸の回転に伴い、該ねじ軸の軸上を摺動しながら相対的に移動する本発明の摺動ナットとを備えてなるので、製造が容易で安価でありながら、高負荷条件でも耐焼き付き性や耐摩耗性などの摺動特性に優れる。また、油またはグリースで潤滑されることによって、高い荷重に耐えるとともに、高精度の回転安定性を確保できる。 The sliding screw device of the present invention comprises a screw shaft and the sliding nut of the present invention that moves relatively while sliding on the shaft of the screw shaft as the screw shaft rotates. Although it is easy and inexpensive, it has excellent sliding characteristics such as seizure resistance and wear resistance even under high load conditions. Further, by being lubricated with oil or grease, it is possible to withstand a high load and to ensure high-precision rotational stability.
 本発明の圧縮機用滑り軸受は、焼結金属製基材に、芳香族ポリエーテルケトン系樹脂をベース樹脂とする樹脂組成物からなる樹脂層の摺動面を有するので、耐熱性、低摩擦性、耐摩耗性に優れた圧縮機用滑り軸受となる利点がある。また、上記樹脂層は、焼結金属製基材の表面に0.1~0.7mmの厚さで射出成形により重ねて一体に設けられているので、耐荷重性、耐クリープ性に優れ、高面圧下でも寸法変化することがなく、低回転トルクを安定的に得ることが可能になる。さらに、樹脂層が焼結金属製基材の表面に射出成形により重ねて一体に設けられる、すなわち、焼結金属製基材を金型内にインサートして射出成形により樹脂層を形成するので、従来の複層軸受のように複層形成・切断後における旋盤や研磨機による切断部の加工、曲げ加工などが不要であり、製造が容易で低コストでありながら、摺動面が高寸法精度となる。 The sliding bearing for a compressor of the present invention has a sliding surface of a resin layer made of a resin composition having an aromatic polyether ketone resin as a base resin on a sintered metal base material, so that it has heat resistance and low friction. There is an advantage that it becomes a slide bearing for a compressor excellent in heat resistance and wear resistance. Further, since the resin layer is integrally provided by injection molding on the surface of the sintered metal base material with a thickness of 0.1 to 0.7 mm, it is excellent in load resistance and creep resistance. It is possible to stably obtain a low rotational torque without changing the dimensions even under high surface pressure. Furthermore, the resin layer is provided integrally with the surface of the sintered metal base material by injection molding, that is, the resin metal layer is formed by injection molding by inserting the sintered metal base material into the mold. Unlike conventional multi-layer bearings, there is no need to cut or bend the lathe with a lathe or grinding machine after multi-layer formation and cutting, and manufacturing is easy and low cost, but the sliding surface has high dimensional accuracy. It becomes.
 上記樹脂組成物に繊維状充填材を含むので、樹脂層の耐熱性、耐摩耗性、耐荷重性、耐クリープ性をより高くすることができる。さらに、樹脂層において該繊維状充填材が、繊維の長さ方向を滑り軸受の摺動方向に対して45~90度に交差するように配向しているので、繊維状充填材の両端エッジによる相手材表面への攻撃性を低減することができ、回転トルクの変動が防止できる。 Since the resin composition contains a fibrous filler, the heat resistance, wear resistance, load resistance, and creep resistance of the resin layer can be further increased. Further, the fibrous filler in the resin layer is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the sliding bearing. Aggressiveness to the mating material surface can be reduced, and fluctuations in rotational torque can be prevented.
 本発明の圧縮機用滑り軸受は、従来の圧縮機用滑り軸受と同じ軸受サイズでありながら、耐摩耗性、低摩擦性、寸法安定性などに優れる。このため、圧縮機の回転部材をラジアル方向に支持するラジアル滑り軸受に好適に使用できる。また、従来の圧縮機用滑り軸受のような切断部がなく、また、軸受外周面および摺動面を高精度に形成可能なため、支持軸とのはめあい隙間を小さくすることができ、良好なシール性を発揮できる。このため、圧縮機のハウジング内の内部空間を、シール部材を設けることなく圧力的に隔絶するように配設することも可能である。 The sliding bearing for a compressor of the present invention has the same bearing size as that of a conventional sliding bearing for a compressor, but is excellent in wear resistance, low friction, dimensional stability, and the like. For this reason, it can be used suitably for the radial sliding bearing which supports the rotating member of a compressor in a radial direction. In addition, there is no cutting part like a conventional sliding bearing for a compressor, and the outer peripheral surface and sliding surface of the bearing can be formed with high accuracy, so that the fitting clearance with the support shaft can be reduced, and the good Sealing performance can be demonstrated. For this reason, it is also possible to arrange | position the internal space in the housing of a compressor so that it may isolate in pressure, without providing a sealing member.
 本発明の従来の圧縮機用滑り軸受と同じ軸受サイズでありながら、耐摩耗性、低摩擦性、寸法安定性などに優れる。このため、圧縮機の回転部材をスラスト方向に支持するスラスト滑り軸受としても好適に使用できる。 ¡Although it has the same bearing size as the conventional plain bearing for compressors of the present invention, it is excellent in wear resistance, low friction, dimensional stability and the like. For this reason, it can be used conveniently also as a thrust slide bearing which supports the rotation member of a compressor in a thrust direction.
 本発明の圧縮機は、圧縮機構を駆動するための回転部材を回転可能に支持する滑り軸受を備えた圧縮機であって、この滑り軸受として本発明の圧縮機用滑り軸受を採用するので、省エネルギー性、長寿命性に優れる圧縮機となり得る。 The compressor of the present invention is a compressor provided with a sliding bearing that rotatably supports a rotating member for driving a compression mechanism, and the sliding bearing for a compressor of the present invention is adopted as this sliding bearing. The compressor can be excellent in energy saving and long life.
 本発明の可変容量型ピストンポンプのクレイドルガイドは、焼結金属製部材と、該焼結金属製部材の少なくともクレイドルと摺接する表面に形成された、芳香族ポリエーテルケトン系樹脂をベース樹脂とする樹脂組成物からなる樹脂層とを有するので、耐熱性、低摩擦性、耐摩耗性に優れたクレイドルガイドとなる利点がある。また、樹脂層は、焼結金属製部材の上記表面に0.1~0.7mmの厚さで射出成形により重ねて一体に設けられているので、耐荷重性、耐クリープ性に優れ、高面圧下でも寸法変化することがなく、低トルクを安定的に得ることが可能になる。その結果、30MPa以上という高圧摺動状態でも、耐荷重性、耐摩耗性および低摩擦特性を全て満足して長期使用が可能なクレイドルガイドになる利点がある。さらに、樹脂層が焼結金属製部材の表面に射出成形により重ねて一体に設けられる、すなわち、焼結金属製部材を金型内にインサートして射出成形により樹脂層を形成するので、従来のクレイドルガイドのように鋼板への塗膜層形成(吹付け、乾燥、焼成等)が不要であり、また、旋盤や研磨機による加工などが不要であり、製造が容易で低コストでありながら、摺動面が高寸法精度となる。 The cradle guide of the variable capacity type piston pump of the present invention uses, as a base resin, a sintered metal member and an aromatic polyetherketone resin formed on the surface of the sintered metal member at least in contact with the cradle. Therefore, there is an advantage that the cradle guide is excellent in heat resistance, low friction and wear resistance. In addition, since the resin layer is integrally formed by injection molding on the surface of the sintered metal member with a thickness of 0.1 to 0.7 mm, it is excellent in load resistance and creep resistance, It is possible to stably obtain a low torque without changing dimensions even under surface pressure. As a result, there is an advantage that the cradle guide can be used for a long period of time by satisfying all of the load resistance, wear resistance and low friction characteristics even in a high-pressure sliding state of 30 MPa or more. Further, the resin layer is integrally provided on the surface of the sintered metal member by injection molding, that is, the resin layer is formed by injection molding by inserting the sintered metal member into the mold. There is no need to form a coating layer (spraying, drying, firing, etc.) on a steel plate like a cradle guide, and there is no need for processing with a lathe or a polishing machine. The sliding surface has high dimensional accuracy.
 上記樹脂組成物に繊維状充填材を含むので、樹脂層の耐熱性、耐摩耗性、耐荷重性、耐クリープ性をより高くすることができる。さらに、樹脂層において該繊維状充填材が、繊維の長さ方向をクレイドルガイドの摺動方向に対して45~90度に交差するように配向しているので、繊維状充填材の両端エッジによる相手材表面への攻撃性を低減することができ、摺動トルクの変動が防止できる。 Since the resin composition contains a fibrous filler, the heat resistance, wear resistance, load resistance, and creep resistance of the resin layer can be further increased. Further, in the resin layer, the fibrous filler is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the cradle guide. Aggressiveness to the mating material surface can be reduced, and fluctuations in sliding torque can be prevented.
 上記焼結金属製部材が、クレイドルガイド本体であるので、部品点数が少なく構造が簡易であり、製造コストが低くなる。 Since the sintered metal member is a cradle guide body, the number of parts is small, the structure is simple, and the manufacturing cost is low.
 また、別の態様として、溶製金属製のクレイドルガイド本体をさらに備え、このクレイドルガイド本体に上記焼結金属製部材を設置することで、クレイドルガイド全体としての高い機械的強度を確保しつつ、焼結金属製部材とこれに薄肉で射出成形された樹脂層とを用いることによる上記効果を得ることができる。また、この態様では、従来のクレイドルガイド本体を使用することができるため、設計変更等が不要となりコストアップが防止できる。 Further, as another aspect, further comprising a cradle guide body made of molten metal, by installing the sintered metal member in the cradle guide body, while ensuring high mechanical strength as a whole cradle guide, The above-mentioned effect can be obtained by using a sintered metal member and a thin-walled injection molded resin layer. Moreover, in this aspect, since the conventional cradle guide main body can be used, a design change etc. are unnecessary and it can prevent a cost increase.
 本発明の可変容量型アキシャルピストンポンプは、上記本発明のクレイドルガイドを備えるので、精密なクレイドルの傾角制御が可能になり、これによって精密な油圧制御動作などを行なえ、精密に機能する信頼性の高いポンプになる。 Since the variable displacement axial piston pump of the present invention includes the cradle guide of the present invention, it is possible to precisely control the tilt angle of the cradle, thereby performing a precise hydraulic control operation, etc. Become a high pump.
すべりねじ装置の斜視図である。It is a perspective view of a slide screw device. 摺動ナットの軸方向断面図である。It is an axial sectional view of a sliding nut. 圧縮機用滑り軸受を用いた圧縮機の第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the compressor using the sliding bearing for compressors. 圧縮機用滑り軸受(ラジアル滑り軸受)の一例を示す斜視図および断面図である。It is the perspective view and sectional drawing which show an example of the sliding bearing for compressors (radial sliding bearing). 圧縮機用滑り軸受(ラジアル滑り軸受)の他の例を示す斜視図および断面図である。It is the perspective view and sectional drawing which show the other example of the sliding bearing for compressors (radial sliding bearing). 圧縮機用滑り軸受を用いた圧縮機の第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the compressor using the sliding bearing for compressors. 圧縮機用滑り軸受(スラスト滑り軸受)の一例を示す斜視図および断面図である。It is the perspective view and sectional drawing which show an example of the sliding bearing for a compressor (thrust sliding bearing). 圧縮機用滑り軸受を用いた圧縮機の第3の実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the compressor using the sliding bearing for compressors. 圧縮機用滑り軸受を用いた圧縮機の第4の実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the compressor using the sliding bearing for compressors. 本発明のクレイドルガイドを用いた可変容量型アキシャルピストンポンプの縦断面図である。It is a longitudinal section of a variable capacity type axial piston pump using a cradle guide of the present invention. クレイドルガイドの一例を示す斜視図である。It is a perspective view which shows an example of a cradle guide. クレイドルガイドの他の例を示す斜視図である。It is a perspective view which shows the other example of a cradle guide. 図12のクレイドルガイドの分解斜視図である。It is a disassembled perspective view of the cradle guide of FIG. クレイドルガイドの他の例を示す斜視図である。It is a perspective view which shows the other example of a cradle guide. クレイドルガイドの断面図である。It is sectional drawing of a cradle guide.
 これより、本発明の摺動ナットおよびすべりねじ装置について説明する。 Now, the sliding nut and the sliding screw device of the present invention will be described.
 本発明のすべりねじ装置の一実施例を図1および図2により説明する。図1はすべりねじ装置の斜視図であり、図2は摺動ナットの軸方向断面図である。本発明のすべりねじ装置71は、ねじ軸72と、このねじ軸72のねじ溝に螺合し、このねじ軸上を摺動しながら相対的に移動する本発明の摺動ナット73とから構成される。ねじ軸72の回転運動が、摺動ナット73の直線運動に変換される。その他に、摺動ナット73を同じ位置で回転させることにより、ねじ軸72に直線運動を付与する使い方もできる。 An embodiment of the sliding screw device of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of a sliding screw device, and FIG. 2 is an axial sectional view of a sliding nut. The sliding screw device 71 of the present invention is composed of a screw shaft 72 and a sliding nut 73 of the present invention which is screwed into a screw groove of the screw shaft 72 and moves relatively while sliding on the screw shaft. Is done. The rotational movement of the screw shaft 72 is converted into the linear movement of the sliding nut 73. In addition, by rotating the sliding nut 73 at the same position, it is possible to apply a linear motion to the screw shaft 72.
 ねじ軸72としては、ステンレス鋼、炭素鋼等もしくはこれらに亜鉛メッキ、ニッケルメッキ、鋼質クロムメッキ等を施した鉄系金属、アルミニウム合金などの金属軸や、ポリイミド樹脂、フェノール樹脂などの樹脂軸を用いることができる。ステンレス鋼やアルミニウム合金等の耐蝕性金属類または樹脂類は、錆が発生しないので好ましく、防錆処理を省略できる点からも好適である。本発明においては、寸法精度を確保でき、耐久性に優れている耐蝕性金属類が最も好ましい。 As the screw shaft 72, stainless steel, carbon steel, or the like, or a metal shaft such as an iron-based metal or aluminum alloy obtained by applying zinc plating, nickel plating, steel chrome plating, or the like, or a resin shaft such as polyimide resin or phenol resin. Can be used. Corrosion-resistant metals such as stainless steel and aluminum alloys or resins are preferred because they do not generate rust, and are also suitable from the point that rust prevention treatment can be omitted. In the present invention, corrosion-resistant metals that can ensure dimensional accuracy and have excellent durability are most preferable.
 ねじ軸72は、無潤滑での使用が可能である。また、メンテナンスフリーよりも低摩擦性を重視する場合は、油またはグリースなどの潤滑剤をねじ軸72と摺動ナット73との摺動部に使用してもよい。この場合、摺動ナットのめねじ部の軸方向に直線状の溝を形成して、そこに摩耗紛が保持されるようにしてアグレッシブ摩耗が抑えられるように対策することが好ましい。 The screw shaft 72 can be used without lubrication. In the case where low friction is more important than maintenance free, a lubricant such as oil or grease may be used for the sliding portion between the screw shaft 72 and the sliding nut 73. In this case, it is preferable to take a measure so as to suppress the aggressive wear by forming a linear groove in the axial direction of the female thread portion of the sliding nut so as to hold the wear powder there.
 図2に示すように、摺動ナットは、ナット本体73aが焼結金属からなり、該ナット本体73aにおけるねじ軸に螺合するめねじ部の表面に、ねじ溝部として、後述する合成樹脂をベース樹脂とする樹脂組成物の樹脂層73bが形成されている。めねじ部は、ナット本体73aの一部であってナット本体73aの内径部に形成されており、ねじ溝部である樹脂層73bは、このめねじ部の表面を覆うように形成されている。ねじ溝部である樹脂層73bが、ねじ軸72(図1参照)と直接に摺動接触する。なお、樹脂層73bは、少なくともめねじ部の表面に形成されていればよく、ナット本体73aのそれ以外の表面に形成されていてもよい。 As shown in FIG. 2, the sliding nut has a nut body 73a made of sintered metal, and a synthetic resin, which will be described later, is used as a base resin on the surface of a female thread portion that is screwed onto a screw shaft in the nut body 73a. A resin layer 73b of the resin composition is formed. The female thread portion is a part of the nut main body 73a and is formed on the inner diameter portion of the nut main body 73a, and the resin layer 73b, which is a thread groove portion, is formed so as to cover the surface of the female thread portion. The resin layer 73b, which is a screw groove, is in direct sliding contact with the screw shaft 72 (see FIG. 1). In addition, the resin layer 73b should just be formed in the surface of the internal thread part at least, and may be formed in the other surface of the nut main body 73a.
 ナット本体73aの焼結金属の空孔に、樹脂層73bが食い込むことで、樹脂層73bとナット本体73aとが強固に密着する。特に、インサート成形による射出成形を行なった場合、射出成形時に樹脂層73bがナット本体(焼結金属)表面の凹凸に深く食い込んで、真の接合面積が増大するため、樹脂層73bとナット本体73aとの密着強さが向上する。さらに、樹脂層73bとナット本体73aの真の接合面積が増え、樹脂層とめねじ部(焼結金属)との接合面に隙間がないため、樹脂層73bの熱がナット本体73aへ伝わりやすくなる。 The resin layer 73b bites into the pores of the sintered metal of the nut body 73a, so that the resin layer 73b and the nut body 73a are firmly attached. In particular, when injection molding is performed by insert molding, the resin layer 73b deeply bites into the irregularities on the surface of the nut body (sintered metal) during injection molding, and the true bonding area increases, so the resin layer 73b and the nut body 73a The adhesion strength with is improved. Further, the true bonding area between the resin layer 73b and the nut main body 73a is increased, and there is no gap in the bonding surface between the resin layer and the internal thread portion (sintered metal), so that the heat of the resin layer 73b is easily transmitted to the nut main body 73a. .
 ねじ部形状は、例えば、ミニチュアねじ、メートル並目ねじ、メートル細目ねじ、ユニファイ並目ねじ、ユニファイ細目ねじ等の三角ねじや、29度台形ねじ、メートル台形ねじ等の台形ねじ、丸ねじであってもよく、あらゆるねじ形状が適用できる。また、一条ねじ、二条ねじ、もしくは多条ねじであってもよい。 The thread shape is, for example, a triangular screw such as a miniature screw, metric coarse screw, metric fine screw, unified coarse screw, or unified fine screw, a trapezoidal screw such as a 29 degree trapezoidal screw or a metric trapezoidal screw, or a round screw. Any screw shape may be applied. Further, it may be a single thread, a double thread, or a multiple thread.
 ナット本体を構成する焼結金属の材質としては、鉄系、銅鉄系、銅系、ステンレス系などが挙げられる。樹脂層とナット本体との密着性を高めることができることから、鉄が主成分の焼結金属、さらには銅の含有量が10重量%以下の鉄系焼結金属とすることが好ましい。なお、銅は、鉄よりも樹脂との密着性(接着性)に劣るため、銅の含有量は10重量%以下が好ましい。さらに好ましくは、銅の含有量は5重量%以下である。 As the material of the sintered metal constituting the nut body, iron-based, copper-iron-based, copper-based, stainless-based materials, and the like can be given. Since adhesion between the resin layer and the nut body can be enhanced, it is preferable to use a sintered metal containing iron as a main component, and further an iron-based sintered metal having a copper content of 10% by weight or less. In addition, since copper is inferior to adhesiveness (adhesiveness) with resin rather than iron, 10 weight% or less of copper content is preferable. More preferably, the copper content is 5% by weight or less.
 ナット本体を構成する焼結金属に油などの付着、含油がある場合、樹脂層の射出成形時において分解・ガス化する油残分が界面に介在するため、樹脂層と摺動ナット本体の密着性が低下してしまうおそれがある。そのため、ナット本体には、油を含浸しない焼結金属を使用することが好ましい。また、焼結金属の成形または再圧(サイジング)の工程内にて油を使用する場合は、溶剤洗浄などで油を除去した非含油焼結金属にすることが好ましい。 If the sintered metal that makes up the nut body contains oil or other oil, oil residue that decomposes and gasifies during injection molding of the resin layer is present at the interface. May deteriorate. Therefore, it is preferable to use a sintered metal not impregnated with oil for the nut body. Moreover, when using oil in the process of shaping | molding or re-pressing (sizing) of a sintered metal, it is preferable to set it as the non-oil-containing sintered metal which removed oil by solvent washing etc.
 ナット本体において、焼結金属(焼結体)の密度が、材質の理論密度比0.7~0.9であることが好ましい。材質の理論密度比とは、材質の理論密度(気孔率0%の場合の密度)を1としたときのナット本体の密度の比である。理論密度比0.7未満では焼結金属の強度が低くなり、インサート成形時の射出成形圧力により焼結金属が割れるおそれがある。理論密度比0.9をこえると、凹凸が小さくなるため、表面積、アンカー効果が低下し、樹脂層との密着性が低くなる。さらに好ましくは、材質の理論密度比0.72~0.84である。 In the nut body, the density of the sintered metal (sintered body) is preferably a theoretical density ratio of the material of 0.7 to 0.9. The theoretical density ratio of the material is the ratio of the density of the nut body when the theoretical density of the material (density when the porosity is 0%) is 1. If the theoretical density ratio is less than 0.7, the strength of the sintered metal is lowered, and the sintered metal may be broken by the injection molding pressure at the time of insert molding. When the theoretical density ratio exceeds 0.9, the unevenness is reduced, so that the surface area and the anchor effect are lowered, and the adhesion with the resin layer is lowered. More preferably, the theoretical density ratio of the materials is 0.72 to 0.84.
 鉄を主成分とする焼結金属は、スチーム処理を施すことで、成形または再圧(サイジング)工程時に意図せず焼結表面に付着、または内部に浸透した油分、付着物などを除去する効果があるため、樹脂層との密着性のばらつきが小さく、安定する。また、ナット本体に防錆も付与することができる。スチーム処理の条件は特に限定するものではないが、500℃程度に加熱したスチームを吹きかける方法が一般的である。 Sintered metal with iron as its main component is an effect that removes oil and deposits adhering to the sintered surface or penetrating into the sintered body unintentionally during the molding or re-pressing (sizing) process by applying steam treatment Therefore, variation in adhesion with the resin layer is small and stable. Moreover, rust prevention can also be provided to the nut body. The conditions for the steam treatment are not particularly limited, but a method of spraying steam heated to about 500 ° C. is common.
 樹脂層の形成方法としては、ディッピングによる塗装や、射出成形(インサート成形)が挙げられる。また、接合面に接着剤を介在させてもよい。ねじ寸法精度や、樹脂層とナット本体との密着性、製造の容易性などを考慮すると、ナット本体に重ねて射出成形する方法、すなわち、ナット本体に対して樹脂層をインサート成形する射出成形が好ましい。 As a method for forming the resin layer, there are coating by dipping and injection molding (insert molding). Moreover, you may interpose an adhesive agent in a joint surface. Considering screw dimensional accuracy, adhesion between the resin layer and the nut body, ease of manufacturing, etc., there is a method of injection molding over the nut body, that is, injection molding in which the resin layer is insert-molded to the nut body. preferable.
 樹脂層の厚みは、0.1~1.5mmが好ましい。なお、樹脂層の厚みは、焼結金属のナット本体に入り込まない表面部分の厚さである。樹脂厚みが0.1mm未満では、インサート成形が困難である。また、長期使用時の耐久性、すなわち寿命が短くなるおそれがある。一方、樹脂厚みが1.5mmをこえると、ヒケが発生し寸法精度が低下するおそれがある。また、摩擦による熱が摩擦面からナット本体側に逃げ難く、摩擦面温度が高くなる。また、荷重による変形量が大きくなるとともに、摩擦面における真実接触面積も大きくなり、摩擦力、摩擦発熱が高くなり、耐焼付き性が低下するおそれがある。 The thickness of the resin layer is preferably 0.1 to 1.5 mm. The thickness of the resin layer is the thickness of the surface portion that does not enter the nut body of the sintered metal. If the resin thickness is less than 0.1 mm, insert molding is difficult. In addition, durability during long-term use, that is, life may be shortened. On the other hand, if the resin thickness exceeds 1.5 mm, sink marks may occur and dimensional accuracy may be reduced. Further, heat due to friction is difficult to escape from the friction surface to the nut body side, and the friction surface temperature becomes high. In addition, the amount of deformation due to the load increases, the true contact area on the friction surface also increases, the frictional force and frictional heat generation increase, and the seizure resistance may decrease.
 摩擦発熱のナット本体への放熱を考慮すると、樹脂厚みは0.2~0.7mmがより好ましい。高寸法精度である焼結金属からなるナット本体の内径めねじ部表面に、樹脂層を薄肉(0.1~1.5mm)でインサート成形することで、寸法精度の高い摺動ナットとすることができる。 ¡In consideration of heat dissipation of the frictional heat to the nut body, the resin thickness is more preferably 0.2 to 0.7 mm. A sliding nut with high dimensional accuracy is formed by insert molding a thin resin layer (0.1 to 1.5 mm) on the surface of the internal thread of the nut body made of sintered metal with high dimensional accuracy. Can do.
 樹脂層を形成する樹脂組成物は、合成樹脂をベース樹脂とするものである。合成樹脂としては、射出成形可能で、潤滑特性の優れた合成樹脂が好ましい。また、雰囲気温度の高い部位に使用可能なように耐熱性の高い合成樹脂が好ましい。このような合成樹脂としては、例えば、芳香族ポリエーテルケトン(PEK)系樹脂、ポリアセタール(POM)樹脂、ポリフェニレンスルフィド(PPS)樹脂、射出成形可能なポリイミド樹脂、ポリアミドイミド(PAI)樹脂、ポリアミド(PA)樹脂、射出成形可能なフッ素樹脂などが挙げられる。これらの各合成樹脂は単独で使用してもよく、2種類以上混合したポリマーアロイであってもよい。 The resin composition forming the resin layer is based on a synthetic resin. The synthetic resin is preferably a synthetic resin that can be injection-molded and has excellent lubricating properties. Further, a synthetic resin having high heat resistance is preferable so that it can be used in a part having a high atmospheric temperature. Examples of such synthetic resins include aromatic polyether ketone (PEK) resins, polyacetal (POM) resins, polyphenylene sulfide (PPS) resins, injection-moldable polyimide resins, polyamide imide (PAI) resins, polyamides ( PA) resin, injection-moldable fluororesin, and the like. Each of these synthetic resins may be used alone or may be a polymer alloy in which two or more kinds are mixed.
