JP2008179532A - Piezoelectric ceramic material and piezoelectric element - Google Patents

Piezoelectric ceramic material and piezoelectric element Download PDF

Info

Publication number
JP2008179532A
JP2008179532A JP2007331643A JP2007331643A JP2008179532A JP 2008179532 A JP2008179532 A JP 2008179532A JP 2007331643 A JP2007331643 A JP 2007331643A JP 2007331643 A JP2007331643 A JP 2007331643A JP 2008179532 A JP2008179532 A JP 2008179532A
Authority
JP
Japan
Prior art keywords
piezoelectric
amount
spontaneous polarization
piezoelectric ceramic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007331643A
Other languages
Japanese (ja)
Other versions
JP4903683B2 (en
Inventor
Shuzo Iwashita
修三 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007331643A priority Critical patent/JP4903683B2/en
Publication of JP2008179532A publication Critical patent/JP2008179532A/en
Application granted granted Critical
Publication of JP4903683B2 publication Critical patent/JP4903683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-lead piezoelectric ceramic material where the amount of generated electric charges per pressure of 1 N when a positive piezoelectric effect is utilized can be increased and wherein the temperature stability of the electric charge generated in the range of -40 to 200°C relative to that at 25°C is excellent, and to provide a piezoelectric element. <P>SOLUTION: The piezoelectric ceramic material containing Mn of 0.05-1.5 pts.mass in terms of MnO<SB>2</SB>to 100 pts.mass of a main component in a bismuth layered compound whose compositional formula is denoted as Bi<SB>4</SB>Ti<SB>3</SB>O<SB>12</SB>-xä(Sr<SB>1-a</SB>Ca<SB>a</SB>)<SB>(1-b)</SB>Ba<SB>b</SB>TiO<SB>3</SB>} (wherein, 1.30≤x≤1.75, 0.40≤a≤0.60, 0≤b≤0.20) is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧電磁器および圧電素子に関し、例えば、共振子、超音波振動子、超音波モータ、あるいは加速度センサ、ノッキングセンサ、およびAEセンサ等の圧電センサなどに適し、特に、厚み縦振動で動作する、エネルギー閉じ込め型発振器の高周波共振子や正圧電効果(物体に応力を加えた場合に電気分極が発生し、物体表面に電荷が生じる効果)を利用した圧力センサ素子として好適に用いられる圧電磁器および圧電素子に関するものである。   The present invention relates to a piezoelectric ceramic and a piezoelectric element, and is suitable for, for example, a resonator, an ultrasonic vibrator, an ultrasonic motor, or a piezoelectric sensor such as an acceleration sensor, a knocking sensor, and an AE sensor. Piezoelectric ceramics suitably used as pressure sensor elements that utilize high-frequency resonators and positive piezoelectric effects (effects in which electrical polarization occurs when stress is applied to an object and charges are generated on the object surface) And a piezoelectric element.

従来から、圧電磁器を利用した製品としては、例えば、フィルタ、圧電共振子、(以下、発振子を含む概念である)超音波振動子、超音波モータ、圧電センサ等がある。   Conventionally, products using a piezoelectric ceramic include, for example, a filter, a piezoelectric resonator, an ultrasonic vibrator (hereinafter referred to as a concept including an oscillator), an ultrasonic motor, a piezoelectric sensor, and the like.

近年、自動車のエンジンやサスペンションといった部分に圧電素子が組み込まれ、正圧電効果を利用して、圧電素子に加えられた圧力をセンシングしてエンジンの燃焼制御や車体の姿勢制御に用いられている。特に、エンジン制御に用いられる圧電素子としては、排気ガスのクリーン化と燃費向上の目的で普及しているリーンバーン方式のエンジンの中で、アンチノックセンサがある。また、圧電素子は、次世代エンジンとして検討されている燃焼プラグを用いないHCCL(Homogenous Charge Compression Ignition)方式のエンジンの中で、希薄ガスの安定した燃焼を目的として燃焼圧の測定に使用が検討されている。   In recent years, piezoelectric elements are incorporated in parts such as automobile engines and suspensions, and the pressure applied to the piezoelectric elements is sensed using the positive piezoelectric effect and used for engine combustion control and vehicle body attitude control. In particular, as a piezoelectric element used for engine control, there is an anti-knock sensor among lean burn type engines that are widely used for the purpose of cleaning exhaust gas and improving fuel consumption. In addition, piezo-electric elements are being used for the measurement of combustion pressure for the purpose of stable combustion of dilute gas among HCCL (Homogenous Charge Compression Ignition) engines that do not use combustion plugs, which are being considered as next-generation engines. Has been.

これら、圧電素子はエンジンルーム内に搭載されるため、耐熱性の高い素子材料が必要となる。さらに、燃費を向上させるためには、エンジンシリンダ内の圧力を精密に測定して、きめ細かなリーンバーン制御をする必要があるため、センサの圧力・温度変化に対する出力信号特性(発生電荷の圧力特性および温度特性)の変化の少ない素子材料が必要とされる。   Since these piezoelectric elements are mounted in an engine room, element materials having high heat resistance are required. Furthermore, in order to improve fuel efficiency, it is necessary to precisely measure the pressure in the engine cylinder and perform fine lean burn control, so output signal characteristics (pressure characteristics of generated charge) with respect to sensor pressure and temperature changes. Further, an element material having a small change in temperature characteristics) is required.

従来、共振子や圧力センサ素子には、圧電性が高く、例えば大きなP/Vや圧力に対する大きな発生電荷が得られるPT(チタン酸鉛)系材料やPZT(チタン酸ジルコン酸鉛)系材料が使用されていた。しかしながら、PZTやPT系材料は、鉛が約60質量%含まれているため、酸性雨により鉛の溶出が起こり、環境汚染を招く危険性が指摘されている。そこで、鉛を含有しない圧電材料への高い期待が寄せられている。   Conventionally, a resonator or a pressure sensor element has a high piezoelectricity, for example, a PT (lead titanate) -based material or a PZT (lead zirconate titanate) -based material capable of obtaining a large generated charge with respect to a large P / V or pressure. It was used. However, since PZT and PT-based materials contain about 60% by mass of lead, the elution of lead is caused by acid rain, and there is a risk of causing environmental pollution. Therefore, high expectations are placed on piezoelectric materials that do not contain lead.

また、PZTやPT系材料は、キュリー温度Tcが約200〜300℃であることから、200℃程度の高温下で使用すると圧電定数が劣化してする点、室温の圧電定数に対して200℃の圧電定数が大きく変化する点などから、用途に大きな制限があった。例えば、圧力センサとして用いた場合、経時変化で圧電定数が劣化すると、同じ圧力でも出力電圧が変わってしまうし、室温の圧電定数に対する200℃の圧電定数の変化が大きいと、圧力と出力電圧との関係が線形でないので、出力電圧から正確な圧力を算出するのが困難になる。   In addition, since PZT and PT-based materials have a Curie temperature Tc of about 200 to 300 ° C, the piezoelectric constant deteriorates when used at a high temperature of about 200 ° C. There was a great limitation in the use because of the large change in the piezoelectric constant. For example, when used as a pressure sensor, if the piezoelectric constant deteriorates with time, the output voltage changes even at the same pressure. If the change in the piezoelectric constant at 200 ° C. relative to the piezoelectric constant at room temperature is large, the pressure and output voltage Is not linear, it is difficult to calculate an accurate pressure from the output voltage.

