JP4903659B2 - Piezoelectric ceramic and piezoelectric element - Google Patents

Piezoelectric ceramic and piezoelectric element Download PDF

Info

Publication number
JP4903659B2
JP4903659B2 JP2007251581A JP2007251581A JP4903659B2 JP 4903659 B2 JP4903659 B2 JP 4903659B2 JP 2007251581 A JP2007251581 A JP 2007251581A JP 2007251581 A JP2007251581 A JP 2007251581A JP 4903659 B2 JP4903659 B2 JP 4903659B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric ceramic
constant
layered compound
bismuth layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007251581A
Other languages
Japanese (ja)
Other versions
JP2009084067A (en
Inventor
修三 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007251581A priority Critical patent/JP4903659B2/en
Publication of JP2009084067A publication Critical patent/JP2009084067A/en
Application granted granted Critical
Publication of JP4903659B2 publication Critical patent/JP4903659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、圧電磁器および圧電素子に関し、例えば、共振子、超音波振動子、超音波モータ、あるいは加速度センサ、ノッキングセンサ、およびAEセンサ等の圧電センサなどに好適に用いられる圧電磁器および圧電素子に関するものである。   The present invention relates to a piezoelectric ceramic and a piezoelectric element, and for example, a piezoelectric ceramic and a piezoelectric element that are suitably used for a resonator, an ultrasonic vibrator, an ultrasonic motor, or a piezoelectric sensor such as an acceleration sensor, a knocking sensor, and an AE sensor. It is about.

従来から、圧電磁器を利用した製品としては、例えば、フィルタ、圧電共振子、(以下、発振子を含む概念である)超音波振動子、超音波モータ、圧電センサ等がある。   Conventionally, products using a piezoelectric ceramic include, for example, a filter, a piezoelectric resonator, an ultrasonic vibrator (hereinafter referred to as a concept including an oscillator), an ultrasonic motor, a piezoelectric sensor, and the like.

近年、自動車のエンジンやサスペンションといった部分に圧電素子が組み込まれ、正圧電効果を利用して、圧電素子に加えられた圧力をセンシングしてエンジンの燃焼制御や車体の姿勢制御に用いられている。特に、エンジン制御に用いられる圧電素子としては、排気ガスのクリーン化と燃費向上の目的で普及しているリーンバーン方式のエンジンの中で、アンチノックセンサがある。また、圧電素子は、次世代エンジンとして検討されている燃焼プラグを用いないHCCI(Homogenous Charge Compression Ignition)方式のエンジンの中で、希薄ガスの安定した燃焼を目的として燃焼圧の測定に使用が検討されている。   In recent years, piezoelectric elements are incorporated in parts such as automobile engines and suspensions, and the pressure applied to the piezoelectric elements is sensed using the positive piezoelectric effect and used for engine combustion control and vehicle body attitude control. In particular, as a piezoelectric element used for engine control, there is an anti-knock sensor among lean burn type engines that are widely used for the purpose of cleaning exhaust gas and improving fuel consumption. Piezoelectric elements are also being used to measure combustion pressure for the purpose of stable combustion of lean gases among HCCI (Homogenous Charge Compression Ignition) engines that do not use combustion plugs, which are being considered as next-generation engines. Has been.

これら、圧電素子はエンジンルーム内に搭載されるため、耐熱性の高い素子材料が必要となる。さらに、燃費を向上させるためには、エンジンシリンダ内の圧力を精密に測定して、きめ細かなリーンバーン制御をする必要があるため、センサの圧力・温度変化に対する出力信号特性(発生電荷の圧力特性および温度特性)の変化の少ない素子材料が必要とされる。   Since these piezoelectric elements are mounted in an engine room, element materials having high heat resistance are required. Furthermore, in order to improve fuel efficiency, it is necessary to precisely measure the pressure in the engine cylinder and perform fine lean burn control, so output signal characteristics (pressure characteristics of generated charge) with respect to sensor pressure and temperature changes. Further, an element material having a small change in temperature characteristics) is required.

従来、共振子や圧力センサ素子には、圧電性が高く、例えば大きなP/Vや圧力に対する大きな発生電荷が得られるPZT(チタン酸ジルコン酸鉛)系材料やPT(チタン酸鉛)系材料が使用されていた。しかしながら、PZT系材料やPT系材料は、鉛を約60質量%の割合で含有しているため、酸性雨により鉛の溶出が起こり、環境汚染を招く危険性が指摘されている。そこで、鉛を含有しない圧電材料へ高い期待が寄せられている。   Conventionally, a resonator or a pressure sensor element has high piezoelectricity, for example, a PZT (lead zirconate titanate) -based material or a PT (lead titanate) -based material capable of obtaining a large generated charge with respect to a large P / V or pressure. It was used. However, since PZT-based materials and PT-based materials contain lead in a proportion of about 60% by mass, the elution of lead due to acid rain has been pointed out as a risk of environmental pollution. Therefore, high expectations are placed on piezoelectric materials that do not contain lead.