 これらの合成樹脂の中でも、PEK系樹脂を用いることが好ましい。樹脂層を形成する樹脂組成物のベース樹脂としてPEK系樹脂を使用することで、連続使用温度が250℃であり、耐熱性、耐油・耐薬品性、耐クリープ特性、摩擦摩耗特性に優れたすべりねじ装置の摺動ナットになる。また、PEK系樹脂は、靭性、高温時の機械物性が高く、耐疲労特性、耐衝撃性にも優れているため、使用時の摩擦力、衝撃、振動などによる焼結金属からなるナット本体からの剥離の心配がない。 Among these synthetic resins, it is preferable to use a PEK resin. By using PEK resin as the base resin of the resin composition that forms the resin layer, the continuous use temperature is 250 ° C, and it has excellent heat resistance, oil / chemical resistance, creep resistance, and friction and wear characteristics. It becomes the sliding nut of the screw device. In addition, PEK-based resin has high toughness, high mechanical properties at high temperatures, and excellent fatigue resistance and impact resistance. Therefore, from the nut body made of sintered metal due to frictional force, impact, vibration, etc. during use There is no worry of peeling.
 PEK系樹脂としては、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルケトンエーテルケトンケトン(PEKEKK)樹脂などがある。本発明で使用できるPEEK樹脂の市販品としては、ビクトレックス社製:PEEK(90P、150P、380P、450P、90G、150Gなど)、ソルベイアドバンストポリマーズ社製:キータスパイア(KT-820P、KT-880Pなど)、ダイセルデグザ社製:VESTAKEEP(1000G、2000G、3000G、4000Gなど)などが挙げられる。また、PEK樹脂としては、ビクトレックス社製:VICTREX-HTなどが、PEKEKK樹脂としてはビクトレックス社製:VICTREX-STなどが、それぞれ挙げられる。 Examples of the PEK resin include polyether ether ketone (PEEK) resin, polyether ketone (PEK) resin, and polyether ketone ether ketone ketone (PEKEKK) resin. Examples of commercially available PEEK resins that can be used in the present invention include: Victorex Corporation: PEEK (90P, 150P, 380P, 450P, 90G, 150G, etc.), Solvay Advanced Polymers Corporation: KetaSpire (KT-820P, KT-880P) Etc., manufactured by Daicel Degussa, Inc .: VESTAKEEEP (1000G, 2000G, 3000G, 4000G, etc.). Examples of the PEK resin include Victrex-HT manufactured by Victrex, and examples of the PEKKK resin include Victrex-ST manufactured by Victrex.
 樹脂層を形成する樹脂組成物は、樹脂温度380℃、せん断速度1000s-1における溶融粘度が50~200Pa・sであることが好ましい。溶融粘度がこの範囲であると、焼結金属からなるナット本体の表面に0.1~1.5mmの薄肉インサート成形が円滑に行なえる。溶融粘度が、上記所定範囲未満の粘度または上記所定範囲をこえる粘度であれば、精密な成形性を確実に得ることが容易でなくなる。薄肉インサート成形を可能とし、インサート成形後の後加工を不要とすることで、製造が容易となり、製造コストの低減が図れる。 The resin composition forming the resin layer preferably has a melt viscosity of 50 to 200 Pa · s at a resin temperature of 380 ° C. and a shear rate of 1000 s −1 . When the melt viscosity is within this range, a thin insert molding of 0.1 to 1.5 mm can be smoothly performed on the surface of the nut body made of sintered metal. If the melt viscosity is less than the predetermined range or exceeds the predetermined range, it is not easy to ensure accurate moldability. By making thin insert molding possible and making post-processing after insert molding unnecessary, manufacturing becomes easy and manufacturing costs can be reduced.
 PEK系樹脂をベース樹脂とする樹脂組成物の場合、樹脂温度380℃、せん断速度1000s-1における溶融粘度を50~200Pa・sにするためには、該条件における溶融粘度が150Pa・s以下のPEK系樹脂を採用することが好ましい。このようなPEK系樹脂としては、ビクトレックス社製:PEEK(150P、90P、150G、90G)、ソルベイアドバンストポリマーズ社製:キータスパイア(KT-880P)などが例示できる。特に、樹脂厚み0.2~0.7mmを得るためには、該条件における溶融粘度が130Pa・s以下のPEK系樹脂を採用することが好ましく、ビクトレックス社製:PEEK(90P、90G)などが例示できる。 In the case of a resin composition having a PEK resin as a base resin, in order to set the melt viscosity at a resin temperature of 380 ° C. and a shear rate of 1000 s −1 to 50 to 200 Pa · s, the melt viscosity under these conditions is 150 Pa · s or less. It is preferable to employ a PEK resin. Examples of such PEK-based resins include Victorex Corporation: PEEK (150P, 90P, 150G, 90G), Solvay Advanced Polymers Corporation: KetaSpire (KT-880P), and the like. In particular, in order to obtain a resin thickness of 0.2 to 0.7 mm, it is preferable to use a PEK-based resin having a melt viscosity of 130 Pa · s or less under the above conditions, such as PEEK (90P, 90G) manufactured by Victrex. Can be illustrated.
 樹脂層を形成する樹脂組成物は、ベース樹脂として上記PEK系樹脂を用い、これにガラス繊維、炭素繊維、アラミド繊維、ウィスカなどの繊維状充填材、PTFE樹脂、黒鉛、二硫化モリブデン、二硫化タングステンなどの固体潤滑剤、炭酸カルシウム、硫酸カルシウム、マイカ、タルクなどの無機充填剤を配合することができる。これらを配合することで、耐クリープ特性、無潤滑または油潤滑での摩擦摩耗特性を、さらに向上することができる。具体的には、繊維状充填材、無機系の固体潤滑剤(黒鉛、二硫化モリブデンなど)、および無機充填剤は、PEK系樹脂の成形収縮率を小さくする効果がある。そのため、ナット本体とのインサート成形時に、樹脂層の内部応力を抑える効果がある。また、固体潤滑剤は、無潤滑、潤滑油が希薄な条件であっても低摩擦となり、焼き付き性を向上させる。 The resin composition forming the resin layer uses the PEK-based resin as a base resin, and fiber fillers such as glass fiber, carbon fiber, aramid fiber, and whisker, PTFE resin, graphite, molybdenum disulfide, and disulfide. Solid lubricants such as tungsten and inorganic fillers such as calcium carbonate, calcium sulfate, mica and talc can be blended. By blending these, the creep resistance characteristics, the friction and wear characteristics with no lubrication or oil lubrication can be further improved. Specifically, the fibrous filler, the inorganic solid lubricant (graphite, molybdenum disulfide, etc.), and the inorganic filler have an effect of reducing the molding shrinkage of the PEK resin. Therefore, there is an effect of suppressing the internal stress of the resin layer at the time of insert molding with the nut body. Further, the solid lubricant is non-lubricated and has low friction even under the condition where the lubricating oil is dilute, thereby improving the seizure property.
 繊維状充填材の平均繊維長は、0.02~0.2mmが好ましい。0.02mm未満では充分な補強効果が得られず、耐クリープ性、耐摩耗性に劣るおそれがある。0.2mmをこえる場合は樹脂層の層厚に対する繊維長の比率が大きくなるため、薄肉成形性に劣る。特に、樹脂厚み0.1~1.5mm程度にインサート成形する場合は、繊維長が0.2mmをこえると薄肉成形性を阻害する。より薄肉成形の安定性を高めるには、平均繊維長0.02~0.1mmがより好ましい。 The average fiber length of the fibrous filler is preferably 0.02 to 0.2 mm. If the thickness is less than 0.02 mm, a sufficient reinforcing effect cannot be obtained, and the creep resistance and wear resistance may be inferior. When the thickness exceeds 0.2 mm, the ratio of the fiber length to the layer thickness of the resin layer becomes large, so that the thin formability is inferior. In particular, when insert molding is performed with a resin thickness of approximately 0.1 to 1.5 mm, thin-wall moldability is hindered if the fiber length exceeds 0.2 mm. In order to further improve the stability of thin-wall molding, an average fiber length of 0.02 to 0.1 mm is more preferable.
 繊維状充填材の中でも、炭素繊維を用いることが好ましい。炭素繊維は、樹脂層を成形する際に樹脂の溶融流動方向への配向性が強い。炭素繊維としては、原材料から分類されるピッチ系またはPAN系のいずれのものであってもよいが、高弾性率を有するPAN系炭素繊維の方が好ましい。その焼成温度は特に限定するものではないが、2000℃またはそれ以上の高温で焼成されて黒鉛(グラファイト)化されたものよりも、1000~1500℃程度で焼成された炭化品のものが、高PV下でもねじ軸を摩耗損傷しにくいので好ましい。 Among the fibrous fillers, it is preferable to use carbon fibers. Carbon fiber has a strong orientation in the melt flow direction of the resin when the resin layer is molded. The carbon fibers may be either pitch-based or PAN-based ones classified from raw materials, but PAN-based carbon fibers having a high elastic modulus are more preferable. The calcining temperature is not particularly limited, but a carbonized material calcined at about 1000 to 1500 ° C. is higher than that calcined at a high temperature of 2000 ° C. or higher to be converted into graphite. Even under PV, it is preferable because the screw shaft is not easily damaged by wear.
 炭素繊維の平均繊維径は20μm以下、好ましくは5~15μmである。この範囲をこえる太い炭素繊維では、極圧が発生するため、耐荷重性の向上効果が乏しく、ねじ軸が焼入れなしの鋼材の場合、摩耗損傷が大きくなるため好ましくない。また、炭素繊維は、チョップドファイバー、ミルドファイバーのいずれであってもよいが、安定した薄肉成形性を得るためには、繊維長が1mm未満のミルドファイバーの方が好ましい。 The average fiber diameter of the carbon fiber is 20 μm or less, preferably 5 to 15 μm. A thick carbon fiber exceeding this range is not preferable because extreme pressure is generated, and the effect of improving load resistance is poor, and in the case of a steel material whose screw shaft is not quenched, wear damage increases. The carbon fiber may be a chopped fiber or a milled fiber, but a milled fiber having a fiber length of less than 1 mm is preferable in order to obtain stable thin-wall formability.
 本発明で使用できる炭素繊維の市販品としては、ピッチ系炭素繊維として、クレハ社製:クレカ M-101S、M-107S、M-101F、M-201S、M-207S、M-2007S、C-103S、C-106S、C-203Sなどが挙げられる。また、同様のPAN系炭素繊維として、東邦テナックス社製:ベスファイト HTA-CMF0160-0H、同HTA-CMF0040-0H、同HTA-C6、同HTA-C6-Sまたは東レ社製:トレカ MLD-30、同MLD-300、同T008、同T010などが挙げられる。 Commercially available carbon fibers that can be used in the present invention include pitch-based carbon fibers manufactured by Kureha Co., Ltd .: Kureka M-101S, M-107S, M-101F, M-201S, M-207S, M-2007S, C- 103S, C-106S, C-203S and the like. Further, as a similar PAN-based carbon fiber, manufactured by Toho Tenax Co., Ltd .: Besfight HTA-CMF0160-0H, HTA-CMF0040-0H, HTA-C6, HTA-C6-S, or Toray Industries, Inc .: Torayca MLD-30 , MLD-300, T008, T010, and the like.
 樹脂層を形成する樹脂組成物は、ベース樹脂として上記PEK系樹脂を用い、これに上記炭素繊維と、固体潤滑剤であるPTFE樹脂とを必須成分として含むことが好ましい。 The resin composition forming the resin layer preferably uses the PEK-based resin as a base resin, and contains the carbon fiber and a PTFE resin that is a solid lubricant as essential components.
 PTFE樹脂としては、懸濁重合法によるモールディングパウダー、乳化重合法によるファインパウダー、再生PTFEのいずれを採用してもよい。PEK系樹脂をベース樹脂とする樹脂組成物の流動性を安定させるためには、成形時のせん断により繊維化し難く、溶融粘度を増加させ難い再生PTFEを採用することが好ましい。 As the PTFE resin, any of molding powder by suspension polymerization method, fine powder by emulsion polymerization method, and recycled PTFE may be adopted. In order to stabilize the fluidity of a resin composition having a PEK-based resin as a base resin, it is preferable to employ recycled PTFE that is difficult to be fiberized by shearing at the time of molding and hardly increases the melt viscosity.
 再生PTFEとは、熱処理(熱履歴が加わったもの)粉末、γ線または電子線などを照射した粉末のことである。例えば、モールディングパウダーまたはファインパウダーを熱処理した粉末、また、この粉末をさらにγ線または電子線を照射した粉末、モールディングパウダーまたはファインパウダーの成形体を粉砕した粉末、また、その後γ線または電子線を照射した粉末、モールディングパウダーまたはファインパウダーをγ線または電子線を照射した粉末などのタイプがある。再生PTFEの中でも、凝集せず、PEK系樹脂の溶融温度おいて、全く繊維化せず、内部潤滑効果があり、PEK系樹脂をベース樹脂とする樹脂組成物の流動性を安定して向上させることが可能なことから、γ線または電子線などを照射したPTFE樹脂を採用することがより好ましい。 Regenerated PTFE is a heat-treated (heat history added) powder, a powder irradiated with γ rays or electron beams. For example, a powder obtained by heat-treating molding powder or fine powder, a powder obtained by further irradiating this powder with γ-rays or an electron beam, a powder obtained by pulverizing a molding powder or a molded product of fine powder, and then a γ-ray or electron beam. There are types such as irradiated powder, molding powder or fine powder irradiated with gamma rays or electron beams. Among the regenerated PTFE, it does not aggregate, does not fiberize at the melting temperature of the PEK resin, has an internal lubricating effect, and stably improves the fluidity of the resin composition containing the PEK resin as a base resin. Therefore, it is more preferable to use PTFE resin irradiated with γ rays or electron beams.
 本発明で使用できるPTFE樹脂の市販品としては、喜多村社製:KTL-610、KTL-450、KTL-350、KTL-8N、KTL-400H、三井・デュポンフロロケミカル社製:テフロン(登録商標)7-J、TLP-10、旭硝子社製:フルオンG163、L150J、L169J、L170J、L172J、L173J、ダイキン工業社製:ポリフロンM-15、ルブロンL-5、ヘキスト社製:ホスタフロンTF9205、TF9207などが挙げられる。また、パーフルオロアルキルエーテル基、フルオルアルキル基、またはその他のフルオロアルキルを有する側鎖基で変性されたPTFEであってもよい。上記の中でγ線または電子線などを照射したPTFEとしては、喜多村社製:KTL-610、KTL-450、KTL-350、KTL-8N、KTL-8F、旭硝子社製:フルオンL169J、L170J、L172J、L173Jなどが挙げられる。 Examples of commercially available PTFE resins that can be used in the present invention include Kitamura Co., Ltd .: KTL-610, KTL-450, KTL-350, KTL-8N, KTL-400H, Mitsui DuPont Fluorochemical Co., Ltd .: Teflon (registered trademark). 7-J, TLP-10, Asahi Glass Co., Ltd .: Fullon G163, L150J, L169J, L170J, L172J, L173J, Daikin Industries, Ltd .: Polyflon M-15, Lubron L-5, Hoechst: Hostaflon TF9205, TF9207, etc. Can be mentioned. Further, PTFE modified with a side chain group having a perfluoroalkyl ether group, a fluoroalkyl group, or other fluoroalkyl may be used. Among the PTFE irradiated with γ rays or electron beams among the above, Kitamura Co., Ltd .: KTL-610, KTL-450, KTL-350, KTL-8N, KTL-8F, Asahi Glass Co., Ltd .: Fullon L169J, L170J, L172J, L173J, etc. are mentioned.
 なお、この発明の効果を阻害しない程度に、樹脂組成物に対して周知の樹脂用添加剤を配合してもよい。この添加剤としては、例えば、窒化ホウ素などの摩擦特性向上剤、炭素粉末、酸化鉄、酸化チタンなどの着色剤、黒鉛、金属酸化物粉末などの熱伝導性向上剤が挙げられる。 In addition, you may mix | blend a well-known resin additive with respect to a resin composition to such an extent that the effect of this invention is not inhibited. Examples of the additive include friction property improvers such as boron nitride, colorants such as carbon powder, iron oxide, and titanium oxide, and thermal conductivity improvers such as graphite and metal oxide powder.
 樹脂層を形成する樹脂組成物は、PEK系樹脂をベース樹脂とする場合において、炭素繊維を5~30体積%、PTFE樹脂を1~30体積%を必須成分として含むことが好ましい。この必須成分と他の添加剤を除く残部がPEK系樹脂である。炭素繊維は、5~20体積%がより好ましく、PTFE樹脂は、2~25体積%がより好ましい。 The resin composition forming the resin layer preferably contains 5 to 30% by volume of carbon fiber and 1 to 30% by volume of PTFE resin as essential components when a PEK resin is used as a base resin. The balance excluding this essential component and other additives is PEK-based resin. The carbon fiber is more preferably 5 to 20% by volume, and the PTFE resin is more preferably 2 to 25% by volume.
 炭素繊維の配合割合が30体積%をこえると、溶融流動性が著しく低下し、薄肉成形が困難になるとともに、ねじ軸が焼入れなしの鋼材の場合、摩耗損傷するおそれがある。また、炭素繊維の配合割合が5体積%未満では、樹脂層を補強する効果が乏しく、充分な耐クリープ性、耐摩耗性が得られない場合がある。 When the blending ratio of the carbon fiber exceeds 30% by volume, the melt fluidity is remarkably lowered, it becomes difficult to form a thin wall, and there is a risk of wear damage when the screw shaft is a steel material without quenching. Moreover, when the blending ratio of the carbon fiber is less than 5% by volume, the effect of reinforcing the resin layer is poor, and sufficient creep resistance and wear resistance may not be obtained.
 PTFE樹脂の配合割合が30体積%をこえると、耐摩耗性、耐クリープ性が所要の程度より低下するおそれがある。また、PTFE樹脂の配合割合が1体積%未満では組成物に所要の潤滑性の付与効果に乏しく、充分な摺動特性が得られない場合がある。 When the blending ratio of PTFE resin exceeds 30% by volume, the wear resistance and creep resistance may be lowered from the required levels. In addition, when the blending ratio of the PTFE resin is less than 1% by volume, the effect of imparting the required lubricity to the composition is poor, and sufficient sliding characteristics may not be obtained.
 以上の諸原材料を混合し、混練する手段は、特に限定するものではなく、粉末原料のみをヘンシェルミキサー、ボールミキサー、リボンブレンダー、レディゲミキサー、ウルトラヘンシェルミキサーなどにて乾式混合し、さらに二軸押出し機などの溶融押出し機にて溶融混練し、成形用ペレット(顆粒)を得ることができる。また、充填材の投入は、二軸押出し機などで溶融混練する際にサイドフィードを採用してもよい。また、物性改善のためにアニール処理等の処理を採用してもよい。本発明の摺動ナットは、該成形用ペレットを用いて、ナット本体に対して樹脂層をインサート成形により射出成形することが好ましい。この具体的方法としては、例えば、特許文献4に記載した製造方法を利用することができる。 The means for mixing and kneading the above raw materials is not particularly limited, and only the powder raw material is dry-mixed with a Henschel mixer, ball mixer, ribbon blender, ladyge mixer, ultra Henschel mixer, etc. Melting and kneading can be performed with a melt extruder such as an extruder to obtain molding pellets (granules). In addition, a side feed may be used for charging the filler when melt kneading with a twin screw extruder or the like. Moreover, you may employ | adopt treatments, such as an annealing process, for physical property improvement. In the sliding nut of the present invention, the resin layer is preferably injection-molded by insert molding on the nut body using the molding pellets. As this specific method, for example, the manufacturing method described in Patent Document 4 can be used.
 使用中の摩擦力に対して、充分な密着強さを得るためには、ナット本体の焼結金属と樹脂層とのせん断密着強さは、2MPa以上(面圧10MPa、摩擦係数0.1における安全率が2倍以上)であることが好ましい。更に安全率を高めるためには、3MPa以上が好ましい。また、ナット本体の焼結金属と樹脂層のせん断密着強さを更に高めるために、樹脂層を形成する焼結金属面に、凹凸、溝などの物理的な抜け止め、周り止めを施してもよい。 In order to obtain a sufficient adhesion strength against the friction force in use, the shear adhesion strength between the sintered metal of the nut body and the resin layer is 2 MPa or more (at a surface pressure of 10 MPa and a friction coefficient of 0.1). The safety factor is preferably 2 times or more. Furthermore, in order to raise a safety factor, 3 Mpa or more is preferable. In addition, in order to further increase the shear adhesion strength between the sintered metal of the nut body and the resin layer, the sintered metal surface on which the resin layer is formed may be provided with physical stoppers such as irregularities and grooves, and rotation prevention. Good.
 以上、本発明の本発明の摺動ナットおよびすべりねじ装置について説明したが、本発明の実施態様はこれに限定されるものではない。 The sliding nut and the sliding screw device of the present invention have been described above, but the embodiment of the present invention is not limited to this.
 これより、本発明の圧縮機用滑り軸受および圧縮機について説明する。 Now, the sliding bearing and compressor for a compressor according to the present invention will be described.
 本発明の圧縮機用滑り軸受を用いた圧縮機の第1の実施形態として、図3に車両空調装置を構成する片頭型ピストン式圧縮機の例を説明する。 As a first embodiment of a compressor using a sliding bearing for a compressor of the present invention, an example of a single-headed piston compressor constituting a vehicle air conditioner will be described with reference to FIG.
 図3に示すように、圧縮機5は、そのハウジングを構成する、シリンダブロック6と、フロントハウジング7と、リヤハウジング9とを有する。リヤハウジング9は、弁形成体8を介してシリンダブロック6に接合固定されている。ここで、シリンダブロック6とフロントハウジング7とで囲まれる部分にクランク室10がある。ハウジングには、クランク室10を貫通する形で駆動軸11が回転自在に支持されている。駆動軸11は金属製のものなどが用いられる。駆動軸11の一端側(図中左側)が、動力伝達機構を介して車両エンジンに直結されている。駆動軸11には、クランク室10において鉄製のラグプレート12が一体回転可能に固定されている。駆動軸11およびラグプレート12によって回転部材が構成されている。 As shown in FIG. 3, the compressor 5 includes a cylinder block 6, a front housing 7, and a rear housing 9 that constitute the housing. The rear housing 9 is joined and fixed to the cylinder block 6 via the valve forming body 8. Here, the crank chamber 10 is located in a portion surrounded by the cylinder block 6 and the front housing 7. A drive shaft 11 is rotatably supported by the housing so as to penetrate the crank chamber 10. The drive shaft 11 is made of metal or the like. One end side (left side in the figure) of the drive shaft 11 is directly connected to the vehicle engine via a power transmission mechanism. An iron lug plate 12 is fixed to the drive shaft 11 in the crank chamber 10 so as to be integrally rotatable. The drive shaft 11 and the lug plate 12 constitute a rotating member.
 駆動軸11の一端部は、フロントハウジング7に設けられた貫通孔7aに嵌入されたラジアル滑り軸受1aによって回転自在に支持されている。また、駆動軸11の他端部は、シリンダブロック6に設けられた貫通孔6aに嵌入されたラジアル滑り軸受1bによって回転自在に支持されている。このラジアル滑り軸受1aおよび1bが本発明の圧縮機用滑り軸受である。 One end of the drive shaft 11 is rotatably supported by a radial sliding bearing 1a fitted in a through hole 7a provided in the front housing 7. The other end of the drive shaft 11 is rotatably supported by a radial slide bearing 1 b fitted in a through hole 6 a provided in the cylinder block 6. The radial sliding bearings 1a and 1b are the sliding bearings for the compressor of the present invention.
 クランク室10には、カムプレートとしての斜板13が収容されている。斜板13は、ヒンジ機構14を介したラグプレート12との作動連結、および駆動軸11の支持によりラグプレート12および駆動軸11と同期回転可能であるとともに、駆動軸11の回転中心軸線方向へのスライド移動を伴いながら該駆動軸11に対して傾動可能に構成されている。また、シリンダブロック6には、複数のシリンダボア15が形成され、このシリンダボア15に片頭型のピストン16が往復動可能に収容されている。シリンダボア15の前後開口は、弁形成体8およびピストン16によって閉塞されており、このシリンダボア15内にピストン16の往復動に応じて体積変化する圧縮室が形成されている。各ピストン16は、シュー17を介して斜板13の外周部に係留されている。この構成により、駆動軸11の回転に伴う斜板13の回転運動が、シュー17を介してピストン16の往復直線運動に変換される。ピストン16、シュー17、斜板13、ヒンジ機構14およびラグプレート12によってクランク機構が構成され、該クランク機構、シリンダブロック6および駆動軸11によって圧縮機構が構成されている。 The swash plate 13 as a cam plate is accommodated in the crank chamber 10. The swash plate 13 can be rotated synchronously with the lug plate 12 and the drive shaft 11 by the operation connection with the lug plate 12 via the hinge mechanism 14 and the support of the drive shaft 11, and in the direction of the rotation center axis of the drive shaft 11. It is configured to be tiltable with respect to the drive shaft 11 while being accompanied by the sliding movement. A plurality of cylinder bores 15 are formed in the cylinder block 6, and a single-headed piston 16 is accommodated in the cylinder bore 15 so as to be capable of reciprocating. The front and rear openings of the cylinder bore 15 are closed by the valve forming body 8 and the piston 16, and a compression chamber whose volume changes according to the reciprocation of the piston 16 is formed in the cylinder bore 15. Each piston 16 is anchored to the outer peripheral portion of the swash plate 13 via a shoe 17. With this configuration, the rotational motion of the swash plate 13 accompanying the rotation of the drive shaft 11 is converted into the reciprocating linear motion of the piston 16 via the shoe 17. The piston 16, the shoe 17, the swash plate 13, the hinge mechanism 14 and the lug plate 12 constitute a crank mechanism, and the crank mechanism, the cylinder block 6 and the drive shaft 11 constitute a compression mechanism.