そこで、鉛を含有しない圧電磁器組成物として、ビスマス層状化合物を主体とする材料が提案されている(例えば特許文献1。)。   Therefore, a material mainly composed of a bismuth layered compound has been proposed as a piezoelectric ceramic composition not containing lead (for example, Patent Document 1).

ビスマス層状化合物を主体とする材料では、キュリー温度が400℃以上のものが多く、そのようなものは、高い耐熱性を有しておりエンジンルーム内といった高い温度にさらされる環境下で使用するセンサ素子として応用できる可能性がある。   Many materials mainly composed of bismuth layered compounds have a Curie temperature of 400 ° C or higher, and such materials have high heat resistance and are used in environments exposed to high temperatures such as in an engine room. There is a possibility of application as an element.

また、ビスマス層状化合物を主体とする材料では、PZTやPT系材料と比較して機械的品質係数(Qm)が比較的高いという特徴があり、共振子用の圧電材料としての応用が可能である。圧電素子は共振子として、コンピュータの基準信号発振器に使われ、例えば、コルピッツ発振回路等の発振回路に組み込まれて利用される。図1はコルピッツ発振回路を基本とした回路構成においてインダクタの部分を圧電共振子に置き換えたピアス発振回路を示すものである。このピアス発振回路は、コンデンサ111、112と、抵抗113と、インバータ114および共振子115により構成されている。そして、ピアス発振回路において、発振信号を発生するには、以下の発振条件を満足する必要がある。   In addition, a material mainly composed of a bismuth layered compound has a characteristic that the mechanical quality factor (Qm) is relatively high as compared with PZT and PT materials, and can be applied as a piezoelectric material for a resonator. . The piezoelectric element is used as a resonator in a reference signal oscillator of a computer, for example, incorporated in an oscillation circuit such as a Colpitts oscillation circuit. FIG. 1 shows a Pierce oscillation circuit in which the inductor portion is replaced with a piezoelectric resonator in a circuit configuration based on the Colpitts oscillation circuit. This Pierce oscillation circuit includes capacitors 111 and 112, a resistor 113, an inverter 114, and a resonator 115. In order to generate an oscillation signal in the Pierce oscillation circuit, it is necessary to satisfy the following oscillation conditions.

すなわち、インバータ114と抵抗113からなる増幅回路における増幅率をα、位相量をθとして、また、共振子115とコンデンサ111、112からなる帰還回路における帰還率をβ、位相量をθとしたとき、ループゲインがα×β≧1であり、かつ、位相量がθ+θ=360°×n(但しn=1,2,…)であることが必要となる。 That is, the amplification factor in the amplifier circuit composed of the inverter 114 and the resistor 113 is α, the phase amount is θ 1 , the feedback factor in the feedback circuit composed of the resonator 115 and the capacitors 111 and 112 is β, and the phase amount is θ 2 . Then, it is necessary that the loop gain is α × β ≧ 1 and the phase amount is θ 1 + θ 2 = 360 ° × n (where n = 1, 2,...).

一般的に抵抗113およびインバータ114からなる増幅回路は、コンピュータに内蔵されており、誤発振や不発振を起こさず、安定した発振を得るためには、ループゲインを大きくしなければならない。ループゲインを大きくするには、帰還率βのゲインを決定する、共振子115のP/V(ピークバレー値)、すなわち共振インピーダンスRおよび反共振インピーダンスRの差を大きくすることが必要となる。なお、P/Vは20×log(R/R)の値として定義される。
特開2002−167276号公報
In general, an amplifier circuit including a resistor 113 and an inverter 114 is built in a computer, and in order to obtain stable oscillation without causing erroneous oscillation or non-oscillation, the loop gain must be increased. To increase the loop gain determines the gain of the feedback factor beta, P / V (peak valley value) of the resonator 115, i.e., is necessary to increase the difference in resonance impedance R 0 and anti-resonance impedance R a Become. P / V is defined as a value of 20 × log (R a / R 0 ).
JP 2002-167276 A

しかしながら、従来の鉛を含有しないビスマス層状化合物を主体とする圧電磁器では、圧力センサに使用する場合、発生電荷が小さく単位圧力1N当り15pC以下となり、また、発生電荷の温度変化も20%以上(25℃を基準で200℃時)と大きいため、高い精度を必要とする圧力センサ素子としては使用できないという問題があった。   However, in a conventional piezoelectric ceramic mainly composed of a bismuth layer compound containing no lead, when used in a pressure sensor, the generated charge is small and is 15 pC or less per unit pressure of 1 N, and the temperature change of the generated charge is 20% or more ( Therefore, there is a problem that it cannot be used as a pressure sensor element that requires high accuracy.

したがって、本発明は、正圧電効果により圧力1N当りに発生する電荷量が大きくすることができるとともに、−40〜200℃の温度範囲での25℃に対する発生電荷の温度安定性に優れる非鉛系の圧電磁器および圧電素子を提供することを目的とする。   Therefore, the present invention can increase the amount of charge generated per 1N of pressure due to the positive piezoelectric effect, and is excellent in temperature stability of generated charge with respect to 25 ° C. in the temperature range of −40 to 200 ° C. An object of the present invention is to provide a piezoelectric ceramic and a piezoelectric element.

本発明の圧電磁器は、モル比による組成式がBiTi12・x{(Sr1−aCa1−bBaTiO}と表され、1.30≦x≦1.75、0.40≦a≦0.60、0≦b≦0.20を満足するビスマス層状化合物の主成分100質量部に対して、MnをMnO換算で0.05〜1.5質量部含有することを特徴とするものである。 The composition of the piezoelectric ceramic according to the present invention is expressed as Bi 4 Ti 3 O 12 · x {(Sr 1−a Ca a ) 1−b Ba b TiO 3 }, and 1.30 ≦ x ≦ 1. 75, 0.40 ≦ a ≦ 0.60, and 0 ≦ b ≦ 0.20, 100 parts by mass of the main component of the bismuth layered compound, and 0.05 to 1.5 parts by mass of Mn in terms of MnO 2 It is characterized by containing.

本発明の圧電磁器は、自発分極量が13μC/cm以上であるとともに、25℃における自発分極量に対する−40℃〜200℃における自発分極量の変化量が5%以下であることが好ましい。 In the piezoelectric ceramic of the present invention, the amount of spontaneous polarization is preferably 13 μC / cm 2 or more, and the amount of change in the amount of spontaneous polarization at −40 ° C. to 200 ° C. with respect to the amount of spontaneous polarization at 25 ° C. is preferably 5% or less.

本発明の圧電素子は、対向する一対の主面を有する前記圧電磁器の前記対向する一対の主面にそれぞれ電極を形成してなることを特徴とするものである。   The piezoelectric element of the present invention is characterized in that electrodes are respectively formed on the opposing pair of principal surfaces of the piezoelectric ceramic having a pair of opposing principal surfaces.

本発明の圧電素子は、前記電極が対向する一対の電極であり、厚み縦振動で作動することが好ましい。   The piezoelectric element of the present invention is a pair of electrodes opposed to each other, and is preferably operated by thickness longitudinal vibration.

