JP2008177068A - Insulated wire and its manufacturing method - Google Patents

Insulated wire and its manufacturing method Download PDF

Info

Publication number
JP2008177068A
JP2008177068A JP2007009754A JP2007009754A JP2008177068A JP 2008177068 A JP2008177068 A JP 2008177068A JP 2007009754 A JP2007009754 A JP 2007009754A JP 2007009754 A JP2007009754 A JP 2007009754A JP 2008177068 A JP2008177068 A JP 2008177068A
Authority
JP
Japan
Prior art keywords
conductor
electrodeposition
electrodeposition layer
layer
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007009754A
Other languages
Japanese (ja)
Inventor
Yasuki Kajima
泰規 鹿嶋
Hiroyuki Kamibayashi
裕之 上林
Takeshi Ikeda
毅 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2007009754A priority Critical patent/JP2008177068A/en
Priority to EP07742108.9A priority patent/EP2017854B1/en
Priority to US12/298,524 priority patent/US7928626B2/en
Priority to PCT/JP2007/058673 priority patent/WO2007125838A1/en
Publication of JP2008177068A publication Critical patent/JP2008177068A/en
Priority to US13/045,984 priority patent/US9003647B2/en
Priority to US13/047,305 priority patent/US8053943B2/en
Priority to US13/047,161 priority patent/US8049390B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method capable of easily forming a terminal on an insulated wire. <P>SOLUTION: In this insulated wire, a conductor 1 is made to pass through an electrodeposition bath 8 to attach an electrodeposited layer to its outer surface, and next the electrodeposited layer is burnt in a burning process. A conductor exposure part is formed by blowing the non-solidified electrodeposited layer attached in the electrodeposition bath 8 using a jetted fluid. Accordingly, since work of forming the conductor exposure part by purposedly mechanically scraping off an insulation layer is not necessary, manufacturing efficiency can be improved as a whole, and a problem of inferior quality due to dispersion of work does not occur. Whereas ultrafine powder dust is generated in the work of scraping off the insulating layer by a mechanical means, and adversely affects a secret apparatus, an electronic component name or the like, this manufacturing method has an advantage capable of surely preventing such a problem. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、絶縁電線とその製造方法に関する。   The present invention relates to an insulated wire and a method for manufacturing the same.

従来から、絶縁電線として、例えば、マグネットワイヤの製造方法として、その耐熱性や、可撓性(絶縁層の剥がれ難さ)や、占積率の改善について、多くの提案がなされている(例えば、特許文献1又は特許文献2参照)。
特開2005−174561号公報 特開2003−317547号公報
Conventionally, as an insulated wire, for example, as a method of manufacturing a magnet wire, many proposals have been made on improving heat resistance, flexibility (hardness of peeling of the insulating layer), and space factor (for example, Patent Document 1 or Patent Document 2).
JP 2005-174561 A JP 2003-317547 A

しかしながら、マグネットワイヤや高電圧トランスコイルや非接触型ICカードアンテナコイル等の用途に於て、必ず端子が必要である。この端子加工に関しては、旧態然として、機械的に絶縁層を削り取る方法が用いられている。   However, in applications such as magnet wires, high voltage transformer coils, and non-contact type IC card antenna coils, terminals are always required. As for this terminal processing, the old method is mechanically scraping off the insulating layer.

そこで、本発明は、機械的に絶縁層を削り取る作業が省略可能な絶縁電線を、安価に製造することを目的とする。さらに、コンパクト化が要望される前記用途に於て、コイル状に巻設したり、多層に重ねた状態で、一層のコンパクト化を図り得る絶縁電線を提供することを、他の目的とする。   Therefore, an object of the present invention is to inexpensively manufacture an insulated wire that can omit the work of mechanically scraping the insulating layer. Furthermore, it is another object to provide an insulated wire that can be further reduced in size in a state where it is wound in a coil shape or stacked in multiple layers in the above-mentioned applications where downsizing is desired.

上記目的を達成するため、本発明に係る絶縁電線は、導体に電着・焼付けした絶縁層を被覆して成る絶縁電線に於て、上記絶縁層を形成するための焼付け前の電着層の部分的な非形成又は部分的な除去によって形成された導体露出部を具備する。   In order to achieve the above object, an insulated wire according to the present invention is an insulated wire formed by coating an insulating layer that has been electrodeposited and baked on a conductor, and an electrodeposition layer before baking for forming the insulating layer. A conductor exposed portion formed by partial non-formation or partial removal is provided.

また、本発明は、電着槽内を連続的に通過させつつ導体の外面に電着層を付着形成させる電着層付着工程の後に、導体の外面に付着した電着層を連続的に焼付ける焼付工程を経て、導体の外面に絶縁層を被覆形成する絶縁電線の製造方法に於て、上記電着層付着工程と上記焼付工程の間にて、上記導体の外面に付着した未硬化状態の上記電着層を、噴出流体にて吹き飛ばして、部分的に上記電着層を除去し、上記焼付工程を経て上記導体が部分的に露出状の導体露出部を形成する方法である。   In addition, the present invention continuously bakes the electrodeposition layer adhered to the outer surface of the conductor after the electrodeposition layer adhesion step of adhering and forming the electrodeposition layer on the outer surface of the conductor while continuously passing through the electrodeposition bath. In the method of manufacturing an insulated wire in which an insulating layer is formed on the outer surface of the conductor through a baking step, an uncured state adhered to the outer surface of the conductor between the electrodeposition layer attaching step and the baking step. The electrodeposition layer is blown away with a jet fluid, the electrodeposition layer is partially removed, and the conductor is partially exposed to form a conductor exposed portion through the baking step.

あるいは、本発明は、電着槽内を連続的に通過させつつ導体の外面に電着層を付着形成させる電着層付着工程の後に、導体の外面に付着した電着層を連続的に焼付ける焼付工程を経て、導体の外面に絶縁層を被覆形成する絶縁電線の製造方法に於て、上記電着層付着工程中に、上記電着槽内にて導体の外面に接触しつつ導体の通過走行方向と同一方向に移動する可動マスキング部材によって、導体を部分的にマスキングし、導体の外面に部分的に電着層を形成させずに、その後の上記焼付工程にて、導体露出部を形成する方法である。   Alternatively, according to the present invention, the electrodeposition layer adhered to the outer surface of the conductor is continuously baked after the electrodeposition layer adhesion step of depositing and forming the electrodeposition layer on the outer surface of the conductor while continuously passing through the electrodeposition bath. In the method of manufacturing an insulated wire in which an insulating layer is coated on the outer surface of the conductor after the baking step, the conductor is in contact with the outer surface of the conductor in the electrodeposition tank during the electrodeposition layer attaching step. With the movable masking member that moves in the same direction as the passing travel direction, the conductor is partially masked, and the conductor exposed portion is formed in the subsequent baking step without partially forming an electrodeposition layer on the outer surface of the conductor. It is a method of forming.