 ラグプレート12とフロントハウジング7との間にはスラスト転がり軸受18aが配設されている。スラスト転がり軸受18aは、回転部材(駆動軸11およびラグプレート12)をスラスト方向に支持するとともに、圧縮機構において発生する圧縮反力をラグプレート12を介して受ける側に配設されている。また、駆動軸11は、シリンダブロック6の貫通孔6a内に配設されたスラスト転がり軸受18bによってその後端部が支持されており、後方へのスラスト移動が規制されるようになっている。 A thrust rolling bearing 18 a is disposed between the lug plate 12 and the front housing 7. The thrust rolling bearing 18 a is disposed on the side that supports the rotating member (the drive shaft 11 and the lug plate 12) in the thrust direction and receives the compression reaction force generated in the compression mechanism via the lug plate 12. The drive shaft 11 is supported at its rear end portion by a thrust rolling bearing 18b disposed in the through hole 6a of the cylinder block 6, so that the thrust movement to the rear is restricted.
 リヤハウジング9には、吸入室19および吐出室20が形成されている。吸入室19の冷媒ガスは、各ピストン16の移動により弁形成体8を介してシリンダボア15に導入される。シリンダボア15に導入された低圧な冷媒ガスは、ピストン16の移動により所定の圧力にまで圧縮され、弁形成体8を介して吐出室20に導入される。この吸入室19、吐出室20、シリンダボア15、弁形成体8によって冷媒経路が構成されている。 In the rear housing 9, a suction chamber 19 and a discharge chamber 20 are formed. The refrigerant gas in the suction chamber 19 is introduced into the cylinder bore 15 through the valve forming body 8 by the movement of each piston 16. The low-pressure refrigerant gas introduced into the cylinder bore 15 is compressed to a predetermined pressure by the movement of the piston 16 and is introduced into the discharge chamber 20 via the valve forming body 8. The suction chamber 19, the discharge chamber 20, the cylinder bore 15, and the valve forming body 8 constitute a refrigerant path.
 以上の構成を有する圧縮機5は、車両エンジンから動力伝達機構を介して駆動軸11に動力が供給されると、駆動軸11とともに斜板13が回転する。斜板13の回転に伴って各ピストン16が斜板13の傾斜角度に対応したストロークで往復動され、各シリンダボア15において冷媒の吸入、圧縮および吐出が順次繰り返される。 In the compressor 5 having the above configuration, when power is supplied from the vehicle engine to the drive shaft 11 via the power transmission mechanism, the swash plate 13 rotates together with the drive shaft 11. As the swash plate 13 rotates, each piston 16 is reciprocated at a stroke corresponding to the inclination angle of the swash plate 13, and refrigerant suction, compression, and discharge are sequentially repeated in each cylinder bore 15.
 以下、図4に基づいて、本発明の圧縮機用滑り軸受であるラジアル滑り軸受1(1aおよび1b)について詳細に説明する。図4は、本発明の圧縮機用滑り軸受であるラジアル滑り軸受の斜視図および断面図である。ラジアル滑り軸受1は、円筒状の焼結金属製基材2と、その内周面に設けられた樹脂層3とからなる複層の滑り軸受である。樹脂層3は、PEK系樹脂をベース樹脂とする樹脂組成物からなり、焼結金属製基材2の内周面に0.1~0.7mmの厚さで射出成形により重ねて一体に設けられることで形成されている。樹脂層3の内周面が、駆動軸11(図3参照)を支持する摺動面となる。 Hereinafter, based on FIG. 4, the radial plain bearing 1 (1a and 1b) which is a slide bearing for compressors of this invention is demonstrated in detail. FIG. 4 is a perspective view and a sectional view of a radial plain bearing which is a slide bearing for a compressor according to the present invention. The radial plain bearing 1 is a multi-layered plain bearing comprising a cylindrical sintered metal base 2 and a resin layer 3 provided on the inner peripheral surface thereof. The resin layer 3 is made of a resin composition having a PEK-based resin as a base resin, and is integrally provided by injection molding on the inner peripheral surface of the sintered metal base 2 with a thickness of 0.1 to 0.7 mm. It is formed by being. The inner peripheral surface of the resin layer 3 is a sliding surface that supports the drive shaft 11 (see FIG. 3).
 ラジアル滑り軸受1の外径形状は、圧縮機内の貫通孔6a、7a(図3参照)に沿った形状に設定されている。ラジアル滑り軸受1の外周面と貫通孔6a、7a(図3参照)の内周面とは可能な限り隙間なく密着した状態となるように設定されている。また、内径形状は、駆動軸11(図3参照)を支持した状態において、該駆動軸の周面とのクリアランスが回転支持のために必要な最小限のものとなるようにこれに沿った形状に設定されている。 The outer diameter shape of the radial plain bearing 1 is set to a shape along the through holes 6a and 7a (see FIG. 3) in the compressor. The outer peripheral surface of the radial plain bearing 1 and the inner peripheral surfaces of the through holes 6a and 7a (see FIG. 3) are set to be in close contact with each other as much as possible. In addition, the inner diameter shape is a shape along the drive shaft 11 (see FIG. 3) so that the clearance with the peripheral surface of the drive shaft is the minimum necessary for rotation support in a state where the drive shaft 11 is supported. Is set to
 従来のラジアル滑り軸受は、内周面に切削または研削等の機械加工を施すことで、摺動面の内径寸法を仕上げたり、真円度を向上させたり、青銅焼結層を露出させたりしていたが、本発明の圧縮機用滑り軸受は射出成形で摺動面(樹脂層)を仕上げるため、切削または研削等の機械加工をする必要はない。また、従来の複層軸受のように複層形成・切断後における旋盤や研磨機による切断部の加工、曲げ加工なども不要である。これらの結果、製造が容易で低コストでありながら、摺動面が高寸法精度となる。 Conventional radial plain bearings perform machining such as cutting or grinding on the inner peripheral surface to finish the inner diameter of the sliding surface, improve roundness, and expose the bronze sintered layer. However, since the sliding bearing for a compressor of the present invention finishes the sliding surface (resin layer) by injection molding, it is not necessary to perform machining such as cutting or grinding. Further, unlike the conventional multi-layer bearing, it is not necessary to process the cutting part or bend with a lathe or a grinding machine after forming and cutting the multi-layer. As a result, the sliding surface has high dimensional accuracy while being easy to manufacture and low cost.
 ラジアル滑り軸受1は、軸受基材として焼結金属製基材2を用いているため、射出成形時にPEK系樹脂の溶融樹脂が、該焼結金属製基材2の表面の凹凸に深く入り込み、樹脂層3を基材2に強固に密着できる。射出成形では、溶融樹脂を高速で流し込むため、PEK系樹脂をベース樹脂として用いながらも、該樹脂がせん断力により多孔質の焼結層の凹凸(空孔)に入りやすい。そのため、焼結金属製基材2と樹脂層3との密着強度が十分に確保できる。 Since the radial sliding bearing 1 uses the sintered metal base material 2 as a bearing base material, the PEK-based resin molten resin penetrates deeply into the irregularities on the surface of the sintered metal base material 2 at the time of injection molding. The resin layer 3 can be firmly adhered to the substrate 2. In the injection molding, since the molten resin is poured at a high speed, the resin is likely to enter the unevenness (holes) of the porous sintered layer by shearing force while using the PEK resin as the base resin. Therefore, sufficient adhesion strength between the sintered metal substrate 2 and the resin layer 3 can be secured.
 樹脂層に、PEK系樹脂をベース樹脂とする樹脂組成物を使用することで、連続使用温度が250℃であり、耐熱性、耐油・耐薬品性、耐クリープ性、摩擦摩耗特性に優れたラジアル滑り軸受になる。また、PEK系樹脂は、靭性、高温時の機械物性が高く、耐疲労特性、耐衝撃性にも優れているため、使用時に摩擦力、衝撃、振動等が加わる際にも、樹脂層が焼結金属製基材から剥離し難い。従来のラジアル滑り軸受は、PTFE樹脂等を主成分とする樹脂組成物が摺動面であったため、異常時において多孔質焼結層から樹脂組成物が剥離することを防止することはできなかった。 By using a resin composition based on PEK-based resin for the resin layer, the continuous use temperature is 250 ° C, and it has excellent heat resistance, oil / chemical resistance, creep resistance, and friction and wear characteristics. It becomes a sliding bearing. In addition, PEK-based resins have high toughness and mechanical properties at high temperatures, and are excellent in fatigue resistance and impact resistance. Therefore, even when frictional force, impact, vibration, etc. are applied during use, the resin layer is baked. It is difficult to peel off from the metal base. In the conventional radial sliding bearing, since the resin composition mainly composed of PTFE resin was a sliding surface, it was not possible to prevent the resin composition from peeling from the porous sintered layer at the time of abnormality. .
 この圧縮機用滑り軸受で使用できるPEK系樹脂の具体例としては、上述の摺動ナットで用いるものと同じものが挙げられる。 Specific examples of the PEK resin that can be used in the sliding bearing for the compressor include the same ones as those used in the above-described sliding nut.
 樹脂層の厚さは、0.1~0.7mmに設定されている。なお、樹脂層の厚さは、焼結金属製基材に入り込まない表面部分の厚さであり、ラジアル滑り軸受の場合は径方向の厚さであり、スラスト滑り軸受の場合は軸方向の厚さである。この厚さ範囲は、インサート成形面や物性面を考慮して設定されたものである。樹脂層の厚さが0.1mm未満では、インサート成形が困難である。また、長期使用時の耐久性、すなわち寿命が短くなるおそれがある。一方、樹脂層の厚さが0.7mmをこえると、ヒケが発生し寸法精度が低下するおそれがある。また、摩擦による熱が摩擦面から焼結金属製基材に逃げ難く、摩擦面温度が高くなる。さらに、荷重による変形量が大きくなるとともに、摩擦面における真実接触面積も大きくなり、摩擦力、摩擦発熱が高くなり、耐焼付き性などが低下するおそれがある。摩擦発熱の焼結金属製基材への放熱を考慮すると、樹脂層の厚さは0.2~0.5mmが好ましい。 The thickness of the resin layer is set to 0.1 to 0.7 mm. The thickness of the resin layer is the thickness of the surface portion that does not enter the sintered metal base material. In the case of a radial slide bearing, it is the thickness in the radial direction, and in the case of a thrust slide bearing, the thickness in the axial direction. That's it. This thickness range is set in consideration of the insert molding surface and physical properties. When the thickness of the resin layer is less than 0.1 mm, insert molding is difficult. In addition, durability during long-term use, that is, life may be shortened. On the other hand, if the thickness of the resin layer exceeds 0.7 mm, sink marks may occur and dimensional accuracy may be reduced. In addition, heat due to friction is difficult to escape from the friction surface to the sintered metal substrate, and the friction surface temperature increases. Further, the amount of deformation due to the load increases, the true contact area on the friction surface also increases, the frictional force and the frictional heat generation increase, and the seizure resistance may decrease. In consideration of heat radiation of the frictional heat to the sintered metal substrate, the thickness of the resin layer is preferably 0.2 to 0.5 mm.
 また、樹脂層の厚さは、焼結金属製基材の厚さの1/8~1/2であることが好ましい。樹脂層の厚さが焼結金属製基材の厚さの1/8未満では、基材に対して樹脂層が相対的に薄くなりすぎ、長期使用時の耐久性に劣るおそれがある。一方、樹脂層の厚さが焼結金属製基材の厚さの1/2をこえると、基材に対して樹脂層が相対的に厚くなりすぎ、摩擦による熱が摩擦面から焼結金属製基材に逃げ難く、摩擦面温度が高くなる。さらに、荷重による変形量が大きくなるとともに、摩擦面における真実接触面積も大きくなり、摩擦力、摩擦発熱が高くなり、耐焼付き性などが低下するおそれがある。 The thickness of the resin layer is preferably 1/8 to 1/2 of the thickness of the sintered metal substrate. When the thickness of the resin layer is less than 1/8 of the thickness of the sintered metal base material, the resin layer becomes too thin relative to the base material, which may deteriorate durability during long-term use. On the other hand, if the thickness of the resin layer exceeds ½ of the thickness of the sintered metal base material, the resin layer becomes too thick relative to the base material, and heat from friction is generated from the friction surface to the sintered metal. It is difficult to escape to the base material and the friction surface temperature becomes high. Further, the amount of deformation due to the load increases, the true contact area on the friction surface also increases, the frictional force and the frictional heat generation increase, and the seizure resistance may decrease.
 焼結金属製基材の材質としては、鉄系、銅鉄系、銅系、ステンレス系などが挙げられる。焼結金属製基材と樹脂層との密着性に優れることから、鉄が主成分(銅を含んでもよい)である焼結金属を採用することが好ましい。また、鉄を主成分とする焼結金属を採用することで、より高い軸受強度を得ることができる。なお、銅を含む場合、銅は鉄よりも樹脂との密着性(接着性)に劣るため、銅の含有量は10重量%以下が好ましい。さらに好ましくは、銅の含有量は5重量%以下である。 Examples of the material of the sintered metal substrate include iron, copper iron, copper, and stainless steel. Since the adhesion between the sintered metal substrate and the resin layer is excellent, it is preferable to employ a sintered metal whose main component is iron (which may include copper). Moreover, higher bearing strength can be obtained by employing a sintered metal mainly composed of iron. In addition, since copper is inferior to adhesiveness (adhesiveness) with resin rather than iron, when copper is included, the content of copper is preferably 10% by weight or less. More preferably, the copper content is 5% by weight or less.
 上述の摺動ナットで用いる場合と同様に、樹脂層を形成する前の焼結金属製基材には、油を含浸しない焼結金属を使用することが好ましい。また、焼結金属の成形または再圧(サイジング)の工程内にて油を使用する場合は、溶剤洗浄などで油を除去した非含油焼結金属にすることが好ましい。また、樹脂層を形成する前の焼結金属製基材には、スチーム処理を施すことが好ましい。 As in the case of using the above-mentioned sliding nut, it is preferable to use a sintered metal not impregnated with oil for the sintered metal base material before forming the resin layer. Moreover, when using oil in the process of shaping | molding or re-pressing (sizing) of a sintered metal, it is preferable to set it as the non-oil-containing sintered metal which removed oil by solvent washing etc. Moreover, it is preferable to perform a steam process to the sintered metal base material before forming a resin layer.
 焼結金属製基材の理論密度比は、上述の摺動ナットで用いる場合と同様に、0.7~0.9であることが好ましい。さらに好ましくは、材質の理論密度比0.72~0.84である。焼結金属製基材の理論密度比を0.7~0.9にすることで、焼結金属製基材が担う軸受強度を確保するための所要の緻密性を有するとともに、樹脂層を焼結金属製基材に強固に密着させるための表面の凹凸を確保することができる。また、潤滑油を焼結金属製基材に保持することも可能となる。さらに、焼結金属製基材の熱伝導性を確保できる。 The theoretical density ratio of the sintered metal substrate is preferably 0.7 to 0.9, as in the case of using the sliding nut described above. More preferably, the theoretical density ratio of the materials is 0.72 to 0.84. By setting the theoretical density ratio of the sintered metal base material to 0.7 to 0.9, the required density for securing the bearing strength of the sintered metal base material is obtained and the resin layer is sintered. Unevenness on the surface for firmly adhering to the base material made of sintered metal can be secured. It is also possible to hold the lubricating oil on the sintered metal substrate. Furthermore, the thermal conductivity of the sintered metal substrate can be ensured.
 樹脂層を形成する樹脂組成物は、ベース樹脂として上記PEK系樹脂を用い、これにガラス繊維、炭素繊維、アラミド繊維、ウィスカなどの繊維状充填材を分散状態に配合することができる。これにより、樹脂層の機械的強度を一層向上させることができる。特に、本発明の圧縮機用滑り軸受では、樹脂層が0.1~0.7mmの厚さという薄肉であるため、機械的強度の向上は望ましい。 The resin composition forming the resin layer uses the PEK-based resin as a base resin, and a fiber filler such as glass fiber, carbon fiber, aramid fiber, or whisker can be blended in a dispersed state. Thereby, the mechanical strength of the resin layer can be further improved. In particular, in the sliding bearing for a compressor of the present invention, since the resin layer is thin with a thickness of 0.1 to 0.7 mm, it is desirable to improve the mechanical strength.
 繊維状充填材の他に、PTFE樹脂、黒鉛、二硫化モリブデンなどの固体潤滑剤や、炭酸カルシウム、硫酸カルシウム、マイカ、タルクなどの無機充填材を配合することも可能である。上記固体潤滑剤を配合することで、無潤滑、潤滑油が希薄な条件であっても低摩擦となり、耐焼き付き性を向上させることができる。また、上記無機充填材を配合することで、耐クリープ性を向上させることができる。 In addition to the fibrous filler, a solid lubricant such as PTFE resin, graphite and molybdenum disulfide, and an inorganic filler such as calcium carbonate, calcium sulfate, mica and talc can be blended. By blending the above-mentioned solid lubricant, it is possible to improve the seizure resistance by reducing friction even under non-lubricated conditions and even when the lubricating oil is dilute. Moreover, creep resistance can be improved by mix | blending the said inorganic filler.
 繊維状充填材、無機系の固体潤滑剤(黒鉛、二硫化モリブデンなど)、および無機充填材は、PEK系樹脂の成形収縮率を小さくする効果がある。そのため、焼結金属製基材とのインサート成形時に、樹脂層の内部応力を抑える効果もある。 Fibrous fillers, inorganic solid lubricants (graphite, molybdenum disulfide, etc.) and inorganic fillers have the effect of reducing the molding shrinkage of the PEK resin. Therefore, there is also an effect of suppressing the internal stress of the resin layer at the time of insert molding with the sintered metal base material.
 繊維状充填材を配合した樹脂組成物からなる樹脂層を有する態様のラジアル滑り軸受を図5に示す。図5は、本発明の圧縮機用滑り軸受であるラジアル滑り軸受(樹脂層に繊維状充填材配合)の斜視図および断面図である。ラジアル滑り軸受1は、樹脂層3に繊維状充填材4を配合してある以外は、図4のものと同様の構成である。 FIG. 5 shows a radial sliding bearing having a resin layer made of a resin composition containing a fibrous filler. FIG. 5 is a perspective view and a cross-sectional view of a radial plain bearing (combination of fibrous filler in a resin layer) which is a slide bearing for a compressor according to the present invention. The radial plain bearing 1 has the same configuration as that of FIG. 4 except that the fibrous filler 4 is blended in the resin layer 3.
 樹脂層3を射出成形で形成するにあたって、樹脂組成物の溶融流動方向を調整することにより、繊維状充填材4(の長さ方向)を該滑り軸受1の摺動方向(図中矢印)に対して45度以上のできるだけ直角に近い交差角度で配向させることが好ましい。樹脂層の機械的強度を向上させるためには繊維状充填材を配合することが好ましいが、繊維状充填材の繊維の端部はエッジ状になっているため、繊維の端部によって相手材である駆動軸11(図3参照)を物理的に摩耗損傷させ易く、摩擦係数も安定し難くなる。繊維状充填材(の長さ方向)を該滑り軸受の摺動方向に対して45~90度に交差するように配向させることにより、繊維の両端のエッジが摺動方向に対して45~90度に向く。これにより、繊維の両端のエッジによる駆動軸の摩耗損傷の軽減、摩擦係数の安定化を図れる。なお、繊維状充填材の配向は、90度により近い方が繊維のエッジによる摩耗損傷が少なく、摩擦係数も安定するので望ましい。80~90度であれば特に好ましい。 In forming the resin layer 3 by injection molding, by adjusting the melt flow direction of the resin composition, the fibrous filler 4 (in its length direction) is moved in the sliding direction of the slide bearing 1 (arrow in the figure). On the other hand, it is preferable to orient at an intersection angle as close to a right angle as possible at 45 degrees or more. In order to improve the mechanical strength of the resin layer, it is preferable to add a fibrous filler. However, since the end of the fiber of the fibrous filler is an edge, the end of the fiber is A certain drive shaft 11 (see FIG. 3) is easily physically damaged by wear, and the friction coefficient is difficult to stabilize. By orienting the fibrous filler (in the length direction) so as to intersect at 45 to 90 degrees with respect to the sliding direction of the sliding bearing, the edges at both ends of the fiber are 45 to 90 with respect to the sliding direction. Suitable for degrees. As a result, it is possible to reduce wear damage on the drive shaft due to the edges at both ends of the fiber and to stabilize the friction coefficient. It should be noted that the orientation of the fibrous filler is preferably closer to 90 degrees because there is less abrasion damage due to the fiber edge and the friction coefficient is stabilized. 80 to 90 degrees is particularly preferable.
 繊維状充填材の平均繊維長は、0.02~0.2mmが好ましい。0.02mm未満では充分な補強効果が得られず、耐クリープ性、耐摩耗性が満足しないおそれがある。0.2mmをこえる場合は樹脂層の層厚に対する繊維長の比率が大きくなるため、薄肉成形性に劣る。特に、樹脂厚み0.2~0.7mm程度にインサート成形する場合は、繊維長が0.2mmをこえると薄肉成形性を阻害する。より薄肉成形の安定性を高めるには、平均繊維長0.02~0.1mmが望ましい。 The average fiber length of the fibrous filler is preferably 0.02 to 0.2 mm. If the thickness is less than 0.02 mm, a sufficient reinforcing effect cannot be obtained, and creep resistance and wear resistance may not be satisfied. When the thickness exceeds 0.2 mm, the ratio of the fiber length to the layer thickness of the resin layer becomes large, so that the thin formability is inferior. In particular, when insert molding is performed with a resin thickness of about 0.2 to 0.7 mm, if the fiber length exceeds 0.2 mm, thin-wall moldability is hindered. An average fiber length of 0.02 to 0.1 mm is desirable for further improving the stability of thin-wall molding.
 繊維状充填材の中でも、炭素繊維を用いることが好ましい。炭素繊維を用いることで、樹脂層の補強効果と耐摩耗性、低摩擦性が特に優れるようになる。また、炭素繊維は、樹脂層を成形する際に樹脂の溶融流動方向への配向性が強い。特に、直径が細く、比較的短い炭素繊維を選択し、その場合に、炭素繊維の両端のエッジが圧縮機用滑り軸受の摺動方向に沿っており、例えば配向方向が0~45度未満であると、相手材である駆動軸を損傷する場合がある。そのため、細く、短い炭素繊維を採用した場合には、樹脂を射出成形する際に、溶融樹脂の流動方向を圧縮機用滑り軸受の摺動方向と直角または直角に近い角度とし、繊維の長さ方向を圧縮機用滑り軸受の摺動方向に対する45~90度になるように配向させることが耐久性および軸受トルクを低く安定させるために極めて有利である。 Among the fibrous fillers, it is preferable to use carbon fibers. By using carbon fibers, the reinforcing effect, abrasion resistance, and low friction properties of the resin layer are particularly excellent. Carbon fiber has a strong orientation in the melt flow direction of the resin when the resin layer is molded. In particular, a carbon fiber having a small diameter and a relatively short length is selected. In this case, both edges of the carbon fiber are along the sliding direction of the sliding bearing for the compressor. For example, the orientation direction is 0 to less than 45 degrees. If it exists, the drive shaft which is a counterpart material may be damaged. Therefore, when thin and short carbon fibers are used, when the resin is injection-molded, the flow direction of the molten resin is set to be perpendicular or close to the sliding direction of the sliding bearing for the compressor, and the length of the fiber Orienting the direction to be 45 to 90 degrees with respect to the sliding direction of the sliding bearing for the compressor is extremely advantageous in order to stabilize the durability and the bearing torque low.
 この圧縮機用滑り軸受で使用する炭素繊維としては、原材料から分類されるピッチ系またはPAN系のいずれのものであってもよいが、高弾性率を有するPAN系炭素繊維の方が好ましい。その焼成温度は特に限定するものではないが、2000℃またはそれ以上の高温で焼成されて黒鉛(グラファイト)化されたものよりも、1000~1500℃程度で焼成された炭化品のものが、高PV下でも駆動軸を摩耗損傷しにくいので好ましい。炭素繊維の中でもPAN系炭素繊維を採用することで、樹脂層の弾性率が高くなり、樹脂層の変形、摩耗が小さくなる。さらに、摩擦面の真実接触面積が小さくなり、摩擦発熱も軽減する。 The carbon fiber used in the sliding bearing for the compressor may be either a pitch type or a PAN type classified from raw materials, but a PAN type carbon fiber having a high elastic modulus is preferable. The calcining temperature is not particularly limited, but a carbonized product calcined at about 1000 to 1500 ° C. is higher than that calcined at a high temperature of 2000 ° C. or higher to be converted into graphite. Even under PV, the drive shaft is less susceptible to wear damage, which is preferable. By adopting PAN-based carbon fiber among the carbon fibers, the elastic modulus of the resin layer is increased, and deformation and wear of the resin layer are reduced. Furthermore, the true contact area of the friction surface is reduced, and frictional heat generation is also reduced.