本発明の圧電磁器によれば、モル比による組成式がBiTi12・x{(Sr1−aCa1−bBaTiO}と表され、1.30≦x≦1.75、0.40≦a≦0.60、0≦b≦0.20を満足するビスマス層状化合物の主成分100質量部に対して、MnをMnO換算で0.05〜1.5質量部含有することにより、自発分極量が大幅に増加する。 According to the piezoelectric ceramic of the present invention, the composition formula based on the molar ratio is expressed as Bi 4 Ti 3 O 12 · x {(Sr 1−a Ca a ) 1−b Ba b TiO 3 }, and 1.30 ≦ x ≦ 1.75, 0.40 ≦ a ≦ 0.60, and 0 ≦ b ≦ 0.20 satisfying 100 parts by mass of the main component of the bismuth layered compound, Mn is 0.05 to 1.5 in terms of MnO 2. By containing a part by mass, the amount of spontaneous polarization is greatly increased.

ビスマス層状化合物は、主にxが整数の値のものについて研究が進んでいる。そして、xが整数の場合は、xの値が大きいとビスマス層状化合物の結晶構造内の擬ペロブスカイト層の層数が多くなるため、圧電特性は大きくなると考えられる。しかし、層数の増加にともないキュリー温度の低下、および、正圧電効果による発生電荷の温度変化は大きくなり、高精度なセンサ用途に使用できなかった。   As for the bismuth layered compound, researches are mainly made for those in which x is an integer. When x is an integer, it is considered that when the value of x is large, the number of quasi-perovskite layers in the crystal structure of the bismuth layered compound increases, so that the piezoelectric characteristics increase. However, as the number of layers increases, the Curie temperature decreases and the temperature change of the generated charge due to the positive piezoelectric effect increases, and cannot be used for highly accurate sensor applications.

正圧電効果による電荷の発生は結晶内に存在する双極子に起因しており、双極子により発生する自発分極に関係している。自発分極量が大きいと発生電荷量も増加する。また、発生電荷の温度依存性は前述と同様に自発分極の温度変化に起因している。特に、ビスマス層状化合物の擬ペロブスカイト層の層数が奇数の場合c軸方向に自発分極が発生する。このc軸方向の自発分極は温度変化にともない減少する傾向にある。1.30≦x≦1.75とすることにより、特に、自発分極量が、xが整数の場合より大きくなるため発生電荷量を大きくすることができる。また、xが1.30≦x≦1.75の場合、c軸方向の自発分極が加わり、かつxが整数の場合より自発分極が大きくなるため、結晶全体の自発分極の温度変化を制御することが容易となる。よって発生電荷量を大きくさせながら温度変化率を抑制することが可能となった。また、aを0.40≦a≦0.60とすることにより、キュリー温度を向上させつつ発生電荷量を向上させることができるので、自発分極量が大きくなる。よって、本発明の圧電磁器において、印加圧力1N当りの発生電荷量を大きくするとともに発生電荷量の温度変化率を小さくすることができる。これにより、高温環境下での用いられる圧力センサ用圧電磁器として有用な特性を示し、車のエンジンのシリンダー内の圧力を直接検出するための圧力センサや、SMD対応のショックセンサや、200℃の高温下でも圧電性の劣化が認められないことから、高温下で使用可能な不揮発の強誘電体メモリー素子などに使用することができる。   The generation of electric charges due to the positive piezoelectric effect is caused by dipoles existing in the crystal, and is related to the spontaneous polarization generated by the dipoles. If the amount of spontaneous polarization is large, the amount of generated charges also increases. Further, the temperature dependence of the generated charge is caused by the temperature change of the spontaneous polarization as described above. In particular, when the number of pseudo-perovskite layers of the bismuth layered compound is an odd number, spontaneous polarization occurs in the c-axis direction. This spontaneous polarization in the c-axis direction tends to decrease as the temperature changes. By setting 1.30 ≦ x ≦ 1.75, in particular, the amount of generated charges can be increased because the amount of spontaneous polarization becomes larger than when x is an integer. Further, when x is 1.30 ≦ x ≦ 1.75, spontaneous polarization in the c-axis direction is added, and the spontaneous polarization becomes larger than when x is an integer, so that the temperature change of the spontaneous polarization of the entire crystal is controlled. It becomes easy. Therefore, the temperature change rate can be suppressed while increasing the amount of generated charge. Further, by setting a to 0.40 ≦ a ≦ 0.60, it is possible to improve the amount of generated charges while improving the Curie temperature, so that the amount of spontaneous polarization increases. Therefore, in the piezoelectric ceramic of the present invention, it is possible to increase the amount of generated charge per applied pressure 1N and decrease the rate of change in temperature of the generated charge amount. As a result, it exhibits useful characteristics as a piezoelectric ceramic for pressure sensors used in high temperature environments, such as a pressure sensor for directly detecting the pressure in a cylinder of a car engine, a shock sensor compatible with SMD, Since no deterioration in piezoelectricity is observed even at high temperatures, it can be used for nonvolatile ferroelectric memory elements that can be used at high temperatures.

本発明の圧電磁器によれば、自発分極量が13μC/cm以上であるとともに、25℃における自発分極量に対する−40℃〜200℃における自発分極量の変化量が5%以下である場合、高温下においても安定した圧電特性を得ることができる。 According to the piezoelectric ceramic of the present invention, when the amount of spontaneous polarization is 13 μC / cm 2 or more and the amount of change in the amount of spontaneous polarization at −40 ° C. to 200 ° C. with respect to the amount of spontaneous polarization at 25 ° C. is 5% or less, Stable piezoelectric characteristics can be obtained even at high temperatures.

本発明の圧電素子によれば、前記圧電磁器の両主面に電極を形成してなることにより、高温下においても安定した圧電特性を得ることができる。   According to the piezoelectric element of the present invention, stable piezoelectric characteristics can be obtained even at high temperatures by forming electrodes on both main surfaces of the piezoelectric ceramic.

これにより、圧電素子を正圧電効果を利用する圧力センサに使用する場合、印加圧力1N当りの発生電荷量を大きくすることができ、かつ−40℃〜200℃の温度範囲における発生電荷量の温度安定性に優れた特性が得られる。   As a result, when the piezoelectric element is used for a pressure sensor utilizing the positive piezoelectric effect, the generated charge amount per 1N of applied pressure can be increased, and the generated charge amount temperature in the temperature range of −40 ° C. to 200 ° C. Properties with excellent stability can be obtained.

さらに、本発明の圧電素子を共振子として利用する場合には、厚み縦滑りおよび厚み縦振動における基本波振動のP/Vを大きくしながら、共振周波数と反共振周波数の間で10゜を超える位相歪みの発生を著しく少なくすることができ、さらに共振周波数の温度変化率が小さく、さらに焼成温度範囲が広くなることから焼成ばらつきによる異相の生成が抑制され、圧電センサの感度のバラツキやP/Vの特性変動を抑制でき、高い歩留まりが実現できる。   Furthermore, when the piezoelectric element of the present invention is used as a resonator, the P / V of the fundamental wave vibration in the thickness longitudinal slip and the thickness longitudinal vibration is increased and exceeds 10 ° between the resonance frequency and the anti-resonance frequency. The occurrence of phase distortion can be remarkably reduced, the temperature change rate of the resonance frequency is small, and the firing temperature range is widened, so that the generation of different phases due to firing variations is suppressed, and variations in sensitivity of the piezoelectric sensor and P / V characteristic variation can be suppressed, and high yield can be realized.