また、本発明は、電着槽内を連続的に通過させつつ導体の外面に電着層を付着形成させる電着層付着工程の後に、導体の外面に付着した電着層を連続的に焼付ける焼付工程を経て、導体の外面に絶縁層を被覆形成する絶縁電線の製造方法に於て、上記電着層付着工程中に、上記電着槽内を通過走行中の導体の外面に摺接する摺動マスキング部材によって、導体を部分的にマスキングし、導体の外面に部分的に電着層を形成させずに、その後の上記焼付工程にて、導体露出部を形成する方法である。   In addition, the present invention continuously bakes the electrodeposition layer adhered to the outer surface of the conductor after the electrodeposition layer adhesion step of adhering and forming the electrodeposition layer on the outer surface of the conductor while continuously passing through the electrodeposition bath. In the method of manufacturing an insulated wire in which an insulating layer is coated on the outer surface of the conductor through the baking step, the outer surface of the conductor passing through the electrodeposition tank is slidably contacted during the electrodeposition layer attaching step. This is a method in which a conductor is partially masked by a sliding masking member, and a conductor exposed portion is formed in the subsequent baking step without partially forming an electrodeposition layer on the outer surface of the conductor.

本発明に係る絶縁電線によれば、導体露出部を、わざわざ機械的に削り取って形成する作業が必要がないので、全体として製造能率が改善でき、かつ、作業のばらつきによる品質不良の問題も発生しない。かつ、機械的手段にて絶縁層を削り取る作業では、超微細な粉塵を発生して、機密機器・電子部品名等へ悪影響を与えるが、このような問題も確実に防止できる利点もある。また、機械的加工によって導体に傷を付けて、折損や破断の原因となることも有効に防ぎ得る。   According to the insulated wire according to the present invention, since it is not necessary to mechanically scrape and form the conductor exposed portion, the manufacturing efficiency can be improved as a whole, and the problem of poor quality due to variations in work also occurs. do not do. Moreover, in the work of scraping the insulating layer by mechanical means, ultra fine dust is generated, which adversely affects confidential equipment / electronic component names, etc., but there is also an advantage that such a problem can be surely prevented. Further, it is possible to effectively prevent the conductor from being damaged by mechanical processing and causing breakage or breakage.

本発明に係る絶縁電線の製造方法によれば、連続的に長尺の絶縁電線を製造する途中で、部分的に絶縁層の存在しない導体露出部が、能率的に、かつ、粉塵を発生させずに、かつ、高品質を保ちつつ、容易かつ確実に製造できる。特に、モータやトランス等のコイルの小型化と高性能化の要望に応えて、コンパクト化を図ることが可能となり、大量生産も実現容易となる。また、放熱性の良好なモータやトランス等のコイルの実現にも寄与できる。   According to the method for manufacturing an insulated wire according to the present invention, a conductor exposed portion that does not have an insulating layer partially and efficiently generates dust during the continuous production of a long insulated wire. And can be manufactured easily and reliably while maintaining high quality. In particular, in response to demands for miniaturization and high performance of coils such as motors and transformers, it is possible to achieve compactness, and mass production can be easily realized. In addition, it can contribute to the realization of coils such as motors and transformers with good heat dissipation.

以下、実施の形態を示す図面に基づき本発明を詳説する。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments.

図1と図2に於て、絶縁電線3として、横断面が平角状(つまり、矩形状乃至一文字状)であって、その幅寸法Wが、長手方向に渡って、大小変化する各種のものを例示する。なお、図示省略したが、厚さ寸法は、幅寸法Wの大きい部位が小さく、幅寸法Wの小さい部位は大きくなっている。   In FIG. 1 and FIG. 2, various types of insulated wires 3 having a rectangular cross section (that is, a rectangular shape or a single letter shape) and whose width dimension W changes in size in the longitudinal direction. Is illustrated. Although not shown in the drawings, the thickness dimension is small in the portion having the large width dimension W and large in the portion having the small width dimension W.

図1(a)〜(d)に於て、点々にて示した部位は、絶縁層5が導体1に被覆されている部位を示し、点々の存在しない部位は導体露出部7を示す。   1A to 1D, the portions indicated by dots indicate portions where the insulating layer 5 is covered with the conductor 1, and the portions where the dots do not exist indicate conductor exposed portions 7.

図7(a)は図1(c)のA−A断面であり、図7(b)は図1(c)のB−B断面である。このように、部分的に導体1が露出状の導体露出部7が、長手方向に所定ピッチにて、かつ、平面視幅方向に横切って配設(形成)されている。   7A is a cross-sectional view taken along the line AA in FIG. 1C, and FIG. 7B is a cross-sectional view taken along the line BB in FIG. 1C. In this way, the conductor exposed portions 7 in which the conductor 1 is partially exposed are disposed (formed) at a predetermined pitch in the longitudinal direction and across the width in the plan view.

この絶縁電線3は、導体1の外面2に、電着・焼付けにて絶縁層5が被覆されているが、焼付け工程前に部分的に電着層を非形成とすることによって、導体露出部7を形成するか、あるいは、焼付け工程前に部分的に電着層を除去することによって、導体露出部7を形成する。   In this insulated wire 3, the outer surface 2 of the conductor 1 is covered with the insulating layer 5 by electrodeposition / baking, but the conductor exposed portion is not formed by partially forming the electrodeposition layer before the baking process. 7 is formed, or the conductor exposed portion 7 is formed by partially removing the electrodeposition layer before the baking step.

図4に於て、製造方法の全体を簡略化して示し、8は電着槽であり、繰出しローラ9から、導体を繰出して、例えば、円形断面の導体を平角線に圧延する圧延機、及び水洗槽等の加工装置10(詳細図示省略して2点鎖線にて示した)を通過させ、方向変換ローラ11を介して、導体1を矢印Gの如く下方から上方へ走行させつつ、電着液12を貯留した電着槽8の底壁を通して下から上へ連続的に導体1は電着槽8内を通過し、導体1の外面に電着液12中の(後述の)樹脂微粒子を付着させて電着層を形成する。これを電着層付着工程と呼ぶ。   In FIG. 4, the entire manufacturing method is shown in a simplified manner, 8 is an electrodeposition tank, and a rolling mill for feeding a conductor from a feeding roller 9 to roll a conductor having a circular cross section into a flat wire, for example; Electrodeposition while passing through a processing device 10 such as a washing tank (detailed illustration is omitted and indicated by a two-dot chain line), and the conductor 1 runs from below to above as indicated by an arrow G via a direction changing roller 11 The conductor 1 continuously passes through the electrodeposition tank 8 through the bottom wall of the electrodeposition tank 8 in which the liquid 12 is stored, and resin fine particles (described later) in the electrodeposition liquid 12 are placed on the outer surface of the conductor 1. It is made to adhere and an electrodeposition layer is formed. This is called an electrodeposition layer attaching step.

図5は、この電着層付着工程の概要説明のための簡略平面図であり、図4と合わせて説明すれば、電着槽8内にはマイナス電極13が差し込まれており、矢印G方向に走行通過する平角線(導体1)はプラス極となるように、(図示省略の)電源と接触される。電着液12としては、エポキシ系水分散(エマルジョン)型電着ワニス、あるいは、ポリイミド系やポリアミドイシド系の電着ワニスが、好適である。模式的に小さな円にて示したのは、上述のエポキシ系等の樹脂微粒子14であって、泳動中の樹脂微粒子14は、マイナスに帯電しており、プラス極としての導体1の外面2に効率良く次々と付着して電着層15を形成する。   FIG. 5 is a simplified plan view for explaining the outline of this electrodeposition layer attaching step. If it is described together with FIG. 4, a negative electrode 13 is inserted in the electrodeposition tank 8, and the direction of arrow G is shown. The flat wire (conductor 1) that passes through is brought into contact with a power source (not shown) so as to be a positive pole. As the electrodeposition liquid 12, an epoxy-based water dispersion (emulsion) type electrodeposition varnish or a polyimide-based or polyamide-acid-based electrodeposition varnish is suitable. A small circle schematically shows the resin fine particles 14 such as the epoxy resin, and the resin fine particles 14 during migration are negatively charged and are formed on the outer surface 2 of the conductor 1 as a positive electrode. The electrodeposition layer 15 is formed by adhering one after another efficiently.