 炭素繊維の平均繊維径は20μm以下、好ましくは5~15μmである。この範囲をこえる太い炭素繊維では、極圧が発生するため、耐荷重性の向上効果が乏しく、駆動軸がアルミニウム合金、焼入れなしの鋼材の場合、該駆動軸の摩耗損傷が大きくなるため好ましくない。また、炭素繊維は、チョップドファイバー、ミルドファイバーのいずれであってもよいが、安定した薄肉成形性を得るためには、繊維長が1mm未満のミルドファイバーの方が好ましい。 The average fiber diameter of the carbon fiber is 20 μm or less, preferably 5 to 15 μm. Thick carbon fiber exceeding this range generates extreme pressure, so the effect of improving load resistance is poor, and when the drive shaft is an aluminum alloy or non-quenched steel material, wear damage of the drive shaft increases, which is not preferable. . The carbon fiber may be a chopped fiber or a milled fiber, but a milled fiber having a fiber length of less than 1 mm is preferable in order to obtain stable thin-wall formability.
 この圧縮機用滑り軸受で使用できる炭素繊維の市販品としては、上述の摺動ナットで用いるものと同じものが挙げられる。 As a commercial product of carbon fiber that can be used in the sliding bearing for the compressor, the same one as that used in the above-described sliding nut can be cited.
 樹脂層を形成する樹脂組成物は、ベース樹脂として上記PEK系樹脂を用い、これに上記炭素繊維と、固体潤滑剤であるPTFE樹脂とを必須成分として含むことが好ましい。 The resin composition forming the resin layer preferably uses the PEK-based resin as a base resin, and contains the carbon fiber and a PTFE resin that is a solid lubricant as essential components.
 この圧縮機用滑り軸受で使用できるPTFE樹脂およびその市販品としては、上述の摺動ナットで用いるものと同じものが挙げられる。 As the PTFE resin that can be used in the sliding bearing for the compressor and its commercial product, the same ones as those used in the above-described sliding nut can be cited.
 なお、この発明の効果を阻害しない程度に、樹脂組成物に対して周知の樹脂用添加剤を配合してもよい。この添加剤としては、例えば、窒化ホウ素などの摩擦特性向上剤、炭素粉末、酸化鉄、酸化チタンなどの着色剤、黒鉛、金属酸化物粉末などの熱伝導性向上剤が挙げられる。 In addition, you may mix | blend a well-known resin additive with respect to a resin composition to such an extent that the effect of this invention is not inhibited. Examples of the additive include friction property improvers such as boron nitride, colorants such as carbon powder, iron oxide, and titanium oxide, and thermal conductivity improvers such as graphite and metal oxide powder.
 樹脂層を形成する樹脂組成物は、PEK系樹脂をベース樹脂とし、炭素繊維を5~30体積%、PTFE樹脂を1~30体積%を必須成分として含むことが好ましい。この必須成分と他の添加剤を除く残部がPEK系樹脂である。この配合割合とすることで、高PV条件においても、樹脂層の変形および摩耗、相手材である駆動軸表面への攻撃性が小さく、油などに対する耐性も高くなる。また、炭素繊維は、5~20体積%がより好ましく、PTFE樹脂は、2~25体積%がより好ましい。 The resin composition forming the resin layer preferably contains PEK-based resin as a base resin, 5 to 30% by volume of carbon fiber, and 1 to 30% by volume of PTFE resin as essential components. The balance excluding this essential component and other additives is PEK-based resin. By using this blending ratio, even under high PV conditions, the deformation and wear of the resin layer, the aggressiveness to the surface of the drive shaft which is the counterpart material are small, and the resistance to oil and the like is also high. Further, the carbon fiber is more preferably 5 to 20% by volume, and the PTFE resin is more preferably 2 to 25% by volume.
 炭素繊維の配合割合が30体積%をこえると、溶融流動性が著しく低下し、薄肉成形が困難になるとともに、相手材である駆動軸がアルミニウム合金、焼入れなしの鋼材の場合、摩耗損傷するおそれがある。また、炭素繊維の配合割合が5体積%未満では、樹脂層を補強する効果が乏しく、充分な耐クリープ性、耐摩耗性が得られない場合がある。 If the blending ratio of carbon fiber exceeds 30% by volume, the melt fluidity will be significantly reduced, making it difficult to form a thin wall, and if the drive shaft that is the counterpart material is an aluminum alloy or non-quenched steel, there is a risk of wear damage. There is. Moreover, when the blending ratio of the carbon fiber is less than 5% by volume, the effect of reinforcing the resin layer is poor, and sufficient creep resistance and wear resistance may not be obtained.
 PTFE樹脂の配合割合が30体積%をこえると、耐摩耗性、耐クリープ性が所要の程度より低下するおそれがある。また、PTFE樹脂の配合割合が1体積%未満では組成物に所要の潤滑性の付与効果に乏しく、充分な摺動特性が得られない場合がある。 When the blending ratio of PTFE resin exceeds 30% by volume, the wear resistance and creep resistance may be lowered from the required levels. In addition, when the blending ratio of the PTFE resin is less than 1% by volume, the effect of imparting the required lubricity to the composition is poor, and sufficient sliding characteristics may not be obtained.
 以上の諸原材料を混合し、混練する手段は、特に限定するものではなく、粉末原料のみをヘンシェルミキサー、ボールミキサー、リボンブレンダー、レディゲミキサー、ウルトラヘンシェルミキサーなどにて乾式混合し、さらに二軸押出し機などの溶融押出し機にて溶融混練し、成形用ペレット(顆粒)を得ることができる。また、充填材の投入は、二軸押出し機などで溶融混練する際にサイドフィードを採用してもよい。この成形用ペレットを用い、焼結金属製基材に対して樹脂層をインサート成形により射出成形する。射出成形を採用することで、精密成形性および製造効率などに優れる。また、物性改善のためにアニール処理等の処理を採用してもよい。 The means for mixing and kneading the above raw materials is not particularly limited, and only the powder raw material is dry-mixed with a Henschel mixer, ball mixer, ribbon blender, ladyge mixer, ultra Henschel mixer, etc. Melting and kneading can be performed with a melt extruder such as an extruder to obtain molding pellets (granules). In addition, a side feed may be used for charging the filler when melt kneading with a twin screw extruder or the like. Using this molding pellet, a resin layer is injection-molded by insert molding on a sintered metal substrate. By adopting injection molding, it is excellent in precision moldability and manufacturing efficiency. Moreover, you may employ | adopt treatments, such as an annealing process, for physical property improvement.
 樹脂層を形成する樹脂組成物は、樹脂温度380℃、せん断速度1000s-1における溶融粘度が50~200Pa・sであることが好ましい。溶融粘度がこの範囲であると、精密な成形と繊維状充填材を所定角度に配向をさせることが可能となり、焼結金属製基材の表面に0.1~0.7mmの薄肉インサート成形が円滑に行なえる。溶融粘度が、上記所定範囲未満の粘度または上記所定範囲をこえる粘度であれば、精密な成形性を確実に得ることや、繊維状充填材を所定角度に配向させることが容易でなくなる。薄肉インサート成形を可能とし、インサート成形後の後加工を不要とすることで、製造が容易となり、製造コストの低減が図れる。 The resin composition forming the resin layer preferably has a melt viscosity of 50 to 200 Pa · s at a resin temperature of 380 ° C. and a shear rate of 1000 s −1 . When the melt viscosity is within this range, it becomes possible to precisely form and align the fibrous filler at a predetermined angle, and a thin insert molding of 0.1 to 0.7 mm is formed on the surface of the sintered metal substrate. It can be done smoothly. If the melt viscosity is less than the predetermined range or exceeds the predetermined range, it is not easy to reliably obtain a precise moldability and to orient the fibrous filler at a predetermined angle. By making thin insert molding possible and making post-processing after insert molding unnecessary, manufacturing becomes easy and manufacturing costs can be reduced.
 樹脂温度380℃、せん断速度1000s-1における溶融粘度を50~200Pa・sにするためには、該条件における溶融粘度が130Pa・s以下のPEK系樹脂を採用することが特に好ましい。このようなPEK系樹脂としては、ビクトレックス社製:PEEK(90P、90G)などが例示できる。 In order to achieve a melt viscosity of 50 to 200 Pa · s at a resin temperature of 380 ° C. and a shear rate of 1000 s −1, it is particularly preferable to employ a PEK resin having a melt viscosity of 130 Pa · s or less under these conditions. An example of such a PEK-based resin is manufactured by Victrex: PEEK (90P, 90G).
 使用中の摩擦力に対して、充分な密着強さを得るためには、焼結金属製基材と樹脂層とのせん断密着強さは、2MPa以上(面圧10MPa、摩擦係数0.1における安全率が2倍以上)であることが好ましい。更に安全率を高めるためには、3MPa以上が好ましい。また、焼結金属製基材と樹脂層のせん断密着強さを更に高めるために、樹脂層を形成する焼結金属面に、凹凸、溝などの物理的な抜け止め、周り止めを施してもよい。 In order to obtain a sufficient adhesion strength against the friction force in use, the shear adhesion strength between the sintered metal substrate and the resin layer is 2 MPa or more (at a surface pressure of 10 MPa and a friction coefficient of 0.1). The safety factor is preferably 2 times or more. Furthermore, in order to raise a safety factor, 3 Mpa or more is preferable. In order to further increase the shear adhesion strength between the sintered metal substrate and the resin layer, the sintered metal surface on which the resin layer is formed may be provided with physical stoppers such as irregularities and grooves, and rotation prevention. Good.
 図3に示す第1の実施形態では、駆動軸11は、上記した耐熱性、低摩擦性、耐摩耗性、耐荷重性、耐クリープ性などに優れたラジアル軸受1aおよび1bの樹脂層の摺動面(内周面)に摺接して支持されている。このため、摺接面での摩耗や、樹脂層の変形を防止でき、低回転トルクを安定的に得ることができる。 In the first embodiment shown in FIG. 3, the drive shaft 11 is formed by sliding the resin layers of the radial bearings 1a and 1b having excellent heat resistance, low friction, wear resistance, load resistance, creep resistance, and the like. It is supported in sliding contact with the moving surface (inner peripheral surface). For this reason, wear on the sliding contact surface and deformation of the resin layer can be prevented, and low rotational torque can be stably obtained.
 また、貫通孔7aのラジアル滑り軸受1aよりも前方(図中左側)の部分には、リップシール7bが設けられており、ハウジング内の冷媒ガスの貫通孔7aを介した外部への漏洩を防止している。ここで、ラジアル滑り軸受1aは、寸法精度に優れ、駆動軸11の周面とのクリアランスが回転支持のために必要な最小限のものとなるようにこれに沿った形状に設定され、かつ、ラジアル滑り軸受1aの外周面と貫通孔7aの内周面とは可能な限り隙間なく密着した状態となるように設定されている。このため、貫通孔7a内におけるラジアル滑り軸受1aとリップシール7bとの間の空間の圧力を、クランク室10の圧力よりも低く維持することが容易になる。この構成により、ハウジング内の冷媒ガスの貫通孔7aを介した外部への漏洩を防止するためのリップシール7bの負担が軽くなる。 In addition, a lip seal 7b is provided in a portion of the through hole 7a in front of the radial sliding bearing 1a (left side in the figure) to prevent the refrigerant gas in the housing from leaking outside through the through hole 7a. is doing. Here, the radial plain bearing 1a is excellent in dimensional accuracy, and is set in a shape along this so that the clearance with the peripheral surface of the drive shaft 11 is the minimum necessary for rotation support, and The outer peripheral surface of the radial sliding bearing 1a and the inner peripheral surface of the through hole 7a are set so as to be in close contact with each other as much as possible. For this reason, it becomes easy to maintain the pressure of the space between the radial sliding bearing 1a and the lip seal 7b in the through hole 7a lower than the pressure of the crank chamber 10. With this configuration, the burden on the lip seal 7b for preventing leakage of refrigerant gas in the housing to the outside through the through hole 7a is reduced.
 さらに、この第1の実施形態では、ラジアル滑り軸受1aおよび1bは、ハウジング内の冷媒経路には含まれないクランク室10に配設されている。これらラジアル滑り軸受1aおよび1bによれば、比較的冷媒ガスの循環量が少なく該冷媒ガスに混在するミスト状の潤滑オイルによる潤滑効果の低いクランク室10においても、樹脂層の摺動面によってラジアル滑り軸受1aおよび1bと駆動軸11との摺接部分の摩耗を抑止できる。この結果、圧縮機の寿命を延長できる。よって、この実施形態の圧縮機にラジアル滑り軸受1aおよび1bを採用することは特に有用である。 Furthermore, in the first embodiment, the radial plain bearings 1a and 1b are disposed in the crank chamber 10 that is not included in the refrigerant path in the housing. According to these radial sliding bearings 1a and 1b, even in the crank chamber 10 where the circulation amount of the refrigerant gas is relatively small and the lubricating effect by the mist-like lubricating oil mixed in the refrigerant gas is low, the radial sliding is caused by the sliding surface of the resin layer. Wear of the sliding contact portion between the slide bearings 1a and 1b and the drive shaft 11 can be suppressed. As a result, the life of the compressor can be extended. Therefore, it is particularly useful to employ the radial plain bearings 1a and 1b in the compressor of this embodiment.
 本発明の圧縮機用滑り軸受を用いた圧縮機の第2の実施形態を図6に基づいて説明する。この第2の実施形態は、図3に示す第1の実施形態における圧縮機の構成を、スラスト転がり軸受18aに代えて、本発明の圧縮機用滑り軸受であるスラスト滑り軸受21を用いた構成に変更したものである。その他の構成は、第1の実施形態と同一である。 A second embodiment of a compressor using a sliding bearing for a compressor according to the present invention will be described with reference to FIG. In the second embodiment, the configuration of the compressor in the first embodiment shown in FIG. 3 is replaced with a thrust rolling bearing 18a, and a thrust sliding bearing 21 that is a sliding bearing for a compressor according to the present invention is used. It has been changed to. Other configurations are the same as those of the first embodiment.
 図6に示すように、フロントハウジング7とラグプレート12との間には、スラスト滑り軸受21が配設されている。スラスト滑り軸受21はラグプレート12に固着され、フロントハウジング7に固定された鉄製のリング状のプレート24と摺接している。スラスト滑り軸受とプレート24との摺接により、回転部材の前方(図中左側)へのスラスト移動が規制される。 As shown in FIG. 6, a thrust sliding bearing 21 is disposed between the front housing 7 and the lug plate 12. The thrust slide bearing 21 is fixed to the lug plate 12 and is in sliding contact with an iron ring-shaped plate 24 fixed to the front housing 7. By the sliding contact between the thrust sliding bearing and the plate 24, the thrust movement of the rotating member forward (left side in the figure) is restricted.
 図7に基づいてスラスト滑り軸受21を説明する。図7は、本発明の圧縮機用滑り軸受であるスラスト滑り軸受の斜視図および断面図である。スラスト滑り軸受21は、リング状の焼結金属製基材22と、該基材のプレート24(図6参照)との対向面となる面に設けられた樹脂層23とからなる複層の滑り軸受である。樹脂層23は、PEK系樹脂をベース樹脂とする樹脂組成物からなり、焼結金属製基材22の該表面に0.1~0.7mmの厚さで射出成形により重ねて一体に設けられることで形成されている。樹脂層23の表面(基材反対側)が、プレート24(図6参照)と摺接する摺動面となる。焼結金属製基材、樹脂組成物、樹脂層の形成方法などは、第1の実施形態の場合と同様である。 The thrust slide bearing 21 will be described with reference to FIG. FIG. 7 is a perspective view and a sectional view of a thrust sliding bearing which is a sliding bearing for a compressor according to the present invention. The thrust sliding bearing 21 is a multi-layered sliding composed of a ring-shaped sintered metal base material 22 and a resin layer 23 provided on a surface facing the plate 24 (see FIG. 6) of the base material. It is a bearing. The resin layer 23 is made of a resin composition having a PEK-based resin as a base resin, and is provided integrally with the surface of the sintered metal base 22 by injection molding so as to have a thickness of 0.1 to 0.7 mm. It is formed by that. The surface of the resin layer 23 (the side opposite to the base material) is a sliding surface that is in sliding contact with the plate 24 (see FIG. 6). The sintered metal substrate, the resin composition, the method for forming the resin layer, and the like are the same as in the case of the first embodiment.
 この第2の実施形態では、スラスト方向であって圧縮機構において発生する圧縮反力をラグプレート12を介して受ける側において回転部材を支持する軸受として、スラスト滑り軸受21を採用している。この形態では、転がり軸受を採用した場合に比較してコストダウンすることが可能になる。また、このスラスト滑り軸受は、第1の実施形態のラジアル滑り軸受と同様に、冷媒経路には含まれない潤滑効果の低いクランク室10に配設されながら、樹脂層の摺動面によってスラスト滑り軸受21とプレート24との摺接部分の摩耗を抑止できる。この結果、圧縮機の寿命を延長できる。よって、この実施形態の圧縮機にスラスト滑り軸受21を採用することは特に有用である。 In the second embodiment, the thrust sliding bearing 21 is employed as a bearing that supports the rotating member on the side that receives the compression reaction force generated in the compression mechanism through the lug plate 12 in the thrust direction. In this embodiment, the cost can be reduced as compared with the case where a rolling bearing is employed. Further, this thrust slide bearing is provided in the crank chamber 10 having a low lubrication effect that is not included in the refrigerant path, as in the case of the radial slide bearing of the first embodiment. Wear of the sliding contact portion between the bearing 21 and the plate 24 can be suppressed. As a result, the life of the compressor can be extended. Therefore, it is particularly useful to employ the thrust slide bearing 21 in the compressor of this embodiment.
 また、この実施形態において、さらにスラスト転がり軸受18bに代えて、本発明の圧縮機用滑り軸受であるスラスト滑り軸受を採用してもよい。 In this embodiment, a thrust sliding bearing which is a sliding bearing for a compressor according to the present invention may be employed in place of the thrust rolling bearing 18b.
 本発明の圧縮機用滑り軸受を用いた圧縮機の第3の実施形態として、図8に車両空調装置を構成する両頭型ピストン式圧縮機の例を説明する。この態様の圧縮機5’は、一対のシリンダブロック33、フロントハウジング34、およびリヤハウジング35によりハウジングが構成されている。また、駆動軸32と、クランク室37内において該駆動軸32に固定された斜板36とにより、回転部材が構成されている。複数のシリンダボア33aは、駆動軸32と平行に延びるように、各シリンダブロック33の両端部間に同一円周上で所定間隔おきに形成されている。両頭型のピストン39は、各シリンダボア33a内に往復動可能に嵌挿支持され、それらの両端面と対応する両弁形成体40との間において圧縮室が形成されている。また、シュー38および斜板36によってクランク機構が構成され、該クランク機構、シリンダブロック33(シリンダボア33a)、ピストン39、および駆動軸32によって圧縮機構が構成されている。 As a third embodiment of a compressor using a sliding bearing for a compressor of the present invention, an example of a double-headed piston compressor constituting a vehicle air conditioner will be described with reference to FIG. In the compressor 5 ′ of this aspect, a housing is constituted by a pair of cylinder blocks 33, a front housing 34, and a rear housing 35. Further, the drive shaft 32 and the swash plate 36 fixed to the drive shaft 32 in the crank chamber 37 constitute a rotating member. The plurality of cylinder bores 33a are formed at predetermined intervals on the same circumference between both ends of each cylinder block 33 so as to extend in parallel with the drive shaft 32. The double-headed piston 39 is inserted into and supported by each cylinder bore 33a so as to reciprocate, and a compression chamber is formed between the both end faces and the corresponding valve forming bodies 40. The shoe 38 and the swash plate 36 constitute a crank mechanism, and the crank mechanism, the cylinder block 33 (cylinder bore 33a), the piston 39, and the drive shaft 32 constitute a compression mechanism.
 駆動軸32は、シリンダブロック33およびフロントハウジング34の中央に、一対のラジアル滑り軸受31aおよび31bを介して回転可能に支持されており、動力伝達機構を介して車両エンジン等の外部駆動源に作動連結されている。ラジアル滑り軸受31aおよび31bは、シリンダブロック33の内部に形成されたクランク室37に連通するようにシリンダブロック33の中央に形成された収容孔33bに挿入されている。このラジアル滑り軸受31aおよび31bが本発明の圧縮機用滑り軸受である。具体的な構成は、径方向および軸方向の寸法等を除いて第1の実施形態の場合と同様であり、同様の製法によって製造される。 The drive shaft 32 is rotatably supported at the center of the cylinder block 33 and the front housing 34 via a pair of radial slide bearings 31a and 31b, and operates on an external drive source such as a vehicle engine via a power transmission mechanism. It is connected. The radial slide bearings 31 a and 31 b are inserted into a receiving hole 33 b formed in the center of the cylinder block 33 so as to communicate with a crank chamber 37 formed inside the cylinder block 33. The radial sliding bearings 31a and 31b are the sliding bearings for the compressor of the present invention. The specific configuration is the same as that of the first embodiment except for the dimensions in the radial direction and the axial direction, and is manufactured by the same manufacturing method.
 また、一対のスラスト転がり軸受44は、斜板36の支持円筒部の前後方向の両端面とこれらに対向する各シリンダブロック33の中央部との間に設けられ、該スラスト転がり軸受44を介して斜板36が両シリンダブロック33間に挟まれた状態で保持されている。 Further, the pair of thrust rolling bearings 44 is provided between the front and rear end surfaces of the support cylindrical portion of the swash plate 36 and the central portion of each cylinder block 33 facing each other, and through the thrust rolling bearing 44. A swash plate 36 is held in a state of being sandwiched between the cylinder blocks 33.
 駆動軸の挿通孔34aと、シリンダブロック33に形成された収容孔33bとは、弁形成体40(図中左側)に形成された貫通孔を介して連通した状態となっている。挿通孔34aには、リップシール34bが設けられており、ハウジング内の冷媒ガスの挿通孔34aを介した外部への漏洩を防止している。ここで、ラジアル滑り軸受31aは、寸法精度に優れ、駆動軸32の周面とのクリアランスが回転支持のために必要な最小限のものとなるようにこれに沿った形状に設定され、かつ、ラジアル滑り軸受31aの外周面と収容孔33bの内周面とは可能な限り隙間なく密着した状態となるように設定されている。このため、挿通孔34a内におけるリップシール34bとラジアル滑り軸受31aとの間の空間の圧力を、クランク室37の圧力よりも低く維持することが容易になる。この構成により、ハウジング内の冷媒ガスの挿通孔34aを介した外部への漏洩を防止するためのリップシール34bの負担が軽くなる。 The insertion hole 34a of the drive shaft and the accommodation hole 33b formed in the cylinder block 33 are in communication with each other via a through-hole formed in the valve forming body 40 (left side in the figure). A lip seal 34b is provided in the insertion hole 34a to prevent leakage of refrigerant gas in the housing to the outside through the insertion hole 34a. Here, the radial plain bearing 31a is set to a shape along this so that the dimensional accuracy is excellent, and the clearance with the peripheral surface of the drive shaft 32 becomes the minimum necessary for rotation support, and The outer peripheral surface of the radial sliding bearing 31a and the inner peripheral surface of the accommodation hole 33b are set so as to be in close contact with each other as much as possible. For this reason, it is easy to maintain the pressure in the space between the lip seal 34b and the radial sliding bearing 31a in the insertion hole 34a lower than the pressure in the crank chamber 37. With this configuration, the burden on the lip seal 34b for preventing leakage of refrigerant gas in the housing through the insertion hole 34a to the outside is reduced.
 この実施形態では、クランク室37、ボルト挿通孔43、吸入室41、圧縮室、および吐出室42などによって、ハウジング内の冷媒経路が構成される。このハウジング内の冷媒経路内の各部位は、該経路内を流通する冷媒ガスに混在するミスト状の潤滑オイルなどにより潤滑される。このため、冷媒経路を構成するクランク室37(詳細には収容孔33b)に配設されたラジアル滑り軸受31aおよび31bと駆動軸32との摺接部分には、該滑り軸受の樹脂層の固体潤滑作用に加えて、上記潤滑オイルによる潤滑作用が大きく働く。これにより、駆動軸32と滑り軸受31aおよび31bとの摺接部分は、良好に潤滑され、圧縮機の寿命を延長できる。 In this embodiment, the crank chamber 37, the bolt insertion hole 43, the suction chamber 41, the compression chamber, the discharge chamber 42, and the like constitute a refrigerant path in the housing. Each part in the refrigerant path in the housing is lubricated by mist-like lubricating oil or the like mixed in the refrigerant gas flowing through the path. For this reason, the sliding contact portion between the radial slide bearings 31a and 31b and the drive shaft 32 disposed in the crank chamber 37 (specifically, the accommodation hole 33b) constituting the refrigerant path has a solid resin layer of the slide bearing. In addition to the lubricating action, the lubricating action by the lubricating oil works greatly. Thereby, the sliding contact portion between the drive shaft 32 and the sliding bearings 31a and 31b is well lubricated, and the life of the compressor can be extended.
 また、この実施形態において、さらにスラスト転がり軸受44に代えて、本発明の圧縮機用滑り軸受であるスラスト滑り軸受を採用してもよい。 In this embodiment, a thrust sliding bearing which is a sliding bearing for a compressor according to the present invention may be employed in place of the thrust rolling bearing 44.