このような圧電素子の共振子によれば、例えば、厚み滑りおよび厚み縦振動モードで作動する発振器ではP/Vが大きくなることから発振余裕度が高まり、かつ共振周波数と反共振周波数の間の周波数で位相歪みが発生しないことから安定した発振が得られるとともに、発振周波数の温度安定性に優れた高精度な発振が得られ、さらに、焼成温度の範囲が広くなることから焼成ばらつきによる特性変動を著しく抑制した2〜20MHzの広い周波数に適応できる共振子を得ることができる。   According to the resonator of such a piezoelectric element, for example, in an oscillator that operates in the thickness slip and thickness longitudinal vibration modes, P / V increases, so that the oscillation margin increases, and between the resonance frequency and the anti-resonance frequency. Stable oscillation is obtained because phase distortion does not occur at the frequency, high-accuracy oscillation with excellent temperature stability of the oscillation frequency is obtained, and furthermore, the range of firing temperature is widened, so characteristic fluctuations due to firing variations It is possible to obtain a resonator that can be applied to a wide frequency range of 2 to 20 MHz, in which the above is suppressed significantly.

圧電共振子として使用した場合には、厚み滑り基本波振動ならびに厚み縦の基本波および3次オーバートーン振動でのP/Vを大きくすることができる。   When used as a piezoelectric resonator, it is possible to increase the P / V in the thickness-shear fundamental wave vibration, the thickness longitudinal fundamental wave, and the third-order overtone vibration.

またさらに、本発明の圧電素子は、前記電極が対向する一対の電極であり、厚み縦振動で作動することにより−20℃〜+80℃の温度範囲で発振周波数の温度安定性に優れた特性が得られる。   Furthermore, the piezoelectric element of the present invention is a pair of electrodes opposed to each other, and has excellent characteristics of temperature stability of oscillation frequency in a temperature range of −20 ° C. to + 80 ° C. when operated by thickness longitudinal vibration. can get.

本発明の圧電磁器は、モル比による組成式がBiTi12・x{(Sr1−aCa1−bBaTiO}と表され、1.30≦x≦1.75、0.40≦a≦0.60、0≦b≦0.20を満足するビスマス層状化合物の主成分100質量部に対して、MnをMnO換算で0.05〜1.5質量部含有するものである。 The composition of the piezoelectric ceramic according to the present invention is expressed as Bi 4 Ti 3 O 12 · x {(Sr 1−a Ca a ) 1−b Ba b TiO 3 }, and 1.30 ≦ x ≦ 1. 75, 0.40 ≦ a ≦ 0.60, and 0 ≦ b ≦ 0.20, 100 parts by mass of the main component of the bismuth layered compound, and 0.05 to 1.5 parts by mass of Mn in terms of MnO 2 It contains.

ここで、係数であるxを上記の範囲に設定した理由ついて説明する。1.30≦x≦1.75とすることにより、特に、自発分極量が、xが整数の場合より大きくなるため発生電荷量を大きくすることができる。また、1.30≦x≦1.75の場合、c軸方向の自発分極が加わり、かつxが整数の場合より自発分極が大きくなるため、結晶全体の自発分極の温度変化を制御することが容易となる。   Here, the reason why the coefficient x is set in the above range will be described. By setting 1.30 ≦ x ≦ 1.75, in particular, the amount of generated charges can be increased because the amount of spontaneous polarization becomes larger than when x is an integer. Further, in the case of 1.30 ≦ x ≦ 1.75, spontaneous polarization in the c-axis direction is added, and the spontaneous polarization becomes larger than when x is an integer, so that the temperature change of the spontaneous polarization of the entire crystal can be controlled. It becomes easy.

続いて、係数であるaを上記の範囲に設定した理由ついて説明する。aを0.40≦a≦0.60とすることにより、キュリー温度を向上させつつ発生電荷量を向上させることができるので、自発分極量が大きくなる。よって、本発明の圧電磁器において、印加圧力1N当りの発生電荷量を大きくするとともに発生電荷量の温度変化率を小さくすることができる。   Next, the reason why the coefficient a is set in the above range will be described. By setting a to 0.40 ≦ a ≦ 0.60, it is possible to improve the amount of generated charges while improving the Curie temperature, so that the amount of spontaneous polarization increases. Therefore, in the piezoelectric ceramic of the present invention, it is possible to increase the amount of generated charge per applied pressure 1N and decrease the rate of change in temperature of the generated charge amount.

また、Srの一部をBaに置換することで焼結性が良くなり、より低い温度でち密な焼結体を得ることができる。また、bが増加すると発生電荷量は増加する。しかし、bが増加すると自発分極量の温度変動が大きくなるため、bは0.20以下が好ましい。また、bが増加するとキュリー温度も低くなる。自発分極量の温度変動を少なくし、キュリー温度を高くするには、0≦b≦0.10がより好ましい範囲であり、b=0とするのが特に好ましい。   Further, by replacing part of Sr with Ba, the sinterability is improved, and a dense sintered body can be obtained at a lower temperature. Further, as b increases, the amount of generated charges increases. However, as b increases, the temperature fluctuation of the spontaneous polarization amount increases, so b is preferably 0.20 or less. Further, as b increases, the Curie temperature also decreases. In order to reduce the temperature fluctuation of the spontaneous polarization amount and increase the Curie temperature, 0 ≦ b ≦ 0.10 is a more preferable range, and it is particularly preferable to set b = 0.

さらに、上述の主成分に対して、Mnの添加含有量が0.05質量部以上にすることにより、板状結晶である本材料系はでも焼結しやすくなり、ち密な磁器が得られ弾性損失が増えることが抑制され、圧力印加時の発生電荷量が18pC/Nより低くなることがない。また、1質量部以下にすることにより、異相が生成されることが抑制でき、圧力印加時の発生電荷量が18pC/Nより低くなることがない。   Furthermore, when the additive content of Mn is 0.05 parts by mass or more with respect to the main component described above, this material system that is a plate-like crystal can be easily sintered, and a dense porcelain can be obtained and elastic. An increase in loss is suppressed, and the amount of charge generated when pressure is applied does not become lower than 18 pC / N. Moreover, by setting it as 1 mass part or less, it can suppress that a heterogeneous phase is produced | generated and the generated charge amount at the time of a pressure application does not become lower than 18 pC / N.

本発明の圧電磁器においては、組成式としてBiTi12・x{(Sr1−aCa1−bBaTiO}で表されるが、主結晶相としてはビスマス層状化合物からなるものである。すなわち、本発明の圧電磁器は、{(Sr1−aCa1−bBaBiTi3+x12+3xと表すことができ、(Bi2+(αm−1β3m+12−で書き表されるビスマス層状化合物の一般式において、αサイトとβサイトおよび酸素サイトに欠陥をともないながらm=4とm=5の構造が混在し、Mnが一部固溶したビスマス層状化合物になっていると考えられる。Mnは主結晶相中に固溶し、一部Mn化合物の結晶として粒界に析出する場合がある。また、その他の結晶相として、パイロクロア相、ペロブスカイト相、構造の異なるビスマス層状化合物が存在することもあるが、微量であれば特性上問題ない。 In the piezoelectric ceramic according to the present invention, the compositional formula is represented by Bi 4 Ti 3 O 12 · x {(Sr 1−a Ca a ) 1−b Ba b TiO 3 }, and the main crystal phase is a bismuth layered compound. It consists of That is, the piezoelectric ceramic of the present invention can be expressed as {(Sr 1-a Ca a ) 1-b Ba b } x Bi 4 Ti 3 + x O 12 + 3x, and (Bi 2 O 2 ) 2+m-1 β m O 3m + 1 ) In the general formula of the bismuth layered compound represented by 2- , the structures of m = 4 and m = 5 are mixed with defects at the α site, β site and oxygen site, and Mn is partially fixed. It is thought that it is a dissolved bismuth layered compound. Mn may be dissolved in the main crystal phase and may partially precipitate as a crystal of the Mn compound at the grain boundary. As other crystal phases, there may be a pyrochlore phase, a perovskite phase, and a bismuth layered compound having a different structure.