また、PZT系材料やPT系材料は、キュリー温度Tcが約200〜300℃であることから、200℃程度の高温下で使用すると圧電d定数が劣化する点、室温の圧電d定数に対して200℃の圧電d定数が大きく変化する点などから、用途に大きな制限があった。例えば、圧力センサとして用いた場合、経時変化で圧電d定数が劣化すると、同じ圧力でも出力電圧が変わり、また、室温の圧電d定数に対する200℃の圧電d定数の変化が大きいと、圧力と出力電圧との関係が線形でないので、出力電圧から正確な圧力を算出することが困難になる。   In addition, since PZT materials and PT materials have a Curie temperature Tc of about 200 to 300 ° C., the piezoelectric d constant deteriorates when used at a high temperature of about 200 ° C. Due to the fact that the piezoelectric d constant at 200.degree. For example, when used as a pressure sensor, if the piezoelectric d constant deteriorates with time, the output voltage changes even at the same pressure, and if the change in the piezoelectric d constant at 200 ° C. relative to the piezoelectric d constant at room temperature is large, the pressure and output Since the relationship with the voltage is not linear, it is difficult to calculate an accurate pressure from the output voltage.

そこで、鉛を含有しない圧電磁器組成物として、組成式がSrBiTi15で表されるビスマス層状化合物を主体とする材料が提案されている(例えば特許文献1を参照。)。 Therefore, as a piezoelectric ceramic composition not containing lead, a material mainly composed of a bismuth layered compound whose composition formula is represented by SrBi 4 Ti 4 O 15 has been proposed (see, for example, Patent Document 1).

ビスマス層状化合物を主体とする材料には、キュリー温度が400℃以上のものが多く、そのようなものは、高い耐熱性を有しており、エンジンルーム内などの高い温度にさらされる環境下で使用するセンサ素子として応用できる可能性がある。
特開2000−313662号公報
Many materials mainly composed of bismuth layered compounds have a Curie temperature of 400 ° C. or higher. Such materials have high heat resistance and are exposed to high temperatures such as in an engine room. It may be applicable as a sensor element to be used.
JP 2000-313662 A

しかしながら、組成式がSrBiTi15で表されるビスマス層状化合物を主体とする圧電磁器では、圧電d定数が低いという問題があった。これを改善するため、疑ペロブスカイト層の層数を増やして非整数としたBiTi12・x[SrTiO]で表したとき、x=1.5となるビスマス層状化合物を主体とする圧電磁器では、圧電d定数は大きくなるものの、圧電磁器の靱性が低く、製造工程などで、圧電磁器が他の圧電磁器や設備に接触して、圧電磁器のエッジが欠けたり、厚さ100μm以下の薄い圧電磁器では割れたりするという問題があった。 However, a piezoelectric ceramic mainly composed of a bismuth layered compound represented by the composition formula SrBi 4 Ti 4 O 15 has a problem that the piezoelectric d constant is low. In order to improve this, it is mainly composed of a bismuth layered compound in which x = 1.5 when expressed by Bi 4 Ti 3 O 12 · x [SrTiO 3 ] in which the number of suspected perovskite layers is increased to a non-integer. In piezoelectric ceramics, although the piezoelectric d constant is large, the toughness of the piezoelectric ceramic is low, and the piezoelectric ceramic comes into contact with other piezoelectric ceramics and equipment in the manufacturing process, etc., the edge of the piezoelectric ceramic is chipped, or the thickness is 100 μm or less There was a problem that the thin piezoelectric ceramic was cracked.

また、圧電磁器を圧力センサ素子として用いる場合、圧電磁器には圧力が印加されるため、相対密度が低いと機械的信頼性が劣るという問題があった。さらに、圧電磁器を共振子として用いる場合、例えばダイシングカットなどの素子加工を行った際、相対密度が低いと圧電磁器の加工面やエッジにチッピングが発生してリップルの発生原因となるという問題があった。   Further, when a piezoelectric ceramic is used as a pressure sensor element, since pressure is applied to the piezoelectric ceramic, there is a problem that mechanical reliability is inferior when the relative density is low. Furthermore, when a piezoelectric ceramic is used as a resonator, for example, when element processing such as dicing cut is performed, if the relative density is low, chipping occurs on the processed surface or edge of the piezoelectric ceramic, causing ripples. there were.

したがって、本発明は、圧電d定数が大きく、加工により破壊が起こり難くいビスマス層状化合物からなる圧電磁器および圧電素子を提供することを目的とする。   Accordingly, an object of the present invention is to provide a piezoelectric ceramic and a piezoelectric element that are made of a bismuth layered compound that has a large piezoelectric d constant and is less likely to be damaged by processing.

本発明の圧電磁器は、主成分がビスマス層状化合物からなる圧電磁器であって、組成式BiTi12・x[(SrCa1−a1−yBiTiO]で表したとき、1.2≦x≦1.9、0.05≦y≦0.3、0.4≦a≦0.6である成分100質量部に対して、MnをMnO換算で0.05〜2質量部含有することを特徴とする。 The piezoelectric ceramic of the present invention is a piezoelectric ceramic whose main component is a bismuth layered compound, and is represented by a composition formula Bi 4 Ti 3 O 12 · x [(Sr a Ca 1−a ) 1−y Bi y TiO 3 ]. Mn is converted to MnO 2 in terms of MnO 2 with respect to 100 parts by mass of the components satisfying 1.2 ≦ x ≦ 1.9, 0.05 ≦ y ≦ 0.3, and 0.4 ≦ a ≦ 0.6. It contains 05 to 2 parts by mass.

また、前記圧電磁器は、0.1≦y≦0.2であることが好ましい。   The piezoelectric ceramic preferably satisfies 0.1 ≦ y ≦ 0.2.