 本発明の圧縮機用滑り軸受を用いた圧縮機の第4の実施形態として、図9に車両空調装置を構成するスクロール式圧縮機の例を説明する。この態様の圧縮機5’’は、固定スクロール51と、センターハウジング52と、モータハウジング53によってハウジングが構成されている。センターハウジング52およびモータハウジング53には、回転軸である鉄製のシャフト54がラジアル滑り軸受55および56を介して回転可能に支持されている。また、シャフト54には偏心軸54aが一体に形成され、これにバランスウエイト57が支持されている。シャフト54およびバランスウエイト57によって回転部材が構成されている。 Referring to FIG. 9, an example of a scroll type compressor constituting a vehicle air conditioner will be described as a fourth embodiment of a compressor using the compressor sliding bearing of the present invention. In the compressor 5 ″ in this aspect, the fixed scroll 51, the center housing 52, and the motor housing 53 constitute a housing. The center housing 52 and the motor housing 53 support a shaft 54 made of iron as a rotating shaft so as to be rotatable via radial sliding bearings 55 and 56. Further, an eccentric shaft 54a is formed integrally with the shaft 54, and a balance weight 57 is supported on the shaft 54a. The shaft 54 and the balance weight 57 constitute a rotating member.
 偏心軸54aは、可動スクロール58が固定スクロール51と対向するように、ラジアル滑り軸受59およびブッシュ60を介して相対回転可能に支持されている。ラジアル滑り軸受59は、可動基板58aに突設されたボス部58c内に嵌合された略円筒状のブッシュ60内に嵌合されて収容されている。ラジアル滑り軸受59の内周面が、偏心軸54aの外周面との摺接面となる。可動スクロール58の可動基板58aには可動渦巻壁58bが形成され、固定スクロール51の固定基板51aには可動渦巻壁58bと噛合う固定渦巻壁51bが形成されている。固定基板51a、固定渦巻壁51b、可動基板58a、および可動渦巻壁58bにより区画される領域が、可動スクロール58の回転に応じて容積減少する密閉室61となる。固定スクロール51、可動スクロール58、センターハウジング52、ブッシュ60、ラジアル滑り軸受55、59、シャフト54、バランスウエイト57などによって、スクロール式圧縮機構が構成されている。 The eccentric shaft 54a is supported through a radial sliding bearing 59 and a bush 60 so as to be relatively rotatable so that the movable scroll 58 faces the fixed scroll 51. The radial plain bearing 59 is fitted and accommodated in a substantially cylindrical bush 60 fitted in a boss portion 58c projecting from the movable substrate 58a. The inner peripheral surface of the radial sliding bearing 59 becomes a sliding contact surface with the outer peripheral surface of the eccentric shaft 54a. A movable spiral wall 58b is formed on the movable substrate 58a of the movable scroll 58, and a fixed spiral wall 51b that meshes with the movable spiral wall 58b is formed on the fixed substrate 51a of the fixed scroll 51. A region defined by the fixed substrate 51 a, the fixed spiral wall 51 b, the movable substrate 58 a, and the movable spiral wall 58 b becomes the sealed chamber 61 whose volume decreases as the movable scroll 58 rotates. The fixed scroll 51, the movable scroll 58, the center housing 52, the bush 60, the radial sliding bearings 55 and 59, the shaft 54, the balance weight 57, and the like constitute a scroll type compression mechanism.
 モータハウジング53の内周面には固定子であるステータ62が固定されており、シャフト54の外周面にはステータ62と相対する位置に回転子であるロータ63が固定されている。ステータ62およびロータ63は電動式モータを構成し、ステータ62への通電によりロータ63およびシャフト54が一体回転する。また、センターハウジング52には、隔壁部52aが設けられており、ラジアル滑り軸受55は、該隔壁部52aの中央に形成された貫通孔52bに嵌入されている。ラジアル滑り軸受55の内周面が、シャフト54の外周面との摺接面となる。 A stator 62 as a stator is fixed to the inner peripheral surface of the motor housing 53, and a rotor 63 as a rotor is fixed to the outer peripheral surface of the shaft 54 at a position facing the stator 62. The stator 62 and the rotor 63 constitute an electric motor, and the rotor 63 and the shaft 54 are integrally rotated by energizing the stator 62. The center housing 52 is provided with a partition wall portion 52a, and the radial sliding bearing 55 is fitted into a through hole 52b formed at the center of the partition wall portion 52a. The inner peripheral surface of the radial sliding bearing 55 is a sliding contact surface with the outer peripheral surface of the shaft 54.
 シャフト54には、その内部に吐出室64とモータ室65とを連通する流体通路54bと、モータ室65とモータハウジング53の外部とを連通する流体通路54cとが形成されている。可動スクロール58の公転に伴ない、固定スクロール51の入口から密閉室61に流入した冷媒ガスは、吐出ポート58d、吐出室64、流体通路54b、モータ室65、流体通路54cを通って、モータハウジング53の壁部に設けられた出口53aを介して外部に流出する。このため、吐出室64、流体通路54b、モータ室65、および流体通路54cは、吐出圧にほぼ等しい圧力値を有した高圧領域となる。一方、リング状のシール部材66を挟んで外側は吸入圧に近い圧力値を有した低圧室67となる。 The shaft 54 is formed therein with a fluid passage 54 b that communicates the discharge chamber 64 and the motor chamber 65, and a fluid passage 54 c that communicates the motor chamber 65 and the outside of the motor housing 53. As the movable scroll 58 revolves, the refrigerant gas that has flowed into the sealed chamber 61 from the inlet of the fixed scroll 51 passes through the discharge port 58d, the discharge chamber 64, the fluid passage 54b, the motor chamber 65, and the fluid passage 54c, and passes through the motor housing. It flows out to the outside through an outlet 53 a provided in the wall portion of 53. For this reason, the discharge chamber 64, the fluid passage 54b, the motor chamber 65, and the fluid passage 54c become a high pressure region having a pressure value substantially equal to the discharge pressure. On the other hand, the outer side of the ring-shaped seal member 66 is a low pressure chamber 67 having a pressure value close to the suction pressure.
 ラジアル滑り軸受55、56、および59が、本発明の圧縮機用滑り軸受である。具体的な構成は、径方向および軸方向の寸法等を除いて第1の実施形態の場合と同様であり、同様の製法によって製造される。 Radial plain bearings 55, 56, and 59 are the plain bearings for a compressor of the present invention. The specific configuration is the same as that of the first embodiment except for the dimensions in the radial direction and the axial direction, and is manufactured by the same manufacturing method.
 ラジアル滑り軸受55および59は、それぞれ貫通孔52b、ブッシュ60に挿入されるとともにシャフト54(軸受59は具体的には偏心軸54a)が挿入された状態では、シャフト54の周面とのクリアランスが回転支持のために必要な最小限のものとなるようにこれに沿った形状に設定されている。なお、ラジアル滑り軸受55の外周面と貫通孔52bの内周面とは、ラジアル滑り軸受59の外周面とブッシュ60の内周面とは、それぞれ、可能な限り隙間なく密着した状態となるように設定されている。 The radial sliding bearings 55 and 59 are inserted into the through hole 52b and the bush 60, respectively, and the clearance with the peripheral surface of the shaft 54 is maintained when the shaft 54 (the bearing 59 is specifically the eccentric shaft 54a) is inserted. The shape along this is set so as to be the minimum necessary for the rotation support. The outer peripheral surface of the radial sliding bearing 55 and the inner peripheral surface of the through hole 52b are in close contact with the outer peripheral surface of the radial sliding bearing 59 and the inner peripheral surface of the bush 60 as much as possible. Is set to
 ボス部58cの外周側と隔壁部52aの内周側とで囲まれた空間68とモータ室65との、貫通孔52bとシャフト54との隙間を介した連通は、ラジアル滑り軸受55によってほぼ遮断されている。また、吐出室64と空間68との、ブッシュ60と偏心軸54aとの隙間を介した連通は、ラジアル滑り軸受59によってほぼ遮断されている。すなわち、ラジアル滑り軸受55および59は、ハウジングの内部空間を圧力的に隔絶するように設けられている。 The communication between the space 68 surrounded by the outer peripheral side of the boss portion 58c and the inner peripheral side of the partition wall portion 52a and the motor chamber 65 through the clearance between the through hole 52b and the shaft 54 is substantially blocked by the radial slide bearing 55. Has been. Further, the communication between the discharge chamber 64 and the space 68 through the gap between the bush 60 and the eccentric shaft 54 a is substantially blocked by a radial sliding bearing 59. That is, the radial plain bearings 55 and 59 are provided so as to pressure-isolate the internal space of the housing.
 空間68は、調整弁による調圧やラジアル滑り軸受55および59と、シャフト54との僅かな隙間を介した高圧領域(モータ室65や吐出室64)からの冷媒ガスの漏洩により、該高圧領域よりも低圧であるとともに低圧室67よりも高圧な中間圧状態に維持される。可動スクロール58の背面に高圧領域よりも圧力が低い領域(空間68)が設けられることにより、可動スクロール58の背面に加わる圧力によって可動スクロール58に生じる固定スクロール51側への荷重は軽減される。そのため、可動スクロール58のスムーズな公転が得られるとともに、可動スクロール58の機械的損失が低減される。 The space 68 is formed by adjusting the pressure of the regulating valve or leaking refrigerant gas from the high pressure region (the motor chamber 65 or the discharge chamber 64) through a slight gap between the radial slide bearings 55 and 59 and the shaft 54. The intermediate pressure is maintained at a lower pressure than that of the low pressure chamber 67. By providing a region (space 68) whose pressure is lower than that of the high pressure region on the back surface of the movable scroll 58, a load applied to the movable scroll 58 due to the pressure applied to the back surface of the movable scroll 58 is reduced. Therefore, smooth revolution of the movable scroll 58 is obtained, and mechanical loss of the movable scroll 58 is reduced.
 ラジアル滑り軸受55および59は、上述のとおり耐摩耗性などに優れるため、シャフト54との摺接部分の摩耗が低減でき、この摩耗により両者間の隙間が広がることによる圧力隔絶効果の低下を抑止できる。このように、ラジアル滑り軸受55および59は、シャフト54との間で良好なシール性を発揮でき、さらにその効果を高く維持することが容易である。このため、特段にシール部材を設けることなく、吐出室64と空間68とを、モータ室65と空間68とを効果的に圧力的に隔絶することが可能になる。 Since the radial slide bearings 55 and 59 are excellent in wear resistance as described above, the wear of the sliding contact portion with the shaft 54 can be reduced, and the reduction of the pressure isolation effect due to the widening of the gap between the two due to this wear is suppressed. it can. As described above, the radial plain bearings 55 and 59 can exhibit good sealing performance with the shaft 54, and it is easy to maintain the effect high. For this reason, the discharge chamber 64 and the space 68 can be effectively separated from the motor chamber 65 and the space 68 by pressure without providing a special seal member.
 以上、本発明の圧縮機用滑り軸受および圧縮機について、第1~第4の実施形態を説明したが、本発明の実施態様はこれに限定されるものではない。 As described above, the first to fourth embodiments of the sliding bearing for compressor and the compressor of the present invention have been described, but the embodiment of the present invention is not limited to this.
 これより、本発明の可変容量型アキシャルピストンポンプのクレイドルガイドおよび可変容量型アキシャルピストンポンプについて説明する。 Now, the cradle guide and the variable displacement axial piston pump of the variable displacement axial piston pump of the present invention will be described.
 本発明のクレイドルガイドを用いた可変容量型アキシャルピストンポンプの一実施例を図10に基づいて説明する。図10は、可変容量型アキシャルピストンポンプの縦断面図である。図10に示すように、可変容量型アキシャルピストンポンプのクレイドルガイド81は、ピストン82のストロークを調整するクレイドル83に摺接し、このクレイドル83が揺動可能であるように保持するものである。ここで、クレイドルガイド81は、焼結金属製部材81aの表面側、すなわちクレイドル83に対する摺動面に、PEK系樹脂をベース樹脂とする樹脂組成物からなる樹脂層81bを0.1~0.7mmの厚さで射出成形により重ねて一体に設けたものである。なお、樹脂層81bは、上記範囲の厚さの薄肉であるが、図10では説明のため、実際よりも厚く記載してある。 An embodiment of a variable displacement axial piston pump using the cradle guide of the present invention will be described with reference to FIG. FIG. 10 is a longitudinal sectional view of a variable displacement axial piston pump. As shown in FIG. 10, the cradle guide 81 of the variable displacement axial piston pump is in sliding contact with a cradle 83 that adjusts the stroke of the piston 82, and holds the cradle 83 so that it can swing. Here, the cradle guide 81 has a resin layer 81b made of a resin composition containing a PEK-based resin as a base resin on the surface side of the sintered metal member 81a, that is, the sliding surface with respect to the cradle 83. It is 7 mm thick and is provided integrally by injection molding. In addition, although the resin layer 81b is thin with the thickness of the said range, in FIG. 10, it has described thicker than actual for description.
 この実施形態の可変容量型アキシャルピストンポンプは、接合された一対のハウジング85、86の端壁間に回転軸87が回転可能に支持されている。回転軸87上には、シリンダブロック88が相対回転不能に支持されている。回転軸87と一体的に回転するシリンダブロック88内には複数のピストン82が回転軸87の軸方向へスライド変位可能に収容されている。シリンダブロック88内のピストン収容室88aは、回転軸87の回転に連動して弁板89に形成された円弧状の吸入ポート89aおよび吐出ポート89bと交互に接続することになる。これにより、作動油が吸入ポート89aから各ピストン収容室88a内へ吸入され、回転軸87と共に回転したシリンダブロック88におけるピストン収容室88a内の作動油が、吐出ポート89bへ吐出される。 In the variable displacement type axial piston pump of this embodiment, a rotary shaft 87 is rotatably supported between the end walls of a pair of joined housings 85 and 86. A cylinder block 88 is supported on the rotating shaft 87 so as not to be relatively rotatable. A plurality of pistons 82 are accommodated in a cylinder block 88 that rotates integrally with the rotating shaft 87 so as to be slidable in the axial direction of the rotating shaft 87. The piston accommodating chamber 88 a in the cylinder block 88 is alternately connected to the arc-shaped suction port 89 a and the discharge port 89 b formed in the valve plate 89 in conjunction with the rotation of the rotating shaft 87. As a result, the hydraulic oil is sucked into the piston accommodating chambers 88a from the suction ports 89a, and the hydraulic oil in the piston accommodating chambers 88a in the cylinder block 88 rotated together with the rotating shaft 87 is discharged to the discharge port 89b.
 押圧バネ90は、シリンダブロック88をクレイドル83側に付勢している。これにより、回転軸87の周りにおいて、リテーナ91に保持されたアルミニウム材からなるシュー92が、クレイドル83の平面部と密接する。シュー92に嵌められたピストン82は、回転軸87の回転に伴ってクレイドル83の傾角に応じたストロークで往復動される。なお、クレイドル83の傾角は、ハウジング85内の押圧バネ93の押圧力と、油圧制御装置94によって調整されるシリンダ95からの油圧によって常時適正な角度に制御されている。 The pressing spring 90 urges the cylinder block 88 toward the cradle 83 side. As a result, the shoe 92 made of an aluminum material held by the retainer 91 is in close contact with the flat portion of the cradle 83 around the rotation shaft 87. The piston 82 fitted to the shoe 92 is reciprocated at a stroke corresponding to the inclination angle of the cradle 83 as the rotating shaft 87 rotates. The tilt angle of the cradle 83 is always controlled to an appropriate angle by the pressing force of the pressing spring 93 in the housing 85 and the hydraulic pressure from the cylinder 95 adjusted by the hydraulic control device 94.
 図11にクレイドルガイド81の斜視図を示す。図10および図11に示すように、アルミニウム合金製のハウジング85内にはクレイドルガイド81が、2個一組で固定して設けられている。また、2つのクレイドルガイド81の間に回転軸87がクレイドル83の軸孔を貫通して配置されている。 FIG. 11 is a perspective view of the cradle guide 81. As shown in FIGS. 10 and 11, two cradle guides 81 are fixed and provided in a housing 85 made of aluminum alloy. A rotating shaft 87 is disposed between the two cradle guides 81 so as to pass through the shaft hole of the cradle 83.
 図11に示す態様では、クレイドルガイド81は、その本体が焼結金属製部材81aで構成されている。この本体において、クレイドル83の支持面が円弧面状に形成されており、該支持面に所定組成の樹脂層81bが射出成形により薄肉で一定肉厚で形成されている。この樹脂層81bが形成された円弧面が、クレイドル83に対する摺動面となる。クレイドルガイド本体を、焼結金属製部材にすることで、部品点数が少なく構造が簡易であり、製造コストが低くなる。 11, the cradle guide 81 has a main body composed of a sintered metal member 81a. In this main body, the support surface of the cradle 83 is formed in an arcuate shape, and a resin layer 81b having a predetermined composition is formed on the support surface with a thin wall and a constant thickness by injection molding. The arc surface on which the resin layer 81 b is formed becomes a sliding surface with respect to the cradle 83. By making the cradle guide body a sintered metal member, the number of parts is small, the structure is simple, and the manufacturing cost is low.
 図12および図13に基づいてクレイドルガイドの他の態様を説明する。図12は、クレイドルガイド81の他の態様の斜視図であり、図13は、図12のクレイドルガイドの分解斜視図である。図12に示すように、クレイドルガイド81は、溶製金属製の本体81cを備え、この本体81cに、樹脂層81bを形成した焼結金属製部材81aが設置されている。焼結金属製部材81aは、樹脂層81bが形成された円弧状(一部円筒形)の焼結ブッシュとされ、本体81cにおける円弧面状に形成されたクレイドル83の支持面にセットされている。焼結金属製部材81aの本体81c側の表面は、本体81cの支持面の円弧面形状に対応して同じ形状に形成されている。この焼結ブッシュの樹脂層81bが形成された円弧面が、クレイドル83に対する摺動面となる。また、図13に示すように、2個一組の焼結ブッシュ(81a+81b)が、本体81cのクレイドルガイドの支持面81d、81eからズレないように、対の凹部81fと凸部81gの嵌め合わせで固定されている。なお、焼結ブッシュを固定するための凹凸部は、その凹凸関係を図13に示すものと反対にしてもよく、また、形状も任意の形状にできる。あるいは、凹部81fにピンを挿入し、焼結ブッシュにピン穴を設けることで嵌め合わせることが製造コストを考慮すると最も望ましい。 Other aspects of the cradle guide will be described based on FIG. 12 and FIG. 12 is a perspective view of another embodiment of the cradle guide 81, and FIG. 13 is an exploded perspective view of the cradle guide of FIG. As shown in FIG. 12, the cradle guide 81 includes a molten metal main body 81c, and a sintered metal member 81a in which a resin layer 81b is formed is installed on the main body 81c. The sintered metal member 81a is an arc-shaped (partially cylindrical) sintered bush formed with a resin layer 81b, and is set on a support surface of a cradle 83 formed in an arc surface shape in the main body 81c. . The surface on the main body 81c side of the sintered metal member 81a is formed in the same shape corresponding to the arc surface shape of the support surface of the main body 81c. The arc surface on which the resin layer 81 b of the sintered bush is formed becomes a sliding surface with respect to the cradle 83. Further, as shown in FIG. 13, the pair of recessed bushes 81f and the projecting portions 81g are fitted so that the pair of sintered bushes (81a + 81b) does not deviate from the support surfaces 81d, 81e of the cradle guide of the main body 81c. It is fixed with. In addition, the uneven | corrugated | grooved part for fixing a sintered bush may make the uneven | corrugated relationship reverse to what is shown in FIG. 13, and the shape can also be made into arbitrary shapes. Alternatively, it is most desirable in view of manufacturing costs to insert the pin into the recess 81f and fit the sintered bush by providing a pin hole.
 クレイドル83は、例えば珪素含有アルミニウム合金で形成され、その背面には各クレイドルガイドにおける支持面81d、81eに対応する一対の円弧面状の摺接部83a、83bが突設されている。図12および図13に示す態様では、両摺接部83a、83bは一対の焼結ブッシュ(81a+81b)を介して支持面81d、81eに接するように組み付けられる。 The cradle 83 is formed of, for example, a silicon-containing aluminum alloy, and a pair of arcuate sliding contact portions 83a and 83b corresponding to the support surfaces 81d and 81e of the cradle guides are provided on the back surface thereof. In the embodiment shown in FIGS. 12 and 13, both sliding contact portions 83a and 83b are assembled so as to be in contact with the support surfaces 81d and 81e via a pair of sintered bushes (81a + 81b).
 図12および図13に示す態様において、クレイドルガイド本体81cの材料は、溶製金属であれば、その種類は特に限定されない。例えば、高炭素クロム軸受鋼、クロムモリブデン鋼、機械構造用炭素鋼、ステンレス鋼、鋳鉄、アルミニウム合金、黄銅などが使用できる。本体81cを溶製金属製とすることで、本体全体を焼結金属製部材とする場合よりも、クレイドルガイド全体としての機械的強度を高めることができる。 12 and 13, the material of the cradle guide main body 81 c is not particularly limited as long as it is a molten metal. For example, high carbon chromium bearing steel, chromium molybdenum steel, carbon steel for machine structure, stainless steel, cast iron, aluminum alloy, brass and the like can be used. By making the main body 81c made of molten metal, the mechanical strength of the entire cradle guide can be increased as compared with the case where the whole main body is made of a sintered metal member.
 樹脂層81bは、PEK系樹脂をベース樹脂とする樹脂組成物からなり、焼結金属製部材81aのクレイドルと摺接する表面に0.1~0.7mmの厚さで射出成形により重ねて一体に設けられることで形成されている。 The resin layer 81b is made of a resin composition having a PEK-based resin as a base resin, and is integrally laminated by injection molding at a thickness of 0.1 to 0.7 mm on the surface of the sintered metal member 81a that is in sliding contact with the cradle. It is formed by being provided.
 樹脂層81bは焼結金属製部材81aの表面に形成されるため、射出成形時にPEK系樹脂の溶融樹脂が、焼結金属製部材81aの表面の凹凸に深く入り込み、樹脂層81bを該部材81aに強固に密着できる。射出成形では、溶融樹脂を高速、高圧で流し込むため、PEK系樹脂をベース樹脂として用いながらも、該樹脂がせん断力により多孔質の焼結層の凹凸(空孔)に入りやすい。そのため、焼結金属製部材81aと樹脂層81bとの密着強度が十分に確保できる。 Since the resin layer 81b is formed on the surface of the sintered metal member 81a, the molten resin of the PEK resin penetrates deeply into the irregularities on the surface of the sintered metal member 81a at the time of injection molding, and the resin layer 81b is inserted into the member 81a. Can be firmly attached. In injection molding, since the molten resin is poured at a high speed and high pressure, the resin is likely to enter the irregularities (holes) of the porous sintered layer by shearing force while using the PEK resin as the base resin. Therefore, sufficient adhesion strength between the sintered metal member 81a and the resin layer 81b can be secured.
 樹脂層に、PEK系樹脂をベース樹脂とする樹脂組成物を使用することで、連続使用温度が250℃であり、耐熱性、耐油・耐薬品性、耐クリープ性、摩擦摩耗特性に優れた可変容量型アキシャルピストンポンプのクレイドルガイドになる。また、PEK系樹脂は、靭性、高温時の機械物性が高く、耐疲労特性、耐衝撃性にも優れているため、使用時に摩擦力、衝撃、振動等が加わる際にも、樹脂層が焼結金属製部材から剥離し難い。従来の可変容量型アキシャルピストンポンプのクレイドルガイドは、PTFE樹脂等のフッ素樹脂を主成分とする樹脂組成物が摺動面であったため、異常時において多孔質焼結層から樹脂組成物が剥離することを防止することはできなかった。 By using a resin composition based on PEK-based resin for the resin layer, the continuous use temperature is 250 ° C, and variable with excellent heat resistance, oil / chemical resistance, creep resistance, and friction and wear characteristics. Become a cradle guide for displacement axial piston pumps. In addition, PEK-based resins have high toughness and mechanical properties at high temperatures, and are excellent in fatigue resistance and impact resistance. Therefore, even when frictional force, impact, vibration, etc. are applied during use, the resin layer is baked. It is difficult to peel off from the metal member. In the cradle guide of the conventional variable capacity type axial piston pump, since the resin composition mainly composed of a fluororesin such as PTFE resin is a sliding surface, the resin composition peels off from the porous sintered layer at the time of abnormality. I couldn't prevent that.
 このクレイドルガイドで使用できるPEK系樹脂の具体例としては、上述の摺動ナットで用いるものと同じものが挙げられる。 Specific examples of the PEK-based resin that can be used in this cradle guide include the same as those used in the above-described sliding nut.
 樹脂層の厚さは、0.1~0.7mmに設定されている。なお、樹脂層の厚さは、焼結金属製部材に入り込まない表面部分の厚さである。この厚さ範囲は、インサート成形面や物性面を考慮して設定されたものである。樹脂層の厚さが0.1mm未満では、インサート成形が困難である。また、長期使用時の耐久性、すなわち寿命が短くなるおそれがある。一方、樹脂層の厚さが0.7mmをこえると、ヒケが発生し寸法精度が低下するおそれがある。また、摩擦による熱が摩擦面から焼結金属製部材に逃げ難く、摩擦面温度が高くなる。さらに、荷重による変形量が大きくなるとともに、摩擦面における真実接触面積も大きくなり、摩擦力、摩擦発熱が高くなり、耐焼付き性などが低下するおそれがある。摩擦発熱の焼結金属製部材への放熱を考慮すると、樹脂層の厚さは0.2~0.5mmが好ましい。 The thickness of the resin layer is set to 0.1 to 0.7 mm. The thickness of the resin layer is the thickness of the surface portion that does not enter the sintered metal member. This thickness range is set in consideration of the insert molding surface and physical properties. When the thickness of the resin layer is less than 0.1 mm, insert molding is difficult. In addition, durability during long-term use, that is, life may be shortened. On the other hand, if the thickness of the resin layer exceeds 0.7 mm, sink marks may occur and dimensional accuracy may be reduced. In addition, heat due to friction is difficult to escape from the friction surface to the sintered metal member, and the friction surface temperature increases. Further, the amount of deformation due to the load increases, the true contact area on the friction surface also increases, the frictional force and the frictional heat generation increase, and the seizure resistance may decrease. In consideration of heat dissipation of the frictional heat to the sintered metal member, the thickness of the resin layer is preferably 0.2 to 0.5 mm.