またさらに、結晶内に存在する双極子により発生する自発分極は、双極子に起因して発生する正圧電効果による電荷と関係するため、自発分極量が大きいと発生電荷量も増加する。本発明の磁器は、自発分極量が13〜22μC/cmであるとともに、25℃における自発分極量に対する−40℃〜200℃における自発分極量の変化量が5%以下であるため、温度依存性が低く、高い値の正圧電効果に発生電荷を得ることができる。 Furthermore, since the spontaneous polarization generated by the dipole existing in the crystal is related to the charge due to the positive piezoelectric effect generated due to the dipole, the amount of generated charge increases when the amount of spontaneous polarization is large. The porcelain of the present invention has a spontaneous polarization amount of 13 to 22 μC / cm 2 and a change amount of the spontaneous polarization amount at −40 ° C. to 200 ° C. with respect to the spontaneous polarization amount at 25 ° C. is 5% or less. The generated charge can be obtained with a high value of the positive piezoelectric effect.

本発明の圧電磁器は、粉砕時のZrOボールからZr等が混入する場合もあるが、微量であれば特性上問題ない。 In the piezoelectric ceramic according to the present invention, Zr or the like may be mixed from the ZrO 2 ball at the time of pulverization.

本発明の組成を有する圧電磁器は、例えば、原料として、SrCO、CaCO、BaCO、Bi、MnO、TiOからなる各種酸化物あるいはその塩を用いることができる。原料はこれに限定されず、焼成により酸化物を生成する炭酸塩、硝酸塩等の金属塩を用いても良い。 In the piezoelectric ceramic having the composition of the present invention, for example, various oxides composed of SrCO 3 , CaCO 3 , BaCO 3 , Bi 2 O 3 , MnO 2 , and TiO 2 or salts thereof can be used as raw materials. A raw material is not limited to this, You may use metal salts, such as carbonate and nitrate which produce | generate an oxide by baking.

これらの原料を上記した組成となるように秤量し、混合後の平均粒度分布(D50)が0.3〜1μmの範囲になるように粉砕し、この混合物を850〜1000℃で仮焼し、仮焼後の平均粒度分布(D50)が0.3〜1μmの範囲になるように粉砕し、再度所定の有機バインダを加え湿式混合し造粒する。 These raw materials are weighed so as to have the above-described composition, pulverized so that the average particle size distribution (D 50 ) after mixing is in the range of 0.3 to 1 μm, and this mixture is calcined at 850 to 1000 ° C. Then, pulverization is performed so that the average particle size distribution (D 50 ) after calcination is in the range of 0.3 to 1 μm, and a predetermined organic binder is added again, followed by wet mixing and granulation.

このようにして得られた粉体を、公知のプレス成形等により所定形状に成形し、大気中等の酸化性雰囲気において1000〜1250℃の温度範囲で2〜5時間焼成し、本発明の組成を有する圧電磁器が得られる。   The powder thus obtained is molded into a predetermined shape by a known press molding or the like, and calcined at a temperature range of 1000 to 1250 ° C. for 2 to 5 hours in an oxidizing atmosphere such as the atmosphere to obtain the composition of the present invention. The piezoelectric ceramic which has is obtained.

本発明の組成を有する圧電磁器は、図1に示すようなピアス発振回路の共振子の圧電磁器、特に厚み滑り振動の基本波振動を利用する高周波共振子用として最適であるが、それ以外の圧電共振子、超音波振動子、超音波モータおよび加速度センサ、ノッキングセンサ、AEセンサ等の圧電センサなどにも用いることができる。   The piezoelectric ceramic having the composition of the present invention is optimal for a piezoelectric ceramic of a pierce oscillation circuit as shown in FIG. 1, particularly for a high-frequency resonator using the fundamental wave vibration of thickness shear vibration. It can also be used for piezoelectric sensors such as piezoelectric resonators, ultrasonic vibrators, ultrasonic motors and acceleration sensors, knocking sensors, and AE sensors.

図2に本発明の圧電素子の実施形態の一例である8MHz用圧電共振子(圧電発振子)の概略斜視図を示す。この圧電共振子は、上記した組成の圧電磁器1の両面に電極2、3を形成して構成されている。このような圧電共振子では、厚み滑り振動および厚み縦振動における基本波のP/Vを高くでき、発振余裕度が高まり、共振周波数と反共振周波数の間の周波数で移相歪みが発生しないことから安定した発振が得られる。さらに、発振周波数の温度安定性に優れた高精度な発振が得られ、特に2〜20MHzの周波数に適応できる圧電共振子を得ることができる。   FIG. 2 is a schematic perspective view of an 8 MHz piezoelectric resonator (piezoelectric oscillator) which is an example of an embodiment of the piezoelectric element of the present invention. This piezoelectric resonator is configured by forming electrodes 2 and 3 on both surfaces of a piezoelectric ceramic 1 having the above composition. In such a piezoelectric resonator, the P / V of the fundamental wave in thickness shear vibration and thickness longitudinal vibration can be increased, the oscillation margin is increased, and phase-shift distortion does not occur at a frequency between the resonance frequency and the anti-resonance frequency. Therefore, stable oscillation can be obtained. Furthermore, highly accurate oscillation excellent in temperature stability of the oscillation frequency can be obtained, and in particular, a piezoelectric resonator that can be adapted to a frequency of 2 to 20 MHz can be obtained.

また、多結晶体からなる圧電磁器とすることで、単結晶に比べ加工によるチッピングを大きく抑えられ、さらには、成型金型により所望の形状になるように成型体を作製・焼成することで圧電素子を得ることができ、チッピング(共振子用磁器エッジの欠け)により共振周波数と反共振周波数の間にスプリアス振動にともなう移相歪みが発生することがなく、移相の条件を満足しないことから不発振とはならず、安定した振幅の発振を得ることができる。   In addition, by using a piezoelectric ceramic made of a polycrystal, chipping due to processing can be greatly suppressed as compared to a single crystal, and furthermore, a piezoelectric can be produced by producing and firing a molded body so as to have a desired shape by a molding die. The element can be obtained, and phase-shifting distortion due to spurious vibration does not occur between the resonance frequency and anti-resonance frequency due to chipping (missing the ceramic edge for the resonator), and the phase-shift condition is not satisfied. There is no oscillation, and stable oscillation can be obtained.

したがって、上記圧電共振子は、共振周波数と反共振周波数の間およびその近傍の周波数で移相歪みが発生せず、厚み滑り振動および厚み縦振動のP/Vを大きくできるとともに、厚み縦振動での−20℃〜+80℃の温度範囲で発振周波数の温度安定性に優れる非鉛系の圧電磁器とすることができる。   Therefore, the piezoelectric resonator does not cause phase shift distortion at a frequency between and near the resonance frequency and the antiresonance frequency, and can increase the P / V of the thickness shear vibration and the thickness longitudinal vibration. Thus, a lead-free piezoelectric ceramic having excellent temperature stability of the oscillation frequency in the temperature range of -20 ° C to + 80 ° C can be obtained.