本発明の圧電素子は、前記圧電磁器からなる基体の対向する一対の表面に電極を備えることを特徴とする。   The piezoelectric element of the present invention is characterized in that electrodes are provided on a pair of opposing surfaces of a base body made of the piezoelectric ceramic.

本発明の圧電磁器によれば、主成分がビスマス層状化合物からなる圧電磁器であって、組成式BiTi12・x[(SrCa1−a1−yBiTiO]で表したとき、1.2≦x≦1.9、0.05≦y≦0.3、0.4≦a≦0.6である成分100質量部に対して、MnをMnO換算で0.05〜2質量部含有することにより、圧電d定数を大きくできるとともに、圧電磁器の相対密度が高くなり、破壊靱性値を高くできる。 According to the piezoelectric ceramic of the present invention, the piezoelectric ceramic is composed of a bismuth layered compound as a main component, and has the composition formula Bi 4 Ti 3 O 12 · x [(Sr a Ca 1−a ) 1−y Bi y TiO 3 ]. , Mn is converted to MnO 2 with respect to 100 parts by mass of the component that satisfies 1.2 ≦ x ≦ 1.9, 0.05 ≦ y ≦ 0.3, and 0.4 ≦ a ≦ 0.6. By containing 0.05 to 2 parts by mass, the piezoelectric d constant can be increased, the relative density of the piezoelectric ceramic is increased, and the fracture toughness value can be increased.

ビスマス層状化合物の疑ペロブスカイト層となる組成物の量を層数mが4と5の間の非整数に対応する量とすることにより圧電d定数を大きくできる。このとき、増加させる疑ペロブスカイト層のSrまたはCaの一部をBiで置換することにより、増加した疑ペロブスカイト層による焼結性の劣化がなく、圧電磁器の焼結性が向上し緻密化が促進する。そのため、磁器の破壊靱性が向上する。   The piezoelectric d constant can be increased by setting the amount of the composition that becomes the suspected perovskite layer of the bismuth layered compound to an amount corresponding to a non-integer number between 4 and 5. At this time, by replacing a part of Sr or Ca in the suspected perovskite layer to be increased by Bi, there is no deterioration of sinterability due to the increased suspected perovskite layer, and the sinterability of the piezoelectric ceramic is improved and densification is promoted. To do. Therefore, the fracture toughness of the porcelain is improved.

また、前記圧電磁器は、0.1≦y≦0.2である場合、圧電d33定数をより高くできるため好ましい。 The piezoelectric ceramic is preferably 0.1 ≦ y ≦ 0.2 because the piezoelectric d 33 constant can be further increased.

本発明の圧電素子によれば、前記圧電磁器からなる基体の対向する一対の表面に電極を備えることを特徴とするにより、圧電素子の製造工程中で、圧電素子に欠けや割れなどが生じにくく、それらに起因する不良が少なくなり、歩留りの良い圧電素子ができる。   According to the piezoelectric element of the present invention, the electrodes are provided on a pair of opposing surfaces of the piezoelectric ceramic substrate, so that the piezoelectric element is less likely to be chipped or cracked during the manufacturing process of the piezoelectric element. Therefore, defects due to them are reduced, and a piezoelectric element with a good yield can be obtained.

本発明の圧電磁器は、主成分がビスマス層状化合物からなる圧電磁器であって、組成式BiTi12・x[(SrCa1−a1−yBiTiO]と表したとき、1.2≦x≦1.9、0.05≦y≦0.3、0.4≦a≦0.6である成分100質量部に対して、MnをMnO換算で0.05〜2質量部含有することが重要である。 The piezoelectric ceramic according to the present invention is a piezoelectric ceramic whose main component is a bismuth layered compound, and is represented by the composition formula Bi 4 Ti 3 O 12 · x [(Sr a Ca 1−a ) 1−y Bi y TiO 3 ]. Mn is converted to MnO 2 in terms of MnO 2 with respect to 100 parts by mass of the components satisfying 1.2 ≦ x ≦ 1.9, 0.05 ≦ y ≦ 0.3, and 0.4 ≦ a ≦ 0.6. It is important to contain 0.5 to 2 parts by mass.

ビスマス層状化合物は、ビスマス層と疑ペロブスカイト層が交互に積層された構造をしており、疑ペロブスカイト層に含まれるペロブスカイトの層数m(=3+x)が整数の値のものについて研究が進んでいる。そして、mが整数の場合は、mの値が大きいとビスマス層状化合物の結晶構造内の擬ペロブスカイト層の層数mが多くなるため、圧電特性は大きくなると考えられる。さらに、ビスマス層状化合物中の擬ペロブスカイト層の層数が奇数の際には、擬ペロブスカイト層の結晶格子のc軸方向に分極軸が発生する。擬ペロブスカイト層の層数が整数でない組成の場合に、分極量が増加し、xが半整数となる組成の近傍において、具体的には特に、1.2≦x≦1.9の範囲で圧電d定数が高くなる。   The bismuth layered compound has a structure in which bismuth layers and suspicious perovskite layers are alternately stacked, and research is progressing on the number of perovskite layers m (= 3 + x) included in the suspicious perovskite layer being an integer value. . When m is an integer, it is considered that if the value of m is large, the number m of quasi-perovskite layers in the crystal structure of the bismuth layered compound increases, so that the piezoelectric characteristics increase. Furthermore, when the number of pseudo-perovskite layers in the bismuth layered compound is an odd number, a polarization axis is generated in the c-axis direction of the crystal lattice of the pseudo-perovskite layer. In the case of a composition in which the number of quasi-perovskite layers is not an integer, the amount of polarization increases, and particularly in the vicinity of a composition in which x is a half integer, in particular, in the range of 1.2 ≦ x ≦ 1.9. The d constant increases.