 また、図12に示すように焼結ブッシュを用いる態様においては、樹脂層の厚さは、焼結金属製部材の厚さの1/8~1/2であることが好ましい。樹脂層の厚さが焼結金属製部材の厚さの1/8未満では、焼結金属製部材に対して樹脂層が相対的に薄くなりすぎ、長期使用時の耐久性に劣るおそれがある。一方、樹脂層の厚さが焼結金属製部材の厚さの1/2をこえると、焼結金属製部材に対して樹脂層が相対的に厚くなりすぎ、摩擦による熱が摩擦面から焼結金属製部材に逃げ難く、摩擦面温度が高くなる。さらに、荷重による変形量が大きくなるとともに、摩擦面における真実接触面積も大きくなり、摩擦力、摩擦発熱が高くなり、耐焼付き性などが低下するおそれがある。 In the embodiment using a sintered bush as shown in FIG. 12, the thickness of the resin layer is preferably 1/8 to 1/2 of the thickness of the sintered metal member. If the thickness of the resin layer is less than 1/8 of the thickness of the sintered metal member, the resin layer becomes too thin relative to the sintered metal member, which may be inferior in durability during long-term use. . On the other hand, if the thickness of the resin layer exceeds ½ of the thickness of the sintered metal member, the resin layer becomes too thick relative to the sintered metal member, and heat due to friction is burned from the friction surface. It is difficult to escape to the metal member, and the friction surface temperature becomes high. Further, the amount of deformation due to the load increases, the true contact area on the friction surface also increases, the frictional force and the frictional heat generation increase, and the seizure resistance may decrease.
 焼結金属製部材の材質としては、鉄系、銅鉄系、銅系、ステンレス系などが挙げられる。焼結金属製部材と樹脂層との密着性に優れることから、鉄が主成分(銅を含んでもよい)である焼結金属を採用することが好ましい。また、鉄を主成分とする焼結金属を採用することで、より高い機械的強度を得ることができる。なお、銅を含む場合、銅は鉄よりも樹脂との密着性(接着性)に劣るため、銅の含有量は10重量%以下が好ましい。さらに好ましくは、銅の含有量は5重量%以下である。 Examples of the material of the sintered metal member include iron, copper iron, copper, and stainless steel. Since the adhesion between the sintered metal member and the resin layer is excellent, it is preferable to employ a sintered metal whose main component is iron (which may include copper). In addition, higher mechanical strength can be obtained by employing a sintered metal mainly composed of iron. In addition, since copper is inferior to adhesiveness (adhesiveness) with resin rather than iron, when copper is included, the content of copper is preferably 10% by weight or less. More preferably, the copper content is 5% by weight or less.
 上述の摺動ナットで用いる場合と同様に、樹脂層を形成する前の焼結金属製部材には、油を含浸しない焼結金属を使用することが好ましい。また、焼結金属の成形または再圧(サイジング)の工程内にて油を使用する場合は、溶剤洗浄などで油を除去した非含油焼結金属にすることが好ましい。また、樹脂層を形成する前の焼結金属製部材には、スチーム処理を施すことが好ましい。 As in the case of using the above-mentioned sliding nut, it is preferable to use a sintered metal not impregnated with oil for the sintered metal member before forming the resin layer. Moreover, when using oil in the process of shaping | molding or re-pressing (sizing) of a sintered metal, it is preferable to set it as the non-oil-containing sintered metal which removed oil by solvent washing etc. Moreover, it is preferable to perform a steam process to the sintered metal member before forming a resin layer.
 焼結金属製部材の理論密度比は、上述の摺動ナットで用いる場合と同様に、0.7~0.9であることが好ましい。さらに好ましくは、材質の理論密度比0.72~0.84である。焼結金属製部材の理論密度比を0.7~0.9にすることで、焼結金属製部材が担うクレイドルガイドの強度(特に、焼結金属製部材で本体全体を構成する場合)を確保するための所要の緻密性を有するとともに、樹脂層を焼結金属製部材に強固に密着させるための表面の凹凸を確保することができる。また、潤滑油を焼結金属製部材に保持することも可能となる。さらに、焼結金属製部材の熱伝導性を確保できる。 The theoretical density ratio of the sintered metal member is preferably 0.7 to 0.9, as in the case of using the sliding nut described above. More preferably, the theoretical density ratio of the materials is 0.72 to 0.84. By setting the theoretical density ratio of the sintered metal member to 0.7 to 0.9, the strength of the cradle guide carried by the sintered metal member (especially when the entire body is composed of the sintered metal member) In addition to having the required denseness to ensure, it is possible to ensure surface irregularities for firmly attaching the resin layer to the sintered metal member. It is also possible to hold the lubricating oil on the sintered metal member. Furthermore, the thermal conductivity of the sintered metal member can be ensured.
 樹脂層を形成する樹脂組成物は、ベース樹脂としてPEK系樹脂を用い、これにガラス繊維、炭素繊維、アラミド繊維、ウィスカなどの繊維状充填材を分散状態に配合することができる。これにより、樹脂層の機械的強度を一層向上させることができる。特に、本発明の可変容量型アキシャルピストンポンプのクレイドルガイドでは、樹脂層が0.1~0.7mmの厚さという薄肉であるため、機械的強度の向上は望ましい。 The resin composition forming the resin layer uses a PEK-based resin as a base resin, and a fibrous filler such as glass fiber, carbon fiber, aramid fiber, or whisker can be blended in a dispersed state. Thereby, the mechanical strength of the resin layer can be further improved. In particular, in the cradle guide of the variable displacement type axial piston pump of the present invention, since the resin layer is thin with a thickness of 0.1 to 0.7 mm, it is desirable to improve the mechanical strength.
 繊維状充填材の他に、PTFE樹脂、黒鉛、二硫化モリブデンなどの固体潤滑剤や、炭酸カルシウム、硫酸カルシウム、マイカ、タルクなどの無機充填材を配合することも可能である。上記固体潤滑剤を配合することで、無潤滑、潤滑油が希薄な条件であっても低摩擦となり、耐焼き付き性を向上させることができる。また、上記無機充填材を配合することで、耐クリープ性を向上させることができる。 In addition to the fibrous filler, a solid lubricant such as PTFE resin, graphite and molybdenum disulfide, and an inorganic filler such as calcium carbonate, calcium sulfate, mica and talc can be blended. By blending the above-mentioned solid lubricant, it is possible to improve the seizure resistance by reducing friction even under non-lubricated conditions and even when the lubricating oil is dilute. Moreover, creep resistance can be improved by mix | blending the said inorganic filler.
 繊維状充填材、無機系の固体潤滑剤(黒鉛、二硫化モリブデンなど)、および無機充填材は、PEK系樹脂の成形収縮率を小さくする効果がある。そのため、焼結金属製部材とのインサート成形時に、樹脂層の内部応力を抑える効果もある。 Fibrous fillers, inorganic solid lubricants (graphite, molybdenum disulfide, etc.) and inorganic fillers have the effect of reducing the molding shrinkage of the PEK resin. Therefore, there is also an effect of suppressing the internal stress of the resin layer at the time of insert molding with a sintered metal member.
 繊維状充填材を配合した樹脂組成物からなる樹脂層を有する態様のクレイドルガイドを図14に示す。図14は、クレイドルガイド(樹脂層に繊維状充填材配合)の斜視図である。クレイドルガイド81は、樹脂層81bに繊維状充填材84を配合してある以外は、図11のものと同様の構成である。 FIG. 14 shows a cradle guide having a resin layer made of a resin composition containing a fibrous filler. FIG. 14 is a perspective view of a cradle guide (containing a fibrous filler in a resin layer). The cradle guide 81 has the same configuration as that of FIG. 11 except that the fibrous filler 84 is blended in the resin layer 81b.
 樹脂層81bを射出成形で形成するにあたって、樹脂組成物の溶融流動方向を調整することにより、繊維状充填材84(の長さ方向)をクレイドルガイド81の摺動方向(図中矢印)に対して45度以上のできるだけ直角に近い交差角度で配向させることが好ましい。樹脂層81bの機械的強度を向上させるためには繊維状充填材を配合することが好ましいが、繊維状充填材の繊維の端部はエッジ状になっているため、繊維の端部によって相手材であるクレイドル83を物理的に摩耗損傷させ易く、摩擦係数も安定し難くなる。繊維状充填材(の長さ方向)を該クレイドルガイドの摺動方向に対して45~90度に交差するように配向させることにより、繊維の両端のエッジが摺動方向に対して45~90度に向く。これにより、繊維の両端のエッジによる相手材の摩耗損傷の軽減、摩擦係数の安定化を図れる。なお、繊維状充填材の配向は、90度により近い方が繊維のエッジによる摩耗損傷が少なく、摩擦係数も安定するので望ましい。80~90度であれば特に好ましい。 When the resin layer 81b is formed by injection molding, the fibrous filler 84 (in its length direction) is adjusted with respect to the sliding direction of the cradle guide 81 (arrow in the figure) by adjusting the melt flow direction of the resin composition. It is preferable to align at an intersecting angle as close to a right angle as possible at 45 degrees or more. In order to improve the mechanical strength of the resin layer 81b, it is preferable to mix a fibrous filler. However, since the end of the fiber of the fibrous filler has an edge shape, the end of the fiber is used as a counterpart material. The cradle 83 is easily subject to physical wear damage and the friction coefficient is difficult to stabilize. By orienting the fibrous filler (in the length direction) so as to intersect at 45 to 90 degrees with respect to the sliding direction of the cradle guide, the edges at both ends of the fiber are 45 to 90 with respect to the sliding direction. Suitable for degrees. As a result, it is possible to reduce wear damage of the mating member due to the edges at both ends of the fiber and to stabilize the friction coefficient. It should be noted that the orientation of the fibrous filler is preferably closer to 90 degrees because there is less abrasion damage due to the fiber edge and the friction coefficient is stabilized. 80 to 90 degrees is particularly preferable.
 繊維状充填材の平均繊維長は、0.02~0.2mmが好ましい。0.02mm未満では充分な補強効果が得られず、耐クリープ性、耐摩耗性が満足しないおそれがある。0.2mmをこえる場合は樹脂層の層厚に対する繊維長の比率が大きくなるため、薄肉成形性に劣る。特に、樹脂厚み0.2~0.7mmにインサート成形する場合は、繊維長が0.2mmをこえると薄肉成形性を阻害する。より薄肉成形の安定性を高めるには、平均繊維長0.02~0.1mmが望ましい。 The average fiber length of the fibrous filler is preferably 0.02 to 0.2 mm. If the thickness is less than 0.02 mm, a sufficient reinforcing effect cannot be obtained, and creep resistance and wear resistance may not be satisfied. When the thickness exceeds 0.2 mm, the ratio of the fiber length to the layer thickness of the resin layer becomes large, so that the thin formability is inferior. In particular, in the case of insert molding with a resin thickness of 0.2 to 0.7 mm, if the fiber length exceeds 0.2 mm, the thin-wall moldability is hindered. An average fiber length of 0.02 to 0.1 mm is desirable for further improving the stability of thin-wall molding.
 繊維状充填材の中でも、炭素繊維を用いることが好ましい。炭素繊維を用いることで、樹脂層の補強効果と耐摩耗性、低摩擦性が特に優れるようになる。また、炭素繊維は、樹脂層を成形する際に樹脂の溶融流動方向への配向性が強い。特に、直径が細く、比較的短い炭素繊維を選択し、その場合に、炭素繊維の両端のエッジがクレイドルガイドの摺動方向に沿っており、例えば配向方向が0~45度未満であると、相手材であるクレイドルを損傷する場合がある。そのため、細く、短い炭素繊維を採用した場合には、樹脂を射出成形する際に、溶融樹脂の流動方向をクレイドルガイドの摺動方向と直角または直角に近い角度とし、繊維の長さ方向をクレイドルガイドの摺動方向に対する45~90度になるように配向させることが耐久性および摺動トルクを低く安定させるために極めて有利である。 Among the fibrous fillers, it is preferable to use carbon fibers. By using carbon fibers, the reinforcing effect, abrasion resistance, and low friction properties of the resin layer are particularly excellent. Carbon fiber has a strong orientation in the melt flow direction of the resin when the resin layer is molded. In particular, a carbon fiber having a small diameter and a relatively short length is selected. In this case, the edges of both ends of the carbon fiber are along the sliding direction of the cradle guide. For example, the orientation direction is 0 to less than 45 degrees. The opponent's cradle may be damaged. Therefore, when thin and short carbon fibers are used, when the resin is injection molded, the flow direction of the molten resin is set to a right angle or a near right angle with the sliding direction of the cradle guide, and the length direction of the fiber is set to the cradle. It is extremely advantageous to orient at 45 to 90 degrees with respect to the sliding direction of the guide in order to stabilize the durability and sliding torque low.
 このクレイドルガイドで使用する炭素繊維としては、原材料から分類されるピッチ系またはPAN系のいずれのものであってもよいが、高弾性率を有するPAN系炭素繊維の方が好ましい。その焼成温度は特に限定するものではないが、2000℃またはそれ以上の高温で焼成されて黒鉛(グラファイト)化されたものよりも、1000~1500℃程度で焼成された炭化品のものが、高PV下でも相手材を摩耗損傷しにくいので好ましい。 The carbon fiber used in this cradle guide may be either a pitch-based or PAN-based one classified from raw materials, but a PAN-based carbon fiber having a high elastic modulus is preferred. The calcining temperature is not particularly limited, but a carbonized material calcined at about 1000 to 1500 ° C. is higher than that calcined at a high temperature of 2000 ° C. or higher to be converted into graphite. Even under PV, it is preferable because the mating material is hardly damaged by wear.
 炭素繊維の平均繊維径は20μm以下、好ましくは5~15μmである。この範囲をこえる太い炭素繊維では、極圧が発生するため、耐荷重性の向上効果が乏しく、相手材であるクレイドルがアルミニウム合金、焼入れなしの鋼材の場合、該相手材の摩耗損傷が大きくなるため好ましくない。また、炭素繊維は、チョップドファイバー、ミルドファイバーのいずれであってもよいが、安定した薄肉成形性を得るためには、繊維長が1mm未満のミルドファイバーの方が好ましい。 The average fiber diameter of the carbon fiber is 20 μm or less, preferably 5 to 15 μm. Thick carbon fiber exceeding this range generates extreme pressure, so the effect of improving load resistance is poor, and when the cradle, which is the counterpart material, is an aluminum alloy or non-quenched steel material, the wear damage of the counterpart material increases. Therefore, it is not preferable. The carbon fiber may be a chopped fiber or a milled fiber, but a milled fiber having a fiber length of less than 1 mm is preferable in order to obtain stable thin-wall formability.
 このクレイドルガイドで使用できる炭素繊維の市販品としては、上述の摺動ナットで用いるものと同じものが挙げられる。 As the commercially available carbon fiber that can be used in this cradle guide, the same products as those used in the above-mentioned sliding nut can be mentioned.
 樹脂層を形成する樹脂組成物は、ベース樹脂としてPEK系樹脂を用い、これに上記炭素繊維と、固体潤滑剤であるPTFE樹脂とを必須成分として含むことが好ましい。 The resin composition forming the resin layer preferably uses a PEK-based resin as a base resin and contains the carbon fiber and a PTFE resin as a solid lubricant as essential components.
 このクレイドルガイドで使用できるPTFE樹脂およびその市販品としては、上述の摺動ナットで用いるものと同じものが挙げられる。 As the PTFE resin that can be used in this cradle guide and its commercial products, the same ones as those used in the above-mentioned sliding nut can be mentioned.
 なお、この発明の効果を阻害しない程度に、樹脂組成物に対して周知の樹脂用添加剤を配合してもよい。この添加剤としては、例えば、窒化ホウ素などの摩擦特性向上剤、炭素粉末、酸化鉄、酸化チタンなどの着色剤、黒鉛、金属酸化物粉末などの熱伝導性向上剤が挙げられる。 In addition, you may mix | blend a well-known resin additive with respect to a resin composition to such an extent that the effect of this invention is not inhibited. Examples of the additive include friction property improvers such as boron nitride, colorants such as carbon powder, iron oxide, and titanium oxide, and thermal conductivity improvers such as graphite and metal oxide powder.
 樹脂層を形成する樹脂組成物は、PEK系樹脂をベース樹脂とし、炭素繊維を5~30体積%、PTFE樹脂を1~30体積%を必須成分として含むことが好ましい。この必須成分と他の添加剤を除く残部がPEK系樹脂である。この配合割合とすることで、高PV条件においても、樹脂層の変形および摩耗、相手材であるクレイドル表面への攻撃性が小さく、油などに対する耐性も高くなる。また、炭素繊維は、5~20体積%がより好ましく、PTFE樹脂は、2~25体積%がより好ましい。 The resin composition forming the resin layer preferably contains PEK-based resin as a base resin, 5 to 30% by volume of carbon fiber, and 1 to 30% by volume of PTFE resin as essential components. The balance excluding this essential component and other additives is PEK-based resin. By adopting this blending ratio, even under high PV conditions, the deformation and wear of the resin layer, the aggressiveness to the cradle surface as the counterpart material are small, and the resistance to oil and the like is also high. Further, the carbon fiber is more preferably 5 to 20% by volume, and the PTFE resin is more preferably 2 to 25% by volume.
 炭素繊維の配合割合が30体積%をこえると、溶融流動性が著しく低下し、薄肉成形が困難になるとともに、相手材であるクレイドルがアルミニウム合金、焼入れなしの鋼材の場合、摩耗損傷するおそれがある。また、炭素繊維の配合割合が5体積%未満では、樹脂層を補強する効果が乏しく、充分な耐クリープ性、耐摩耗性が得られない場合がある。 If the mixing ratio of the carbon fiber exceeds 30% by volume, the melt fluidity is remarkably lowered, making it difficult to form a thin wall, and when the cradle as the counterpart material is an aluminum alloy or non-quenched steel, there is a risk of wear damage. is there. Moreover, when the blending ratio of the carbon fiber is less than 5% by volume, the effect of reinforcing the resin layer is poor, and sufficient creep resistance and wear resistance may not be obtained.
 PTFE樹脂の配合割合が30体積%をこえると、耐摩耗性、耐クリープ性が所要の程度より低下するおそれがある。また、PTFE樹脂の配合割合が1体積%未満では組成物に所要の潤滑性の付与効果に乏しく、充分な摺動特性が得られない場合がある。 When the blending ratio of PTFE resin exceeds 30% by volume, the wear resistance and creep resistance may be lowered from the required levels. In addition, when the blending ratio of the PTFE resin is less than 1% by volume, the effect of imparting the required lubricity to the composition is poor, and sufficient sliding characteristics may not be obtained.
 以上の諸原材料を混合し、混練する手段は、特に限定するものではなく、粉末原料のみをヘンシェルミキサー、ボールミキサー、リボンブレンダー、レディゲミキサー、ウルトラヘンシェルミキサーなどにて乾式混合し、さらに二軸押出し機などの溶融押出し機にて溶融混練し、成形用ペレット(顆粒)を得ることができる。また、充填材の投入は、二軸押出し機などで溶融混練する際にサイドフィードを採用してもよい。この成形用ペレットを用い、焼結金属製部材に対して樹脂層をインサート成形により射出成形する。射出成形を採用することで、精密成形性および製造効率などに優れる。また、物性改善のためにアニール処理等の処理を採用してもよい。 The means for mixing and kneading the above raw materials is not particularly limited, and only the powder raw material is dry-mixed with a Henschel mixer, ball mixer, ribbon blender, ladyge mixer, ultra Henschel mixer, etc. Melting and kneading can be performed with a melt extruder such as an extruder to obtain molding pellets (granules). In addition, a side feed may be used for charging the filler when melt kneading with a twin screw extruder or the like. Using this pellet for molding, a resin layer is injection-molded by insert molding on a sintered metal member. By adopting injection molding, it is excellent in precision moldability and manufacturing efficiency. Moreover, you may employ | adopt treatments, such as an annealing process, for physical property improvement.
 樹脂層を形成する樹脂組成物は、上述の圧縮機用滑り軸受の樹脂層を形成する樹脂組成物と同様に、樹脂温度380℃、せん断速度1000s-1における溶融粘度が50~200Pa・sであることが好ましい。 The resin composition forming the resin layer has a melt viscosity of 50 to 200 Pa · s at a resin temperature of 380 ° C. and a shear rate of 1000 s −1 , similar to the resin composition forming the resin layer of the sliding bearing for a compressor described above. Preferably there is.
 使用中の摩擦力に対して、充分な密着強さを得るためには、焼結金属製部材と樹脂層とのせん断密着強さは、2MPa以上であることが好ましい。更に安全率を高めるためには、3MPa以上が好ましい。また、焼結金属製部材と樹脂層のせん断密着強さを更に高めるために、樹脂層を形成する焼結金属面に、凹凸、溝などの物理的な剥がれ対策を施してもよい。 In order to obtain sufficient adhesion strength against the friction force during use, the shear adhesion strength between the sintered metal member and the resin layer is preferably 2 MPa or more. Furthermore, in order to raise a safety factor, 3 Mpa or more is preferable. Further, in order to further increase the shear adhesion strength between the sintered metal member and the resin layer, physical peeling measures such as unevenness and grooves may be taken on the sintered metal surface on which the resin layer is formed.
 例えば、クレイドルとの摺動時などにおいて、樹脂層81bが焼結金属製部材81aから剥がれることを防止するため、図15に示すように、境界面に凹凸を設けることができる。図15において、左図は図11に示す態様のクレイドルガイドの断面図を、右図は図12に示す態様のクレイドルガイドの断面図をそれぞれ示す。図15では、焼結金属製部材81aに凹部を設けることで、射出成形される樹脂層81bにこれに対応した凸部が形成されている。なお、上記凹凸部は、その凹凸関係を図15に示すものと反対にしてもよく、また、形状も任意の形状にできる。 For example, in order to prevent the resin layer 81b from being peeled off from the sintered metal member 81a during sliding with the cradle, as shown in FIG. 15, irregularities can be provided on the boundary surface. 15, the left figure shows a cross-sectional view of the cradle guide of the embodiment shown in FIG. 11, and the right figure shows a cross-sectional view of the cradle guide of the embodiment shown in FIG. In FIG. 15, by providing a concave portion in the sintered metal member 81a, a convex portion corresponding to this is formed in the resin layer 81b to be injection molded. In addition, the said uneven | corrugated | grooved part may make the uneven | corrugated relationship reverse to what is shown in FIG. 15, and the shape can also be made into arbitrary shapes.
 以上、本発明の可変容量型アキシャルピストンポンプのクレイドルガイドおよび可変容量型アキシャルピストンポンプについて説明したが、本発明の実施態様はこれに限定されるものではない。 Although the cradle guide and the variable displacement axial piston pump of the variable displacement axial piston pump of the present invention have been described above, the embodiment of the present invention is not limited to this.
 本発明の摺動ナットの実施例について以下に説明する。 Examples of the sliding nut of the present invention will be described below.
[実施例A1~A28および比較例A1~A3]
 実施例および比較例に用いた摺動ナット本体用材料を表1にまとめて示し、実施例および比較例に用いる樹脂層の原材料を一括して以下に示した。なお、PEK系樹脂の溶融粘度は、東洋精機社製キャピラグラフ、φ1×10(mm)細管、樹脂温度380℃、せん断速度1000s-1における測定値である。
(1)PEK系樹脂[PEK-1] ビクトレックス社製:PEEK 90P(溶融粘度 105Pa・s)
(2)PEK系樹脂[PEK-2] ビクトレックス社製:PEEK 150P(溶融粘度 145Pa・s)
(3)PEK系樹脂[PEK-3] ビクトレックス社製:PEEK 450P(溶融粘度 420Pa・s)
(4)PAN系炭素繊維[CF-1] 東レ社製:トレカ MLD-30(平均繊維長0.03mm、平均繊維径7μm)
(5)PAN系炭素繊維[CF-2] 東邦テナックス社製:ベスファイト HTA-CMF0160-0H(繊維長0.16mm、繊維径7μm)
(6)ピッチ系炭素繊維[CF-3] クレハ社製:クレカ M-101S(平均繊維長0.1/2mm、平均繊維径14.5μm)
(7)ピッチ系炭素繊維[CF-4] クレハ社製:クレカ M-107S(平均繊維長0.7mm、平均繊維径14.5μm)
(8)炭酸カルシウム粉末[CaCO] 日窒工業社製:NA600(平均粒径3μm)
(9)黒鉛[GRP] ティムカルジャパン社製:TIMREX KS6(平均粒径6μm)
(10)PTFE樹脂[PTFE] 喜多村社製:KTL-610(再生PTFE)
[Examples A1 to A28 and Comparative Examples A1 to A3]
The materials for the sliding nut main body used in the examples and comparative examples are collectively shown in Table 1, and the raw materials for the resin layers used in the examples and comparative examples are collectively shown below. The melt viscosity of the PEK resin is a value measured at a Capillograph manufactured by Toyo Seiki Co., Ltd., φ1 × 10 (mm) capillary, a resin temperature of 380 ° C., and a shear rate of 1000 s −1 .