図3に、本発明の圧電素子の実施形態の一例である圧力センサ素子の概略斜視図を示す。この圧力センサは、上述の組成の圧電磁器からなる圧電基体11の対向する一対の主面に、それぞれに電極12、13を形成され、互いに対向させた一対の電極12、13を備えている。また、分極は主面と垂直な方向に施してある。このような圧力センサでは、主面間に加わる圧力により、各主面に電荷が生じるため、この電荷を測定することにより、主面間に加わっている圧力を測定することができる。   FIG. 3 shows a schematic perspective view of a pressure sensor element which is an example of an embodiment of the piezoelectric element of the present invention. This pressure sensor includes a pair of electrodes 12 and 13 which are formed on a pair of opposed main surfaces of a piezoelectric substrate 11 made of a piezoelectric ceramic having the above-described composition, respectively, and are opposed to each other. Polarization is performed in a direction perpendicular to the main surface. In such a pressure sensor, electric charges are generated on the main surfaces due to the pressure applied between the main surfaces. Therefore, the pressure applied between the main surfaces can be measured by measuring the electric charges.

まず、出発原料として純度99.9%のSrCO粉末、CaCO粉末、BaCO粉末、Bi粉末、TiO粉末を、モル比による組成式をBiTi12・x{(Sr1−aCa1−bBaTiO}と表したとき、x、a、bが表1に示した値の主成分と、この主成分100質量部に対してMnO粉末を表1に示した質量部となるように秤量混合した。 First, SrCO 3 powder having a purity of 99.9%, CaCO 3 powder, BaCO 3 powder, Bi 2 O 3 powder, TiO 2 powder as a starting material, and a composition formula by molar ratio is represented by Bi 4 Ti 3 O 12 · x {( Sr 1-a Ca a ) 1-b Ba b TiO 3 }, x, a, b are the main components having the values shown in Table 1, and MnO 2 powder is added to 100 parts by mass of the main components. The mixture was weighed and mixed so as to have the mass parts shown in Table 1.

秤量した原料粉末を、純度99.9%のジルコニアボール、イオン交換水と共に500mlポリポットに投入し、16時間回転ミルで混合した。   The weighed raw material powder was put into a 500 ml polypot together with zirconia balls having a purity of 99.9% and ion-exchanged water, and mixed in a rotary mill for 16 hours.

混合後のスラリ−を大気中にて乾燥し、#40メッシュを通し、その後、大気中950℃、3時間保持して仮焼し、この合成粉末を純度99.9%のZrOボールとイオン交換水と共に500mlポリポットに投入し、20時間粉砕して評価粉末を得た。 The slurry after mixing was dried in the air, passed through # 40 mesh, and then calcined by holding at 950 ° C. for 3 hours in the air, and this synthetic powder was charged with 99.9% purity ZrO 2 balls and ions. It put into a 500 ml polypot with exchange water, and grind | pulverized for 20 hours, and obtained evaluation powder.

この粉末に適量の有機バインダを添加して造粒し、金型プレスで150MPaの圧力で成形し、大気中において1050℃〜1250℃で3時間本焼成し、直径7mm、厚み2.5mmの円柱状の正圧電効果評価用圧電磁器と、長さ25mm、幅38mm、厚みlmmの板状に共振周波数評価用圧電磁器を得た。   An appropriate amount of an organic binder is added to this powder, granulated, molded with a mold press at a pressure of 150 MPa, and finally fired in the air at 1050 ° C. to 1250 ° C. for 3 hours. A circle having a diameter of 7 mm and a thickness of 2.5 mm A columnar piezoelectric ceramic for evaluating a positive piezoelectric effect and a piezoelectric ceramic for evaluating a resonant frequency were obtained in a plate shape having a length of 25 mm, a width of 38 mm, and a thickness of 1 mm.

正圧電効果評価用圧電磁器は、厚み2mmに研磨した後、両主面(円柱の上下面)にAg電極を形成して、分極処理を行い、正圧電効果評価用圧電素子を得た。   After the piezoelectric ceramic for evaluating the positive piezoelectric effect was polished to a thickness of 2 mm, Ag electrodes were formed on both main surfaces (upper and lower surfaces of the cylinder), and polarization treatment was performed to obtain a piezoelectric element for evaluating the positive piezoelectric effect.

正圧電効果の評価は以下のように行なった。前述の評価用圧電素子の両主面間に圧力300Nをプリロードとして印加して、プリロードに加えて50Nの圧力を10Hzの三角波の圧力印加波形で加えた。そして、圧電磁器からの出力波形をチャージアンプ(キスラー製5011B)にて検出し、圧力印加に対する正圧電効果による発生電荷を計測した。圧力印加時の発生電荷量d(pC/N)は、
d=D/T
D:発生電荷(pC)
T:印加応力(ダイナミックレンジ、N)
として算出した。つまり、前述の印加条件ではd=D/50で算出した。
The positive piezoelectric effect was evaluated as follows. A pressure of 300 N was applied as a preload between both main surfaces of the evaluation piezoelectric element described above, and a pressure of 50 N was applied as a 10 Hz triangular wave pressure application waveform in addition to the preload. The output waveform from the piezoelectric ceramic was detected by a charge amplifier (Kistler 5011B), and the generated charge due to the positive piezoelectric effect with respect to the pressure application was measured. The amount of charge d (pC / N) generated when pressure is applied is
d = D / T
D: Generated charge (pC)
T: Applied stress (dynamic range, N)
Calculated as That is, it calculated with d = D / 50 on the above-mentioned application conditions.

続いて、自発分極(Ps)を評価した。前述の正圧電効果評価用圧電磁器を厚み200μmまでラップ研磨を行い、両主面(円柱の上下面)にAu蒸着により電極を形成した後、ダイシングソーにより8mm×8mmに切り出し、評価試料とした。この試料をaixACT社製TF2000HSを用いて周波数10Hzの三角波を印加してP−Eヒステリシスを測定して自発分極を求めた。   Subsequently, spontaneous polarization (Ps) was evaluated. The piezoelectric ceramic for evaluating the positive piezoelectric effect was lapped to a thickness of 200 μm, electrodes were formed on both main surfaces (upper and lower surfaces of the cylinder) by Au deposition, and then cut into 8 mm × 8 mm using a dicing saw to obtain an evaluation sample. . Spontaneous polarization was determined by applying a triangular wave having a frequency of 10 Hz to TF2000HS manufactured by aixACT and measuring PE hysteresis for this sample.

また、体積固有抵抗をJIS−C2141に準拠して評価した。これらの結果を表1に示す。

Figure 2008179532
Moreover, volume specific resistance was evaluated based on JIS-C2141. These results are shown in Table 1.
Figure 2008179532

表1から明らかなように、本発明の範囲内の試料No.2〜6、11、12および15〜22、23および24は、圧力印加時の発生電荷量は18pC/Nと高い値が得られるとともに、25℃の自発分極に対する−40℃および200℃の自発分極の変化率が±10%以内と温度依存性が低いものとなった。   As is apparent from Table 1, sample nos. 2 to 6, 11, 12 and 15 to 22, 23 and 24, the generated charge amount when pressure is applied is as high as 18 pC / N, and the spontaneous polarization at −40 ° C. and 200 ° C. with respect to the spontaneous polarization at 25 ° C. The rate of change of polarization was within ± 10% and the temperature dependency was low.