しかし、層数の増加にともない焼結し難くなる傾向が見られた。そして、焼結を進めるために焼成温度を上げると、BiとMnとの化合物などの異相が析出して、磁器密度は高くなるものの、その析出した異相のために絶縁性が低下することにより、分極処理が十分行なうことができず圧電d定数が低下してしまう。そのため、圧電d定数の高さと、薄層の圧電磁器作製の歩留りとは両立しなかった。   However, there was a tendency that sintering became difficult as the number of layers increased. And, when the firing temperature is increased to advance the sintering, a heterogeneous phase such as a compound of Bi and Mn is precipitated, and the porcelain density is increased, but the insulating property is lowered due to the precipitated heterogeneous phase, The polarization process cannot be performed sufficiently, and the piezoelectric d constant decreases. Therefore, the height of the piezoelectric d constant is not compatible with the yield of manufacturing a thin-layer piezoelectric ceramic.

そこで、ビスマス層状化合物のAサイト元素の2価イオンをBiで置換すること、すなわち、増加させる疑ペロブスカイト層のSrまたはCaの一部をBiで置換することにより、難焼結性のビスマス層状化合物の焼結性が改善され緻密化が促進する。これは、置換によりAサイトに空孔ができることにより、Aサイト原子の拡散が早く起こるからではないかと考えられる。この緻密化により、圧電磁器の加工時に破壊され難くなる。   Therefore, by replacing the divalent ion of the A-site element of the bismuth layered compound with Bi, that is, by replacing a part of Sr or Ca in the suspected perovskite layer with Bi, it is difficult to sinter the bismuth layered compound. Sinterability is improved and densification is promoted. This is thought to be because the diffusion of A-site atoms occurs early due to the formation of vacancies at the A-site by substitution. This densification makes it difficult to be destroyed during the processing of the piezoelectric ceramic.

また、aを0.4≦a≦0.6とすることにより、キュリー温度を高くすることができ、より高温まで圧電磁器を使用することができる。   Further, by setting a to 0.4 ≦ a ≦ 0.6, the Curie temperature can be increased, and the piezoelectric ceramic can be used up to a higher temperature.

さらに、上述の成分100質量部に対して、Mnの含有量がMnO換算で0.05質量部以上であることにより、板状結晶である本材料系でも焼結しやすくなり、緻密な磁器が得られる。Mnの含有量がMnO換算で0.05質量部より少ないと相対密度が低くなり、極端に磁器強度が低くなってしまう。また、Mnの含有量がMnO換算で2.5質量部より多いと体積固有抵抗が低くなり、分極できなくなってしまう。 Furthermore, when the content of Mn is 0.05 parts by mass or more in terms of MnO 2 with respect to 100 parts by mass of the above-described component, it is easy to sinter even in this material system that is a plate-like crystal, and the fine porcelain Is obtained. When the content of Mn is less than 0.05 parts by mass in terms of MnO 2 , the relative density is lowered and the porcelain strength is extremely lowered. On the other hand, if the content of Mn is more than 2.5 parts by mass in terms of MnO 2 , the volume specific resistance becomes low and polarization becomes impossible.

本発明の圧電磁器の主成分は、組成式として組成式BiTi12・x[(SrCa1−a1−yBiTiO]で表されるが、主結晶相としてはビスマス層状化合物からなるものである。すなわち、本発明の圧電磁器は、(Bi2+(αm−1β3m+12−で書き表されるビスマス層状化合物の一般式において、αサイトとβサイトおよび酸素サイトに欠陥をともないながらm=4とm=5の構造が混在し、Mnが一部固溶したビスマス層状化合物になっていると考えられる。Mnが添加された磁器では、Mnは主結晶相中に固溶しているが、一部Mn化合物の結晶として粒界に析出する場合がある。また、その他の結晶相として、パイロクロア相、ペロブスカイト相、構造の異なるビスマス層状化合物が存在することもあるが、微量であれば特性上問題ない。 The main component of the piezoelectric ceramic of the present invention is represented by the composition formula Bi 4 Ti 3 O 12 · x [(Sr a Ca 1-a ) 1-y Bi y TiO 3 ] as a composition formula. Is made of a bismuth layered compound. That is, the piezoelectric ceramic of the present invention, in the (Bi 2 O 2) 2+ ( α m-1 β m O 3m + 1) General formula bismuth layer compound Kakiarawasa with 2, the alpha sites and beta sites and oxygen Site It is considered that the structure is a bismuth layered compound in which m = 4 and m = 5 are mixed with some defects, and Mn is partly dissolved. In the porcelain to which Mn is added, Mn is solid-solved in the main crystal phase, but may partially precipitate at the grain boundary as a crystal of the Mn compound. As other crystal phases, there may be a pyrochlore phase, a perovskite phase, and a bismuth layered compound having a different structure.