(1) PEK resin [PEK-1] manufactured by Victrex: PEEK 90P (melt viscosity: 105 Pa · s)
(2) PEK resin [PEK-2] manufactured by Victrex: PEEK 150P (melt viscosity 145 Pa · s)
(3) PEK-based resin [PEK-3] manufactured by Victrex: PEEK 450P (melt viscosity 420 Pa · s)
(4) PAN-based carbon fiber [CF-1] manufactured by Toray Industries, Inc .: Trading card MLD-30 (average fiber length 0.03 mm, average fiber diameter 7 μm)
(5) PAN-based carbon fiber [CF-2] manufactured by Toho Tenax Co., Ltd .: Besfite HTA-CMF0160-0H (fiber length 0.16 mm, fiber diameter 7 μm)
(6) Pitch-based carbon fiber [CF-3] manufactured by Kureha Co., Ltd .: Kureka M-101S (average fiber length 0.1 / 2 mm, average fiber diameter 14.5 μm)
(7) Pitch-based carbon fiber [CF-4] manufactured by Kureha Co., Ltd .: Kureka M-107S (average fiber length 0.7 mm, average fiber diameter 14.5 μm)
(8) Calcium carbonate powder [CaCO 3 ] manufactured by Nittsu Kogyo Co., Ltd .: NA600 (average particle size 3 μm)
(9) Graphite [GRP] manufactured by Timcal Japan, Inc .: TIMREX KS6 (average particle size 6 μm)
(10) PTFE resin [PTFE] manufactured by Kitamura Co., Ltd .: KTL-610 (regenerated PTFE)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 原材料を表2に示す配合割合(体積%)でヘンシェル乾式混合機を用いてドライブレンドし、二軸押出し機を用いて溶融混練し樹脂層用のペレットを作製した。このペレットにて、樹脂温度380℃~400℃、金型温度180℃の条件で、表1の摺動ナット本体用材料からなるφ30×φ35×20(mm)の試験用円筒体の内径に厚さ0.2~1mmの樹脂層をインサート成形にて作製した。 The raw materials were dry blended using a Henschel dry mixer at a blending ratio (volume%) shown in Table 2, and melt-kneaded using a twin screw extruder to produce pellets for the resin layer. With this pellet, under the conditions of a resin temperature of 380 ° C. to 400 ° C. and a mold temperature of 180 ° C., the inner diameter of the test cylinder of φ30 × φ35 × 20 (mm) made of the sliding nut body material shown in Table 1 A resin layer having a thickness of 0.2 to 1 mm was produced by insert molding.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(1)せん断密着強さ試験
 表1の試験用円筒体内径(φ30×φ35×20(mm))に、樹脂層-表2のaを厚さ0.5mmにてインサート成形したテストピースを使用し、せん断密着強さ試験を行なった。試験用円筒体を固定し、内径樹脂層に軸方向のせん断力を加え、試験用円筒体から樹脂層が剥離する荷重を測定した。この荷重を、樹脂層と試験用円筒体の見かけの接合面積を割った値を、せん断密着強さとし、表3に示した。また、テストピースを30個インサート成形にて作製時の試験用円筒体の割れの有無(なし:○、あり(1個以上):×)を表3に併記した。
(1) Shear adhesion strength test Resin layer-A test piece in which a in Table 2 is inserted with a thickness of 0.5 mm is used for the test cylinder inner diameter (φ30 x φ35 x 20 (mm)) in Table 1. Then, a shear adhesion strength test was conducted. The test cylinder was fixed, an axial shear force was applied to the inner diameter resin layer, and the load at which the resin layer peeled from the test cylinder was measured. Table 3 shows the value obtained by dividing the load by the apparent bonding area between the resin layer and the test cylinder, which is the shear adhesion strength. Table 3 also shows the presence or absence of cracks (none: ◯, present (one or more): x) in the test cylinder when 30 test pieces were produced by insert molding.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示したとおり、実施例A1~A9はインサート成形時に試験用円筒体の割れはなく、1.5MPa以上のせん断密着強さであった。特に焼結金属の密度が、材質の理論密度比0.7~0.9である実施例A1~A8は、せん断密着強さが2MPa以上となる。なお、焼結金属の密度が、材質の理論密度比0.67である実施例A10では、インサート成形時に試験用円筒体の割れが発生したが、接着にて樹脂層形成は可能である。一方、鋼材の機械加工品では、せん断密着強さが非常に低い値であった(比較例A1)。  As shown in Table 3, in Examples A1 to A9, there was no cracking of the test cylinder during insert molding, and the shear adhesion strength was 1.5 MPa or more. In particular, in Examples A1 to A8 in which the density of the sintered metal is 0.7 to 0.9 of the theoretical density ratio of the materials, the shear adhesion strength is 2 MPa or more. In Example A10, in which the density of the sintered metal is the theoretical density ratio of 0.67, cracking of the test cylinder occurred during insert molding, but the resin layer can be formed by adhesion. On the other hand, in the steel machined product, the shear adhesion strength was a very low value (Comparative Example A1).
(2)耐焼付き性試験
 摺動ナット本体用材料が表1の基材Eからなる試験用円筒体内径(φ30×φ35×20(mm))に、表2の樹脂層を形成したテストピースについて、油中ラジアル型試験機を用い、耐焼付き性試験を実施した。表4の油供給条件で30分慣らし運転後、油供給を停止・油排出し焼付くまでの時間を測定した。焼付き時間は、テストピース外径部温度が20℃上昇またはトルクが2倍に上昇するまでの時間とした。焼付き時間を表5および表6に示した。なお、インサート成形で表5および表6に記載の所定の樹脂層厚みを形成し、形成不可能な場合は、厚肉品を射出成形し、機械加工にて所定厚みに仕上げた。
(2) Seizure resistance test On a test piece in which the resin layer shown in Table 2 is formed on the inner diameter (φ30 × φ35 × 20 (mm)) of the cylindrical body for testing, in which the material for the sliding nut body is made of the base material E shown in Table 1. The seizure resistance test was conducted using a radial type tester in oil. After running-in for 30 minutes under the oil supply conditions shown in Table 4, the time from oil supply stop / oil discharge to seizure was measured. The seizing time was the time until the test piece outer diameter temperature increased by 20 ° C. or the torque increased twice. Table 5 and Table 6 show the seizing time. In addition, the predetermined resin layer thickness described in Table 5 and Table 6 was formed by insert molding, and when it could not be formed, a thick product was injection molded and finished to a predetermined thickness by machining.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(3)摩耗試験
 耐焼付き性試験と同じテストピースについて、油中ラジアル型試験機を用い、表4の油供給条件で30時間運転した後の摩耗量を測定した。摩耗量を表5および表6に示した。
(3) Wear test About the same test piece as the seizure resistance test, the wear amount after operating for 30 hours under the oil supply conditions in Table 4 was measured using a radial in-oil tester. The amount of wear is shown in Tables 5 and 6.
(4)溶融粘度
 東洋精機社製キャピラグラフ、φ1×10(mm)細管、樹脂温度380℃、せん断速度1000s-1における溶融粘度を測定し、表5および表6に示した。
(4) Melt viscosity Melt viscosities were measured at Capillograph manufactured by Toyo Seiki Co., Ltd., φ1 × 10 (mm) capillary, resin temperature 380 ° C., shear rate 1000 s −1 , and are shown in Table 5 and Table 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5および表6に示したように、実施例A11~A23は焼付き時間が30分以上、摩耗量が10μm以下で、耐焼付き性、耐摩耗性に優れていた。また、樹脂温度380℃、せん断速度1000s-1における溶融粘度が200Pa・s以下の実施例A11~A15、A17~A21、A23は、インサート成形で所定の樹脂層を形成することができた。 As shown in Tables 5 and 6, in Examples A11 to A23, the seizure time was 30 minutes or more, the wear amount was 10 μm or less, and the seizure resistance and the wear resistance were excellent. In Examples A11 to A15, A17 to A21, and A23 having a melt temperature of 200 Pa · s or less at a resin temperature of 380 ° C. and a shear rate of 1000 s −1 , a predetermined resin layer could be formed by insert molding.
 ナット本体と樹脂層が樹脂で一体の従来品である比較例A2、樹脂層に固体潤滑剤や補強材を含まない比較例A3は、焼き付き時間が1分未満ですぐに焼き付き、摩耗量も非常に多かった。 The comparative example A2 in which the nut body and the resin layer are integrated with resin is the comparative example A2, and the comparative example A3 in which the resin layer does not contain the solid lubricant or the reinforcing material, the seizure time is less than 1 minute, and the amount of wear is very high. It was a lot.
 本発明の圧縮機用滑り軸受の実施例について以下に説明する。 Examples of the sliding bearing for a compressor according to the present invention will be described below.
[実施例B1~B20、比較例B1~B4]
 実施例、比較例に用いた焼結金属製基材は、上述の表1の摺動ナット本体用材料と同じである。実施例、比較例には基材A~基材I、基材Kの円筒状基材(φ30×φ35×20(mm))を用意した。また、実施例、比較例に用いた樹脂層の原材料も、上述の摺動ナットの樹脂層で用いたものと同じである。
[Examples B1 to B20, Comparative Examples B1 to B4]
The sintered metal base material used in the examples and comparative examples is the same as the sliding nut body material shown in Table 1 above. For Examples and Comparative Examples, cylindrical base materials (φ30 × φ35 × 20 (mm)) of base materials A to I and K were prepared. Moreover, the raw material of the resin layer used for the Example and the comparative example is also the same as that used for the resin layer of the above-described sliding nut.
 樹脂層の原材料を表7に示す配合割合(体積%)でヘンシェル乾式混合機を用いてドライブレンドし、二軸押出し機を用いて溶融混練し射出成形用ペレットを作製した。 The raw material of the resin layer was dry blended using a Henschel dry mixer at a blending ratio (volume%) shown in Table 7, and melt-kneaded using a twin screw extruder to produce pellets for injection molding.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例、比較例には、このペレットを用い、円筒状基材の内径に、樹脂層をインサート成形(樹脂温度380℃~400℃、金型温度180℃)で形成し、図5のようなラジアル荷重を支持する円筒状の滑り軸受(φ30×φ35×20(mm))を製作した。なお、円筒状基材の焼結寸法はφ30×φ35×20(mm)であるが、これに樹脂層を所定厚さに形成するため、円筒状基材の内径面は旋削してインサート成形を行なった。インサート成形する際には、軸受端面に9点のピンゲートを設け、樹脂層の溶融流動方向が滑り軸受の運動方向と直角となるようにした。 In the examples and comparative examples, the pellets were used, and a resin layer was formed on the inner diameter of the cylindrical base material by insert molding (resin temperature 380 ° C. to 400 ° C., mold temperature 180 ° C.), as shown in FIG. A cylindrical slide bearing (φ30 × φ35 × 20 (mm)) supporting a radial load was manufactured. The sintered dimension of the cylindrical base material is φ30 × φ35 × 20 (mm). In order to form a resin layer on the cylindrical substrate with a predetermined thickness, the inner surface of the cylindrical base material is turned and insert-molded. I did it. At the time of insert molding, nine pin gates were provided on the bearing end face so that the melt flow direction of the resin layer was perpendicular to the direction of motion of the sliding bearing.
 実施例B1~B9、比較例B1は、基材A~基材I、基材K(表1)からなる円筒状基材の内径(φ31mm)に、樹脂組成a(表7)のペレットを用いて樹脂層の厚さが0.5mmの円筒状滑り軸受をインサート成形により製作した。実施例B10~B20、比較例B2は、基材E(表1)からなる円筒状基材の内径に、樹脂組成a~樹脂組成h(表7)のペレットを用いて樹脂層の厚さが0.2~1.0mmの円筒状滑り軸受(φ30×φ35×20(mm))をインサート成形により製作した。 In Examples B1 to B9 and Comparative Example B1, pellets of the resin composition a (Table 7) are used on the inner diameter (φ31 mm) of the cylindrical base material composed of the base materials A to I and the base material K (Table 1). A cylindrical sliding bearing with a resin layer thickness of 0.5 mm was manufactured by insert molding. In Examples B10 to B20 and Comparative Example B2, the resin layer thickness is determined by using pellets of the resin composition a to the resin composition h (Table 7) on the inner diameter of the cylindrical substrate made of the substrate E (Table 1). A cylindrical sliding bearing (φ30 × φ35 × 20 (mm)) of 0.2 to 1.0 mm was manufactured by insert molding.
 比較例B3は、樹脂組成a(表7)を用いてφ30×φ35×20(mm)の形状に射出成形した樹脂単体の滑り軸受である。比較例B4は、裏金(SPCC)付多孔質焼結層(Cu+Sn)にPTFE樹脂組成物(炭素繊維10体積%入り)を含浸した3層型の滑り軸受(φ30×φ35×20mm,樹脂層0.05mm)である。 Comparative Example B3 is a plain bearing made of a single resin injection molded into a shape of φ30 × φ35 × 20 (mm) using the resin composition a (Table 7). Comparative Example B4 is a three-layer sliding bearing (φ30 × φ35 × 20 mm, resin layer 0) in which a porous sintered layer (Cu + Sn) with a back metal (SPCC) is impregnated with a PTFE resin composition (10% by volume of carbon fiber). 0.05 mm).
(1)せん断密着強さ試験
 実施例B1~B9、比較例B1の滑り軸受を用いて、せん断密着強さ試験を行なった。該せん断密着強さ試験は、円筒状基材を固定し、樹脂層に軸方向のせん断力を加え、焼結金属製基材から樹脂層が剥離する荷重を測定し、この荷重に、樹脂層と焼結金属製基材の見かけの接合面積を割った値を、せん断密着強さとし、表8に示した。また、滑り軸受を30個インサート成形し、成形圧による円筒状基材の割れの有無を確認し表8に併記した。
(1) Shear adhesion strength test A shear adhesion strength test was conducted using the sliding bearings of Examples B1 to B9 and Comparative Example B1. In this shear adhesion strength test, a cylindrical substrate is fixed, an axial shear force is applied to the resin layer, a load at which the resin layer peels from the sintered metal substrate is measured, and the resin layer Table 8 shows the value obtained by dividing the apparent bonding area of the sintered metal substrate and the shear adhesion strength. In addition, 30 slide bearings were insert-molded, and the presence or absence of cracks in the cylindrical base material due to the molding pressure was confirmed.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8のとおり、実施例B1~B9はインサート成形時に焼結金属製基材の割れがなく、1.5MPa以上のせん断密着強さがあった。特に焼結金属製基材の密度が、材質の理論密度比0.7~0.9である基材A~Hを用いた実施例B1~B8は、せん断密着強さが2MPa以上であった。一方、鋼材の機械加工品では、せん断密着強さが非常に低い値であった(比較例B1)。 As shown in Table 8, Examples B1 to B9 had no shearing of the sintered metal base material during insert molding, and had a shear adhesion strength of 1.5 MPa or more. In particular, Examples B1 to B8 using the base materials A to H in which the density of the sintered metal base material is 0.7 to 0.9 in terms of the theoretical density ratio of the materials had a shear adhesion strength of 2 MPa or more. . On the other hand, in the steel machined product, the shear adhesion strength was a very low value (Comparative Example B1).
(2)耐焼付き性試験
 実施例B10~B20、比較例B2~B4の滑り軸受を用いて、油中ラジアル型試験機により耐焼付き性試験を実施した。上述の表4の油供給条件で30分慣らし運転後、油供給を停止・油排出し焼付くまでの時間を測定した。焼付き時間は、滑り軸受の外径部温度が20℃上昇またはトルクが2倍に上昇するまでの時間とし、表9および表10に示した。
(2) Seizure resistance test Using the slide bearings of Examples B10 to B20 and Comparative Examples B2 to B4, seizure resistance tests were performed with a radial in-oil tester. After running-in for 30 minutes under the oil supply conditions in Table 4 above, the time from oil supply stop / oil discharge to seizure was measured. The seizure time is the time required for the temperature of the outer diameter portion of the slide bearing to rise by 20 ° C. or the torque to double, and is shown in Tables 9 and 10.
(3)摩耗試験
 耐焼付き性試験と同じ円筒状滑り軸受について、油中ラジアル型試験機を用い、上述の表4の油供給条件で30時間運転した後の摩耗量を測定した。摩耗量を表9および表10に示した。
(3) Wear test About the same cylindrical sliding bearing as the seizure resistance test, the wear amount after operating for 30 hours under the oil supply conditions shown in Table 4 above was measured using an in-oil radial type tester. The amount of wear is shown in Tables 9 and 10.
(4)溶融粘度
 東洋精機社製キャピラグラフ、φ1×10(mm)細管、樹脂温度380℃、せん断速度1000s-1における溶融粘度を測定し、表9および表10に示した。
(4) Melt Viscosity The melt viscosity was measured at Toyo Seiki Co. Capiragraph, φ1 × 10 (mm) capillary, resin temperature 380 ° C., shear rate 1000 s −1 , and are shown in Table 9 and Table 10.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例B10~B20は焼付き時間が30分以上、摩耗量が10μm以下で、耐焼付き性、耐摩耗性に優れていた。 In Examples B10 to B20, the seizure time was 30 minutes or more, the wear amount was 10 μm or less, and the seizure resistance and the wear resistance were excellent.
 樹脂層の厚みが0.7mmを超える比較例B2は、焼付き時間が1分未満で、摩耗量も非常に大きかった。比較例B3は、30分以内で異常摩耗したため、耐焼付き性試験は実施できなかった。比較例B4の滑り軸受は、焼付き時間が1分未満ですぐに焼付き、摩耗量も大きかった。 In Comparative Example B2 in which the thickness of the resin layer exceeds 0.7 mm, the seizure time was less than 1 minute and the wear amount was very large. Since Comparative Example B3 was abnormally worn within 30 minutes, the seizure resistance test could not be performed. The sliding bearing of Comparative Example B4 seized immediately after a seizure time of less than 1 minute, and the amount of wear was large.
 本発明のクレイドルガイドの実施例について以下に説明する。 Examples of the cradle guide according to the present invention will be described below.
[実施例C1~C21、比較例C1~C4]
 実施例、比較例に用いた焼結金属製基材は、上述の表1の摺動ナット本体用材料と同じである。また、実施例、比較例に用いた樹脂層の原材料も、上述の摺動ナットの樹脂層で用いたものと同じである。
[Examples C1 to C21, Comparative Examples C1 to C4]
The sintered metal base material used in the examples and comparative examples is the same as the sliding nut body material shown in Table 1 above. Moreover, the raw material of the resin layer used for the Example and the comparative example is also the same as that used for the resin layer of the above-described sliding nut.
 樹脂層の原材料を表11に示す配合割合(体積%)でヘンシェル乾式混合機を用いてドライブレンドし、二軸押出し機を用いて溶融混練し射出成形用ペレットを作製した。 The raw material of the resin layer was dry blended using a Henschel dry mixer at a blending ratio (volume%) shown in Table 11, and melt-kneaded using a twin screw extruder to produce pellets for injection molding.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(1)せん断密着強さ試験(実施例C1~C9、比較例C1)
 せん断密着強さ試験は、円筒状のテストピースを用いて行なった。円筒状のテストピースは、上述の表1に記載の基材A~基材I、基材Kから、φ31×φ35×20(mm)の円筒状基材を成形し、この内径に表11に記載の上記ペレットを用いて樹脂層の厚さが0.5mmにインサート成形(樹脂温度380℃~400℃、金型温度180℃)により製作したものである。インサート成形する際には、円筒状テストピースの端面に9点のピンゲートを設け、樹脂層の溶融流動方向が円筒状テストピースの軸線方向になるようにした。
(1) Shear adhesion strength test (Examples C1 to C9, Comparative Example C1)
The shear adhesion strength test was performed using a cylindrical test piece. A cylindrical test piece was formed from a base material A to a base material I and a base material K described in Table 1 above, and a cylindrical base material of φ31 × φ35 × 20 (mm) was formed. A resin layer having a thickness of 0.5 mm was produced by insert molding (resin temperature: 380 ° C. to 400 ° C., mold temperature: 180 ° C.) using the pellets described above. At the time of insert molding, nine pin gates were provided on the end surface of the cylindrical test piece so that the melt flow direction of the resin layer was the axial direction of the cylindrical test piece.
 せん断密着強さ試験は、この円筒状テストピースを固定し、樹脂層に軸方向のせん断力を加え、焼結金属製基材から樹脂層が剥離する荷重を測定し、この荷重に、樹脂層と焼結金属製基材の見かけの接合面積を割った値を、せん断密着強さとし、表12に示した。また、円筒状テストピースを30個インサート成形し、成形圧による円筒状基材の割れの有無を確認し表12に併記した。 In the shear adhesion strength test, this cylindrical test piece is fixed, an axial shear force is applied to the resin layer, the load at which the resin layer peels from the sintered metal substrate is measured, and the resin layer Table 12 shows the values obtained by dividing the apparent bonding area of the sintered metal substrate and the shear adhesion strength. In addition, 30 cylindrical test pieces were insert-molded, and the presence or absence of cracks in the cylindrical base material due to the molding pressure was confirmed.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12のとおり、実施例C1~C9はインサート成形時に焼結金属製基材の割れがなく、1.5MPa以上のせん断密着強さがあった。特に、焼結金属製基材の密度が、材質の理論密度比0.7~0.9である基材A~Hを用いた実施例C1~C8は、せん断密着強さが2MPa以上であった。一方、鋼材の機械加工品では、せん断密着強さが非常に低い値であった(比較例C1)。 As shown in Table 12, in Examples C1 to C9, the sintered metal base material was not cracked at the time of insert molding, and the shear adhesion strength was 1.5 MPa or more. In particular, in Examples C1 to C8 using the base materials A to H in which the density of the sintered metal base material is 0.7 to 0.9 of the theoretical density ratio of the materials, the shear adhesion strength is 2 MPa or more. It was. On the other hand, in the steel machined product, the shear adhesion strength was very low (Comparative Example C1).
(2)耐焼付き性試験(実施例C10~C20、比較例C2~C3)
 油中ラジアル型試験機による耐焼付き性試験は、円筒状のテストピースを用いて行なった。円筒状テストピースは、せん断密着強さ試験に用いた円筒状テストピースと同様に製作したものである。なお、比較例C3は、裏金(SPCC)付多孔質焼結層(Cu+Sn)にPTFE樹脂組成物(炭素繊維10体積%入り)を含浸した3層型の滑り軸受(φ30×φ35×20mm,樹脂層0.05mm)を使用したものである。上述の表4の油供給条件で30分慣らし運転後、油供給を停止・油排出し焼付くまでの時間を測定した。焼付き時間は、円筒状テストピースの外径部温度が20℃上昇またはトルクが2倍に上昇するまでの時間とし、表13に示した。
(2) Seizure resistance test (Examples C10 to C20, Comparative Examples C2 to C3)
The seizure resistance test using an in-oil radial type tester was performed using a cylindrical test piece. The cylindrical test piece is manufactured in the same manner as the cylindrical test piece used for the shear adhesion strength test. Comparative Example C3 is a three-layer type slide bearing (φ30 × φ35 × 20 mm, resin, impregnated with PTFE resin composition (10% by volume of carbon fiber) in a porous sintered layer (Cu + Sn) with a back metal (SPCC) Layer 0.05 mm). After running-in for 30 minutes under the oil supply conditions in Table 4 above, the time from oil supply stop / oil discharge to seizure was measured. The seizing time was the time required for the outer diameter temperature of the cylindrical test piece to rise by 20 ° C. or the torque to double, and is shown in Table 13.
(3)摩耗試験
 耐焼付き性試験と同じ円筒状テストピースについて、油中ラジアル型試験機を用い、上述の表4の油供給条件で30時間運転した後の摩耗量を測定した。摩耗量を表13に示した。
(3) Wear test About the same cylindrical test piece as the seizure resistance test, the wear amount after operating for 30 hours under the oil supply conditions shown in Table 4 above was measured using an in-oil radial type tester. The amount of wear is shown in Table 13.
(4)溶融粘度
 東洋精機社製キャピラグラフ、φ1×10(mm)細管、樹脂温度380℃、せん断速度1000s-1における溶融粘度を測定し、表13に示した。
(4) Melt Viscosity The melt viscosity at Toyo Seiki Co., Ltd. Capiragraph, φ1 × 10 (mm) capillary, resin temperature 380 ° C., shear rate 1000 s −1 was measured and shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例C10~C20は、焼付き時間が30分以上、摩耗量が10μm以下で、耐焼付き性、耐摩耗性に優れていた。一方、樹脂層の厚みが0.7mmを超える比較例C2は、焼付き時間が1分未満で、摩耗量も非常に大きかった。また、比較例C3は、焼付き時間が1分未満ですぐに焼付き、摩耗量も大きかった。 In Examples C10 to C20, the seizure time was 30 minutes or more, the wear amount was 10 μm or less, and the seizure resistance and the wear resistance were excellent. On the other hand, Comparative Example C2 in which the thickness of the resin layer exceeds 0.7 mm has a seizure time of less than 1 minute and a very large wear amount. Further, Comparative Example C3 was seized immediately after a seizure time of less than 1 minute, and the amount of wear was large.