これに対して、xが本発明の範囲外の試料No.1、7および8で、xの値の小さい試料No.1は25℃の自発分極に対する200℃の自発分極の変化率が10%より大きくなり、xの値の大きい試料No.7および8は25℃の自発分極に対する200℃の自発分極の変化率が−10%より大きくなり、それぞれ温度依存性が高いものとなった。   On the other hand, x is a sample No. outside the scope of the present invention. Sample Nos. 1, 7 and 8 having a small value of x No. 1 shows that the change rate of the spontaneous polarization at 200 ° C. with respect to the spontaneous polarization at 25 ° C. is larger than 10%, and sample No. 1 with a large value of x is obtained. In 7 and 8, the change rate of the spontaneous polarization at 200 ° C. with respect to the spontaneous polarization at 25 ° C. was larger than −10%, and the temperature dependency was high.

また、aが本発明の範囲外の試料No.9、10、13、27では、圧力印加時の発生電荷量は17pC/N以下と低いものとなった。   In addition, a is a sample No. outside the scope of the present invention. In 9, 10, 13, and 27, the generated charge amount when applying pressure was as low as 17 pC / N or less.

また、bが本発明の範囲外の試料No.26では、自発分極の変化率が10%より大きくなり、温度依存性が高いものとなった。   Also, b is a sample No. outside the scope of the present invention. In No. 26, the rate of change of spontaneous polarization was greater than 10%, and the temperature dependency was high.

さらに、MnO添加量が0の試料No.14は磁器の充分にち密化しておらず、圧力印加時の発生電荷量は10pC/Nと低いものとなった。MnO添加量が1.6の試料No.23は磁器は分極処理を行なったが、分極できなかった。 Furthermore, sample No. 2 with 0 addition of MnO 2 was used. No. 14 was not sufficiently densified of the porcelain, and the amount of charge generated when pressure was applied was as low as 10 pC / N. Sample No. with MnO 2 addition amount of 1.6 In No. 23, the porcelain was polarized, but could not be polarized.

共振周波数評価用圧電磁器は長さ6mm、幅30mmに加工後、長さ方向に分極するための端面電極を形成し分極処理を施した。その後、分極用電極を除去し、厚み約0.17mmとなるようにラップ機により加工した。その後、主面(長さ6mmと幅30mmからなる面)の両面にCr−Agを蒸着し、電極と磁器との密着強度を高めるために250℃で12時間のアニール処理を施した。   The piezoelectric ceramic for resonance frequency evaluation was processed to have a length of 6 mm and a width of 30 mm, and then an end face electrode for polarization in the length direction was formed and subjected to polarization treatment. Thereafter, the polarization electrode was removed and processed by a lapping machine to a thickness of about 0.17 mm. Thereafter, Cr—Ag was vapor-deposited on both sides of the main surface (surface consisting of a length of 6 mm and a width of 30 mm), and annealed at 250 ° C. for 12 hours in order to increase the adhesion strength between the electrode and the porcelain.

その後、図2に示す電極構造となるように、無電極に相当する部位の電極をエッチングで除去し、長さ2.2mm(L)、幅0.9mm(W)、厚み0.17mm(H)形状にダイシングソーを用いて加工し、8MHzの発振に相当する小型な厚み縦振動の基本波振動用共振子を得た。図2において、Pは分極方向を示す。   Thereafter, the electrode corresponding to the non-electrode is removed by etching so that the electrode structure shown in FIG. 2 is obtained, and the length is 2.2 mm (L), the width is 0.9 mm (W), and the thickness is 0.17 mm (H ) The shape was processed using a dicing saw to obtain a resonator for fundamental wave vibration of a small thickness longitudinal vibration corresponding to 8 MHz oscillation. In FIG. 2, P indicates the polarization direction.

共振子の特性は、インピーダンスアナライザによりインピーダンス波形を測定し、厚み滑り振動の基本波振動でのP/VをP/V=20×log(R/R)の式により算出した(ただし、R:反共振インピーダンス、R:共振インピーダンス)。 The characteristic of the resonator is that an impedance waveform is measured by an impedance analyzer, and P / V at a fundamental wave vibration of thickness-shear vibration is calculated by an expression of P / V = 20 × log (R a / R 0 ) (however, R a : anti-resonance impedance, R 0 : resonance impedance).

さらに、発振周波数の温度変化率は、25℃の発振周波数を基準にして、−20℃もしくは+80℃での発振周波数の変化を以下の式により算出した。   Furthermore, the temperature change rate of the oscillation frequency was calculated by the following equation with respect to the oscillation frequency change at −20 ° C. or + 80 ° C. with reference to the oscillation frequency of 25 ° C.

Fosc変化率={(Fosc(drift)-Fosc(25))/Fosc(25)}、ただし、Fosc(drift)は、−20℃もしくは+80℃での発振周波数であり、Fosc(25)は25℃での発振周波数である。これらの結果を表2に示す。

Figure 2008179532
F osc change rate = {(F osc (drift) -F osc (25)) / F osc (25)}, however, F osc (drift) is the oscillation frequency at -20 ° C. or + 80 ° C., F osc (25) is the oscillation frequency at 25 ° C. These results are shown in Table 2.
Figure 2008179532

表2から、本発明の範囲内の試料は、厚み滑り振動における基本波振動のP/Vを45dB以上と大きくでき、発振周波数の温度変化率が±2100ppm以内と小さくなった。   From Table 2, in the sample within the range of the present invention, the P / V of the fundamental wave vibration in the thickness shear vibration can be increased to 45 dB or more, and the temperature change rate of the oscillation frequency is decreased to within ± 2100 ppm.

本発明の試料No.4をX線回折で分析したところ、m=5のビスマス層状化合物が主結晶相として認められた。ビスマス層状化合物はペロブスカイト構造が積み重なった中にBiが挿入された結晶構造をもつ。Bi層にはさまれたペロブスカイト構造のユニットの数がm数である。このことから、ペロブスカイト化合物はm=3からなるビスマス層状化合物に取りこまれて、m=5の結晶を有するようになったものと考えることができ、本発明の圧電磁器はm=5の構造とm=4の構造が混在していると考えられる。そして、その構造にMnが一部固溶したビスマス層状化合物になっているものと考えられる。 Sample No. of the present invention. When 4 was analyzed by X-ray diffraction, a bismuth layered compound of m = 5 was recognized as the main crystal phase. The bismuth layered compound has a crystal structure in which Bi 2 O 2 is inserted in a stack of perovskite structures. The number of units having a perovskite structure sandwiched between Bi 2 O 2 layers is m. From this, it can be considered that the perovskite compound is incorporated in a bismuth layered compound of m = 3 and has a crystal of m = 5, and the piezoelectric ceramic of the present invention has a structure of m = 5. And m = 4 are mixed. It is considered that the structure is a bismuth layered compound in which Mn is partly dissolved.

また、実施例で作製した試料を、蛍光X線分析装置で組成分析した。その結果、各試料の磁器の組成は、調合した原料組成と同じであった。   In addition, the composition of the sample prepared in the example was analyzed with a fluorescent X-ray analyzer. As a result, the composition of the porcelain of each sample was the same as the prepared raw material composition.

コルピッツ型発振回路を原型としたピアス発振回路を示した概略図である。It is the schematic which showed the Pierce oscillation circuit which made the Colpitts type oscillation circuit a prototype. 本発明の圧電素子の実施形態の一例である8MHz用共振子の概略斜視図である。It is a schematic perspective view of the resonator for 8 MHz which is an example of embodiment of the piezoelectric element of this invention. 本発明の圧電素子の実施形態の一例である圧力センサの概略斜視図である。It is a schematic perspective view of the pressure sensor which is an example of embodiment of the piezoelectric element of this invention.