本発明の圧電磁器は、粉砕時のZrOボールからZr等が混入する場合もあるが、微量であれば特性上問題ない。本発明の圧電磁器は、上記組成式およびMnOが99%以上を占め、それ以外の組成は1%未満、より好ましくは0.5%未満である。 In the piezoelectric ceramic according to the present invention, Zr or the like may be mixed from the ZrO 2 ball at the time of pulverization. In the piezoelectric ceramic of the present invention, the above composition formula and MnO 2 occupy 99% or more, and the other composition is less than 1%, more preferably less than 0.5%.

本発明で、ビスマス層状化合物からなる圧電磁器とは、XRD(X-Ray Diffraction:X線回折)でビスマス層状化合物の主ピークに対してそれ以外の結晶相ピークが強度比で5%以下であるもの、もしくは、断面をTEM(Transmission Electron Microscopy:透過型電子顕微鏡)で10000倍で観察し、電子線回折にてビスマス層状化合物である結晶粒子を同定し、ビスマス層状化合物である結晶粒子が90面積%以上を占めるもののことである。   In the present invention, a piezoelectric ceramic composed of a bismuth layered compound is an XRD (X-Ray Diffraction: X-ray diffraction) in which the crystal phase peak other than the main peak of the bismuth layered compound is 5% or less in intensity ratio. Or TEM (Transmission Electron Microscopy: Transmission Electron Microscope) is observed at a magnification of 10,000, and crystal particles that are bismuth layered compounds are identified by electron diffraction. It occupies more than%.

本発明の組成を有する圧電磁器は、例えば、原料として、SrO、CaO、Bi、MnO、TiOからなる各種酸化物あるいはその塩を用いることができる。原料はこれに限定されず、焼成により酸化物を生成する炭酸塩、硝酸塩等の金属塩を用いても良い。 In the piezoelectric ceramic having the composition of the present invention, for example, various oxides composed of SrO, CaO, Bi 2 O 3 , MnO 2 , and TiO 2 or salts thereof can be used as raw materials. A raw material is not limited to this, You may use metal salts, such as carbonate and nitrate which produce | generate an oxide by baking.

これらの原料を上記した組成となるように秤量し、混合後の平均粒度分布(D50)が0.3〜1μmの範囲になるように粉砕し、この混合物を850〜1000℃で仮焼し、仮焼後の平均粒度分布(D50)が0.3〜1μmの範囲になるように粉砕し、再度所定の有機バインダを加え湿式混合し造粒する。 These raw materials are weighed so as to have the above-described composition, pulverized so that the average particle size distribution (D 50 ) after mixing is in the range of 0.3 to 1 μm, and this mixture is calcined at 850 to 1000 ° C. Then, pulverization is performed so that the average particle size distribution (D 50 ) after calcination is in the range of 0.3 to 1 μm, and a predetermined organic binder is added again, followed by wet mixing and granulation.

このようにして得られた粉体を、公知のプレス成形等により所定形状に成形し、大気中等の酸化性雰囲気において1000〜1250℃の温度範囲で2〜5時間焼成し、本発明の組成を有する圧電磁器が得られる。   The powder thus obtained is molded into a predetermined shape by a known press molding or the like, and calcined at a temperature range of 1000 to 1250 ° C. for 2 to 5 hours in an oxidizing atmosphere such as the atmosphere to obtain the composition of the present invention. The piezoelectric ceramic which has is obtained.

図1(a)に本発明の圧電素子である圧電センサ素子を示す。この圧電センサは、上記した組成の圧電磁器からなる圧電基体1の対向する一対の主面に、それぞれに電極2、3を形成して構成されている。また、分極は主面と垂直な方向に施してある。このような圧力センサでは、主面間に加わっている圧力により、各主面に電荷が生じ、主面間に加わっている圧力を測定することができる。そして、圧電基体1が上述の組成のものであるので、機械的な応力によって破壊されにくい圧電センサ素子となる。   FIG. 1A shows a piezoelectric sensor element which is a piezoelectric element of the present invention. This piezoelectric sensor is configured by forming electrodes 2 and 3 on a pair of opposing main surfaces of a piezoelectric substrate 1 made of a piezoelectric ceramic having the above-described composition. Polarization is performed in a direction perpendicular to the main surface. In such a pressure sensor, an electric charge is generated on each main surface due to the pressure applied between the main surfaces, and the pressure applied between the main surfaces can be measured. And since the piezoelectric substrate 1 is of the above-mentioned composition, it becomes a piezoelectric sensor element that is not easily destroyed by mechanical stress.

なお、圧電センサ素子としては200℃の高温下においても安定した測定が可能な圧力センサを得るために、ランガサイトや水晶などの単結晶を用いる検討もなされている。そして、これら単結晶の場合、圧電d定数が小さく、また、加工時にチッピングが生じやすく、割れやすいという問題があり、さらに、単結晶の製造コストが極めて高いという問題があるが、本発明の圧電磁器では、そのような加工性の問題もなく、安価に製造可能である。   In addition, as a piezoelectric sensor element, in order to obtain a pressure sensor capable of stable measurement even at a high temperature of 200 ° C., studies using single crystals such as langasite and quartz have been made. In the case of these single crystals, there is a problem that the piezoelectric d constant is small, chipping is likely to occur during processing, and the single crystal is easily cracked. Further, the manufacturing cost of the single crystal is extremely high. Porcelain can be manufactured inexpensively without such workability problems.