(5)往復動試験(実施例C21、比較例C4)
 実施例C21は、縦25mm、横50mm、高さ20mmに成形した基材E(表1)の表面に、樹脂組成d(表11)の樹脂層をインサート成形で形成して試験片を製作した。この試験片について、アルミニウム合金製の相手材を用いて、下記条件にて往復動試験を行ない、結果を表14に示した。なお、インサート成形する際には、樹脂層の溶融流動方向が試験片の運動方向と直角となるようにした。また、比較例C4は、裏金(SPCC)付多孔質焼結層(Cu+Sn)にPTFE樹脂組成物(炭素繊維10体積%入り)を含浸した3層型の滑り軸受(板厚2.5mm,樹脂層0.05mm)を縦25mm、横50mm、高さ17mmの台座に固定して試験片を製作し、アルミニウム合金製の相手材を用いて同様の往復動試験を行ない、結果を表14に示した。
 
[試験条件]
 試験機   :NTN製往復動試験機
 面圧    :45MPa
 最大加振速度:3m/min
 振幅    :+-50mm
 温度    :室温(25℃)
 潤滑条件  :油潤滑
 試験時間  :往復2000回(初期、500回、1000回の時に摩擦係数を測定する。)
 
(5) Reciprocating test (Example C21, Comparative Example C4)
In Example C21, a test piece was manufactured by forming a resin layer of a resin composition d (Table 11) by insert molding on the surface of a base material E (Table 1) molded to a length of 25 mm, a width of 50 mm, and a height of 20 mm. . About this test piece, the reciprocation test was done on the following conditions using the counterpart material made from an aluminum alloy, and the result was shown in Table 14. In insert molding, the melt flow direction of the resin layer was perpendicular to the direction of movement of the test piece. Comparative Example C4 is a three-layer slide bearing (plate thickness: 2.5 mm, resin, impregnated with PTFE resin composition (10% by volume of carbon fiber) in a porous sintered layer (Cu + Sn) with a back metal (SPCC). A test piece was manufactured by fixing a layer (0.05 mm) to a pedestal having a length of 25 mm, a width of 50 mm, and a height of 17 mm, and a similar reciprocating test was performed using an aluminum alloy mating member. The results are shown in Table 14. It was.

[Test conditions]
Testing machine: NTN reciprocating testing machine Surface pressure: 45MPa
Maximum excitation speed: 3m / min
Amplitude: + -50mm
Temperature: Room temperature (25 ° C)
Lubrication conditions: Oil lubrication Test time: 2000 reciprocations (initially, 500 times, 1000 times, coefficient of friction is measured)
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例C21は、往復動試験において、試験終了時まで低摩擦係数であり、樹脂層の状態に変化はみられなかった。これにより実施例のクレイドルガイドは、可変容量型ピストンポンプの長期使用に耐えられるものであり、30MPa以上の耐荷重性、耐摩耗性および低摩擦特性を全て満足できるものであることが確認された。一方、比較例C4は、往復1000回で摩擦係数が上昇したため試験を中断した。 Example C21 had a low coefficient of friction until the end of the test in the reciprocation test, and no change was observed in the state of the resin layer. As a result, it was confirmed that the cradle guide of the example can withstand long-term use of the variable displacement piston pump and can satisfy all of the load resistance, wear resistance and low friction characteristics of 30 MPa or more. . On the other hand, in Comparative Example C4, the test was stopped because the friction coefficient increased after 1000 reciprocations.
 本発明の摺動ナットを備えたすべりねじ装置は、製造が容易であり、高負荷条件でも耐焼き付き性や耐摩耗性などの摺動特性に優れるので、産業機械などにおいて高負荷・高温条件などで用いるすべりねじ装置として好適に利用できる。
 また、本発明の圧縮機用滑り軸受は、製造が容易でありながら、高い寸法精度を有し、かつ、耐熱性、低摩擦性、耐摩耗性、耐荷重性、耐クリープ性に優れ、低回転トルクを安定的に得ることができるので、ルームエアコン用やカーエアコン用の圧縮機(コンプレッサ)において、その圧縮機構を駆動するための回転部材を回転可能に支持する滑り軸受として好適に利用できる。
 また、本発明のクレイドルガイドは、製造が容易で低コストでありながら、30MPa以上の耐荷重性、耐摩耗性および低摩擦特性を全て満足できるので、油圧ショベルなどの建設機械や一般産業機械の油圧源として備えられる油圧ポンプまたは油圧モータ等に用いる可変容量型アキシャルピストンポンプにおいて好適に利用できる。
The slide screw device provided with the sliding nut of the present invention is easy to manufacture and has excellent sliding characteristics such as seizure resistance and wear resistance even under high load conditions. Can be suitably used as a sliding screw device used in the above.
Moreover, the sliding bearing for a compressor according to the present invention has high dimensional accuracy and is excellent in heat resistance, low friction, wear resistance, load resistance, and creep resistance while being easy to manufacture. Since the rotational torque can be stably obtained, it can be suitably used as a sliding bearing that rotatably supports a rotating member for driving the compression mechanism in a compressor for a room air conditioner or a car air conditioner. .
In addition, the cradle guide of the present invention is easy to manufacture and low in cost, but can satisfy all of the load resistance, wear resistance and low friction characteristics of 30 MPa or more, so that it can be used for construction machines such as hydraulic excavators and general industrial machines. The present invention can be suitably used in a variable displacement axial piston pump used for a hydraulic pump or a hydraulic motor provided as a hydraulic source.
 1、1a、1b ラジアル滑り軸受(圧縮機用滑り軸受)
 2、22 焼結金属製基材
 3、23 樹脂層
 4 繊維状充填材
 5、5’、5’’ 圧縮機
 6 シリンダブロック
 7 フロントハウジング
 8 弁形成体
 9 リヤハウジング
 10 クランク室
 11 駆動軸
 12 ラグプレート
 13 斜板
 14 ヒンジ機構
 15 シリンダボア
 16 ピストン
 17 シュー
 18a、18b スラスト転がり軸受
 19 吸入室
 20 吐出室
 21 スラスト滑り軸受(圧縮機用滑り軸受)
 24 プレート
 31a、31b ラジアル滑り軸受(圧縮機用滑り軸受)
 32 駆動軸
 33 シリンダブロック
 34 フロントハウジング
 35 リヤハウジング
 36 斜板
 37 クランク室
 38 シュー
 39 ピストン
 40 弁形成体
 41 吸入室
 42 吐出室
 43 ボルト挿通孔
 44 スラスト転がり軸受
 51 固定スクロール
 52 センターハウジング
 53 モータハウジング
 54 シャフト
 55、56、59 ラジアル滑り軸受(圧縮機用滑り軸受)
 57 バランスウエイト
 58 可動スクロール
 60 ブッシュ
 61 密閉室
 62 ステータ
 63 ロータ
 64 吐出室
 65 モータ室
 66 シール部材
 67 低圧室
 68 空間
 71 すべりねじ装置
 72 ねじ軸
 73 摺動ナット
 81 クレイドルガイド
 82 ピストン
 83 クレイドル
 84 繊維状充填材
 85、86 ハウジング
 87 回転軸
 88 シリンダブロック
 89 弁板
 90、93 押圧バネ
 91 リテーナ
 92 シュー
 94 油圧制御装置
 95 シリンダ
1, 1a, 1b Radial plain bearing (slider bearing for compressor)
2, 22 Sintered metal base material 3, 23 Resin layer 4 Fibrous filler 5, 5 ', 5''Compressor 6 Cylinder block 7 Front housing 8 Valve forming body 9 Rear housing 10 Crank chamber 11 Drive shaft 12 Lug Plate 13 Swash plate 14 Hinge mechanism 15 Cylinder bore 16 Piston 17 Shoe 18a, 18b Thrust rolling bearing 19 Suction chamber 20 Discharge chamber 21 Thrust sliding bearing (sliding bearing for compressor)
24 Plate 31a, 31b Radial plain bearing (slider bearing for compressor)
32 Drive shaft 33 Cylinder block 34 Front housing 35 Rear housing 36 Swash plate 37 Crank chamber 38 Shoe 39 Piston 40 Valve forming body 41 Suction chamber 42 Discharge chamber 43 Bolt insertion hole 44 Thrust rolling bearing 51 Fixed scroll 52 Center housing 53 Motor housing 54 Shaft 55, 56, 59 Radial plain bearing (slider bearing for compressor)
57 Balance weight 58 Movable scroll 60 Bush 61 Sealed chamber 62 Stator 63 Rotor 64 Discharge chamber 65 Motor chamber 66 Seal member 67 Low pressure chamber 68 Space 71 Slide screw device 72 Screw shaft 73 Sliding nut 81 Cradle guide 82 Piston 83 Cradle 84 Fibrous Filler 85, 86 Housing 87 Rotating shaft 88 Cylinder block 89 Valve plate 90, 93 Pressing spring 91 Retainer 92 Shoe 94 Hydraulic controller 95 Cylinder

Claims (24)

  1.  すべりねじ装置において、ねじ軸の回転に伴い、該ねじ軸の軸上を摺動しながら相対的に移動する摺動ナットであって、
     前記摺動ナットは、ナット本体が焼結金属からなり、該ナット本体における前記ねじ軸に螺合するめねじ部表面に、ねじ溝部として合成樹脂をベース樹脂とする樹脂組成物の樹脂層が形成されていることを特徴とする摺動ナット。
    In the sliding screw device, a sliding nut that moves relatively while sliding on the axis of the screw shaft as the screw shaft rotates,
    In the sliding nut, the nut body is made of a sintered metal, and a resin layer of a resin composition having a synthetic resin as a base resin is formed as a thread groove portion on the surface of the female thread portion that is screwed to the screw shaft in the nut body. A sliding nut characterized by
  2.  前記樹脂層は、前記ナット本体に重ねて射出成形された樹脂層であることを特徴とする請求項1記載の摺動ナット。 The sliding nut according to claim 1, wherein the resin layer is a resin layer that is injection-molded over the nut body.
  3.  前記合成樹脂が、芳香族ポリエーテルケトン系樹脂であることを特徴とする請求項1記載の摺動ナット。 The sliding nut according to claim 1, wherein the synthetic resin is an aromatic polyether ketone resin.
  4.  前記樹脂層の層厚が、0.1~1.5mmであることを特徴とする請求項1記載の摺動ナット。 The sliding nut according to claim 1, wherein the resin layer has a thickness of 0.1 to 1.5 mm.
  5.  前記樹脂組成物が、繊維状充填材を含むことを特徴とする請求項3記載の摺動ナット。 The sliding nut according to claim 3, wherein the resin composition contains a fibrous filler.
  6.  前記繊維状充填材が、平均繊維長0.02~0.2mmの繊維状充填材であることを特徴とする請求項5記載の摺動ナット。 The sliding nut according to claim 5, wherein the fibrous filler is a fibrous filler having an average fiber length of 0.02 to 0.2 mm.
  7.  前記ナット本体の焼結金属が、理論密度比0.7~0.9であることを特徴とする請求項1記載の摺動ナット。 The sliding nut according to claim 1, wherein the sintered metal of the nut body has a theoretical density ratio of 0.7 to 0.9.
  8.  前記樹脂組成物が、樹脂温度380℃、せん断速度1000s-1における溶融粘度50~200Pa・sの樹脂組成物であることを特徴とする請求項3記載の摺動ナット。 4. The sliding nut according to claim 3, wherein the resin composition is a resin composition having a melt viscosity of 50 to 200 Pa · s at a resin temperature of 380 ° C. and a shear rate of 1000 s −1 .
  9.  前記樹脂組成物が、樹脂組成物全体に対して、前記繊維状充填材として炭素繊維を5~30体積%、ポリテトラフルオロエチレン樹脂を1~30体積%含むことを特徴とする請求項5載の摺動ナット。 6. The resin composition according to claim 5, wherein the fiber composition contains 5 to 30% by volume of carbon fiber and 1 to 30% by volume of polytetrafluoroethylene resin as the fibrous filler with respect to the entire resin composition. Sliding nut.
  10.  前記炭素繊維が、PAN系炭素繊維であることを特徴とする請求項9記載の摺動ナット。 The sliding nut according to claim 9, wherein the carbon fiber is a PAN-based carbon fiber.
  11.  ねじ軸と、このねじ軸の回転に伴い、該ねじ軸の軸上を摺動しながら相対的に移動する摺動ナットとを備えるすべりねじ装置であって、
     前記摺動ナットが、請求項1記載の摺動ナットであることを特徴とするすべりねじ装置。
    A sliding screw device comprising a screw shaft and a sliding nut that moves relatively while sliding on the shaft of the screw shaft as the screw shaft rotates.
    The sliding screw device according to claim 1, wherein the sliding nut is the sliding nut according to claim 1.
  12.  前記すべりねじ装置が、油またはグリースで潤滑されることを特徴とする請求項11記載のすべりねじ装置。 The sliding screw device according to claim 11, wherein the sliding screw device is lubricated with oil or grease.
  13.  圧縮機の圧縮機構を駆動するための回転部材を回転可能に支持する圧縮機用滑り軸受であって、
     前記滑り軸受は、焼結金属製基材に、芳香族ポリエーテルケトン系樹脂をベース樹脂とする樹脂組成物からなる樹脂層の摺動面を有し、
     前記樹脂層は、前記焼結金属製基材の表面に0.1~0.7mmの厚さで射出成形により重ねて一体に設けられたことを特徴とする圧縮機用滑り軸受。
    A sliding bearing for a compressor that rotatably supports a rotating member for driving a compression mechanism of the compressor,
    The sliding bearing has a sliding surface of a resin layer made of a resin composition based on an aromatic polyether ketone-based resin on a sintered metal base,
    A sliding bearing for a compressor, wherein the resin layer is integrally provided by injection molding on the surface of the sintered metal base material with a thickness of 0.1 to 0.7 mm.
  14.  前記樹脂組成物が繊維状充填材を含み、前記樹脂層において該繊維状充填材が、繊維の長さ方向を滑り軸受の摺動方向に対して45~90度に交差するように配向していることを特徴とする請求項13記載の圧縮機用滑り軸受。 The resin composition includes a fibrous filler, and in the resin layer, the fibrous filler is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the sliding bearing. The sliding bearing for a compressor according to claim 13, wherein the sliding bearing is for a compressor.
  15.  前記樹脂組成物が、該樹脂組成物全体に対して、前記繊維状充填材として炭素繊維を5~30体積%、ポリテトラフルオロエチレン樹脂を1~30体積%含むことを特徴とする請求項14記載の圧縮機用滑り軸受。 15. The resin composition contains 5 to 30% by volume of carbon fiber and 1 to 30% by volume of polytetrafluoroethylene resin as the fibrous filler with respect to the entire resin composition. The sliding bearing for a compressor as described.
  16.  前記滑り軸受は、前記回転部材をラジアル方向に支持する軸受であり、前記圧縮機構のハウジング内の内部空間を圧力的に隔絶するように配設されていることを特徴とする請求項13記載の圧縮機用滑り軸受。 The slide bearing is a bearing that supports the rotating member in a radial direction, and is arranged so as to pressure-isolate an internal space in the housing of the compression mechanism. Slide bearing for compressor.
  17.  前記滑り軸受は、前記回転部材をスラスト方向に支持する軸受であり、前記圧縮機構において発生する圧縮反力を前記回転部材を介して受ける側に配設されていることを特徴とする請求項13記載の圧縮機用滑り軸受。 The sliding bearing is a bearing that supports the rotating member in a thrust direction, and is disposed on a side that receives a compression reaction force generated in the compression mechanism via the rotating member. The sliding bearing for a compressor as described.
  18.  圧縮機構を駆動するための回転部材を回転可能に支持する滑り軸受を備えた圧縮機であって、前記滑り軸受が、請求項13記載の圧縮機用滑り軸受であることを特徴とする圧縮機。 A compressor comprising a sliding bearing that rotatably supports a rotating member for driving a compression mechanism, wherein the sliding bearing is a sliding bearing for a compressor according to claim 13. .
  19.  可変容量型アキシャルピストンポンプにおけるピストンストロークを調整するクレイドルに摺接し、このクレイドルが揺動可能であるように保持するクレイドルガイドであって、
     前記クレイドルガイドは、焼結金属製部材と、芳香族ポリエーテルケトン系樹脂をベース樹脂とする樹脂組成物からなる樹脂層とを有し、
     前記樹脂層は、前記焼結金属製部材の少なくとも前記クレイドルと摺接する表面に0.1~0.7mmの厚さで射出成形により重ねて一体に設けられたことを特徴とする可変容量型アキシャルピストンポンプのクレイドルガイド。
    A cradle guide that slides in contact with a cradle that adjusts a piston stroke in a variable displacement axial piston pump and holds the cradle so that it can swing.
    The cradle guide has a sintered metal member and a resin layer made of a resin composition based on an aromatic polyetherketone resin,
    The variable capacity type axial is characterized in that the resin layer is integrally formed by injection molding at a thickness of 0.1 to 0.7 mm on at least a surface of the sintered metal member that is in sliding contact with the cradle. Cradle guide for piston pumps.
  20.  前記樹脂組成物が繊維状充填材を含み、前記樹脂層において該繊維状充填材が、繊維の長さ方向をクレイドルガイドの摺動方向に対して45~90度に交差するように配向していることを特徴とする請求項19記載の可変容量型アキシャルピストンポンプのクレイドルガイド。 The resin composition includes a fibrous filler, and in the resin layer, the fibrous filler is oriented so that the length direction of the fiber intersects 45 to 90 degrees with respect to the sliding direction of the cradle guide. The cradle guide for a variable displacement axial piston pump according to claim 19.
  21.  前記樹脂組成物が、該樹脂組成物全体に対して、前記繊維状充填材として炭素繊維を5~30体積%、ポリテトラフルオロエチレン樹脂を1~30体積%含むことを特徴とする請求項20記載の可変容量型アキシャルピストンポンプのクレイドルガイド。 The resin composition contains 5 to 30% by volume of carbon fiber and 1 to 30% by volume of polytetrafluoroethylene resin as the fibrous filler with respect to the entire resin composition. A cradle guide for the described variable displacement axial piston pump.
  22.  前記焼結金属製部材が、クレイドルガイド本体であることを特徴とする請求項19記載の可変容量型アキシャルピストンポンプのクレイドルガイド。 20. The cradle guide of a variable displacement axial piston pump according to claim 19, wherein the sintered metal member is a cradle guide body.
  23.  前記クレイドルガイドが、溶製金属製のクレイドルガイド本体を有し、該クレイドルガイド本体に前記焼結金属製部材が設置されていることを特徴とする請求項19記載の可変容量型アキシャルピストンポンプのクレイドルガイド。 20. The variable displacement axial piston pump according to claim 19, wherein the cradle guide has a cradle guide body made of molten metal, and the sintered metal member is installed in the cradle guide body. Cradle guide.
  24.  請求項19記載のクレイドルガイドを備えることを特徴とする可変容量型アキシャルピストンポンプ。 A variable displacement axial piston pump comprising the cradle guide according to claim 19.
PCT/JP2012/070524 2011-08-11 2012-08-10 Sliding nut, sliding bearing for compressor, and cradle guide WO2013022094A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-176079 2011-08-11
JP2011176079A JP2013040628A (en) 2011-08-11 2011-08-11 Sliding nut and sliding screw device
JP2012-006408 2012-01-16
JP2012006408A JP5938217B2 (en) 2012-01-16 2012-01-16 Compressor plain bearings and compressors
JP2012072406A JP5925553B2 (en) 2012-03-27 2012-03-27 Variable displacement axial piston pump cradle guide and variable displacement axial piston pump
JP2012-072406 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013022094A1 true WO2013022094A1 (en) 2013-02-14

Family

ID=47668596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070524 WO2013022094A1 (en) 2011-08-11 2012-08-10 Sliding nut, sliding bearing for compressor, and cradle guide

Country Status (1)

Country Link
WO (1) WO2013022094A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529730A (en) * 2012-09-04 2015-10-08 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー High melt flow PEAK composition
JP2015533872A (en) * 2012-09-04 2015-11-26 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー High melt flow PEAK composition
CN105889272A (en) * 2016-06-27 2016-08-24 无锡瑾宸表面处理有限公司 Special nut for steam boiler
CN110520455A (en) * 2017-04-12 2019-11-29 东洋制罐集团控股株式会社 The production method of composition and formed body with high filler content
US10598167B2 (en) 2014-07-23 2020-03-24 Ntn Corporation Semispherical shoe for swash plate compressor and swash plate compressor
US10670074B2 (en) 2014-08-22 2020-06-02 Ntn Corporation Method for producing semispherical shoe for swash plate compressor and injection molding die
US20220282775A1 (en) * 2021-03-03 2022-09-08 Timotion Technology Co., Ltd. Nut structure for electric pushing rod

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125979A (en) * 1988-11-02 1990-05-14 Agency Of Ind Science & Technol Piston pump for water
JPH08334081A (en) * 1995-06-06 1996-12-17 Toyota Autom Loom Works Ltd Variable delivery piston pump
JP2559510Y2 (en) * 1991-12-24 1998-01-19 株式会社豊田自動織機製作所 Cradle type variable displacement axial piston pump
JPH10281132A (en) * 1997-03-31 1998-10-20 Ntn Corp Resin nut, manufacture thereof, and slide screw device
JP2584135Y2 (en) * 1991-06-28 1998-10-30 株式会社豊田自動織機製作所 Variable displacement piston pump
JP2000346164A (en) * 1999-06-08 2000-12-12 Oiles Ind Co Ltd Porous hydrostatic gas screw
JP2002295471A (en) * 2001-03-28 2002-10-09 Ntn Corp Compound slide bearing and guide roller
JP2002349437A (en) * 2001-05-24 2002-12-04 Toyota Industries Corp Compressor
JP2003239976A (en) * 2001-12-12 2003-08-27 Ntn Corp High precision sliding bearing
JP2004108547A (en) * 2002-09-20 2004-04-08 Tsubaki Emerson Co Electric cylinder
JP2004197800A (en) * 2002-12-17 2004-07-15 Saginomiya Seisakusho Inc Motor operated valve
JP2006138405A (en) * 2004-11-12 2006-06-01 Ntn Corp Nut with flange and sliding screw device
JP2007205254A (en) * 2006-02-01 2007-08-16 Oiles Ind Co Ltd Scroll compressor and manufacturing method of shaft support part in scroll compressor
JP2008256047A (en) * 2007-04-03 2008-10-23 Ntn Corp Nut for sliding screw device, and sliding screw device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125979A (en) * 1988-11-02 1990-05-14 Agency Of Ind Science & Technol Piston pump for water
JP2584135Y2 (en) * 1991-06-28 1998-10-30 株式会社豊田自動織機製作所 Variable displacement piston pump
JP2559510Y2 (en) * 1991-12-24 1998-01-19 株式会社豊田自動織機製作所 Cradle type variable displacement axial piston pump
JPH08334081A (en) * 1995-06-06 1996-12-17 Toyota Autom Loom Works Ltd Variable delivery piston pump
JPH10281132A (en) * 1997-03-31 1998-10-20 Ntn Corp Resin nut, manufacture thereof, and slide screw device
JP2000346164A (en) * 1999-06-08 2000-12-12 Oiles Ind Co Ltd Porous hydrostatic gas screw
JP2002295471A (en) * 2001-03-28 2002-10-09 Ntn Corp Compound slide bearing and guide roller
JP2002349437A (en) * 2001-05-24 2002-12-04 Toyota Industries Corp Compressor
JP2003239976A (en) * 2001-12-12 2003-08-27 Ntn Corp High precision sliding bearing
JP2004108547A (en) * 2002-09-20 2004-04-08 Tsubaki Emerson Co Electric cylinder
JP2004197800A (en) * 2002-12-17 2004-07-15 Saginomiya Seisakusho Inc Motor operated valve
JP2006138405A (en) * 2004-11-12 2006-06-01 Ntn Corp Nut with flange and sliding screw device
JP2007205254A (en) * 2006-02-01 2007-08-16 Oiles Ind Co Ltd Scroll compressor and manufacturing method of shaft support part in scroll compressor
JP2008256047A (en) * 2007-04-03 2008-10-23 Ntn Corp Nut for sliding screw device, and sliding screw device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529730A (en) * 2012-09-04 2015-10-08 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー High melt flow PEAK composition
JP2015533872A (en) * 2012-09-04 2015-11-26 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー High melt flow PEAK composition
US10598167B2 (en) 2014-07-23 2020-03-24 Ntn Corporation Semispherical shoe for swash plate compressor and swash plate compressor
US10670074B2 (en) 2014-08-22 2020-06-02 Ntn Corporation Method for producing semispherical shoe for swash plate compressor and injection molding die
CN105889272A (en) * 2016-06-27 2016-08-24 无锡瑾宸表面处理有限公司 Special nut for steam boiler
CN110520455A (en) * 2017-04-12 2019-11-29 东洋制罐集团控股株式会社 The production method of composition and formed body with high filler content
US20220282775A1 (en) * 2021-03-03 2022-09-08 Timotion Technology Co., Ltd. Nut structure for electric pushing rod
US11719314B2 (en) * 2021-03-03 2023-08-08 Timotion Technology Co., Ltd. Nut structure for electric pushing rod

Similar Documents

Publication Publication Date Title
EP2833009B1 (en) Composite plain bearing, cradle guide, and sliding nut
WO2013022094A1 (en) Sliding nut, sliding bearing for compressor, and cradle guide
JP5925552B2 (en) Compound plain bearing
JP5925553B2 (en) Variable displacement axial piston pump cradle guide and variable displacement axial piston pump
JP5635352B2 (en) Compound plain bearing
JP6271992B2 (en) Internal gear pump
JP5938217B2 (en) Compressor plain bearings and compressors
JP5841186B2 (en) Compound plain bearing
JP6492156B2 (en) Internal gear pump
WO2016013558A1 (en) Semispherical shoe for swash plate compressor, and swash plate compressor
JP5806363B2 (en) Manufacturing method of compound plain bearing
JP2008082235A (en) Cradle carrier for variable displacement type axial piston pump
JP2018159310A (en) Slide bearing for compressor, and compressor
JP6146969B2 (en) Variable displacement axial piston pump cradle guide and variable displacement axial piston pump
JP3961164B2 (en) Resin composition for sliding key
JP6313682B2 (en) Swash plate compressor hemispherical shoe and swash plate compressor
JP2013040628A (en) Sliding nut and sliding screw device
JP2019007414A (en) Hemispherical shoe for swash plate type compressor, and swash plate type compressor
JP2018159308A (en) Cradle guide of variable displacement axial piston pump, and variable displacement axial piston pump
JP2017190675A (en) Manufacturing method of hemispherical shoe for swash plate compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821575

Country of ref document: EP

Kind code of ref document: A1