そして、図4に示すように、導体1の外面に付着した電着層15を連続的に焼付ける焼付工程を行うために、焼付炉16が設けられており、この焼付炉16を通過することで、導体1の外面2(図2(b)参照)に、絶縁層5が被覆形成される。その後、図外の巻取ローラに巻取られてゆく。   As shown in FIG. 4, a baking furnace 16 is provided to perform a baking process for continuously baking the electrodeposition layer 15 adhering to the outer surface of the conductor 1, and passes through the baking furnace 16. Thus, the insulating layer 5 is formed on the outer surface 2 of the conductor 1 (see FIG. 2B). Thereafter, the film is wound around a winding roller (not shown).

この電着槽8と焼付炉16の間に導体露出部形成装置17が付設される。即ち、電着層付着工程と焼付工程の間にて、導体1の外面2に付着した、図6(a)に示すような未硬化状態の電着層15を、図6(b)に示すように、噴出流体Hにて吹き飛ばすことで、部分的に電着層15を除去(図6(b)の矢印J参照)する。この電着層15が部分的に導体1の外面2から除去された部分70は、その後の焼付工程を経て、図1(a)〜(d)等に示したような導体露出部7を構成する。
噴出流体Hとしては、エアー(空気)が望ましいが、これ以外のガス(気体)や、水等の液体、若しくは水蒸気等が使用できる。
A conductor exposed portion forming device 17 is provided between the electrodeposition bath 8 and the baking furnace 16. That is, an uncured electrodeposition layer 15 as shown in FIG. 6 (a) that adheres to the outer surface 2 of the conductor 1 between the electrodeposition layer adhesion step and the baking step is shown in FIG. 6 (b). Thus, the electrodeposition layer 15 is partially removed by blowing off with the jetting fluid H (see arrow J in FIG. 6B). The portion 70 where the electrodeposited layer 15 is partially removed from the outer surface 2 of the conductor 1 is subjected to a subsequent baking process to form a conductor exposed portion 7 as shown in FIGS. 1 (a) to 1 (d). To do.
As the ejection fluid H, air (air) is desirable, but other gases (gas), liquids such as water, water vapor, or the like can be used.

図6に於て、平角線状の導体1の上面と下面に向かって2本のノズル18,18が対応し、図示省略の位置検出手段にて、極微小時間にわたり、流体Hを噴出することで、図6(a)から(b)の如く、未硬化(未焼付)の電着層15は吹き飛ぶ。この図6のノズル18,18の配置は、図1と図2に示したように、平角線状の導体1の幅方向に、除去部分70(導体露出部7)を形成するのに好適である。上記位置検出手段としては、図1(a)〜(d)のように幅寸法Wが大小変化する場合には、その幅寸法Wを検出すれば良く、あるいは、近接センサにて山と谷の位置を検出させても良く、さらには、連続的に送られてくる導体1の長さを計測する計尺装置を使用しても良い。そして、図6に於て、ノズル18を同図の左右方向に進退させる往復手段を付設して、導体1の幅寸法Wの大小変化に対応して、側端縁の山と谷の位置変動に対応させるも、好ましい(図示省略)。
なお、図6に於て、ノズル18,18を一方のみとして、導体1の一面にのみ除去部分70(導体露出部7)を形成するも好ましい。
In FIG. 6, two nozzles 18 and 18 correspond to the upper and lower surfaces of the rectangular wire conductor 1, and the fluid H is ejected over a very short time by position detection means (not shown). Thus, as shown in FIGS. 6A to 6B, the uncured (unbaked) electrodeposition layer 15 blows away. The arrangement of the nozzles 18 and 18 in FIG. 6 is suitable for forming the removal portion 70 (conductor exposed portion 7) in the width direction of the flat wire 1 as shown in FIGS. is there. As the position detecting means, when the width dimension W changes as shown in FIGS. 1A to 1D, the width dimension W may be detected, or the proximity sensor may be used to detect peaks and valleys. The position may be detected, and a measuring device that measures the length of the conductor 1 that is continuously sent may be used. In FIG. 6, a reciprocating means for moving the nozzle 18 back and forth in the left-right direction in the figure is provided, and the position fluctuations of the crests and troughs of the side edge corresponding to the change in the width dimension W of the conductor 1 are provided. Is also preferable (not shown).
In FIG. 6, it is also preferable to form the removal portion 70 (conductor exposed portion 7) only on one surface of the conductor 1 with the nozzles 18, 18 being only one.

次に、図7は(図6に代わる)他の実施の形態を示す。即ち、図7(a)に示すように、横断面形状矩形の短辺19に付着した未硬化(未焼付)の電着層15を、図7(b)に示す如く、ノズル18からの噴出流体Hにて部分的に吹き飛ばして、電着層15を短辺19のみから除去(矢印J参照)し、この除去部分70は、その後の焼付工程を経て、例えば、図3に示すように、導体露出部7を形成する。図3(b)(c)は各々図3(a)のB−B,C−C断面を示し、図1と図2では横断面矩形の長辺20に於て導体露出部7が形成されているのに対し、図3では短辺19に於て導体露出部7が形成される。なお、図7に示すように、流体遮蔽部材21を設けて、噴出流体Hが短辺19以外の部分から電着層15を吹き飛ばさないようにすることも望ましい。   Next, FIG. 7 shows another embodiment (instead of FIG. 6). That is, as shown in FIG. 7A, an uncured (non-baked) electrodeposition layer 15 adhering to the short side 19 of the rectangular cross section is ejected from the nozzle 18 as shown in FIG. The electrodeposition layer 15 is removed from only the short side 19 by partially blowing away with the fluid H (see arrow J), and this removed portion 70 undergoes a subsequent baking process, for example, as shown in FIG. Conductor exposed portions 7 are formed. 3 (b) and 3 (c) respectively show the BB and CC cross sections of FIG. 3 (a). In FIGS. 1 and 2, the conductor exposed portion 7 is formed at the long side 20 of the rectangular cross section. In contrast, in FIG. 3, the conductor exposed portion 7 is formed on the short side 19. As shown in FIG. 7, it is also desirable to provide a fluid shielding member 21 so that the ejected fluid H does not blow off the electrodeposition layer 15 from a portion other than the short side 19.

次に、図8と図9は別の実施の形態を示す。即ち、前述の図4と比較すれば明らかなように、図4に示した導体露出部形成装置17の代わりに、可動マスキング部材22が電着槽8内に設けられる。   Next, FIG. 8 and FIG. 9 show another embodiment. That is, as is clear from comparison with FIG. 4 described above, a movable masking member 22 is provided in the electrodeposition tank 8 instead of the conductor exposed portion forming device 17 shown in FIG.