図1(b)に本発明の圧電素子である圧電共振子(圧電発振子)を示す。この圧電共振子は、上記した組成の圧電磁器からなる圧電基体21の対向する一対の主面に、それぞれ電極22、23を形成して構成されている。このような圧電共振子では、上述のような組成の圧電磁器とすることで、加工によるチッピングを大きく抑えられ、さらには、成型金型により所望の形状になるように成型体を作製・焼成することで圧電素子を得ることができ、チッピング(共振子用磁器エッジの欠け)により共振周波数と反共振周波数の間にスプリアス振動にともなう移相歪みが発生することがなく、移相の条件を満足しないことから不発振とはならず、安定した振幅の発振を得ることができる。   FIG. 1B shows a piezoelectric resonator (piezoelectric oscillator) which is a piezoelectric element of the present invention. This piezoelectric resonator is configured by forming electrodes 22 and 23 on a pair of opposing main surfaces of a piezoelectric substrate 21 made of a piezoelectric ceramic having the above composition, respectively. In such a piezoelectric resonator, by using a piezoelectric ceramic having the above-described composition, chipping due to processing can be greatly suppressed, and further, a molded body is produced and fired to a desired shape by a molding die. Therefore, the piezoelectric element can be obtained, and phase shift distortion due to spurious vibration does not occur between the resonance frequency and anti-resonance frequency due to chipping (missing of the ceramic edge for the resonator), and the phase shift condition is satisfied. Therefore, oscillation does not occur and stable oscillation can be obtained.

まず、出発原料として純度99.9%のSrO粉末、CaO粉末、Bi粉末、TiO粉末を、モル比による組成式BiTi12・x[(SrCa1−a1−yBiTiO]と表したとき、x、y、aが表1に示す量の主成分と、この主成分100質量部に対して、MnO粉末を表1に示す質量部となるように秤量混合した。 First, an SrO powder having a purity of 99.9%, a CaO powder, a Bi 2 O 3 powder, and a TiO 2 powder as a starting material, a composition formula Bi 4 Ti 3 O 12 · x [(Sr a Ca 1-a ) by molar ratio. 1-y Bi y TiO 3 ], x, y, a are the main components in the amounts shown in Table 1, and 100 parts by mass of the main components, and the parts by mass of MnO 2 powder shown in Table 1 Weighed and mixed so that

秤量した原料粉末を、純度99.9%のZrOボール、イオン交換水と共に500mlポリポットに投入し、16時間回転ミルで混合した。 The weighed raw material powder was put into a 500 ml polypot together with ZrO 2 balls having a purity of 99.9% and ion-exchanged water, and mixed in a rotary mill for 16 hours.

混合後のスラリ−を大気中で乾燥し、#40メッシュを通し、その後、大気中950℃、3時間保持して仮焼し、この合成粉末を純度99.9%のZrOボールとイオン交換水と共に500mlポリポットに投入し、20時間粉砕して評価粉末を得た。 The mixed slurry is dried in the air, passed through a # 40 mesh, and then calcined at 950 ° C. for 3 hours in the air, and this synthetic powder is ion-exchanged with a ZrO 2 ball having a purity of 99.9%. It put into a 500 ml polypot with water, and it grind | pulverized for 20 hours, and obtained evaluation powder.

この粉末に適量の有機バインダを添加して造粒し、金型プレスで150MPaの圧力で成形し、大気中において1130℃または1250℃で3時間本焼成し、直径6mm、厚み2.5mmの円柱状の圧電定数測定用圧電磁器と、長さ25mm、幅38mm、厚み1.0mmの板状のラップ加工評価用圧電磁器を得た。   An appropriate amount of an organic binder is added to this powder, granulated, molded with a mold press at a pressure of 150 MPa, and finally fired in air at 1130 ° C. or 1250 ° C. for 3 hours. A circle having a diameter of 6 mm and a thickness of 2.5 mm A columnar piezoelectric constant measuring piezoelectric ceramic and a plate-shaped piezoelectric ceramic for evaluation of lapping processing having a length of 25 mm, a width of 38 mm, and a thickness of 1.0 mm were obtained.

圧電定数測定用圧電磁器は、厚み2mmに研磨した後、両主面(円柱の上下面)にAg電極を形成して、200℃で分極処理を行い、圧電定数測定用圧電素子を得た。得られた圧電定数測定用素子はd33メーターで圧電d33定数を測定し、さらに、圧電素子を恒温槽に入れ、温度を変化させながら静電容量を測定し、静電容量が極大かつ最大となる温度をキュリー温度とした。続いて、体積固有抵抗をJIS−C2141に準拠して評価した。 After the piezoelectric constant measuring piezoelectric ceramic was polished to a thickness of 2 mm, Ag electrodes were formed on both main surfaces (the upper and lower surfaces of the cylinder), and polarization treatment was performed at 200 ° C. to obtain a piezoelectric constant measuring piezoelectric element. The obtained piezoelectric constant measuring element measures the piezoelectric d 33 constant with a d 33 meter, and further puts the piezoelectric element in a thermostatic bath, measures the capacitance while changing the temperature, and the capacitance is maximum and maximum. The temperature at which this was achieved was taken as the Curie temperature. Subsequently, the volume resistivity was evaluated according to JIS-C2141.