符号の説明Explanation of symbols

l、11・・・圧電磁器
2、3、12、13・・・電極
P・・・分極方向
l, 11 ... Piezoelectric ceramic 2, 3, 12, 13 ... Electrode P ... Polarization direction

Claims (4)

組成式がBiTi12・x{(Sr1−aCa1−bBaTiO}と表され、1.30≦x≦1.75、0.40≦a≦0.60、0≦b≦0.20を満足するビスマス層状化合物の主成分100質量部に対して、MnをMnO換算で0.05〜1.5質量部含有することを特徴とする圧電磁器。 The composition formula is expressed as Bi 4 Ti 3 O 12 × x {(Sr 1−a Ca a ) 1−b Ba b TiO 3 }, and 1.30 ≦ x ≦ 1.75, 0.40 ≦ a ≦ 0. A piezoelectric ceramic comprising 0.05 to 1.5 parts by mass of Mn in terms of MnO 2 with respect to 100 parts by mass of a main component of a bismuth layered compound satisfying 60, 0 ≦ b ≦ 0.20. 自発分極量が13μC/cm以上であるとともに、25℃における自発分極量に対する−40℃〜200℃における自発分極量の変化量が5%以下であることを特徴とする請求項1記載の圧電磁器。 2. The piezoelectric according to claim 1, wherein the amount of spontaneous polarization is 13 μC / cm 2 or more, and the amount of change in the amount of spontaneous polarization at −40 ° C. to 200 ° C. with respect to the amount of spontaneous polarization at 25 ° C. is 5% or less. porcelain. 対向する一対の主面を有する請求項1または2記載の圧電磁器の前記対向する一対の主面にそれぞれ電極を形成してなることを特徴とする圧電素子。 3. A piezoelectric element comprising a pair of opposing principal surfaces and electrodes formed on the opposing principal surfaces of the piezoelectric ceramic according to claim 1 or 2. 前記電極が対向する一対の電極であり、厚み縦振動で作動することを特徴とする請求項3記載の圧電素子。 The piezoelectric element according to claim 3, wherein the electrodes are a pair of electrodes facing each other and are operated by thickness longitudinal vibration.
JP2007331643A 2006-12-26 2007-12-25 Piezoelectric ceramic and piezoelectric element Active JP4903683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331643A JP4903683B2 (en) 2006-12-26 2007-12-25 Piezoelectric ceramic and piezoelectric element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006349051 2006-12-26
JP2006349051 2006-12-26
JP2007331643A JP4903683B2 (en) 2006-12-26 2007-12-25 Piezoelectric ceramic and piezoelectric element

Publications (2)

Publication Number Publication Date
JP2008179532A true JP2008179532A (en) 2008-08-07
JP4903683B2 JP4903683B2 (en) 2012-03-28

Family

ID=39723730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331643A Active JP4903683B2 (en) 2006-12-26 2007-12-25 Piezoelectric ceramic and piezoelectric element

Country Status (1)

Country Link
JP (1) JP4903683B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184336A (en) * 2007-01-26 2008-08-14 Kyocera Corp Piezoelectric ceramic and piezoelectric element
JP2010203932A (en) * 2009-03-04 2010-09-16 Epson Toyocom Corp Physical quantity sensor and physical quantity measurement device
JP2011213538A (en) * 2010-03-31 2011-10-27 Tdk Corp Piezoelectric composition, piezoelectric ceramic, vibrator, and ultrasonic motor
JP2012508368A (en) * 2008-11-07 2012-04-05 キューアーエスエス ゲーエムベーハー Vibration analysis method, vibration analysis apparatus, sample database for vibration analysis, and use thereof
CN111362691A (en) * 2020-03-14 2020-07-03 杭州电子科技大学 Bismuth calcium titanate high-temperature piezoelectric ceramic material with bismuth layer-structured structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160968A (en) * 2000-11-24 2002-06-04 Kyocera Corp Piezo-electric porcelain composition and piezo-electric resonator
JP2002167276A (en) * 2000-11-29 2002-06-11 Kyocera Corp Piezoelectric ceramic composition and piezoresonator
JP2002198771A (en) * 2000-12-26 2002-07-12 Kyocera Corp Piezoelectric resonator element and piezoelectric resonator
JP2002226264A (en) * 2001-01-31 2002-08-14 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP2002226265A (en) * 2001-01-31 2002-08-14 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160968A (en) * 2000-11-24 2002-06-04 Kyocera Corp Piezo-electric porcelain composition and piezo-electric resonator
JP2002167276A (en) * 2000-11-29 2002-06-11 Kyocera Corp Piezoelectric ceramic composition and piezoresonator
JP2002198771A (en) * 2000-12-26 2002-07-12 Kyocera Corp Piezoelectric resonator element and piezoelectric resonator
JP2002226264A (en) * 2001-01-31 2002-08-14 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP2002226265A (en) * 2001-01-31 2002-08-14 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184336A (en) * 2007-01-26 2008-08-14 Kyocera Corp Piezoelectric ceramic and piezoelectric element
JP2012508368A (en) * 2008-11-07 2012-04-05 キューアーエスエス ゲーエムベーハー Vibration analysis method, vibration analysis apparatus, sample database for vibration analysis, and use thereof
JP2010203932A (en) * 2009-03-04 2010-09-16 Epson Toyocom Corp Physical quantity sensor and physical quantity measurement device
JP2011213538A (en) * 2010-03-31 2011-10-27 Tdk Corp Piezoelectric composition, piezoelectric ceramic, vibrator, and ultrasonic motor
CN111362691A (en) * 2020-03-14 2020-07-03 杭州电子科技大学 Bismuth calcium titanate high-temperature piezoelectric ceramic material with bismuth layer-structured structure and preparation method thereof

Also Published As

Publication number Publication date
JP4903683B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP5094334B2 (en) Piezoelectric ceramic and piezoelectric element
JP2006108639A (en) Piezoelectric actuator
JP2002068835A (en) Piezoelectric ceramic composition
WO2009122916A1 (en) Piezoelectric ceramic, and piezoelectric elementing using the same
JP4903683B2 (en) Piezoelectric ceramic and piezoelectric element
JP2010030832A (en) Piezoelectric ceramic and piezoelectric element using it
JP4804449B2 (en) Piezoelectric ceramic and piezoelectric element
JP5116584B2 (en) Piezoelectric ceramic and piezoelectric element using the same
EP2119686B1 (en) Piezoelectric ceramic material and piezoelectric element
JP5100138B2 (en) Piezoelectric ceramic and piezoelectric element
JP5207793B2 (en) Piezoelectric sensor
JP4471542B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP5421010B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP4992796B2 (en) Oscillator
JP5376817B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP2008184336A5 (en)
JP4903659B2 (en) Piezoelectric ceramic and piezoelectric element
JP4983537B2 (en) Piezoelectric ceramic composition and oscillator
JP5219421B2 (en) Piezoelectric ceramic and piezoelectric element
JP5094284B2 (en) Piezoelectric ceramic and piezoelectric element
JP3554202B2 (en) Piezoelectric ceramic for vibrator
JP5072760B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP2009242175A (en) Piezoelectric ceramic composition, piezoelectric element and resonator
JP4983538B2 (en) Piezoelectric ceramic composition and oscillator
JP3805103B2 (en) Manufacturing method of third overtone oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Ref document number: 4903683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3