図8に於て、繰出しローラ9から、導体を繰出し、例えば、円形断面の導体を平角線に圧延する圧延機、及び、水洗槽等の加工装置10を通過させ、方向変換ローラ11を経て、電着液12の入った電着槽8を下から上へ(矢印Gのように)通過させて、導体1の外面に電着液12中の樹脂微粒子14を(図5のように)付着させるが、その際、可動マスキング部材22によって、図9では、横断面矩形の(導体1の)長辺20,20の内の一方には樹脂微粒子14の接近を阻止し、図13に示すように、一方の長辺20を電着層非形成部72として、その後の焼付工程にて、導体露出部7が構成される。電着層非形成部72及びこれに対応した導体露出部7は、部分的に設けられるといえども、前述の図1〜図7の実施の形態の除去部分70及び対応した導体露出部7と比較すると、導体1の外面2に占める割合は大きい。つまり、図9と図13では、長手方向全体に渡って、横断面矩形の長辺20,20の内の一方に、電着層非形成部72(導体露出部7)が形成されている。   In FIG. 8, a conductor is fed from a feeding roller 9, for example, a rolling mill that rolls a conductor having a circular cross section into a flat wire, and a processing device 10 such as a washing tank, and the direction changing roller 11 is passed through. Pass through the electrodeposition tank 8 containing the electrodeposition liquid 12 from the bottom to the top (as indicated by the arrow G), and the resin fine particles 14 in the electrodeposition liquid 12 adhere to the outer surface of the conductor 1 (as shown in FIG. 5). In this case, the movable masking member 22 prevents the resin fine particles 14 from approaching one of the long sides 20 and 20 having a rectangular cross section (conductor 1) in FIG. 9, as shown in FIG. In addition, with one long side 20 as the electrodeposition layer non-forming portion 72, the conductor exposed portion 7 is formed in the subsequent baking step. Although the electrodeposition layer non-forming portion 72 and the conductor exposed portion 7 corresponding thereto are partially provided, the removal portion 70 and the corresponding conductor exposed portion 7 in the embodiment shown in FIGS. In comparison, the proportion of the conductor 1 in the outer surface 2 is large. That is, in FIG. 9 and FIG. 13, the electrodeposition layer non-formation part 72 (conductor exposed part 7) is formed in one of the long sides 20 and 20 of the cross-sectional rectangle over the whole longitudinal direction.

図8に戻って説明すると、電着槽8から上方へ走行しつつ連続的に送り出される電着層付着導体1は、焼付炉16に送り込まれ、この焼付炉16内で焼付けられて(焼付工程を経て)、絶縁層5が被覆形成され、巻取ローラ23に巻取られる。   Returning to FIG. 8, the electrodeposited layer-attached conductor 1 continuously fed out while traveling upward from the electrodeposition tank 8 is fed into the baking furnace 16 and baked in the baking furnace 16 (baking process). After that, the insulating layer 5 is coated and wound around the winding roller 23.

このように、図9及び図13にて示した実施の形態では、絶縁電線3の構成は次のように言える。即ち、絶縁層5を形成するための焼付け前の電着層15の部分的な非形成によって、(その後の焼付工程を経て)導体露出部7が形成される。   Thus, in the embodiment shown in FIGS. 9 and 13, the configuration of the insulated wire 3 can be said as follows. That is, the conductor exposed portion 7 is formed (through a subsequent baking step) by partially not forming the electrodeposition layer 15 before baking for forming the insulating layer 5.

図9についてさらに追加説明すれば、水平軸心廻りに遊転自在な(少なくとも)上下一対のローラ24,25間に、ベルト26を懸架して、これを下から上へ走行する導体1に押圧すると、ベルト26はその押圧(接触)に伴って、導体1の走行方向Gと同方向へ自走する。このように、ベルト26が、導体1の一つの長辺20に接触してマスキング作用をなす。なお、上下一対のローラ24,25の間に、一本乃至複数本の押圧ローラを追加して、導体1に対して一層密にベルト26を接触させて、マスキング作用を確実とするも好ましい(図10参照)。また、上下一対のローラ24,25の内の少なくとも一方を、駆動ローラとして、回転駆動させるも、自由である。また、導体1の幅寸法Wが、例えば、図1(a)〜(d)のように大小変化する場合、ベルト26の幅寸法は、導体1の幅寸法Wの最大部位に対応して、十分に大きく設定しておく。また、導体1は(図9では簡略化して同一断面にて示したが)、厚さ寸法も大小変化する場合、ローラ24,25を水平方向に前進後退自在として弾発部材にて押圧する等によって、厚さ寸法の大小変化に、追随し易くするのが望ましい。   9 will be described further. A belt 26 is suspended between at least a pair of upper and lower rollers 24 and 25 that can freely rotate about a horizontal axis, and this is pressed against the conductor 1 that runs from the bottom to the top. Then, the belt 26 self-travels in the same direction as the traveling direction G of the conductor 1 with the pressing (contact). In this way, the belt 26 contacts one long side 20 of the conductor 1 and performs a masking action. In addition, it is also preferable to add one or a plurality of pressing rollers between the pair of upper and lower rollers 24 and 25 so that the belt 26 is brought into closer contact with the conductor 1 to ensure the masking action ( (See Figure 10). Further, at least one of the pair of upper and lower rollers 24 and 25 can be driven to rotate as a driving roller. Further, when the width dimension W of the conductor 1 changes, for example, as shown in FIGS. 1A to 1D, the width dimension of the belt 26 corresponds to the maximum portion of the width dimension W of the conductor 1, Set it large enough. Further, the conductor 1 is simplified (shown in the same cross section in FIG. 9), but when the thickness dimension also changes in size, the rollers 24 and 25 can be moved forward and backward in the horizontal direction and pressed by a resilient member, etc. Therefore, it is desirable to easily follow the change in thickness dimension.

図8と図9と図13に示した製造方法をまとめると、次のように言うことができる。即ち、電着層付着工程中に、電着槽8内にて導体1の外面2に接触しつつ導体1の通過走行方向Gと同一方向に移動する可動マスキング部材22によって、導体1を部分的に(長辺20,20の一方のみを)マスキングし、導体1の外面2に部分的に電着層15を形成させず、その後の焼付工程にて、導体露出部7を形成する方法である。このように、電着層非形成部72を、まず形成し、次工程(焼付工程)にて導体露出部7とする方法である。   The manufacturing method shown in FIGS. 8, 9 and 13 can be summarized as follows. That is, during the electrodeposition layer attaching step, the conductor 1 is partially moved by the movable masking member 22 that moves in the same direction as the traveling direction G of the conductor 1 while contacting the outer surface 2 of the conductor 1 in the electrodeposition tank 8. (Only one of the long sides 20 and 20) is masked, and the electrodeposition layer 15 is not partially formed on the outer surface 2 of the conductor 1, and the conductor exposed portion 7 is formed in the subsequent baking step. . In this way, the electrodeposition layer non-forming portion 72 is first formed and is used as the conductor exposed portion 7 in the next step (baking step).