さらに、磁器相対密度は、JIS−R2205に準拠して測定した嵩密度を真密度で除して算出した。真密度は、磁器中の気孔が除いた状態の密度を測定するため、乳鉢を用いて圧電磁器を平均粒径3μm程度まで粉砕し、ピクノメータ法を用いて測定した結果を真密度とした。   Furthermore, the porcelain relative density was calculated by dividing the bulk density measured according to JIS-R2205 by the true density. The true density was determined by measuring the density of the porcelain without pores in the porcelain, using a mortar to pulverize the piezoelectric ceramic to an average particle size of about 3 μm, and measuring the result using the pycnometer method.

ラップ加工評価用圧電磁器は厚みが0.1mmになるまで2000番でラップ加工を行なった。100個ラップ加工を行い、割れ、欠けのないものを良品として歩留りを算出した。以上の結果を表1示す。

Figure 0004903659
The piezoelectric ceramic for lapping evaluation was lapped with No. 2000 until the thickness became 0.1 mm. 100 laps were processed, and the yield was calculated assuming that no cracks or chips were found. The results are shown in Table 1.
Figure 0004903659

表1から明らかなように、本発明の範囲内の試料No.15〜22、26〜30、34、35および38〜42は1130℃で焼成可能で、ラップ加工の歩留りが90%以上と歩留りが高かった。また、d33定数も22pC/N以上と高くなった。また、キュリー温度は430℃以上と高くなった。 As is apparent from Table 1, sample nos. 15-22, 26-30, 34, 35 and 38-42 could be fired at 1130 ° C., and the yield of lapping was as high as 90% or higher. Also, as high as d 33 constant even 22pC / N or more. Further, the Curie temperature was as high as 430 ° C. or higher.

特に、本発明の範囲内の試料No.15〜22、27、28、34、35および38〜42は、0.1≦y≦0.2であることにより圧電d33定数が24pC/N以上と高くなった。 In particular, sample nos. In 15-22, 27, 28, 34, 35 and 38-42, the piezoelectric d 33 constant was as high as 24 pC / N or more because 0.1 ≦ y ≦ 0.2.

これに対して、y<0.05である本発明の範囲外の試料No.5〜7および23は、xが1を超えているため、1030℃の焼成温度では、圧電d33定数は高くなったものもあるが、相対密度は90%より低く、ラップ加工の歩留りが90%未満と低かった。また、試料No.5〜7と同じ組成で焼成温度を1250℃とした本発明の範囲外の試料No.8〜10は、相対密度は90%以上となったがビスマスとマンガンとが含まれる異相の析出により体積固有抵抗が低くなり、分極が十分行なえず、圧電d33定数は低くなった。 On the other hand, sample no. In 5 to 7 and 23, since x exceeds 1, the piezoelectric d 33 constant is increased at a firing temperature of 1030 ° C., but the relative density is lower than 90%, and the yield of lapping is 90. It was low with less than%. Sample No. Sample No. 5 outside the scope of the present invention with the same composition as 5-7 and a firing temperature of 1250 ° C. 8-10, the relative density of volume resistivity is lowered by heterophase precipitation that contains manganese and became 90% or more of bismuth, polarization is not performed sufficiently, the piezoelectric constant d 33 was lower.

また、y>0.3である本発明の範囲外の試料No.31は、圧電d33定数が19pC/Nと低くなった。 In addition, the sample no. No. 31 has a piezoelectric d 33 constant as low as 19 pC / N.

また、MnOを添加していない本発明の範囲外の試料No.37では磁器相対密度が89%と十分に緻密化していなかった。MnO添加量が2.5質量部の試料No.43は分極処理を行なったが、分極できなかった。 In addition, the sample No. outside the scope of the present invention to which no MnO 2 was added. In 37, the porcelain relative density was not sufficiently densified as 89%. Sample No. 2 containing 2.5 parts by mass of MnO 2 was added. No. 43 was polarized but could not be polarized.

X線回折で分析したところ、試料No.13はm=4のビスマス層状化合物、No.23はm=5のビスマス層状化合物が主結晶相として認められた。ビスマス層状化合物はペロブスカイト構造が積み重なった中にBiが挿入された結晶構造をもつ。Bi層にはさまれたペロブスカイト構造のユニットの数がm数である。このことから、ペロブスカイト化合物はm=4からなるビスマス層状化合物に取りこまれて、m=5の結晶を有するようになったものと考えることがでる。本発明試料は、X線回折で上記2つ構造の間の構造を示し、本発明の圧電磁器はm=5の構造とm=4の構造が混在していると考えられる。そして、それら構造にMnが一部固溶したビスマス層状化合物になっているものと考えられる。また、各試料の断面を観察し、ビスマス層状化合物が90面積%以上を占めていた。 As a result of analysis by X-ray diffraction, sample no. 13 is a bismuth layered compound of m = 4, No. 13 In No. 23, a bismuth layered compound of m = 5 was recognized as the main crystal phase. The bismuth layered compound has a crystal structure in which Bi 2 O 2 is inserted in a stack of perovskite structures. The number of units having a perovskite structure sandwiched between Bi 2 O 2 layers is m. From this, it can be considered that the perovskite compound is incorporated into a bismuth layered compound having m = 4 and has crystals of m = 5. The sample of the present invention shows a structure between the two structures by X-ray diffraction, and the piezoelectric ceramic of the present invention is considered to have a structure of m = 5 and a structure of m = 4. And it is thought that it is a bismuth layered compound in which Mn is partly dissolved in these structures. Moreover, the cross section of each sample was observed and the bismuth layered compound occupied 90 area% or more.