次に、図10に示すさらに別の実施の形態に於て、(図9に2点鎖線にて示した電着槽8を図10では省略して示しているが、)上下一対のローラ24,25の間に上下所定ピッチにて複数本のローラ27…を平行に配設し、これに(2点鎖線にて示すように)ベルトを懸架してマスキング部材22としているが、このマスキング部材22としてのベルトは、(図9とは相違して、)横断面矩形の導体1の短辺19,19の少なくとも一方に押圧(接触)されている。この図10に示した製造方法によって得られる中間製品・完成製品の横断面図を図15に例示した。図15と図13に於て、同一符号は同様の構成であり、電着層非形成部72、及びこれに対応してその後の焼付工程にて形成される導体露出部7が、短辺19側に存在している点が、図13の長辺20側に存在している点と、相違する。   Next, in still another embodiment shown in FIG. 10, a pair of upper and lower rollers 24 (although the electrodeposition tank 8 shown by a two-dot chain line in FIG. 9 is omitted in FIG. 10). , 25, a plurality of rollers 27 are arranged in parallel at a predetermined vertical pitch, and a belt is suspended thereon (as shown by a two-dot chain line) to form a masking member 22. This masking member The belt 22 is pressed (contacted) to at least one of the short sides 19 and 19 of the conductor 1 having a rectangular cross section (unlike FIG. 9). FIG. 15 illustrates a cross-sectional view of the intermediate product / finished product obtained by the manufacturing method shown in FIG. In FIG. 15 and FIG. 13, the same reference numerals have the same configuration, and the electrodeposition layer non-forming portion 72 and the conductor exposed portion 7 correspondingly formed in the subsequent baking process have a short side 19. The point which exists in the side differs from the point which exists in the long side 20 side of FIG.

図10に於て図9と同一の符号は同様の構成であるので、詳細説明は省略する。なお、図10では導体1は同一横断面にて簡略化して示しているが、この導体1が図1(a)〜(d)のように、幅寸法Wが大小変化する場合、複数本のローラ24,25,27…を水平方向に前進後退自在に弾発部材にて押圧する等によって、追随させるのが好ましい。このとき、図10では、いわゆるキャタピラ構造であるので、追随し易い。なお、ベルト26は、合成樹脂やゴム等の絶縁材質のものが使用される。   In FIG. 10, the same reference numerals as those in FIG. In FIG. 10, the conductor 1 is shown in a simplified manner in the same cross section. However, when the width dimension W of the conductor 1 is changed as shown in FIGS. It is preferable to follow the rollers 24, 25, 27,... By pressing the rollers 24, 25, 27,. At this time, in FIG. 10, since it is a so-called caterpillar structure, it is easy to follow. The belt 26 is made of an insulating material such as synthetic resin or rubber.

次に、図11又は図12は、各々別の実施の形態を示す。即ち、図8に示した可動マスキング部材22の代わりに、摺動マスキング部材42を、電着槽8内に設けている。   Next, FIG. 11 or FIG. 12 shows another embodiment. That is, a sliding masking member 42 is provided in the electrodeposition tank 8 instead of the movable masking member 22 shown in FIG.

詳しく説明すると、電着層付着工程中に、電着槽8内を通過走行中の導体1の外面2に摺接する摺動マスキング部材42によって、導体1を部分的にマスキングし、導体1の外面2に部分的に電着層15を形成させず、その後の焼付炉16での焼付工程にて、導体露出部7を図13又は図15のように形成する方法であり、図13は図11に示した方法により、図15は図12に示した方法によって、製造される。摺動マスキング部材42は、合成樹脂やゴム等の絶縁材から成る。なお、図11又は図12に於ては、一枚の摺動マスキング部材42を使用しているが、これを、複数枚に分割して、各々を独立進退自在として、走行中の導体1に弾発的に押付けることで、図1(a)〜(d)等に例示した幅寸法W又は厚さ寸法の(長手方向に渡っての)大小変化に、容易に追随して、確実にマスキング作用をなさしめるも望ましい(図示省略)。なお、図11又は図12に於て、摺動マスキング部材42は、電着槽8内に於て、(図示省略の)保持部材にて支持されており、そのとき弾発部材にて押圧して導体1に対して弾発力をもって接触させるのが望ましい。   More specifically, the conductor 1 is partially masked by the sliding masking member 42 slidably contacting the outer surface 2 of the conductor 1 passing through the electrodeposition tank 8 during the electrodeposition layer adhering step. In FIG. 13, the electrodeposition layer 15 is not partially formed on the substrate 2 and the conductor exposed portion 7 is formed as shown in FIG. 13 or FIG. 15 in the subsequent baking process in the baking furnace 16, and FIG. 15 is manufactured by the method shown in FIG. The sliding masking member 42 is made of an insulating material such as synthetic resin or rubber. In FIG. 11 or FIG. 12, a single sliding masking member 42 is used, but this is divided into a plurality of pieces so that each of them can be independently advanced and retracted. By elastically pressing, the width dimension W or thickness dimension illustrated in FIGS. 1A to 1D and the like can easily follow the change in size (in the longitudinal direction) and reliably. It is also desirable to perform a masking action (not shown). In FIG. 11 or FIG. 12, the sliding masking member 42 is supported by a holding member (not shown) in the electrodeposition tank 8, and is then pressed by a resilient member. It is desirable to contact the conductor 1 with a resilient force.

そして、図9又は図11の製造方法によって製造された、図13に例示した絶縁電線3は、横断面矩形の一長辺20が、導体露出部7であるが、図14に示したように、積重ね状に巻いた状態で、隣り合う(下位の)導体1の絶縁層5に、(上位の)導体1の導体露出部7が接触して、相互の絶縁状態が確保できる。   And the insulated wire 3 illustrated in FIG. 13 manufactured by the manufacturing method of FIG. 9 or FIG. 11 has one long side 20 of the rectangular cross section as the conductor exposed portion 7, but as shown in FIG. In the state of being wound in a stacked state, the conductor exposed portion 7 of the (upper) conductor 1 is in contact with the insulating layer 5 of the adjacent (lower) conductor 1, and a mutual insulation state can be ensured.

従って、電気・電子機器の小型化・高性能化・高能率化の要望に応えて、図14に示すように、その積重ねた高さ(厚さ)寸法Yは、従来よりも十分に小さくできて、電気・電子機器のコンパクト化に貢献できる。   Therefore, in response to the demand for miniaturization, high performance, and high efficiency of electrical and electronic equipment, as shown in FIG. 14, the stacked height (thickness) dimension Y can be made sufficiently smaller than before. This contributes to the compactness of electrical and electronic equipment.

また、上述の小型化の要望により、近年、絶縁層5の肉厚が極端に薄くなっているが、それに伴って、絶縁層5内に製造時に形成されるピンホールが、絶縁不良を起こすという問題が発生している。このような対策として、図13と図14に示した本発明に係る絶縁電線3は有効であり、絶縁層5の肉厚を(2倍未満ではあるが)増大させることによって、ピンホールが製造時に形成しにくくでき、しかも、コイル状等に巻いて積重ね状としたときの全体の厚さ(高さ)寸法を増加させずに済む。   In addition, due to the above-mentioned demand for miniaturization, the thickness of the insulating layer 5 has been extremely thin in recent years, and accordingly, pinholes formed in the insulating layer 5 at the time of manufacturing cause insulation failure. There is a problem. As a countermeasure, the insulated wire 3 according to the present invention shown in FIGS. 13 and 14 is effective, and a pinhole is manufactured by increasing the thickness of the insulating layer 5 (although it is less than twice). Sometimes it is difficult to form, and it is not necessary to increase the overall thickness (height) dimension when coiled or the like to form a stack.

次に、図10又は図12の製造方法によって製造された、図15に例示した絶縁電線3は、横断面矩形の一短辺19が導体露出部7であるが、この図15に示した絶縁電線3を、左右方向と上下方向に重ねて巻いた(積み重ね状とした)状態(図示省略)では、相互の絶縁状態が確保できると共に、その上下に積み重ねた寸法が、従来よりも十分に小さくできて、電気・電子機器のコンパクト化に貢献できる。   Next, the insulated wire 3 illustrated in FIG. 15 manufactured by the manufacturing method of FIG. 10 or FIG. 12 has one short side 19 of the rectangular cross section as the conductor exposed portion 7, and the insulation shown in FIG. In a state (not shown) in which the electric wires 3 are rolled up and down in the left-right direction and the up-down direction (not shown), mutual insulation can be ensured, and the dimensions stacked up and down are sufficiently smaller than before. It can contribute to the downsizing of electrical and electronic equipment.

また、図1に於て、符号Pは、最終製品として使用される際に切断される1ピッチを示し、用途によって、切断位置を変更したり、ピッチPを2倍以上にとるも、自由である。そして、いずれにせよ、図4〜図7に於て説明した製造方法によって、絶縁電線3の長手方向の任意の(所望の)位置に接点(端子部)を容易に形成可能となり、その実用的な応用範囲は広大であるといえる。   Moreover, in FIG. 1, the code | symbol P shows 1 pitch cut | disconnected when it is used as a final product, A cutting position can be changed according to a use, or even if the pitch P is doubled or more, it is free. is there. In any case, the manufacturing method described with reference to FIGS. 4 to 7 makes it possible to easily form a contact (terminal portion) at an arbitrary (desired) position in the longitudinal direction of the insulated wire 3, and its practical use. The range of applications is vast.

なお、本発明は上述の実施の形態に限定されず、それ以外にも設計変更自由であって、導体1の横断面形状は、平角状(つまり、矩形や一文字状や正方形)以外に、丸形や六角形状等とであっても良く、また、図1と図3に例示した幅寸法や厚さ寸法の長手方向に渡っての変化の他に、勾配(傾斜)的と段階的の両変化を組み合わせたものであっても、それ以外、種々のものに適用自由である。(勿論、同一断面形状の導体1にも適用可能である。)   Note that the present invention is not limited to the above-described embodiment, and the design can be freely changed besides that. The cross-sectional shape of the conductor 1 is not limited to a rectangular shape (that is, a rectangular shape, a single character shape, or a square shape). It may be a shape, a hexagonal shape, etc. In addition to changes in the width dimension and thickness dimension illustrated in FIGS. 1 and 3 in the longitudinal direction, both gradient (gradient) and stepwise may be used. Even a combination of changes can be applied to various other things. (Of course, it is applicable also to the conductor 1 of the same cross-sectional shape.)

また、焼付炉16及び電着槽8として、図4に示したように、各々1個のみを設ける場合の他に、各々2個以上を配設するも好ましい場合もあり、そのときには、各々の電着槽8と焼付炉16の間に、導体露出部形成装置17を配設して、導体露出部7の予定箇所へは絶縁層5が被覆しないようにする。あるいは、図8に於て、焼付炉16と電着槽8が各々1個の場合を示したが、2点鎖線34にて示した部位に、別の焼付炉16と電着槽8内を配設しても自由であって、そのときには、各電着槽8内に、可動マスキング部材22又は摺動マスキング部材42を設ける。
なお、乾燥装置を、焼付炉16の手前に配設しても自由である。
Moreover, as shown in FIG. 4, as the baking furnace 16 and the electrodeposition tank 8, in addition to the case where only one is provided, it may be preferable that two or more are provided. A conductor exposed portion forming device 17 is disposed between the electrodeposition tank 8 and the baking furnace 16 so that a predetermined portion of the conductor exposed portion 7 is not covered with the insulating layer 5. Alternatively, in FIG. 8, the case where there is one baking furnace 16 and one electrodeposition tank 8 is shown, but another baking furnace 16 and the electrodeposition tank 8 are placed in a portion indicated by a two-dot chain line 34. The movable masking member 22 or the sliding masking member 42 is provided in each electrodeposition tank 8 at that time.
It should be noted that the drying device can be freely disposed in front of the baking furnace 16.

以上のように、本願発明に係る絶縁電線3は、導体1に電着・焼付けした絶縁層5を被覆して成る絶縁電線に於て、絶縁層5を形成するための焼付け前の電着層15の部分的な非形成又は部分的な除去によって形成された導体露出部7を具備する構成であるので、従来のように機械的に焼付後の絶縁層5を削り取る手間が省かれて容易に端子を形成できる。また、従来のように、機械的に削り取る際に発生する微粉塵が本発明のものでは、全く発生せず、電気・電子機器や精密機器の製造工程中の不良発生を防いで、極めて好ましい。   As described above, the insulated wire 3 according to the present invention is an electrodeposited layer before baking for forming the insulating layer 5 in the insulated wire formed by coating the conductor 1 with the insulating layer 5 electrodeposited and baked. Since it is the structure which comprises the conductor exposed part 7 formed by 15 partial non-formation or partial removal, the effort which scrapes off the insulating layer 5 after baking mechanically conventionally is saved, and it is easy. Terminals can be formed. Further, as in the prior art, the fine dust generated when mechanically scraped off is not generated at all in the present invention, which is extremely preferable because it prevents the occurrence of defects during the manufacturing process of electrical / electronic equipment and precision equipment.

次に、本発明は、電着槽8内を連続的に通過させつつ導体1の外面2に電着層15を付着形成させる電着層付着工程の後に、導体1の外面2に付着した電着層15を連続的に焼付ける焼付工程を経て、導体1の外面2に絶縁層5を被覆形成する絶縁電線の製造方法に於て、電着層付着工程と焼付工程の間にて、導体1の外面2に付着した未硬化状態の電着層15を、噴出流体Hにて吹き飛ばして、部分的に電着層15を除去し、焼付工程を経て導体1が部分的に露出状の導体露出部7を形成する方法であるので、長手方向の所望の位置に容易かつ簡単に能率良く、端子を形成できる。   Next, in the present invention, after the electrodeposition layer adhering step of adhering and forming the electrodeposition layer 15 on the outer surface 2 of the conductor 1 while continuously passing through the electrodeposition tank 8, the electrode adhering to the outer surface 2 of the conductor 1 is formed. In the method of manufacturing an insulated wire in which the insulating layer 5 is formed on the outer surface 2 of the conductor 1 through a baking process in which the adhesion layer 15 is continuously baked, the conductor is interposed between the electrodeposition layer adhesion process and the baking process. The uncured electrodeposition layer 15 adhering to the outer surface 2 of 1 is blown off by the jet fluid H, the electrodeposition layer 15 is partially removed, and the conductor 1 is a partially exposed conductor through a baking process. Since it is a method of forming the exposed portion 7, a terminal can be formed easily and simply at a desired position in the longitudinal direction with high efficiency.

また、電着槽8内を連続的に通過させつつ導体1の外面2に電着層15を付着形成させる電着層付着工程の後に、導体1の外面2に付着した電着層15を連続的に焼付ける焼付工程を経て、導体1の外面2に絶縁層5を被覆形成する絶縁電線の製造方法に於て、電着層付着工程中に、電着槽8内にて導体1の外面2に接触しつつ導体1の通過走行方向Gと同一方向に移動する可動マスキング部材22によって、導体1を部分的にマスキングし、導体1の外面2に部分的に電着層15を形成させずに、その後の焼付工程にて、導体露出部7を形成する方法によれば、図13や図15に示すように、横断面に於て一部分のみであって、かつ、全長にわたって導体露出部7を形成するのが容易であって、大量生産に好適であり、コイル等として、図14のように全体寸法Yのコンパクト化を図ることができる。かつ、導体1の幅寸法や厚さ寸法が大小変化する場合にも、可動マスキング部材22は追随して、動くことで、高品質の製品が得られる。   In addition, after the electrodeposition layer adhering step of adhering and forming the electrodeposition layer 15 on the outer surface 2 of the conductor 1 while continuously passing through the electrodeposition tank 8, the electrodeposition layer 15 adhering to the outer surface 2 of the conductor 1 is continuously formed. In the method of manufacturing an insulated wire in which an insulating layer 5 is formed on the outer surface 2 of the conductor 1 through a baking step, the outer surface of the conductor 1 in the electrodeposition tank 8 during the electrodeposition layer attaching step. The conductor 1 is partially masked by the movable masking member 22 that moves in the same direction as the passing traveling direction G of the conductor 1 while contacting the conductor 2, and the electrodeposited layer 15 is not partially formed on the outer surface 2 of the conductor 1. In addition, according to the method of forming the conductor exposed portion 7 in the subsequent baking process, as shown in FIGS. 13 and 15, the conductor exposed portion 7 is only partially in the cross section and over the entire length. It is easy to form and suitable for mass production. It can be made compact in Y. Even when the width dimension or thickness dimension of the conductor 1 changes in size, the movable masking member 22 follows and moves to obtain a high-quality product.

また、電着槽8内を連続的に通過させつつ導体1の外面2に電着層15を付着形成させる電着層付着工程の後に、導体1の外面2に付着した電着層15を連続的に焼付ける焼付工程を経て、導体1の外面2に絶縁層5を被覆形成する絶縁電線の製造方法に於て、電着層付着工程中に、電着槽8内を通過走行中の導体1の外面2に摺接する摺動マスキング部材42によって、導体1を部分的にマスキングし、導体1の外面2に部分的に電着層15を形成させずに、その後の焼付工程にて、導体露出部7を形成する方法によれば、図13や図15に示すように、横断面に於て一部分のみであって、かつ、全長にわたって導体露出部7を形成するのが容易であって、大量生産に好適であり、コイル等として、図14のように全体寸法Yのコンパクト化を図ることができる。   In addition, after the electrodeposition layer adhering step of adhering and forming the electrodeposition layer 15 on the outer surface 2 of the conductor 1 while continuously passing through the electrodeposition tank 8, the electrodeposition layer 15 adhering to the outer surface 2 of the conductor 1 is continuously formed. In the method of manufacturing an insulated wire, in which the outer surface 2 of the conductor 1 is coated with the insulating layer 5 through a baking process, the conductor being passed through the electrodeposition tank 8 during the electrodeposition layer attaching process. The conductor 1 is partially masked by the sliding masking member 42 that is in sliding contact with the outer surface 2 of the conductor 1, and the electrodeposition layer 15 is not partially formed on the outer surface 2 of the conductor 1. According to the method of forming the exposed portion 7, as shown in FIG. 13 and FIG. 15, it is easy to form the conductor exposed portion 7 only in a part in the cross section and over the entire length, It is suitable for mass production, and as a coil etc., the overall dimension Y can be reduced as shown in FIG. .

本発明に係る絶縁電線の各種の実施形態を示す平面図である。It is a top view which shows various embodiment of the insulated wire which concerns on this invention. 要部拡大断面図である。It is a principal part expanded sectional view. 絶縁電線の他の実施の形態を示す図であって、(a)は平面図、(b)は、(a)のB−B拡大断面図、(c)は、(a)のC−C拡大断面図である。It is a figure which shows other embodiment of an insulated wire, Comprising: (a) is a top view, (b) is BB expanded sectional drawing of (a), (c) is CC of (a). It is an expanded sectional view. 本発明に係る製造方法を説明する簡略構成説明図である。It is a simplified structure explanatory view explaining the manufacturing method concerning the present invention. 電着の原理の概要説明図である。It is an outline explanatory view of the principle of electrodeposition. 作用説明のための要部拡大図である。It is a principal part enlarged view for an effect | action description. 作用説明のための要部拡大図である。It is a principal part enlarged view for an effect | action description. 本発明の製造方法の別の実施の形態を説明する簡略構成説明図である。It is simplified structure explanatory drawing explaining another embodiment of the manufacturing method of this invention. 要部説明斜視図である。It is a principal part explanatory perspective view. 他の実施の形態を示した要部説明斜視図である。It is a principal part explanatory perspective view which showed other embodiment. 別の実施の形態を示した要部説明斜視図である。It is a principal part explanatory perspective view which showed another embodiment. さらに別の実施の形態を示した要部説明斜視図である。It is a principal part explanatory perspective view which showed another embodiment. 本発明に係る絶縁電線の別の実施の形態を示す断面図である。It is sectional drawing which shows another embodiment of the insulated wire which concerns on this invention. 使用状態と作用を説明するための断面図である。It is sectional drawing for demonstrating a use condition and an effect | action. 本発明に係る絶縁電線のさらに別の実施の形態を示す断面図である。It is sectional drawing which shows another embodiment of the insulated wire which concerns on this invention.

符号の説明Explanation of symbols

1 導体
2 外面
3 絶縁電線
5 絶縁層
7 導体露出部
8 電着槽
12 電着液
15 電着層
16 焼付炉
17 導体露出部形成装置
22 可動マスキング部材
42 摺動マスキング部材
70 除去部
72 電着層非形成部
H 噴出流体
G 通過走行方向
1 conductor 2 outer surface 3 insulated wire 5 insulating layer 7 exposed conductor 8 electrodeposition bath
12 Electrodeposition solution
15 Electrodeposition layer
16 Baking furnace
17 Conductor exposed part forming device
22 Movable masking member
42 Sliding masking member
70 Removal section
72 Electrodeposition layer non-formation part H Ejected fluid G Passing direction

Claims (4)

導体(1)に電着・焼付けした絶縁層(5)を被覆して成る絶縁電線に於て、上記絶縁層(5)を形成するための焼付け前の電着層(15)の部分的な非形成又は部分的な除去によって形成された導体露出部(7)を具備することを特徴とする絶縁電線。   In the insulated wire formed by coating the conductor (1) with the insulating layer (5) electrodeposited and baked, a partial portion of the electrodeposition layer (15) before baking for forming the insulating layer (5) An insulated wire comprising a conductor exposed portion (7) formed by non-formation or partial removal. 電着槽(8)内を連続的に通過させつつ導体(1)の外面(2)に電着層(15)を付着形成させる電着層付着工程の後に、導体(1)の外面(2)に付着した電着層(15)を連続的に焼付ける焼付工程を経て、導体(1)の外面(2)に絶縁層(5)を被覆形成する絶縁電線の製造方法に於て、
上記電着層付着工程と上記焼付工程の間にて、上記導体(1)の外面(2)に付着した未硬化状態の上記電着層(15)を、噴出流体(H)にて吹き飛ばして、部分的に上記電着層(15)を除去し、上記焼付工程を経て上記導体(1)が部分的に露出状の導体露出部(7)を形成することを特徴とする絶縁電線の製造方法。
After the electrodeposition layer adhering step of adhering and forming the electrodeposition layer (15) on the outer surface (2) of the conductor (1) while continuously passing through the electrodeposition tank (8), the outer surface (2 In the method of manufacturing an insulated wire, the electrodeposition layer (15) attached to the outer surface (2) of the conductor (1) is coated and formed on the outer surface (2) by continuous baking.
Between the electrodeposition layer adhering step and the baking step, the uncured electrodeposition layer (15) adhering to the outer surface (2) of the conductor (1) is blown away with a jet fluid (H). The electrodeposition layer (15) is partially removed, and the conductor (1) is partially exposed to form an exposed conductor exposed portion (7) through the baking step. Method.
電着槽(8)内を連続的に通過させつつ導体(1)の外面(2)に電着層(15)を付着形成させる電着層付着工程の後に、導体(1)の外面(2)に付着した電着層(15)を連続的に焼付ける焼付工程を経て、導体(1)の外面(2)に絶縁層(5)を被覆形成する絶縁電線の製造方法に於て、
上記電着層付着工程中に、上記電着槽(8)内にて導体(1)の外面(2)に接触しつつ導体(1)の通過走行方向(G)と同一方向に移動する可動マスキング部材(22)によって、導体(1)を部分的にマスキングし、導体(1)の外面(2)に部分的に電着層(15)を形成させずに、その後の上記焼付工程にて、導体露出部(7)を形成することを特徴とする絶縁電線の製造方法。
After the electrodeposition layer adhering step of adhering and forming the electrodeposition layer (15) on the outer surface (2) of the conductor (1) while continuously passing through the electrodeposition tank (8), the outer surface (2 In the method of manufacturing an insulated wire, the electrodeposition layer (15) attached to the outer surface (2) of the conductor (1) is coated and formed on the outer surface (2) by continuous baking.
During the electrodeposition layer adhering step, the movable electrode moves in the same direction as the traveling direction (G) of the conductor (1) while contacting the outer surface (2) of the conductor (1) in the electrodeposition tank (8). The masking member (22) partially masks the conductor (1) and does not partially form the electrodeposition layer (15) on the outer surface (2) of the conductor (1). A method for producing an insulated wire, comprising forming a conductor exposed portion (7).
電着槽(8)内を連続的に通過させつつ導体(1)の外面(2)に電着層(15)を付着形成させる電着層付着工程の後に、導体(1)の外面(2)に付着した電着層(15)を連続的に焼付ける焼付工程を経て、導体(1)の外面(2)に絶縁層(5)を被覆形成する絶縁電線の製造方法に於て、
上記電着層付着工程中に、上記電着槽(8)内を通過走行中の導体(1)の外面(2)に摺接する摺動マスキング部材(42)によって、導体(1)を部分的にマスキングし、導体(1)の外面(2)に部分的に電着層(15) を形成させずに、その後の上記焼付工程にて、導体露出部(7)を形成することを特徴とする絶縁電線の製造方法。
After the electrodeposition layer adhering step of adhering and forming the electrodeposition layer (15) on the outer surface (2) of the conductor (1) while continuously passing through the electrodeposition tank (8), the outer surface (2 In the method of manufacturing an insulated wire, the electrodeposition layer (15) attached to the outer surface (2) of the conductor (1) is coated and formed on the outer surface (2) by continuous baking.
During the electrodeposition layer adhering step, the conductor (1) is partially brought into contact by the sliding masking member (42) that is in sliding contact with the outer surface (2) of the conductor (1) passing through the electrodeposition tank (8). The conductor exposed portion (7) is formed in the subsequent baking step without partially forming the electrodeposition layer (15) on the outer surface (2) of the conductor (1). A method for manufacturing an insulated wire.
JP2007009754A 2006-04-28 2007-01-19 Insulated wire and its manufacturing method Pending JP2008177068A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007009754A JP2008177068A (en) 2007-01-19 2007-01-19 Insulated wire and its manufacturing method
EP07742108.9A EP2017854B1 (en) 2006-04-28 2007-04-20 Linear member, and stator structure
US12/298,524 US7928626B2 (en) 2006-04-28 2007-04-20 Linear material and stator structure
PCT/JP2007/058673 WO2007125838A1 (en) 2006-04-28 2007-04-20 Linear member, and stator structure
US13/045,984 US9003647B2 (en) 2006-04-28 2011-03-11 Method and apparatus for manufacturing a flat-type wire
US13/047,305 US8053943B2 (en) 2006-04-28 2011-03-14 Linear material and stator structure
US13/047,161 US8049390B2 (en) 2006-04-28 2011-03-14 Linear material and stator structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009754A JP2008177068A (en) 2007-01-19 2007-01-19 Insulated wire and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008177068A true JP2008177068A (en) 2008-07-31

Family

ID=39703933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009754A Pending JP2008177068A (en) 2006-04-28 2007-01-19 Insulated wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008177068A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072092A (en) * 2011-09-26 2013-04-22 Mitsubishi Cable Ind Ltd Electric insulated wire, method for producing the same, and coil obtained by winding the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039215U (en) * 1983-08-25 1985-03-19 株式会社トーキン Choke coil using drum core winding material
JP2000058350A (en) * 1998-08-10 2000-02-25 Sumitomo Wiring Syst Ltd Coil and ignition coil for internal combustion engine
JP2004327523A (en) * 2003-04-22 2004-11-18 Matsushita Electric Ind Co Ltd Inductance component and electronic equipment using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039215U (en) * 1983-08-25 1985-03-19 株式会社トーキン Choke coil using drum core winding material
JP2000058350A (en) * 1998-08-10 2000-02-25 Sumitomo Wiring Syst Ltd Coil and ignition coil for internal combustion engine
JP2004327523A (en) * 2003-04-22 2004-11-18 Matsushita Electric Ind Co Ltd Inductance component and electronic equipment using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072092A (en) * 2011-09-26 2013-04-22 Mitsubishi Cable Ind Ltd Electric insulated wire, method for producing the same, and coil obtained by winding the same

Similar Documents

Publication Publication Date Title
US20120031746A1 (en) Touch screen and manufacturing method thereof
KR101204089B1 (en) Roll-to-roll substrate transfer apparatus, wet etching apparatus comprising the same and apparatus for manufacturing printed circuit board
US11160166B2 (en) Printed circuit board with high-capacity copper circuit
US11120942B2 (en) Process for production of multilayer electronic component
CN105265029A (en) Flexible printed circuit board and method for manufacturing same
KR101352819B1 (en) Printed substrate manufacturing method and printed substrate employing same
CN107851585B (en) System and method for removing foreign matter using electric field adsorption method
JP2010140641A (en) Manufacturing method of insulated wire
JP4845705B2 (en) Printed wiring board, manufacturing method thereof, and electronic device
JP2008177068A (en) Insulated wire and its manufacturing method
TWI570825B (en) Semiconductor test pad using adhesive and stacked thin sheets of metal and manufacturing method thereof
JP6439641B2 (en) Method for forming conductive pattern and conductive pattern
CN106663536B (en) The manufacturing method of laminated electronic component
JP2008186709A (en) Insulated wire
TWI485074B (en) Electricity removal-equipped sheet, sheet electricity removal system, simultaneous molding and decorating method using electricity removal-equipped sheet, printing method, and vapor deposition method
JP2007258566A (en) Laminated ceramic capacitor
US10314174B2 (en) Method for manufacturing circuit board
US10913301B2 (en) Array-type electrode, digital printing mold and method for manufacturing array-type electrode
JP2008153397A (en) Printed wiring board, manufacturing method thereof and electronic apparatus
US20240029954A1 (en) Multilayer electronic component and method of manufacturing the same
JP6036627B2 (en) Method for manufacturing power storage device
JP6375669B2 (en) Manufacturing method of electronic parts
JP2005259964A (en) Manufacturing method of ceramic laminate
JP7211930B2 (en) Method for manufacturing wired circuit board
JP6623349B1 (en) Manufacturing method of electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113