また、実施例で作製した試料を、蛍光X線分析装置で組成分析した。その結果、各試料の磁器の組成は、調合した原料組成と同じであった。   In addition, the composition of the sample prepared in the example was analyzed with a fluorescent X-ray analyzer. As a result, the composition of the porcelain of each sample was the same as the prepared raw material composition.

(a)は、本発明の圧電素子である圧力センサ素子の概略図であり、(b)は、本発明の圧電素子である8MHz用共振子の概略図である。(A) is the schematic of the pressure sensor element which is a piezoelectric element of this invention, (b) is the schematic of the resonator for 8 MHz which is a piezoelectric element of this invention.

符号の説明Explanation of symbols

1、21・・・圧電基体(圧電磁器)
2、3、22、23・・・電極
P・・・分極方向
1, 21 ... Piezoelectric substrate (piezoelectric ceramic)
2, 3, 22, 23 ... Electrode P ... Polarization direction

Claims (3)

主成分がビスマス層状化合物からなる圧電磁器であって、組成式BiTi12・x[(SrCa1−a1−yBiTiO]と表したとき、1.2≦x≦1.9、0.05≦y≦0.3、0.4≦a≦0.6である成分100質量部に対して、MnをMnO換算で0.05〜2質量部含有することを特徴とする圧電磁器。 When the main component is a piezoelectric ceramic composed of a bismuth layered compound, and expressed as a composition formula Bi 4 Ti 3 O 12 · x [(Sr a Ca 1−a ) 1−y Bi y TiO 3 ], 1.2 ≦ Mn is contained in an amount of 0.05 to 2 parts by mass in terms of MnO 2 with respect to 100 parts by mass of the components satisfying x ≦ 1.9, 0.05 ≦ y ≦ 0.3, and 0.4 ≦ a ≦ 0.6. A piezoelectric ceramic characterized by that. 0.1≦y≦0.2であることを特徴とする請求項1記載の圧電磁器。 2. The piezoelectric ceramic according to claim 1, wherein 0.1 ≦ y ≦ 0.2. 請求項1または2記載の圧電磁器からなる基体の対向する一対の表面に電極を備えることを特徴とする圧電素子。 3. A piezoelectric element comprising electrodes on a pair of opposing surfaces of a substrate comprising the piezoelectric ceramic according to claim 1 or 2.
JP2007251581A 2007-09-27 2007-09-27 Piezoelectric ceramic and piezoelectric element Expired - Fee Related JP4903659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007251581A JP4903659B2 (en) 2007-09-27 2007-09-27 Piezoelectric ceramic and piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007251581A JP4903659B2 (en) 2007-09-27 2007-09-27 Piezoelectric ceramic and piezoelectric element

Publications (2)

Publication Number Publication Date
JP2009084067A JP2009084067A (en) 2009-04-23
JP4903659B2 true JP4903659B2 (en) 2012-03-28

Family

ID=40657977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007251581A Expired - Fee Related JP4903659B2 (en) 2007-09-27 2007-09-27 Piezoelectric ceramic and piezoelectric element

Country Status (1)

Country Link
JP (1) JP4903659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094334B2 (en) * 2006-12-25 2012-12-12 京セラ株式会社 Piezoelectric ceramic and piezoelectric element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174144A (en) * 1997-08-29 1999-03-16 Kyocera Corp Laminated ceramic capacitor
JP4234898B2 (en) * 2000-11-29 2009-03-04 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric resonator
JP4234902B2 (en) * 2000-12-26 2009-03-04 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric resonator
JP4471542B2 (en) * 2001-07-24 2010-06-02 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric resonator

Also Published As

Publication number Publication date
JP2009084067A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5094334B2 (en) Piezoelectric ceramic and piezoelectric element
EP2261191B1 (en) Piezoelectric ceramic, and piezoelectric elementing using the same
CN101918340A (en) Piezoelectric ceramic composition and piezoelectric element made by using the same
JP2009221096A (en) Piezoelectric/electrostrictive ceramic composition
JP4903683B2 (en) Piezoelectric ceramic and piezoelectric element
JP2010030832A (en) Piezoelectric ceramic and piezoelectric element using it
JP2002308672A (en) Method for manufacturing piezoelectric ceramic, piezoelectric ceramic and piezoelectric ceramic device
JP5116584B2 (en) Piezoelectric ceramic and piezoelectric element using the same
EP2119686B1 (en) Piezoelectric ceramic material and piezoelectric element
JP4903659B2 (en) Piezoelectric ceramic and piezoelectric element
JP5421010B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP5036758B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP5219421B2 (en) Piezoelectric ceramic and piezoelectric element
JP5550401B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP5322401B2 (en) Piezoelectric ceramic and piezoelectric element
JP3830315B2 (en) Piezoelectric ceramic composition
JP5376817B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP5100138B2 (en) Piezoelectric ceramic and piezoelectric element
JP5319208B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP2000264727A (en) Piezoelectric ceramics
JP2009236577A (en) Piezoelectric sensor
JP5072760B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP3981221B2 (en) Piezoelectric ceramic
JP2008184336A5 (en)
JP5094284B2 (en) Piezoelectric ceramic and piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Ref document number: 4903659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees