JP2008176981A - Electrode for all solid lithium secondary battery and all solid lithium secondary battery - Google Patents

Electrode for all solid lithium secondary battery and all solid lithium secondary battery Download PDF

Info

Publication number
JP2008176981A
JP2008176981A JP2007007997A JP2007007997A JP2008176981A JP 2008176981 A JP2008176981 A JP 2008176981A JP 2007007997 A JP2007007997 A JP 2007007997A JP 2007007997 A JP2007007997 A JP 2007007997A JP 2008176981 A JP2008176981 A JP 2008176981A
Authority
JP
Japan
Prior art keywords
active material
lithium secondary
secondary battery
acicular
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007007997A
Other languages
Japanese (ja)
Inventor
Yasushi Tsuchida
靖 土田
Kenji Kimura
健治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007007997A priority Critical patent/JP2008176981A/en
Publication of JP2008176981A publication Critical patent/JP2008176981A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for an all solid lithium secondary battery having high capacity per volume, or high energy density by forming a good conductive path, increasing filling density, and securing an ion conducting path, and to provide the all solid lithium secondary battery using the electrode. <P>SOLUTION: The electrode for the all solid lithium secondary battery has an active material which is a mixture of a needle or plate active material and a globular active material, and a solid electrolyte material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は全固体リチウム二次電池、特に高エネルギー密度の全固体リチウム二次電池を形成するのに用いられる全固体リチウム二次電池用電極に関する。   The present invention relates to an all-solid lithium secondary battery, and more particularly to an electrode for an all-solid lithium secondary battery used to form a high energy density all-solid lithium secondary battery.

近年におけるパソコン、ビデオカメラ及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として優れた二次電池、例えば、リチウム二次電池の開発が重要視されている。また、上記情報関連機器や通信関連機器以外の分野としては、例えば自動車産業界においても、低公害車としての電気自動車やハイブリッド自動車用の高出力かつ高容量のリチウム二次電池の開発が進められている。   With the rapid spread of information-related equipment and communication equipment such as personal computers, video cameras, and mobile phones in recent years, the development of secondary batteries that are excellent as power sources, such as lithium secondary batteries, has been regarded as important. In fields other than the information-related equipment and communication-related equipment, for example, in the automobile industry, the development of high-power and high-capacity lithium secondary batteries for electric vehicles and hybrid vehicles as low-emission vehicles has been promoted. ing.

しかし、現在市販されているリチウム二次電池は、可燃性の有機溶剤を溶媒とする有機電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。   However, the lithium secondary batteries currently on the market use an organic electrolyte that uses a flammable organic solvent as a solvent.・ Improved materials are necessary.

これに対し、液体電解質を固体電解質に変えて、電池を全固体化した全固体リチウム二次電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。   In contrast, an all-solid lithium secondary battery in which the liquid electrolyte is changed to a solid electrolyte to make the battery all solid does not use a flammable organic solvent in the battery, so the safety device can be simplified and the manufacturing cost can be reduced. And is considered to be highly productive.

上記の全固体リチウム二次電池では、例えば、正極/固体電解質/負極の3層構成のペレットを粉末成型法により構成し、従来のコイン型電池ケースあるいはボタン型電池ケースに挿入し、その周囲を封口して作製される。このような全固体リチウム二次電池は、正極、負極、および電解質よりなる電池構成群が全て堅い固体であるため、有機電解液を用いたリチウム二次電池と比較して、電気化学抵抗が大きい。   In the above all-solid lithium secondary battery, for example, a three-layer pellet of positive electrode / solid electrolyte / negative electrode is formed by a powder molding method, inserted into a conventional coin-type battery case or button-type battery case, Made by sealing. Such an all-solid lithium secondary battery has a high electrochemical resistance as compared with a lithium secondary battery using an organic electrolyte because the battery constituent group consisting of the positive electrode, the negative electrode, and the electrolyte is all solid. .

このような固体電解質材料を用いた電池の電極(正極および負極)、すなわち全固体リチウム二次電池用電極(以下、単に電極という場合がある)としては、活物質と固体電解質材料とを混合したものを活物質層にする必要がある。一般的には、図3(a)に示すように、球状固体電解質材料1と球状活物質2からなるものであり、Liイオンが固体電解質材料内を移動し、電荷が活物質内を移動する。このような、球状の活物質を用いた場合、充放電サイクルの進行に伴って、活物質の膨張・収縮が繰り返されることにより、電極中の固体電解質材料の塑性変形等が起こる。そのため、電極中に隙間が生じて活物質間の導電パスが切断され、活物質利用率が低下する。また、固体電解質材料の接触面積が減るために電池の反応面積が減少して、充放電容量が低下してしまう。   As an electrode (positive electrode and negative electrode) of a battery using such a solid electrolyte material, that is, an electrode for an all solid lithium secondary battery (hereinafter simply referred to as an electrode), an active material and a solid electrolyte material are mixed. Things need to be active material layers. In general, as shown in FIG. 3 (a), it is composed of a spherical solid electrolyte material 1 and a spherical active material 2, and Li ions move in the solid electrolyte material and charges move in the active material. . When such a spherical active material is used, the expansion and contraction of the active material is repeated with the progress of the charge / discharge cycle, thereby causing plastic deformation of the solid electrolyte material in the electrode. Therefore, a gap is generated in the electrode, the conductive path between the active materials is cut, and the active material utilization rate decreases. Further, since the contact area of the solid electrolyte material is reduced, the reaction area of the battery is reduced, and the charge / discharge capacity is reduced.

一方、有機電解液を用いたリチウム二次電池は、通常、電極を保持するために電極にバインダー(結着剤)を添加する必要がある。このバインダー(結着剤)が電極中に含まれているため、有機電解液を用いたリチウム二次電池では、充放電サイクルに伴う活物質の膨張・収縮が起こっても導電パスが切断されるなどの問題はほとんど発生せず、充放電サイクルに伴う活物質の膨張・収縮が充放電特性に与える影響は小さい。すなわち、上述した充放電サイクルの進行に伴って、活物質の膨張・収縮が繰り返されることにより、導電パスが切断されるなどの問題は、バインダー(結着剤)を添加する必要のない全固体リチウム二次電池に特有の問題であった。   On the other hand, a lithium secondary battery using an organic electrolyte usually needs to add a binder (binder) to the electrode in order to hold the electrode. Since this binder (binder) is contained in the electrode, in the lithium secondary battery using the organic electrolyte, the conductive path is cut even if the active material expands or contracts due to the charge / discharge cycle. The problems such as these hardly occur, and the effect of expansion / contraction of the active material accompanying the charge / discharge cycle on the charge / discharge characteristics is small. That is, the problem that the conductive path is cut by the expansion and contraction of the active material with the progress of the charge / discharge cycle described above is an all solid that does not require the addition of a binder (binder). This was a problem specific to lithium secondary batteries.

そこで、図3(b)に示すように、針状または板状活物質3を電極内に添加することによって、導電パスを形成させる方法が提案されている。例えば、特許文献1では、アスペクト比が大きな電子伝導性を有するカーボンウィスカーまたはグラファイトウィスカーを活物質中に混在させることにより、導電性が改善されることを開示している。しかしながら、カーボンウィスカーまたはグラファイトウィスカーは密に詰まりにくいために活物質中に隙間が多くなり、充填密度が低下するので体積当たりの容量が小さくなってしまうという問題があった。   Therefore, as shown in FIG. 3B, a method of forming a conductive path by adding a needle-like or plate-like active material 3 into an electrode has been proposed. For example, Patent Document 1 discloses that the conductivity is improved by mixing carbon whiskers or graphite whiskers having an electronic conductivity with a large aspect ratio in an active material. However, since the carbon whisker or the graphite whisker is hard to be densely packed, there are many gaps in the active material, and the packing density is lowered, so that the capacity per volume is reduced.

特開平2−177260公報JP-A-2-177260 特開平11−7942公報JP 11-7942 A 特開平2−87466公報Japanese Patent Laid-Open No. 2-87466

本発明は、上記問題点に鑑みてなされたものであり、良好な導電パスを形成し充填密度を高め、さらにイオン伝導路を確保することで、体積当たりの容量の大きい、すなわち、高エネルギー密度の全固体リチウム二次電池用電極およびそれを用いた全固体リチウム二次電池を提供することを主目的とするものである。   The present invention has been made in view of the above problems, and by forming a good conductive path, increasing the packing density, and securing an ion conduction path, the capacity per volume is large, that is, high energy density. It is a main object of the present invention to provide an electrode for an all solid lithium secondary battery and an all solid lithium secondary battery using the same.

上記目的を達成するために、本発明においては、請求項1に記載するように、針状または板状活物質と、球状活物質とを混合した活物質および固体電解質材料を有することを特徴とする全固体リチウム二次電池用電極を提供する。   In order to achieve the above object, the present invention has an active material and a solid electrolyte material in which a needle-like or plate-like active material and a spherical active material are mixed. An electrode for an all-solid lithium secondary battery is provided.

本発明によれば、針状または板状活物質と、球状活物質とを混合した活物質および固体電解質材料を有することによって、充放電サイクルに伴う活物質の膨張・収縮が起こった場合であっても、針状または板状活物質が良好な導電パスを形成することができる。また、球状活物質を含有することで充填密度を高め、体積当たりの容量の大きい、すなわち高エネルギー密度の全固体リチウム二次電池用電極を得ることができる。   According to the present invention, the active material and the solid electrolyte material obtained by mixing a needle-like or plate-like active material and a spherical active material cause expansion / contraction of the active material accompanying the charge / discharge cycle. However, the needle-like or plate-like active material can form a good conductive path. In addition, the inclusion of the spherical active material can increase the packing density and provide an electrode for an all solid lithium secondary battery having a large capacity per volume, that is, a high energy density.

請求項1に記載された発明において、上記全固体リチウム二次電池用電極が正極に用いられる場合には、上記針状または板状活物質と、上記球状活物質とを混合した活物質中の上記針状または板状活物質の体積分率が10〜40vol%であることが好ましい。上記針状または板状活物質の体積分率が上記範囲内であるので、充放電サイクルに伴う活物質の膨張・収縮が起こった場合であっても、針状または板状活物質が良好な導電パスを形成することができる。また、上記針状または板状活物質の体積分率が上記範囲内であるので、球状活物質を所定の含有量で含有することができる。したがって、充填密度を高め、所望の高エネルギー密度の全固体リチウム二次電池用電極を得ることができる。   In the invention described in claim 1, when the all-solid-state lithium secondary battery electrode is used for a positive electrode, the active material in which the acicular or plate-like active material and the spherical active material are mixed is used. The volume fraction of the acicular or plate-like active material is preferably 10 to 40 vol%. Since the volume fraction of the acicular or plate-like active material is within the above range, the acicular or plate-like active material is good even when the active material expands or contracts due to the charge / discharge cycle. A conductive path can be formed. Moreover, since the volume fraction of the acicular or plate-like active material is within the above range, the spherical active material can be contained in a predetermined content. Therefore, it is possible to increase the packing density and obtain an electrode for an all solid lithium secondary battery having a desired high energy density.

請求項1に記載された発明において、上記全固体リチウム二次電池用電極が負極に用いられる場合には、上記針状または板状活物質と、上記球状活物質とを混合した活物質中の上記針状または板状活物質の体積分率が10〜20vol%であることが好ましい。上記針状または板状活物質の体積分率が上記範囲内であるので、充放電サイクルに伴う活物質の膨張・収縮が起こった場合であっても、針状または板状活物質が良好な導電パスを形成することができる。また、上記針状または板状活物質の体積分率が上記範囲内であるので、球状活物質を所定の含有量で含有することができる。したがって、充填密度を高め、所望の高エネルギー密度の全固体リチウム二次電池用電極を得ることができる。   In the invention described in claim 1, when the all-solid-state lithium secondary battery electrode is used as a negative electrode, the active material in which the acicular or plate-like active material and the spherical active material are mixed is used. The volume fraction of the acicular or plate-like active material is preferably 10 to 20 vol%. Since the volume fraction of the acicular or plate-like active material is within the above range, the acicular or plate-like active material is good even when the active material expands or contracts due to the charge / discharge cycle. A conductive path can be formed. Moreover, since the volume fraction of the acicular or plate-like active material is within the above range, the spherical active material can be contained in a predetermined content. Therefore, it is possible to increase the packing density and obtain an electrode for an all solid lithium secondary battery having a desired high energy density.

上記全固体リチウム二次電池用電極が負極に用いられる場合において、上記針状または板状活物質、および上記球状活物質が黒鉛であることが好ましい。一般的に、黒鉛は負極用の活物質として良好な特性を持ち、汎用されているからである。   When the all-solid-state lithium secondary battery electrode is used for a negative electrode, the needle-like or plate-like active material and the spherical active material are preferably graphite. This is because graphite generally has good characteristics as an active material for a negative electrode and is widely used.

請求項1に記載された発明においては、上記全固体リチウム二次電池用電極中に、弾性体を、上記針状または板状活物質と、上記球状活物質とを混合した活物質および上記弾性体の合計質量に対して5〜10質量%含有することが好ましい。本発明においては、上記範囲内で弾性体を含有するものであれば、上記弾性体は充放電時の活物質の膨張収縮によって発生する応力を緩和する。このため、上記応力による固体電解質材料の変形を抑制し、この固体電解質材料の変形による電池反応面積の減少および容量低下を抑えることができるからである。また、上記範囲内であるので、導電パスを確保でき、所望の導電性が得られるからである。   In the invention described in claim 1, in the electrode for the all-solid-state lithium secondary battery, an elastic body, an active material obtained by mixing the acicular or plate-like active material and the spherical active material, and the elasticity It is preferable to contain 5-10 mass% with respect to the total mass of a body. In the present invention, if the elastic body is contained within the above range, the elastic body relieves stress generated by the expansion and contraction of the active material during charge and discharge. For this reason, the deformation of the solid electrolyte material due to the stress can be suppressed, and the decrease in the battery reaction area and the capacity decrease due to the deformation of the solid electrolyte material can be suppressed. Moreover, since it exists in the said range, a conductive path can be ensured and desired electroconductivity is obtained.

また、本発明においては、上記の全固体リチウム二次電池用電極を用いたことを特徴とする全固体リチウム二次電池を提供する。   Moreover, in this invention, the all-solid-state lithium secondary battery electrode using said all-solid-state lithium secondary battery is provided.

本発明によれば、上述したような体積当たりの容量の大きい、すなわち高エネルギー密度の上記の全固体リチウム二次電池用電極を用いることによって、高エネルギー密度の全固体リチウム二次電池を得ることができる。   According to the present invention, a high energy density all solid lithium secondary battery is obtained by using the above-mentioned electrode for all solid lithium secondary battery having a large capacity per volume as described above, that is, a high energy density. Can do.

本発明においては、高エネルギー密度の全固体リチウム二次電池用電極を得ることができるという効果を奏する。   In this invention, there exists an effect that the electrode for high energy density all the solid lithium secondary batteries can be obtained.

本発明の全固体リチウム二次電池用電極および全固体リチウム二次電池について、以下詳細に説明する。   The electrode for an all solid lithium secondary battery and the all solid lithium secondary battery of the present invention will be described in detail below.

A.全固体リチウム二次電池用電極
まず、本発明の全固体リチウム二次電池用電極について説明する。本発明の全固体リチウム二次電池は、針状または板状活物質と、球状活物質とを混合した活物質および固体電解質材料を有することを特徴とするものである。
A. First, an electrode for an all-solid lithium secondary battery of the present invention will be described. The all solid lithium secondary battery of the present invention is characterized by having an active material and a solid electrolyte material obtained by mixing a needle-like or plate-like active material and a spherical active material.

本発明によれば、全固体リチウム二次電池用電極は、針状または板状活物質と、球状活物質とを混合した活物質および固体電解質材料を有することによって、針状または板状活物質が良好な導電パスを形成することができる。また、球状活物質を含有することで充填密度を高め、体積当たりの容量の大きい、すなわち、高エネルギー密度の全固体リチウム二次電池用電極を得ることができる。   According to the present invention, an electrode for an all-solid-state lithium secondary battery has an acicular or plate-like active material by having an active material mixed with a acicular or plate-like active material and a spherical active material and a solid electrolyte material. Can form a favorable conductive path. Further, by containing the spherical active material, it is possible to increase the packing density and obtain an electrode for an all solid lithium secondary battery having a large capacity per volume, that is, a high energy density.

以下、本発明の全固体リチウム二次電池用電極について、図を用いて説明する。
図1は本発明の全固体リチウム二次電池用電極の構成の一例を示す模式図である。図1に示すように、本発明の全固体リチウム二次電池用電極は、活物質として、針状または板状活物質3と、球状活物質2と固体電解質材料1を有するものである。
以下、本発明の全固体リチウム二次電池用電極について、構成ごとに詳細に説明する。
1.活物質
本発明においては、活物質に針状または板状活物質と球状活物質とを混合して用いる点に特徴を有する。以下、それぞれについて説明する。
(1)針状または板状活物質
本発明に用いられる針状または板状活物質は、後述する球状活物質および固体電解質材料と混合することによって、針状または板状活物質が良好な導電パスを形成することができる。また、球状活物質を含有することで充填密度を高めることにより、体積当たりの容量の大きい、すなわち、高エネルギー密度の全固体リチウム二次電池用電極を得ることができる。
Hereinafter, the electrode for an all-solid lithium secondary battery of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing an example of the configuration of an electrode for an all solid lithium secondary battery of the present invention. As shown in FIG. 1, the electrode for an all-solid lithium secondary battery of the present invention has a needle-like or plate-like active material 3, a spherical active material 2, and a solid electrolyte material 1 as active materials.
Hereinafter, the electrode for an all-solid lithium secondary battery of the present invention will be described in detail for each configuration.
1. Active material The present invention is characterized in that an active material is mixed with a needle-like or plate-like active material and a spherical active material. Each will be described below.
(1) Needle-like or plate-like active material The needle-like or plate-like active material used in the present invention is mixed with a spherical active material and a solid electrolyte material, which will be described later, so that the needle-like or plate-like active material has good conductivity. A path can be formed. Further, by increasing the packing density by containing a spherical active material, an electrode for an all solid lithium secondary battery having a large capacity per volume, that is, a high energy density can be obtained.

本発明における針状活物質とは一般的に針状とされる形状を有する活物質であれば特に限定されるものではないが、上記「針状」を具体的に定義すると、アスペクト比(長軸の長さ/長軸との垂直長)で示すことができる。本発明においては、アスペクト比(長軸の長さ/長軸との垂直長)が3以上であるものをいう。中でも4〜100の範囲内、特に10〜70の範囲内であることが好ましい。   The acicular active material in the present invention is not particularly limited as long as it is an active material having a generally acicular shape. However, when the above “acicular” is specifically defined, an aspect ratio (long (Axis length / vertical length with the long axis). In the present invention, the aspect ratio (length of major axis / length perpendicular to major axis) is 3 or more. In particular, it is preferably in the range of 4 to 100, particularly in the range of 10 to 70.

上記針状活物質の長軸の長さとしては、その平均値が、例えば0.1〜1000μmの範囲内、中でも1〜100μmの範囲内、特に5〜20μmの範囲内であることが好ましい。   As the length of the major axis of the acicular active material, the average value is preferably in the range of, for example, 0.1 to 1000 μm, more preferably in the range of 1 to 100 μm, and particularly preferably in the range of 5 to 20 μm.

また、針状活物質の長軸との垂直長としては、その平均値が、例えば0.01〜100μmの範囲内、中でも0.1〜10μmの範囲内、特に0.25〜1μmの範囲内であることが好ましい。   In addition, the vertical length of the acicular active material with respect to the major axis is, for example, in the range of 0.01 to 100 μm, in particular in the range of 0.1 to 10 μm, particularly in the range of 0.25 to 1 μm. It is preferable that

本発明においては、針状活物質が良好な導電パスを形成し、球状活物質が充填密度を高めるのに最適となるように、上記の針状活物質の長軸の平均長さと、後述する球状活物質の平均粒子径との比(針状活物質の長軸の平均長さ/球状活物質の平均粒子径との比)が、1〜100の範囲内、中でも1〜50の範囲内、特に1.5〜30の範囲内であることが好ましい。球状活物質が膨張・収縮に伴う体積変化を起こした場合にも、針状活物質と球状活物質との接触が保たれるからである。   In the present invention, the average length of the long axis of the acicular active material is described later so that the acicular active material forms a good conductive path and the spherical active material is optimal for increasing the packing density. The ratio with the average particle diameter of the spherical active material (the ratio of the average length of the long axis of the acicular active material / the average particle diameter of the spherical active material) is in the range of 1 to 100, particularly in the range of 1 to 50. In particular, it is preferably in the range of 1.5 to 30. This is because the contact between the acicular active material and the spherical active material is maintained even when the spherical active material undergoes a volume change accompanying expansion and contraction.

なお、本発明においては、上記針状活物質の長軸の長さ、径はSEM等の画像解析に基づいて測定された値を用いることができる。   In the present invention, the length and diameter of the major axis of the acicular active material may be values measured based on image analysis such as SEM.

また、本発明における板状活物質とは一般的に板状とされる形状を有する活物質であれば特に限定されるものではないが、上記「板状」を具体的に定義すると、表面の最大幅と厚さで表すことができる。本発明においては、表面の最大幅と厚さの比(表面の最大幅/厚さ)が3以上であるものをいう。中でも4〜100の範囲内、特に10〜70の範囲内であることが好ましい。
なお、表面の最大幅とは、板状活物質が円板状である場合はその径を、楕円板状である場合は長径を、また、表面が矩形状である場合は対角線の長さを言うものであり、その表面の形状の中で最も長い部分を言うこととする。
In addition, the plate-like active material in the present invention is not particularly limited as long as it is an active material having a generally plate-like shape. However, when the above “plate-like” is specifically defined, It can be expressed by maximum width and thickness. In the present invention, the ratio of the maximum surface width to the thickness (maximum surface width / thickness) is 3 or more. In particular, it is preferably in the range of 4 to 100, particularly in the range of 10 to 70.
The maximum surface width is the diameter when the plate-shaped active material is disk-shaped, the long diameter when the plate-shaped active material is elliptical, and the length of the diagonal line when the surface is rectangular. The longest part of the surface shape is said to be said.

上記板状活物質の表面の最大幅としては、その平均値が、例えば0.1〜1000μmの範囲内、中でも1〜100μmの範囲内、特に5〜20μmの範囲内であることが好ましい。   As the maximum width of the surface of the plate-like active material, the average value is preferably in the range of, for example, 0.1 to 1000 μm, more preferably in the range of 1 to 100 μm, and particularly preferably in the range of 5 to 20 μm.

また、板状活物質の厚さとしては、その平均値が、例えば0.01〜100μmの範囲内、中でも0.1〜10μmの範囲内、特に0.25〜1μmの範囲内であることが好ましい。   Moreover, as thickness of a plate-shaped active material, the average value is in the range of 0.01-100 micrometers, for example, It is in the range of 0.1-10 micrometers especially, It is especially in the range of 0.25-1 micrometer. preferable.

本発明においては、板状活物質が良好な導電パスを形成し、球状活物質が充填密度を高めるのに最適となるように、上記の板状活物質の表面の最大幅と、後述する球状活物質の平均粒子径との比(表面の最大幅/球状活物質の平均粒子径との比)が、1〜100の範囲内、中でも1〜50の範囲内、特に1.5〜30の範囲内であることが好ましい。球状活物質が膨張・収縮に伴う体積変化を起こした場合にも、針状活物質と球状活物質との接触が保たれるからである。   In the present invention, the maximum width of the surface of the plate-like active material described above and the spherical shape described later are used so that the plate-like active material forms an excellent conductive path and the spherical active material is optimal for increasing the packing density. The ratio with the average particle diameter of the active material (the ratio between the maximum surface width / the average particle diameter of the spherical active material) is in the range of 1 to 100, particularly in the range of 1 to 50, in particular 1.5 to 30. It is preferable to be within the range. This is because the contact between the acicular active material and the spherical active material is maintained even when the spherical active material undergoes a volume change accompanying expansion and contraction.

なお、本発明においては、上記板状活物質の表面の最大幅、厚さはSEM等の画像解析に基づいて測定された値を用いることができる。   In the present invention, the maximum width and thickness of the surface of the plate-like active material can be values measured based on image analysis such as SEM.

(2)球状活物質
本発明に用いられる球状活物質は、上記の針状または板状活物質、および後述する固体電解質材料と混合することによって、針状または板状活物質が良好な導電パスを形成することができる。また、球状活物質を含有することで充填密度を高め、体積当たりの容量の大きい、すなわち、高エネルギー密度の全固体リチウム二次電池用電極を得ることができる。
(2) Spherical active material The spherical active material used in the present invention is mixed with the above-described acicular or plate-like active material, and a solid electrolyte material described later, so that the acicular or platy active material has a good conductive path. Can be formed. Further, by containing the spherical active material, it is possible to increase the packing density and obtain an electrode for an all solid lithium secondary battery having a large capacity per volume, that is, a high energy density.

本発明における球状活物質とは一般的に球状とされる形状を有する活物質であれば特に限定されるものではない。   The spherical active material in the present invention is not particularly limited as long as it is an active material having a generally spherical shape.

上記球状活物質の平均粒子径は、例えば100μm以下とすることができ、中でも0.1〜20μmの範囲内、特に1〜10μmの範囲内であることが好ましい。   The average particle diameter of the spherical active material can be, for example, 100 μm or less, and is preferably in the range of 0.1 to 20 μm, particularly preferably in the range of 1 to 10 μm.

なお、本発明において、上記球状活物質の平均粒子径はSEM等の画像解析に基づいて測定された値を用いることができる。   In the present invention, the average particle diameter of the spherical active material may be a value measured based on image analysis such as SEM.

(3)正極の場合 (3) For positive electrode

上記全固体リチウム二次電池用電極が正極の場合は、上記針状または板状活物質と、上記球状活物質とを混合した活物質中の上記針状または板状活物質の体積分率が10〜40vol%であることが好ましい。中でも15〜30vol%の範囲内、特に20〜25vol%の範囲内であることが好ましい。上記針状または板状活物質の体積分率が上記範囲内であるので、充放電サイクルに伴う活物質の膨張・収縮が起こった場合であっても、針状または板状活物質が良好な導電パスを形成することができる。また、上記針状または板状活物質の体積分率が上記範囲内であるので、球状活物質を所定の含有量で含有することができる。したがって、充填密度を高め、所望の高エネルギー密度の全固体リチウム二次電池用電極を得ることができる。   When the electrode for the all-solid-state lithium secondary battery is a positive electrode, the volume fraction of the acicular or plate-like active material in the active material obtained by mixing the acicular or plate-like active material and the spherical active material is It is preferable that it is 10-40 vol%. Among these, it is preferable to be in the range of 15-30 vol%, particularly in the range of 20-25 vol%. Since the volume fraction of the acicular or plate-like active material is within the above range, the acicular or plate-like active material is good even when the active material expands or contracts due to the charge / discharge cycle. A conductive path can be formed. Moreover, since the volume fraction of the acicular or plate-like active material is within the above range, the spherical active material can be contained in a predetermined content. Therefore, it is possible to increase the packing density and obtain an electrode for an all solid lithium secondary battery having a desired high energy density.

上記正極に用いられる上記針状または板状活物質としては、本発明の正極に用いられる針状または板状活物質としての機能を有するものであれば、特に限定されるものではないが、例えばα−FeOOH等を挙げることができる。   The acicular or plate-like active material used for the positive electrode is not particularly limited as long as it has a function as the acicular or plate-like active material used for the positive electrode of the present invention. Examples include α-FeOOH.

上記正極に用いられる上記球状活物質としては、例えばLiCoO、LiNiO、LiMn、LiFePO等を挙げることができ、中でもLiCoO、LiNiO、特にLiCoOが好ましい。一般的に、LiCoOは正極用の活物質として良好な特性を持ち、汎用されているからである。 Examples of the spherical active material used for the positive electrode include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4, and the like, among which LiCoO 2 , LiNiO 2 , and particularly LiCoO 2 are preferable. This is because LiCoO 2 generally has good characteristics as an active material for a positive electrode and is widely used.

(4)負極の場合 (4) For negative electrode

上記全固体リチウム二次電池用電極が負極の場合は、上記針状または板状活物質と、上記球状活物質とを混合した活物質中の上記針状または板状活物質の体積分率が10〜20vol%であることが好ましい。中でも12〜18vol%の範囲内、特に14〜16vol%の範囲内であることが好ましい。上記針状または板状活物質の体積分率が上記範囲内であるので、充放電サイクルに伴う活物質の膨張・収縮が起こった場合であっても、針状または板状活物質が良好な導電パスを形成することができる。また、上記針状または板状活物質の体積分率が上記範囲内であるので、球状活物質を所定の含有量で含有することができる。したがって、充填密度を高め、所望の高エネルギー密度の全固体リチウム二次電池用電極を得ることができる。   When the electrode for the all-solid-state lithium secondary battery is a negative electrode, the volume fraction of the acicular or plate-like active material in the active material obtained by mixing the acicular or plate-like active material and the spherical active material is It is preferable that it is 10-20 vol%. Among these, it is preferable to be in the range of 12-18 vol%, particularly in the range of 14-16 vol%. Since the volume fraction of the acicular or plate-like active material is within the above range, the acicular or plate-like active material is good even when the active material expands or contracts due to the charge / discharge cycle. A conductive path can be formed. Moreover, since the volume fraction of the acicular or plate-like active material is within the above range, the spherical active material can be contained in a predetermined content. Therefore, it is possible to increase the packing density and obtain an electrode for an all solid lithium secondary battery having a desired high energy density.

上記負極に用いられる上記針状または板状活物質としては、例えば板状黒鉛、針状黒鉛等を挙げることができ、中でも板状黒鉛が好ましい。一般的に、黒鉛は負極用の活物質として良好な特性を持ち、汎用されているからである。   Examples of the acicular or plate-like active material used for the negative electrode include plate-like graphite and acicular graphite. Of these, plate-like graphite is preferable. This is because graphite generally has good characteristics as an active material for a negative electrode and is widely used.

上記負極に用いられる上記球状活物質としては、本発明の負極に用いられる球状活物質としての機能を有するものであれば、特に限定されるものではないが、例えば球状黒鉛等を挙げることができる。   The spherical active material used for the negative electrode is not particularly limited as long as it has a function as the spherical active material used for the negative electrode of the present invention, and examples thereof include spherical graphite. .

2.固体電解質材料
本発明に用いられる固体電解質材料は、電極内の例えばLi等のイオンは活物質中よりも固体電解質材料中を通りやすいため、主として良好なイオン伝導路となっている。
2. Solid Electrolyte Material The solid electrolyte material used in the present invention mainly has a good ion conduction path because ions such as Li in the electrode easily pass through the solid electrolyte material rather than in the active material.

本発明においては、上記固体電解質材料としては、例えば硫化物系結晶化ガラス、チオリシコン、酸化物系固体電解質等を挙げることができ、中でも硫化物系結晶化ガラス、チオシリコン、特に硫化物系結晶化ガラスが好ましい。   In the present invention, examples of the solid electrolyte material include sulfide-based crystallized glass, thiolithicone, oxide-based solid electrolyte, and the like. Among them, sulfide-based crystallized glass, thiosilicon, particularly sulfide-based crystals. A vitrified glass is preferred.

本発明において、上記固体電解質材料は固体電解質としての機能を有するものであれば、その形状は特に限定されるものではないが、通常、球状のものが用いられる。なお、本発明における球状の固体電解質材料とは一般的に球状とされる形状を有する固体電解質材料であれば特に限定されるものではない。   In the present invention, the shape of the solid electrolyte material is not particularly limited as long as it has a function as a solid electrolyte, but a spherical material is usually used. The spherical solid electrolyte material in the present invention is not particularly limited as long as it is a solid electrolyte material having a generally spherical shape.

上記固体電解質材料の平均粒子径は、例えば50μm以下とすることができ、中でも0.01〜20μmの範囲内、特に0.1〜10μmの範囲内であることが好ましい。なお、本発明において、上記固体電解質材料の平均粒子径はSEM等の画像解析に基づいて測定された値を用いることができる。   The average particle diameter of the solid electrolyte material can be, for example, 50 μm or less, and is preferably in the range of 0.01 to 20 μm, particularly preferably in the range of 0.1 to 10 μm. In the present invention, the average particle diameter of the solid electrolyte material may be a value measured based on image analysis such as SEM.

混合した活物質(上記針状または板状活物質と、上記球状活物質とを混合したもの)と、上記固体電解質材料との質量比は、活物質や電解質の形状、粒径等により大きく変化するものであり、特に限定されるものではない。   The mass ratio of the mixed active material (a mixture of the needle-like or plate-like active material and the spherical active material) and the solid electrolyte material varies greatly depending on the active material, electrolyte shape, particle size, etc. There is no particular limitation.

本発明に用いられる固体電解質材料の製造方法は、所望の固体電解質材料を得ることができる方法であれば特に限定されるものではないが、具体的には、Liを含んだ原料等を遊星ボールミルにてガラス化させ、その後熱処理することで得る方法等を挙げることができる。   The method for producing the solid electrolyte material used in the present invention is not particularly limited as long as it is a method capable of obtaining a desired solid electrolyte material. Specifically, a raw material containing Li or the like is used as a planetary ball mill. And the like obtained by vitrification and subsequent heat treatment.

3.弾性体
本発明においては、上記全固体リチウム二次電池用電極中には弾性体を5〜10質量%含有することが好ましい。中でも7〜10質量%の範囲内、特に8〜10質量%の範囲内であることが好ましい。上記範囲内で弾性体を含有するものであれば、上記弾性体は、充放電時の活物質の膨張収縮によって発生する応力を緩和する。このため、上記応力による固体電解質材料の変形を抑制し、この固体電解質材料の変形による電池反応面積の減少および容量低下を抑えることができるからである。また、導電パスを確保でき、所望の導電性が得られるからである。
3. Elastic body In this invention, it is preferable to contain 5-10 mass% of elastic bodies in the said electrode for all-solid-state lithium secondary batteries. Among these, it is preferable to be in the range of 7 to 10% by mass, particularly in the range of 8 to 10% by mass. If it contains an elastic body in the said range, the said elastic body will relieve | moderate the stress which generate | occur | produces by the expansion / contraction of the active material at the time of charging / discharging. For this reason, the deformation of the solid electrolyte material due to the stress can be suppressed, and the decrease in the battery reaction area and the capacity decrease due to the deformation of the solid electrolyte material can be suppressed. Moreover, it is because a conductive path can be secured and desired conductivity can be obtained.

上記弾性体は、電気的に安定であり、所定の弾性値幅を持つものであれば良く、応力−ひずみ試験によって得られたそのヤング率が、具体的には、0.1〜50MPaの範囲内、中でも1〜10MPaの範囲内、特に1.5〜5.0MPaの範囲内であることが好ましい。上記範囲内のヤング率を持つ弾性体であれば、上記弾性体は、充放電時の活物質の膨張収縮によって発生する応力を緩和する。このため、上記応力による固体電解質材料の変形を抑制し、この固体電解質材料の変形による電池反応面積の減少および容量低下を抑えることができるからである。また、導電パスを確保でき、所望の導電性が得られるからである。また、上記弾性体は、導電性を有する弾性体でも良いし、Liイオン等のイオンを透過するような機能を有する弾性体であっても良い。   The elastic body is only required to be electrically stable and have a predetermined elastic value width, and its Young's modulus obtained by a stress-strain test is specifically within a range of 0.1 to 50 MPa. In particular, it is preferable to be in the range of 1 to 10 MPa, particularly in the range of 1.5 to 5.0 MPa. If the elastic body has a Young's modulus within the above range, the elastic body relieves stress generated by expansion and contraction of the active material during charge and discharge. For this reason, the deformation of the solid electrolyte material due to the stress can be suppressed, and the decrease in the battery reaction area and the capacity decrease due to the deformation of the solid electrolyte material can be suppressed. Moreover, it is because a conductive path can be secured and desired conductivity can be obtained. The elastic body may be a conductive elastic body or an elastic body having a function of transmitting ions such as Li ions.

上記弾性体としては、弾性体としての機能を有するものであれば、特に限定されるものではないが、本発明における弾性体として最適なヤング率を持つこと、電気化学的安定性が高いことなどの理由から、例えばスチレンブタジエンゴム(SBR)、シリコンゴム等を挙げることができる。   The elastic body is not particularly limited as long as it has a function as an elastic body, but has an optimum Young's modulus as an elastic body in the present invention, high electrochemical stability, etc. For this reason, for example, styrene butadiene rubber (SBR), silicon rubber and the like can be mentioned.

本発明において、上記弾性体は弾性体としての機能を有するものであれば、その形状は特に限定されるものではないが、通常、球状のものが用いられる。なお、本発明における球状の弾性体とは一般的に球状とされる形状を有する弾性体材料であれば特に限定されるものではない。   In the present invention, the shape of the elastic body is not particularly limited as long as it has a function as an elastic body, but a spherical shape is usually used. The spherical elastic body in the present invention is not particularly limited as long as it is an elastic material having a generally spherical shape.

上記弾性体の平均粒子径は、例えば50μm以下、中でも0.1〜10μmの範囲内、特に1〜5μmの範囲内であることが好ましい。なお、本発明において、上記弾性体の平均粒子径はSEM等の画像解析や、レーザー回折による粒度分布測定に基づいて測定された値を用いることができる。   The average particle diameter of the elastic body is, for example, 50 μm or less, preferably 0.1 to 10 μm, more preferably 1 to 5 μm. In the present invention, the average particle diameter of the elastic body may be a value measured based on image analysis such as SEM or particle size distribution measurement by laser diffraction.

また、例えば図2に示す全固体リチウム二次電池用電極の構成の一例を示す模式図に示すように、上記弾性体4は、上記電極中の球状活物質2と針状活物質3と固体電解質材料1との間等に入り込んで、活物質の膨張収縮により発生する応力を緩和することが好ましく、このために、上記弾性体の平均粒子径と上記球状活物質の平均粒子径との比(弾性体の平均粒子径/球状活物質の平均粒子径)が0.1〜0.5の範囲内、中でも0.1〜0.3の範囲内、特に0.1〜0.2の範囲内であることが好ましい。   For example, as shown in a schematic diagram showing an example of the configuration of the electrode for an all-solid lithium secondary battery shown in FIG. 2, the elastic body 4 includes the spherical active material 2, the acicular active material 3 and the solid in the electrode. It is preferable to relax the stress generated by the expansion and contraction of the active material by entering the electrolyte material 1 and the like. For this purpose, the ratio between the average particle size of the elastic body and the average particle size of the spherical active material (Average particle diameter of elastic body / average particle diameter of spherical active material) is in the range of 0.1 to 0.5, particularly in the range of 0.1 to 0.3, particularly in the range of 0.1 to 0.2. It is preferable to be within.

本発明に用いられる弾性体の製造方法は、所望の弾性体を得ることができる方法であれば特に限定されるものではないが、具体的には、原料を含んだ水溶液を乾燥させ、粉砕後、ふるいにかけて得る方法、バルク体を洗浄、乾燥、粉砕後、ふるいにかけて得る方法等を挙げることができる。   The method for producing the elastic body used in the present invention is not particularly limited as long as it can obtain a desired elastic body. Specifically, the aqueous solution containing the raw material is dried and pulverized. And a method obtained by sieving, a method obtained by sieving the bulk material after washing, drying and pulverizing.

4.導電剤
また、本発明においては、導電助剤として、例えば導電剤等の添加剤を含有していても良い。この導電剤を添加することにより、導電性を向上させることができる。上記の導電剤としては、具体的にはアセチレンブラック、ケッチェンブラック(商品名、ライオン社製)、カーボンファイバー等を挙げることができ、特に、カーボンファイバーが好ましい。
4). Conductive agent In the present invention, an additive such as a conductive agent may be contained as a conductive aid. By adding this conductive agent, the conductivity can be improved. Specific examples of the conductive agent include acetylene black, ketjen black (trade name, manufactured by Lion Corporation), carbon fiber, and the like, and carbon fiber is particularly preferable.

5.全固体リチウム二次電池用電極の製造方法
本発明の全固体リチウム二次電池用電極の製造方法としては、上記の全固体リチウム二次電池用電極を得ることができる方法であれば、特に限定されるものではないが、例えば、上記の針状または板状活物質、上記の球状活物質、上記の固体電解質材料、上記弾性体、上記導電剤等の粉末を乳鉢等で混合するなどして混合粉末を調整した後、固体電解質材料を一軸圧縮成型して得られた固体電解質ペレットと共に一軸圧縮成形することにより全固体リチウム二次電池用電極層とする方法などの製造方法により得ることができる。
5. Method for producing electrode for all solid lithium secondary battery The method for producing the electrode for all solid lithium secondary battery of the present invention is particularly limited as long as it is a method capable of obtaining the electrode for all solid lithium secondary battery. Although not, for example, the above needle-like or plate-like active material, the above-mentioned spherical active material, the above-mentioned solid electrolyte material, the above-mentioned elastic body, the above-mentioned conductive agent powder etc. are mixed in a mortar etc. After adjusting the mixed powder, it can be obtained by a manufacturing method such as a method for forming an electrode layer for an all-solid lithium secondary battery by uniaxial compression molding with a solid electrolyte pellet obtained by uniaxial compression molding of a solid electrolyte material. .

B.全固体リチウム二次電池
次に、本発明の全固体リチウム二次電池について説明する。本発明の全固体リチウム二次電池は、上記の全固体リチウム二次電池用電極を有することを特徴とするものである。
B. Next, the all solid lithium secondary battery of the present invention will be described. The all solid lithium secondary battery of the present invention is characterized by having the above-mentioned electrode for an all solid lithium secondary battery.

本発明によれば、上記「A.全固体リチウム二次電池用電極」で記載されたいずれかの全固体リチウム二次電池用電極を用いることにより、高エネルギー密度の全固体リチウム二次電池を得ることができる。   According to the present invention, an all-solid lithium secondary battery having a high energy density is obtained by using any electrode for an all-solid lithium secondary battery described in “A. Electrode for all-solid lithium secondary battery”. Obtainable.

次に、本発明の全固体リチウム二次電池について、図面を用いて説明する。図4は本発明の全固体リチウム二次電池の一例を示す概略断面図である。図4に示すように、本発明の全固体リチウム二次電池においては、固体電解質層8が正極層9と負極層7とにより挟持されており、さらにその外側に集電体5が配され、側面を覆うように絶縁部6が配されている。
以下、このような本発明の全固体リチウム二次電池について、構成ごとに説明する。
Next, the all solid lithium secondary battery of the present invention will be described with reference to the drawings. FIG. 4 is a schematic sectional view showing an example of the all solid lithium secondary battery of the present invention. As shown in FIG. 4, in the all solid lithium secondary battery of the present invention, the solid electrolyte layer 8 is sandwiched between the positive electrode layer 9 and the negative electrode layer 7, and the current collector 5 is disposed on the outside thereof. An insulating portion 6 is disposed so as to cover the side surface.
Hereinafter, such an all-solid lithium secondary battery of the present invention will be described for each configuration.

1.正極層
本発明に用いられる正極層について説明する。本発明に用いられる正極層は、上記「A.全固体リチウム二次電池用電極」の「(3)正極の場合」で記載された全固体リチウム二次電池用電極を用いるものであるが、本発明の全固体リチウム二次電池用電極は、正極および負極のいずれか一方に用いれば良い。すなわち、負極層に本発明の全固体リチウム二次電池用電極を用いた場合には、LiCoO等の通常用いられる正極用活物質と上記固体電解質材料を混合して得られた電極等を正極層として用いてもよい。
1. Positive electrode layer The positive electrode layer used in the present invention will be described. The positive electrode layer used in the present invention uses the electrode for an all solid lithium secondary battery described in “(3) In the case of the positive electrode” in “A. Electrode for an all solid lithium secondary battery” above. The electrode for an all solid lithium secondary battery of the present invention may be used for either the positive electrode or the negative electrode. That is, when the electrode for an all-solid lithium secondary battery of the present invention is used for the negative electrode layer, the electrode obtained by mixing the normally used positive electrode active material such as LiCoO 2 and the solid electrolyte material is used as the positive electrode. It may be used as a layer.

本発明に用いられる正極層の膜厚としては、特に限定されるものではなく、通常の全固体リチウム二次電池に用いられる正極層の厚さと同様の厚さのものを用いることができる。   The film thickness of the positive electrode layer used in the present invention is not particularly limited, and a film having the same thickness as that of the positive electrode layer used in an ordinary all-solid lithium secondary battery can be used.

2.負極層
本発明に用いられる負極層について説明する。本発明に用いられる負極層は、上記「A.全固体リチウム二次電池用電極」の「(4)負極の場合」で記載された全固体リチウム二次電池用電極を用いるものであるが、本発明の全固体リチウム二次電池用電極は、正極および負極のいずれか一方に用いれば良い。すなわち、正極層に本発明の全固体リチウム二次電池用電極を用いた場合には、黒鉛等の通常用いられる負極活物質と上記固体電解質材料を混合して得られた電極等を負極層として用いてもよい。
2. Negative electrode layer The negative electrode layer used in the present invention will be described. The negative electrode layer used in the present invention uses the electrode for an all solid lithium secondary battery described in “(4) In the case of the negative electrode” in “A. Electrode for all solid lithium secondary battery” above. The electrode for an all solid lithium secondary battery of the present invention may be used for either the positive electrode or the negative electrode. That is, when the electrode for an all-solid lithium secondary battery of the present invention is used for the positive electrode layer, an electrode obtained by mixing a commonly used negative electrode active material such as graphite and the above solid electrolyte material is used as the negative electrode layer. It may be used.

本発明に用いられる負極層の膜厚としては、特に限定されるものではなく、通常の全固体リチウム二次電池に用いられる負極層の厚さと同様とすることができる。   The thickness of the negative electrode layer used in the present invention is not particularly limited, and can be the same as the thickness of the negative electrode layer used in a normal all-solid lithium secondary battery.

3.固体電解質層
本発明に用いられる固体電解質層について説明する。本発明に用いられる固体電解質層は、上記「A.全固体リチウム二次電池用電極」の「2.固体電解質材料」で記載された固体電解質材料を用いたものである。具体的には、上記の固体電解質材料を一軸圧縮成形することによりペレット状としたもの等を挙げることができる。
3. Solid electrolyte layer The solid electrolyte layer used in the present invention will be described. The solid electrolyte layer used in the present invention uses the solid electrolyte material described in “2. Solid electrolyte material” of “A. Electrode for all-solid lithium secondary battery”. Specifically, the above solid electrolyte material may be formed into a pellet form by uniaxial compression molding.

また、本発明に用いられる固体電解質層の膜厚としては、特に限定されるものではなく、通常の全固体リチウム二次電池に用いられる固体電解質層の厚さと同様とすることができる。   In addition, the thickness of the solid electrolyte layer used in the present invention is not particularly limited, and may be the same as the thickness of the solid electrolyte layer used in a normal all-solid lithium secondary battery.

4.集電部
次に、本発明に用いられる集電部について説明する。本発明に用いられる集電部は、反応により生じた電子を伝達する機能を有するものである。上記集電部としては、導電性を有するものであれば特に限定されるものではないが、例えば、Al、Ni、Ti等の金属箔、あるいはカーボンペーパー等を挙げることができる。また、本発明に用いられる集電部は、電池用セルの機能を兼ね備えたものであっても良い。具体的には、SUS製の電池用セルを用意し、その一部を集電部として用いる場合等を挙げることができる。
4). Current collector Next, the current collector used in the present invention will be described. The current collector used in the present invention has a function of transmitting electrons generated by the reaction. The current collector is not particularly limited as long as it has conductivity, and examples thereof include metal foils such as Al, Ni, and Ti, or carbon paper. Moreover, the current collector used in the present invention may have a function of a battery cell. Specifically, a case where a battery cell made of SUS is prepared and a part of the battery cell is used as a current collector can be exemplified.

5.絶縁部
次に、本発明に用いられる絶縁部について説明する。上記絶縁部としては、電気絶縁性を有するものであれば特に限定されるものではないが、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、四フッ化エチレン樹脂(PTFE)等を挙げることができる。
5. Insulating part Next, the insulating part used in the present invention will be described. The insulating part is not particularly limited as long as it has electrical insulation, and examples thereof include polyethylene terephthalate (PET), polypropylene (PP), and tetrafluoroethylene resin (PTFE). it can.

6.全固体リチウム二次電池の製造方法
本発明の全固体リチウム二次電池用の製造方法としては、上記の全固体リチウム二次電池を得ることができる方法であれば、特に限定されるものではないが、例えば、上記の針状または板状活物質、上記の球状活物質、上記の固体電解質材料、上記弾性体、上記導電剤等の粉末を乳鉢等で混合するなどして混合粉末を調整した後、固体電解質層を正極層と負極層が挟持する様に一軸圧縮成形することによりペレット状とした全固体リチウム二次電池ペレットを、導電性を有する集電体によって挟持し、その側面を絶縁材料によって被覆する方法等の製造方法により得ることができる。
6). Production method of all solid lithium secondary battery The production method for the all solid lithium secondary battery of the present invention is not particularly limited as long as it is a method capable of obtaining the above all solid lithium secondary battery. However, for example, the mixed powder was prepared by mixing the needle-like or plate-like active material, the spherical active material, the solid electrolyte material, the elastic body, the conductive agent, etc. with a mortar or the like. Then, the solid electrolyte secondary battery pellet formed into a pellet form by uniaxial compression molding so that the positive electrode layer and the negative electrode layer are sandwiched between the solid electrolyte layers is sandwiched by a conductive current collector, and the side surfaces are insulated. It can be obtained by a production method such as a method of coating with a material.

7.全固体リチウム二次電池の用途
本発明の燃料電池の用途としては、特に限定されるものではないが、例えば、自動車用の全固体リチウム二次電池等として、用いることができる。
8.その他
本発明により得られる上記の全固体リチウム二次電池の形状は、例えば、コイン型、ボタン型、角型、円筒型、ラミネート型等を挙げることができ、中でもコイン型、角型、ラミネート型が好ましい。
7). Application of the all-solid lithium secondary battery The application of the fuel cell of the present invention is not particularly limited, and can be used as, for example, an all-solid lithium secondary battery for automobiles.
8). Other Examples of the shape of the all-solid lithium secondary battery obtained by the present invention include a coin type, a button type, a square type, a cylindrical type, a laminate type, and the like. Is preferred.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

以下に実施例を示して本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例1]
(全固体リチウム二次電池作製)
正極中の球状活物質と針状活物質の体積比が90:10(針状または板状活物質の体積分率が10vol%)となるように、球状活物質LiCoO(戸田工業社製 D10)と針状活物質α−FeOOH(高純度化学社製 FEI16PB)を混合した。これに、正極中の活物質(球状活物質と針状活物質を混合した活物質)と固体電解質材料の質量比が70:30となるように、固体電解質材料として硫化物系結晶化ガラス(特開2005−228570号公報の方法に従って、LiSとPをモル比LiS:P=70:30で遊星ボールミルにてガラス化させ、その後熱処理することで得たもの)を加え、乾式混合することで正極用合剤を得た。次に、負極中の活物質(黒鉛(Timcal社製 KS15))と固体電解質材料の質量比が50:50となるように、負極活物質(黒鉛(Timcal社製 KS15))に固体電解質材料として硫化物系結晶化ガラスを加え、乾式混合することで負極用合剤を得た。また、特開2005−228570号公報の方法によって得られた硫化物系結晶化ガラスをペレット状に加工することによって、固体電解質ペレットを得た。この固体電解質ペレットを正極用合剤と負極用合剤で挟持するように一体成型を行い、直径約10mm、厚さ約1mmの全固体リチウム二次電池ペレットを得た。なお、容量比は正極:負極=1:1.2となるようにし、充放電容量が正極規定となるようにした。
[Example 1]
(All-solid lithium secondary battery production)
Spherical active material LiCoO 2 (D10 manufactured by Toda Kogyo Co., Ltd.) so that the volume ratio of the spherical active material and the acicular active material in the positive electrode is 90:10 (the volume fraction of the acicular or plate-like active material is 10 vol%). ) And an acicular active material α-FeOOH (FEI16PB manufactured by Kojundo Chemical Co., Ltd.). In addition, a sulfide-based crystallized glass (as the solid electrolyte material) is used so that the mass ratio of the active material in the positive electrode (the active material in which the spherical active material and the acicular active material are mixed) and the solid electrolyte material is 70:30. According to the method of JP 2005-228570 A, Li 2 S and P 2 S 5 were vitrified with a planetary ball mill at a molar ratio of Li 2 S: P 2 S 5 = 70: 30, and then heat-treated. The mixture for the positive electrode was obtained by dry mixing. Next, the negative electrode active material (graphite (TIMcal KS15)) is used as the solid electrolyte material so that the mass ratio of the active material in the negative electrode (graphite (TIMcal KS15)) to the solid electrolyte material is 50:50. Sulfide-based crystallized glass was added and dry mixed to obtain a negative electrode mixture. Moreover, the solid electrolyte pellet was obtained by processing the sulfide type crystallized glass obtained by the method of Unexamined-Japanese-Patent No. 2005-228570 into a pellet form. The solid electrolyte pellet was integrally molded so as to be sandwiched between the positive electrode mixture and the negative electrode mixture, and an all solid lithium secondary battery pellet having a diameter of about 10 mm and a thickness of about 1 mm was obtained. The capacity ratio was positive electrode: negative electrode = 1: 1.2, and the charge / discharge capacity was regulated to be positive.

上記の全固体リチウム二次電池ペレットをSUS製の集電体で挟持して、その側面をPET製の絶縁体で覆うことによって、全固体リチウム二次電池を得た。   The all solid lithium secondary battery pellet was sandwiched between SUS current collectors, and the side surfaces thereof were covered with a PET insulator to obtain an all solid lithium secondary battery.

[実施例2]
上記の実施例1において、正極中の球状活物質と針状活物質の体積比が75:25(針状または板状活物質の体積分率が25vol%)となるようにしたこと以外は、実施例1と同様にして、全固体リチウム二次電池を得た。
[Example 2]
In Example 1 above, except that the volume ratio of the spherical active material and the acicular active material in the positive electrode is 75:25 (the volume fraction of the acicular or plate-like active material is 25 vol%), In the same manner as in Example 1, an all solid lithium secondary battery was obtained.

[実施例3]
上記の実施例1において、正極中の球状活物質と針状活物質の体積比が60:40(針状または板状活物質の体積分率が40vol%)となるようにしたこと以外は、実施例1と同様にして、全固体リチウム二次電池を得た。
[Example 3]
In Example 1 above, except that the volume ratio of the spherical active material and the acicular active material in the positive electrode is 60:40 (the volume fraction of the acicular or plate-like active material is 40 vol%), In the same manner as in Example 1, an all solid lithium secondary battery was obtained.

[実施例4]
上記の実施例1において、正極中の球状活物質と針状活物質の体積比が50:50(針状または板状活物質の体積分率が50vol%)となるようにしたこと以外は、実施例1と同様にして、全固体リチウム二次電池を得た。
[Example 4]
In Example 1 above, except that the volume ratio of the spherical active material and the acicular active material in the positive electrode was 50:50 (the volume fraction of the acicular or plate-like active material was 50 vol%) In the same manner as in Example 1, an all solid lithium secondary battery was obtained.

[比較例1]
上記の実施例1において、正極中の球状活物質と針状活物質の体積比が100:0(針状または板状活物質の体積分率が0vol%)となるようにしたこと以外は、実施例1と同様にして、全固体リチウム二次電池を得た。
[Comparative Example 1]
In Example 1 above, except that the volume ratio of the spherical active material and the acicular active material in the positive electrode was 100: 0 (the volume fraction of the acicular or plate-like active material was 0 vol%), In the same manner as in Example 1, an all solid lithium secondary battery was obtained.

[実施例5]
負極中の球状活物質と針状活物質の体積比が90:10(針状または板状活物質の体積分率が10vol%)となるように、球状黒鉛(Timcal社製 KS15)と針状黒鉛(Timcal社製 KFG15)を混合した。これに、負極中の活物質(球状黒鉛と針状黒鉛を混合した活物質)と固体電解質材料の質量比が50:50となるように、固体電解質材料として硫化物系結晶化ガラス(特開2005−228570号公報の方法に従って、LiSとPをモル比LiS:P=70:30で遊星ボールミルにてガラス化させ、その後熱処理することで得たもの)を加え、乾式混合することで負極用合剤を得た。次に、正極中の活物質(LiCoO(戸田工業社製 D10))と固体電解質材料の質量比が70:30となるように、正極活物質(LiCoO(戸田工業社製 D10))に固体電解質材料として硫化物系結晶化ガラスを加え、乾式混合することで正極用合剤を得た。また、特開2005−228570号公報の方法によって得られた硫化物系結晶化ガラスをペレット状に加工することによって、固体電解質ペレットを得た。この固体電解質ペレットを正極用合剤と負極用合剤で挟持するように一体成型を行い、直径約10mm、厚さ約1mmの全固体リチウム二次電池ペレットを得た。なお、容量比は正極:負極=1.2:1となるようにし、充放電容量が負極規定となるようにした。
[Example 5]
Spherical graphite (KS15 manufactured by Timcal) and acicular shape so that the volume ratio of the spherical active material and acicular active material in the negative electrode is 90:10 (volume fraction of acicular or plate-like active material is 10 vol%). Graphite (KFG15 manufactured by Timcal) was mixed. In addition, a sulfide-based crystallized glass as a solid electrolyte material (Japanese Patent Application Laid-Open (JP-A) No. 2003-26853) is used so that the mass ratio of the active material in the negative electrode (the active material obtained by mixing spherical graphite and acicular graphite) to the solid electrolyte material is 50:50. According to the method of JP 2005-228570 A, Li 2 S and P 2 S 5 were vitrified with a planetary ball mill at a molar ratio of Li 2 S: P 2 S 5 = 70: 30, and then heat-treated) Was added and dry mixed to obtain a negative electrode mixture. Next, the positive electrode active material (LiCoO 2 (D10 manufactured by Toda Kogyo Co., Ltd., D10)) is adjusted so that the mass ratio of the active material in the positive electrode (LiCoO 2 (D10 manufactured by Toda Kogyo Co., Ltd.)) and the solid electrolyte material is 70:30. A sulfide-based crystallized glass was added as a solid electrolyte material, and dry mixing was performed to obtain a positive electrode mixture. Moreover, the solid electrolyte pellet was obtained by processing the sulfide type crystallized glass obtained by the method of Unexamined-Japanese-Patent No. 2005-228570 into a pellet form. The solid electrolyte pellet was integrally molded so as to be sandwiched between the positive electrode mixture and the negative electrode mixture, and an all solid lithium secondary battery pellet having a diameter of about 10 mm and a thickness of about 1 mm was obtained. The capacity ratio was positive electrode: negative electrode = 1.2: 1, and the charge / discharge capacity was regulated to be negative.

上記の全固体リチウム二次電池ペレットをSUS製の集電体で挟持して、その側面をPET製の絶縁体で覆うことによって、全固体リチウム二次電池を得た。   The all solid lithium secondary battery pellet was sandwiched between SUS current collectors, and the side surfaces thereof were covered with a PET insulator to obtain an all solid lithium secondary battery.

[実施例6]
上記の実施例5において、負極中の球状活物質と針状活物質の体積比が80:20(針状または板状活物質の体積分率が20vol%)となるようにしたこと以外は、実施例5と同様にして、全固体リチウム二次電池を得た。
[Example 6]
In Example 5 above, except that the volume ratio of the spherical active material and the acicular active material in the negative electrode was 80:20 (the volume fraction of the acicular or plate-like active material was 20 vol%), In the same manner as in Example 5, an all solid lithium secondary battery was obtained.

[実施例7]
上記の実施例5において、負極中の球状活物質と針状活物質の体積比が70:30(針状または板状活物質の体積分率が30vol%)となるようにしたこと以外は、実施例5と同様にして、全固体リチウム二次電池を得た。
[Example 7]
In Example 5 above, except that the volume ratio of the spherical active material and the acicular active material in the negative electrode was 70:30 (the volume fraction of the acicular or plate-like active material was 30 vol%) In the same manner as in Example 5, an all solid lithium secondary battery was obtained.

[比較例2]
上記の実施例5において、負極中の球状活物質と針状活物質の体積比が100:0(針状または板状活物質の体積分率が0vol%)となるようにしたこと以外は、実施例5と同様にして、全固体リチウム二次電池を得た。
[Comparative Example 2]
In Example 5 above, except that the volume ratio of the spherical active material and the acicular active material in the negative electrode was 100: 0 (the volume fraction of the acicular or plate-like active material was 0 vol%), In the same manner as in Example 5, an all solid lithium secondary battery was obtained.

[評価]
(充放電特性)
実施例1〜7および比較例1〜2で得られた全固体リチウム二次電池に対して、電流密度130μA/cm、電圧範囲は正極中の球状活物質と針状活物質の体積比を変化させた全固体リチウム二次電池である実施例1、実施例2、実施例3、実施例4、および比較例1の場合、1.5〜4.2Vの範囲で、負極中の球状活物質と針状活物質の体積比を変化させた全固体リチウム二次電池である実施例5、実施例6、実施例7、および比較例2の場合には、3.0〜4.2Vの範囲で充放電試験を行い、容量を測定した。正極中の球状活物質と針状活物質の体積比を変化させた全固体リチウム二次電池である実施例1、実施例2、実施例3、実施例4、および比較例1の正極体積当たりの容量を図5に示す。また、負極中の球状活物質と針状活物質の体積比を変化させた全固体リチウム二次電池である実施例5、実施例6、実施例7、および比較例2の負極体積当たりの容量を図6に示す。
[Evaluation]
(Charge / discharge characteristics)
For the all solid lithium secondary batteries obtained in Examples 1 to 7 and Comparative Examples 1 and 2, the current density was 130 μA / cm 2 , and the voltage range was the volume ratio of the spherical active material and the acicular active material in the positive electrode. In the case of Example 1, Example 2, Example 3, Example 4, and Comparative Example 1, which are all-solid lithium secondary batteries that have been changed, the spherical activity in the negative electrode is in the range of 1.5 to 4.2 V. In the case of Example 5, Example 6, Example 7, and Comparative Example 2, which are all solid lithium secondary batteries in which the volume ratio of the substance and the acicular active material was changed, 3.0 to 4.2 V A charge / discharge test was performed in the range, and the capacity was measured. Per positive electrode volume of Example 1, Example 2, Example 3, Example 4 and Comparative Example 1, which are all solid lithium secondary batteries in which the volume ratio of the spherical active material and the acicular active material in the positive electrode is changed The capacity is shown in FIG. Moreover, the capacity | capacitance per negative electrode volume of Example 5, Example 6, Example 7, and the comparative example 2 which are all the solid lithium secondary batteries which changed the volume ratio of the spherical active material and acicular active material in a negative electrode Is shown in FIG.

図5に示すように、正極体積当たりの容量(mAh/cc)は、正極中の球状活物質と針状活物質の体積比を90:10(針状または板状活物質の体積分率が10vol%)とした実施例1では121mAh/cc、正極中の球状活物質と針状活物質の体積比を75:25(針状または板状活物質の体積分率が25vol%)とした実施例2では125mAh/cc、正極中の球状活物質と針状活物質の体積比を60:40(針状または板状活物質の体積分率が40vol%)とした実施例3では110mAh/cc、正極中の球状活物質と針状活物質の体積比を50:50(針状または板状活物質の体積分率が50vol%)とした実施例4では96mAh/ccとなり、正極中の球状活物質と針状活物質の体積比を100:0(針状または板状活物質の体積分率が0vol%)とした比較例1では104mAh/ccとなった。すなわち、正極体積当たりの容量は、正極活物質中の針状活物質の体積分率が10〜40vol%の範囲にある実施例1〜3では、比較例1よりも容量が向上した。   As shown in FIG. 5, the capacity per positive electrode volume (mAh / cc) is 90:10 (the volume fraction of the acicular or plate-like active material is the volume ratio of the spherical active material and the acicular active material in the positive electrode). In Example 1, which was 10 vol%), 121 mAh / cc, and the volume ratio of the spherical active material to the acicular active material in the positive electrode was 75:25 (the volume fraction of the acicular or plate active material was 25 vol%). In Example 2, 125 mAh / cc, and in Example 3, the volume ratio of the spherical active material and the acicular active material in the positive electrode was 60:40 (the volume fraction of acicular or plate-like active material was 40 vol%). In Example 4, in which the volume ratio of the spherical active material to the acicular active material in the positive electrode was 50:50 (the volume fraction of the acicular or plate-like active material was 50 vol%), it was 96 mAh / cc, and the spherical The volume ratio of the active material to the acicular active material is set to 100: 0 (acicular or Volume fraction of plate-like active material became 0 vol%) and the Comparative Example 1 104 mAh / cc. That is, the capacity per positive electrode volume was higher than that of Comparative Example 1 in Examples 1 to 3 in which the volume fraction of the acicular active material in the positive electrode active material was in the range of 10 to 40 vol%.

また、図6に示すように、負極体積当たりの容量(mAh/cc)は、負極中の球状活物質と針状活物質の体積比を90:10(針状または板状活物質の体積分率が10vol%)とした実施例5では245mAh/cc、負極中の球状活物質と針状活物質の体積比を80:20(針状または板状活物質の体積分率が20vol%)とした実施例6では242mAh/ccとなり、負極中の球状活物質と針状活物質の体積比を70:30(針状または板状活物質の体積分率が30vol%)とした実施例7では219mAh/ccとなり、負極中の球状活物質と針状活物質の体積比を100:0(針状または板状活物質の体積分率が0vol%)とした比較例2では226mAh/ccとなった。すなわち、負極体積当たりの容量は、負極活物質中の針状活物質の体積分率が10〜20vol%の範囲にある実施例5および実施例6では、比較例2よりも容量が向上した。   Further, as shown in FIG. 6, the capacity per negative electrode volume (mAh / cc) is 90:10 (volume fraction of acicular or plate-like active material) of the volume ratio of spherical active material to acicular active material in the negative electrode. In Example 5 where the rate was 10 vol%), the volume ratio of the spherical active material to the acicular active material in the negative electrode was 245 mAh / cc, and the volume ratio of the acicular or platy active material was 20 vol%. Example 6 was 242 mAh / cc, and in Example 7 the volume ratio of the spherical active material and the acicular active material in the negative electrode was 70:30 (the volume fraction of the acicular or plate-like active material was 30 vol%). In Comparative Example 2 in which the volume ratio of the spherical active material and the acicular active material in the negative electrode was 100: 0 (the volume fraction of the acicular or plate-like active material was 0 vol%), it was 226 mAh / cc. It was. That is, the capacity per volume of the negative electrode was higher than that of Comparative Example 2 in Example 5 and Example 6 in which the volume fraction of the acicular active material in the negative electrode active material was in the range of 10 to 20 vol%.

以上の結果から、実施例で得られた全固体リチウム二次電池は、本発明の全固体リチウム二次電池用電極を正極に用いた場合には正極活物質中の針状活物質の体積分率が10〜40vol%の範囲、負極に用いた場合には負極活物質中の針状活物質の体積分率が10〜20vol%の範囲とすることで、充放電サイクルに伴う活物質の膨張・収縮が起こった場合であっても、針状または板状活物質が良好な導電パスを形成することができる。また、上記針状または板状活物質の体積分率が上記範囲内であるので、球状活物質を所定の含有量で含有することができる。したがって、充填密度を高め、所望の高エネルギー密度の全固体リチウム二次電池を得ることができた。   From the above results, the all-solid lithium secondary battery obtained in the examples shows the volume fraction of the acicular active material in the cathode active material when the electrode for the all-solid lithium secondary battery of the present invention is used as the cathode. When the rate is in the range of 10 to 40 vol%, and the volume fraction of the acicular active material in the negative electrode active material is in the range of 10 to 20 vol% when used for the negative electrode, the expansion of the active material accompanying the charge / discharge cycle Even when contraction occurs, the needle-like or plate-like active material can form a good conductive path. Moreover, since the volume fraction of the acicular or plate-like active material is within the above range, the spherical active material can be contained in a predetermined content. Therefore, it was possible to increase the packing density and obtain an all solid lithium secondary battery having a desired high energy density.

[実施例8]
(全固体リチウム二次電池作製)
正極中の球状活物質と針状活物質の体積比が75:25(針状または板状活物質の体積分率が25vol%)となるように、球状活物質LiCoO(戸田工業社製 D10)と針状活物質α−FeOOH(高純度化学社製 FEI16PB)を混合した。これに、正極中の活物質(球状活物質と針状活物質を混合した活物質)と固体電解質材料の質量比が70:30となるように、固体電解質材料として硫化物系結晶化ガラス(特開2005−228570号公報の方法に従って、LiSとPをモル比LiS:P=70:30で遊星ボールミルにてガラス化させ、その後熱処理することで得たもの)を加え、さらに、弾性体であるスチレンブタジエンゴム(SBR)を正極中の活物質(球状活物質と針状活物質を混合した活物質)およびスチレンブタジエンゴム(SBR)との合計質量に対して5質量%添加し、乾式混合することで正極用合剤を得た。スチレンゴムは水溶液を乾燥させ、粉砕後、50μmのふるいにかけ、得た。次に、負極中の活物質(黒鉛(Timcal社製 KS15))と固体電解質材料の質量比が50:50となるように、負極活物質(黒鉛(Timcal社製 KS15))に固体電解質材料として硫化物系結晶化ガラスを加え、乾式混合することで負極用合剤を得た。また、特開2005−228570号公報の方法によって得られた硫化物系結晶化ガラスをペレット状に加工することによって、固体電解質ペレットを得た。この固体電解質ペレットを正極用合剤と負極用合剤で挟持するように一体成型を行い、直径約10mm、厚さ約1mmの全固体リチウム二次電池ペレットを得た。なお、容量比は正極:負極=1:1.2となるようにし、充放電容量が正極規定となるようにした。
[Example 8]
(All-solid lithium secondary battery production)
Spherical active material LiCoO 2 (D10 manufactured by Toda Kogyo Co., Ltd.) so that the volume ratio of the spherical active material and the acicular active material in the positive electrode is 75:25 (volume fraction of the acicular or plate-like active material is 25 vol%). ) And an acicular active material α-FeOOH (FEI16PB manufactured by Kojundo Chemical Co., Ltd.). In addition, a sulfide-based crystallized glass (as the solid electrolyte material) is used so that the mass ratio of the active material in the positive electrode (the active material in which the spherical active material and the acicular active material are mixed) and the solid electrolyte material is 70:30. According to the method of JP 2005-228570 A, Li 2 S and P 2 S 5 were vitrified with a planetary ball mill at a molar ratio of Li 2 S: P 2 S 5 = 70: 30, and then heat-treated. In addition, the styrene butadiene rubber (SBR), which is an elastic body, is added to the total mass of the active material in the positive electrode (the active material in which the spherical active material and the acicular active material are mixed) and the styrene butadiene rubber (SBR). On the other hand, 5 mass% was added, and the mixture for positive electrodes was obtained by dry-mixing. Styrene rubber was obtained by drying the aqueous solution and pulverizing and passing through a 50 μm sieve. Next, the negative electrode active material (graphite (TIMcal KS15)) is used as the solid electrolyte material so that the mass ratio of the active material in the negative electrode (graphite (TIMcal KS15)) to the solid electrolyte material is 50:50. Sulfide-based crystallized glass was added and dry mixed to obtain a negative electrode mixture. Moreover, the solid electrolyte pellet was obtained by processing the sulfide type crystallized glass obtained by the method of Unexamined-Japanese-Patent No. 2005-228570 into a pellet form. The solid electrolyte pellet was integrally molded so as to be sandwiched between the positive electrode mixture and the negative electrode mixture, and an all solid lithium secondary battery pellet having a diameter of about 10 mm and a thickness of about 1 mm was obtained. The capacity ratio was positive electrode: negative electrode = 1: 1.2, and the charge / discharge capacity was regulated to be positive.

上記の全固体リチウム二次電池ペレットをSUS製の集電体で挟持して、その側面をPET製の絶縁体で覆うことによって、全固体リチウム二次電池を得た。   The all solid lithium secondary battery pellet was sandwiched between SUS current collectors, and the side surfaces thereof were covered with a PET insulator to obtain an all solid lithium secondary battery.

[実施例9]
上記の実施例8において、正極中に弾性体であるスチレンブタジエンゴム(SBR)を正極中の活物質(球状活物質と針状活物質を混合した活物質)およびスチレンブタジエンゴム(SBR)との合計質量に対して10質量%添加したこと以外は、実施例8と同様にして、全固体リチウム二次電池を得た。
[Example 9]
In Example 8 above, the styrene butadiene rubber (SBR), which is an elastic body, in the positive electrode is mixed with the active material in the positive electrode (the active material in which the spherical active material and the acicular active material are mixed) and the styrene butadiene rubber (SBR). An all solid lithium secondary battery was obtained in the same manner as in Example 8 except that 10% by mass was added to the total mass.

[実施例10]
上記の実施例8において、正極中に、スチレンブタジエンゴム(SBR)の代わりに、バルク体を洗浄、乾燥、粉砕後、50μmのふるいにかけることで得た弾性体であるシリコンゴムを、正極中の活物質(球状活物質と針状活物質を混合した活物質)およびシリコンゴムとの合計質量に対して5質量%添加したこと以外は、実施例8と同様にして、全固体リチウム二次電池を得た。
[Example 10]
In the above Example 8, instead of styrene butadiene rubber (SBR), instead of styrene butadiene rubber (SBR), the bulk body was washed, dried, pulverized, and then silicon rubber, which was an elastic body obtained by passing through a 50 μm sieve, All solid lithium secondary in the same manner as in Example 8 except that 5% by mass of the active material (active material obtained by mixing spherical active material and needle-like active material) and silicon rubber was added in an amount of 5% by mass. A battery was obtained.

[実施例11]
上記の実施例8において、正極中に、スチレンブタジエンゴム(SBR)の代わりに、バルク体を洗浄、乾燥、粉砕後、50μmのふるいにかけることで得た弾性体であるシリコンゴムを、正極中の活物質(球状活物質と針状活物質を混合した活物質)およびシリコンゴムとの合計質量に対して10質量%添加したこと以外は、実施例8と同様にして、全固体リチウム二次電池を得た。
[Example 11]
In the above Example 8, instead of styrene butadiene rubber (SBR), instead of styrene butadiene rubber (SBR), the bulk body was washed, dried, pulverized, and then silicon rubber, which was an elastic body obtained by passing through a 50 μm sieve, All solid lithium secondary in the same manner as in Example 8, except that 10% by mass of the active material (active material obtained by mixing spherical active material and acicular active material) and silicon rubber was added in an amount of 10% by mass. A battery was obtained.

[実施例12]
上記の実施例8において、正極中に弾性体を添加しない(弾性体の添加量が0%である)こと以外は、実施例8と同様にして、全固体リチウム二次電池を得た。
[Example 12]
In Example 8 above, an all-solid lithium secondary battery was obtained in the same manner as in Example 8 except that no elastic body was added to the positive electrode (the amount of elastic body added was 0%).

[実施例13]
上記の実施例8において、正極中に弾性体であるスチレンブタジエンゴム(SBR)を正極中の活物質(球状活物質と針状活物質を混合した活物質)およびスチレンブタジエンゴム(SBR)との合計質量に対して15質量%添加したこと以外は、実施例8と同様にして、全固体リチウム二次電池を得た。
[Example 13]
In Example 8 above, the styrene butadiene rubber (SBR), which is an elastic body, in the positive electrode is mixed with the active material in the positive electrode (the active material in which the spherical active material and the acicular active material are mixed) and the styrene butadiene rubber (SBR). An all-solid lithium secondary battery was obtained in the same manner as in Example 8 except that 15% by mass was added relative to the total mass.

[実施例14]
上記の実施例8において、正極中に、スチレンブタジエンゴム(SBR)の代わりに、バルク体を洗浄、乾燥、粉砕後、50μmのふるいにかけることで得た弾性体であるシリコンゴムを、正極中の活物質(球状活物質と針状活物質を混合した活物質)およびシリコンゴムとの合計質量に対して15質量%添加したこと以外は、実施例8と同様にして、全固体リチウム二次電池を得た。
[Example 14]
In the above Example 8, instead of styrene butadiene rubber (SBR), instead of styrene butadiene rubber (SBR), the bulk body was washed, dried, pulverized, and then silicon rubber, which was an elastic body obtained by passing through a 50 μm sieve, All solid lithium secondary in the same manner as in Example 8 except that 15% by mass of the active material (active material obtained by mixing spherical active material and needle-shaped active material) and silicon rubber was added in an amount of 15% by mass. A battery was obtained.

[実施例15]
負極中の球状活物質と針状活物質の体積比が90:10(針状または板状活物質の体積分率が10vol%)となるように、球状黒鉛(Timcal社製 KS15)と針状黒鉛(Timcal社製 KFG15)を混合した。これに、負極中の活物質(球状黒鉛と針状黒鉛を混合した活物質)と固体電解質材料の質量比が50:50となるように、固体電解質材料として硫化物系結晶化ガラス(特開2005−228570号公報の方法に従って、LiSとPをモル比LiS:P=70:30で遊星ボールミルにてガラス化させ、その後熱処理することで得たもの)を加え、さらに、弾性体であるスチレンブタジエンゴム(SBR)を負極中の活物質(球状黒鉛と針状黒鉛を混合した活物質)およびスチレンブタジエンゴム(SBR)との合計質量に対して5質量%添加し、乾式混合することで負極用合剤を得た。スチレンゴムは水溶液を乾燥させ、粉砕後、50μmのふるいにかけ、得た。次に、正極中の活物質(LiCoO(戸田工業社製 D10))と固体電解質材料の質量比が70:30となるように、固体電解質材料として上記の硫化物系結晶化ガラスを加え、乾式混合することで正極用合剤を得た。また、特開2005−228570号公報の方法によって得られた硫化物系結晶化ガラスをペレット状に加工することによって、固体電解質ペレットを得た。この固体電解質ペレットを正極用合剤と負極用合剤で挟持するように一体成型を行い、直径約10mm、厚さ約1mmの全固体リチウム二次電池ペレットを得た。なお、容量比は正極:負極=1.2:1となるようにし、充放電容量が正極規定となるようにした。
[Example 15]
Spherical graphite (KS15 manufactured by Timcal) and acicular shape so that the volume ratio of the spherical active material and acicular active material in the negative electrode is 90:10 (volume fraction of acicular or plate-like active material is 10 vol%). Graphite (KFG15 manufactured by Timcal) was mixed. In addition, a sulfide-based crystallized glass as a solid electrolyte material (Japanese Patent Application Laid-Open (JP-A) No. 2003-26853) is used so that the mass ratio of the active material in the negative electrode (the active material obtained by mixing spherical graphite and acicular graphite) to the solid electrolyte material is 50:50. According to the method of JP 2005-228570 A, Li 2 S and P 2 S 5 were vitrified with a planetary ball mill at a molar ratio of Li 2 S: P 2 S 5 = 70: 30, and then heat-treated) And 5 masses of styrene butadiene rubber (SBR), which is an elastic body, with respect to the total mass of the active material in the negative electrode (active material in which spherical graphite and acicular graphite are mixed) and styrene butadiene rubber (SBR). % Was added and dry-mixed to obtain a negative electrode mixture. Styrene rubber was obtained by drying the aqueous solution and pulverizing and passing through a 50 μm sieve. Next, the above-described sulfide crystallized glass is added as a solid electrolyte material so that the mass ratio of the active material in the positive electrode (LiCoO 2 (D10 manufactured by Toda Kogyo Co., Ltd. D10)) and the solid electrolyte material is 70:30, A positive electrode mixture was obtained by dry mixing. Moreover, the solid electrolyte pellet was obtained by processing the sulfide type crystallized glass obtained by the method of Unexamined-Japanese-Patent No. 2005-228570 into a pellet form. The solid electrolyte pellet was integrally molded so as to be sandwiched between the positive electrode mixture and the negative electrode mixture, and an all solid lithium secondary battery pellet having a diameter of about 10 mm and a thickness of about 1 mm was obtained. The capacity ratio was positive electrode: negative electrode = 1.2: 1, and the charge / discharge capacity was regulated to be positive.

上記の全固体リチウム二次電池ペレットをSUS製の集電体で挟持して、その側面をPET製の絶縁体で覆うことによって、全固体リチウム二次電池を得た。   The all solid lithium secondary battery pellet was sandwiched between SUS current collectors, and the side surfaces thereof were covered with a PET insulator to obtain an all solid lithium secondary battery.

[実施例16]
上記の実施例15において、負極中に弾性体であるスチレンブタジエンゴム(SBR)を負極中の活物質(球状黒鉛と針状黒鉛を混合した活物質)およびスチレンブタジエンゴム(SBR)との合計質量に対して10質量%添加したこと以外は、実施例15と同様にして、全固体リチウム二次電池を得た。
[Example 16]
In Example 15, the total mass of styrene butadiene rubber (SBR), which is an elastic body, in the negative electrode and the active material in the negative electrode (active material in which spherical graphite and acicular graphite are mixed) and styrene butadiene rubber (SBR). An all solid lithium secondary battery was obtained in the same manner as in Example 15 except that 10% by mass was added.

[実施例17]
上記の実施例15において、負極中に弾性体であるスチレンブタジエンゴム(SBR)を添加しない(弾性体の添加量が0%である)こと以外は、実施例15と同様にして、全固体リチウム二次電池を得た。
[Example 17]
In Example 15 above, all solid lithium was added in the same manner as in Example 15 except that styrene butadiene rubber (SBR), which is an elastic body, was not added to the negative electrode (the addition amount of the elastic body was 0%). A secondary battery was obtained.

[実施例18]
上記の実施例15において、負極中に弾性体であるスチレンブタジエンゴム(SBR)を負極中の活物質(LiCoO(戸田工業社製 D10))およびスチレンブタジエンゴム(SBR)との合計質量に対して15質量%添加したこと以外は、実施例15と同様にして、全固体リチウム二次電池を得た。
[Example 18]
In Example 15 above, the styrene butadiene rubber (SBR), which is an elastic body in the negative electrode, is replaced with the total mass of the active material (LiCoO 2 (D10 manufactured by Toda Kogyo Co., Ltd.)) and the styrene butadiene rubber (SBR) in the negative electrode. An all solid lithium secondary battery was obtained in the same manner as in Example 15 except that 15% by mass was added.

[評価]
(充放電特性)
実施例8〜18で得られた全固体リチウム二次電池に対して、電流密度130μA/cm、電圧範囲3.0〜4.2Vで、充放電試験を行い、容量を測定した。正極中の弾性体の添加量を変化させた全固体リチウム二次電池である実施例8、実施例9、および実施例12のサイクル数に伴う容量維持率(%)((Xサイクル目の放電容量/1サイクル目の放電容量)×100)の変化を図7に示す。また、負極中の弾性体の添加量を変化させた全固体リチウム二次電池である実施例15、実施例16、および実施例17のサイクル数に伴う容量維持率の変化を図8に示す。
[Evaluation]
(Charge / discharge characteristics)
A charge / discharge test was performed on the all-solid lithium secondary batteries obtained in Examples 8 to 18 at a current density of 130 μA / cm 2 and a voltage range of 3.0 to 4.2 V, and the capacity was measured. Capacity retention rate (%) (discharge of X cycle) with the number of cycles of Examples 8, 9 and 12 which are all solid lithium secondary batteries in which the amount of elastic body added in the positive electrode is changed FIG. 7 shows the change of capacity / discharge capacity at the first cycle) × 100). Further, FIG. 8 shows the change in capacity retention rate with the number of cycles of Examples 15, 16, and 17 which are all solid lithium secondary batteries in which the amount of elastic body added in the negative electrode is changed.

図7に示すように、正極に弾性体を添加した場合、サイクル数に伴う容量維持率は、弾性材としてスチレンブタジエンゴムを正極中の活物質(球状活物質と針状活物質を混合した活物質)およびスチレンブタジエンゴム(SBR)との合計質量に対して5質量%添加した実施例8では20サイクルでの容量維持率は52%、スチレンブタジエンゴムの添加量を10質量%とした実施例9では53%、スチレンブタジエンゴムの添加量を0質量%とした実施例12では47%となった。また、上記の添加量を15質量%とした実施例13は40%以下となった。この傾向は、弾性材をシリコンゴムとした場合でも同様で、弾性材としてシリコンゴムを、正極中の活物質(球状活物質と針状活物質を混合した活物質)およびシリコンゴムとの合計質量に対して5質量%添加した実施例10では20サイクルでの容量維持率は50%、シリコンゴムの添加量を10質量%とした実施例11では52%、シリコンゴムの添加量を15質量%とした実施例14では40%以下となった。すなわち、正極に弾性体を添加した場合、サイクル数に伴う容量維持率は、弾性体の添加量が5〜10質量%の範囲にある実施例で特に容量維持率が向上した。   As shown in FIG. 7, when an elastic body is added to the positive electrode, the capacity retention rate with the number of cycles is determined based on the styrene-butadiene rubber as the elastic material and the active material in the positive electrode (a mixture of a spherical active material and an acicular active material). In Example 8 in which 5% by mass was added to the total mass of (material) and styrene-butadiene rubber (SBR), the capacity retention rate at 20 cycles was 52%, and the addition amount of styrene-butadiene rubber was 10% by mass. In Example 12, 53% and 47% in Example 12 in which the addition amount of styrene-butadiene rubber was 0% by mass. Moreover, Example 13 which made said addition amount 15 mass% became 40% or less. This tendency is the same even when the elastic material is silicon rubber. The total mass of the silicon rubber as the elastic material, the active material in the positive electrode (the active material obtained by mixing the spherical active material and the acicular active material) and the silicon rubber. In Example 10 in which 5% by mass was added, the capacity retention rate at 20 cycles was 50%, in Example 11 in which the addition amount of silicon rubber was 10% by mass, 52% and the addition amount of silicon rubber was 15% by mass. In Example 14, it was 40% or less. That is, when an elastic body was added to the positive electrode, the capacity maintenance ratio accompanying the number of cycles was particularly improved in the examples in which the amount of elastic body added was in the range of 5 to 10% by mass.

また、図8に示すように、負極に弾性体を添加した場合、サイクル数に伴う容量維持率は、弾性材としてスチレンブタジエンゴムを負極中の活物質(球状黒鉛と針状黒鉛を混合した活物質)およびスチレンブタジエンゴム(SBR)との合計質量に対して5質量%添加した実施例15では20サイクルでの容量維持率は49%、スチレンブタジエンゴムの添加量を10質量%とした実施例16では53%、スチレンブタジエンゴムの添加量を0質量%とした実施例17では44%となった。また、スチレンブタジエンゴムの添加量を15質量%とした実施例18は40%以下となった。すなわち、負極に弾性体を添加した場合、サイクル数に伴う容量維持率は、弾性体の添加量が5〜10質量%の範囲にある実施例で特に容量維持率が向上した。   In addition, as shown in FIG. 8, when an elastic body is added to the negative electrode, the capacity maintenance ratio accompanying the number of cycles is determined by using styrene butadiene rubber as an elastic material and an active material in the negative electrode (a mixture of spherical graphite and acicular graphite). In Example 15 in which 5% by mass was added to the total mass of the material and styrene butadiene rubber (SBR), the capacity retention rate at 20 cycles was 49%, and the amount of styrene butadiene rubber added was 10% by mass. No. 16 was 53% and Example 17 in which the addition amount of styrene butadiene rubber was 0% by mass was 44%. Further, in Example 18 in which the addition amount of styrene-butadiene rubber was 15% by mass, it was 40% or less. That is, when an elastic body was added to the negative electrode, the capacity retention ratio accompanying the number of cycles was particularly improved in the examples where the amount of elastic body added was in the range of 5 to 10% by mass.

以上の結果から、実施例で得られた全固体リチウム二次電池は、弾性体を5〜10質量%の範囲内で添加することにより、弾性体が、充放電時の活物質の膨張収縮によって発生する応力を緩和する。また、導電パスを確保でき、所望の導電性を得ることができた。このため、上記応力による固体電解質材料の変形を抑制し、この固体電解質材料の変形による電池反応面積の減少および容量低下を抑えることができ、充放電サイクルに伴う容量低下のより小さい全固体リチウム二次電池を得ることができた。   From the above results, the all-solid-state lithium secondary battery obtained in the examples is obtained by adding the elastic body in the range of 5 to 10% by mass, so that the elastic body is expanded and contracted by the active material during charging and discharging. Relieve the generated stress. Moreover, a conductive path could be secured and desired conductivity could be obtained. For this reason, the deformation of the solid electrolyte material due to the stress can be suppressed, and the decrease in the battery reaction area and the capacity decrease due to the deformation of the solid electrolyte material can be suppressed. The next battery could be obtained.

本発明の全固体リチウム二次電池用電極の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the electrode for all-solid-state lithium secondary batteries of this invention. 本発明の全固体リチウム二次電池用電極の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the electrode for all-solid-state lithium secondary batteries of this invention. 従来の全固体リチウム二次電池用電極の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the conventional electrode for all-solid-state lithium secondary batteries. 本発明の全固体リチウム二次電池の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the all-solid-state lithium secondary battery of this invention. 実施例1、実施例2、実施例3、実施例4、および比較例1の正極体積当たりの容量を活物質中の針状活物質の体積分率に対して示したグラフである。It is the graph which showed the capacity | capacitance per positive electrode volume of Example 1, Example 2, Example 3, Example 4, and the comparative example 1 with respect to the volume fraction of the acicular active material in an active material. 実施例5、実施例6、実施例7、および比較例2の負極体積当たりの容量を活物質中の板状活物質の体積分率に対して示したグラフである。It is the graph which showed the capacity | capacitance per negative electrode volume of Example 5, Example 6, Example 7, and Comparative Example 2 with respect to the volume fraction of the plate-shaped active material in an active material. 実施例8、実施例9、実施例12の放電容量維持率をサイクル数に対して示したグラフである。It is the graph which showed the discharge capacity maintenance factor of Example 8, Example 9, and Example 12 with respect to the cycle number. 実施例15、実施例16、実施例17の放電容量維持率をサイクル数に対して示したグラフである。It is the graph which showed the discharge capacity maintenance factor of Example 15, Example 16, and Example 17 with respect to the cycle number.

符号の説明Explanation of symbols

1 … 固体電解質材料
2 … 球状活物質
3 … 針状または板状活物質
4 … 弾性体
5 … 集電部
6 … 絶縁部
7 … 負極層
8 … 固体電解質層
9 … 正極層
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte material 2 ... Spherical active material 3 ... Acicular or plate-shaped active material 4 ... Elastic body 5 ... Current collection part 6 ... Insulation part 7 ... Negative electrode layer 8 ... Solid electrolyte layer 9 ... Positive electrode layer

Claims (6)

針状または板状活物質と、球状活物質とを混合した活物質および固体電解質材料を有することを特徴とする全固体リチウム二次電池用電極。   An electrode for an all-solid-state lithium secondary battery, comprising an active material obtained by mixing a needle-like or plate-like active material and a spherical active material and a solid electrolyte material. 正極に用いられ、かつ前記針状または板状活物質と、前記球状活物質とを混合した活物質中の前記針状または板状活物質の体積分率が10〜40vol%であることを特徴とする請求項1に記載の全固体リチウム二次電池用電極。   The volume fraction of the acicular or plate-like active material in the active material used for the positive electrode and mixed with the acicular or plate-like active material and the spherical active material is 10 to 40 vol%. The electrode for an all-solid-state lithium secondary battery according to claim 1. 負極に用いられ、かつ前記針状または板状活物質と、前記球状活物質とを混合した活物質中の前記針状または板状活物質の体積分率が10〜20vol%であることを特徴とする請求項1に記載の全固体リチウム二次電池用電極。   The volume fraction of the acicular or plate-like active material in the active material used for the negative electrode and mixed with the acicular or plate-like active material and the spherical active material is 10 to 20 vol%. The electrode for an all-solid-state lithium secondary battery according to claim 1. 前記針状または板状活物質、および前記球状活物質が黒鉛であることを特徴とする請求項3に記載の全固体リチウム二次電池用電極。   The electrode for an all-solid-state lithium secondary battery according to claim 3, wherein the needle-like or plate-like active material and the spherical active material are graphite. 前記全固体リチウム二次電池用電極中に、弾性体を、前記針状または板状活物質と、前記球状活物質とを混合した活物質および前記弾性体との合計質量に対して5〜10質量%含有することを特徴とする請求項1から請求項4のいずれかに記載の全固体リチウム二次電池用電極。   In the electrode for the all-solid-state lithium secondary battery, the elastic body is 5 to 10 based on the total mass of the active material obtained by mixing the acicular or plate-like active material and the spherical active material and the elastic body. The electrode for an all-solid-state lithium secondary battery according to any one of claims 1 to 4, wherein the electrode is contained by mass%. 請求項1から請求項5のいずれかに記載の全固体リチウム二次電池用電極を用いたことを特徴とする全固体リチウム二次電池。   An all-solid lithium secondary battery comprising the electrode for an all-solid lithium secondary battery according to any one of claims 1 to 5.
JP2007007997A 2007-01-17 2007-01-17 Electrode for all solid lithium secondary battery and all solid lithium secondary battery Withdrawn JP2008176981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007997A JP2008176981A (en) 2007-01-17 2007-01-17 Electrode for all solid lithium secondary battery and all solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007007997A JP2008176981A (en) 2007-01-17 2007-01-17 Electrode for all solid lithium secondary battery and all solid lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2008176981A true JP2008176981A (en) 2008-07-31

Family

ID=39703857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007997A Withdrawn JP2008176981A (en) 2007-01-17 2007-01-17 Electrode for all solid lithium secondary battery and all solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2008176981A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067504A (en) * 2008-09-11 2010-03-25 Toyota Motor Corp Battery
JP2010067499A (en) * 2008-09-11 2010-03-25 Idemitsu Kosan Co Ltd Manufacturing method of cathode mixture and cathode mixture obtained using it
JP2010080376A (en) * 2008-09-29 2010-04-08 Nissan Motor Co Ltd Electrochemical device
US20100124707A1 (en) * 2008-11-14 2010-05-20 Sony Corporation Secondary battery and anode
WO2010089891A1 (en) * 2009-02-09 2010-08-12 トヨタ自動車株式会社 Method for producing solid electrolyte material-containing sheet
JP2010257878A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp All-solid-state battery
JP2012028231A (en) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd Solid lithium ion secondary battery
WO2012164834A1 (en) * 2011-05-30 2012-12-06 株式会社豊田自動織機 Negative-electrode active material for lithium ion secondary cell, and negative electrode and secondary cell using negative-electrode active material for lithium ion secondary cell
JP2014082118A (en) * 2012-10-17 2014-05-08 Toyota Industries Corp Negative electrode material for lithium ion secondary battery, and negative electrode using the same, and secondary battery
JP2014160629A (en) * 2013-02-20 2014-09-04 Idemitsu Kosan Co Ltd Negative electrode material
JPWO2016017714A1 (en) * 2014-07-31 2017-04-27 富士フイルム株式会社 All-solid secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, battery electrode sheet, and method for producing all-solid secondary battery
WO2017109014A1 (en) * 2015-12-22 2017-06-29 Rhodia Operations Positive active material for rechargeable lithium-sulfur battery
WO2018236060A1 (en) * 2017-06-20 2018-12-27 주식회사 엘지화학 Method for preparing iron hydroxide (feooh), and lithium-sulfur battery cathode comprising iron hydroxide
KR20180138133A (en) * 2017-06-20 2018-12-28 주식회사 엘지화학 METHOD FOR PREPARING FeOOH, AND CATHODE FOR LITHIUM-SULFUR BATTERY COMPRISING FeOOH
CN109494398A (en) * 2017-09-11 2019-03-19 现代自动车株式会社 All-solid-state battery and its manufacturing method
WO2019107752A1 (en) * 2017-11-30 2019-06-06 주식회사 엘지화학 Sulfur-carbon composite, method for manufacturing same and lithium secondary battery comprising same
WO2019107747A1 (en) * 2017-11-28 2019-06-06 주식회사 엘지화학 Positive electrode for lithium secondary battery and manufacturing method therefor
KR20190095115A (en) * 2018-02-06 2019-08-14 주식회사 엘지화학 Cathode additives for lithium secondary battery and method for preparing the same
CN110268555A (en) * 2017-11-08 2019-09-20 株式会社Lg化学 Lithium-sulfur cell anode comprising maghemite and the lithium-sulfur cell comprising the anode
JP2022076956A (en) * 2020-11-10 2022-05-20 株式会社亀山鉄工所 Lithium ion secondary battery and negative electrode material of them
US11349113B2 (en) 2018-04-10 2022-05-31 Lg Energy Solution, Ltd. Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
WO2024128562A1 (en) * 2022-12-16 2024-06-20 포스코홀딩스 주식회사 All-solid-state battery cathode active material, preparation method therefor, and all-solid-state battery comprising same
US12027700B2 (en) 2019-02-13 2024-07-02 Lg Energy Solution, Ltd. Positive electrode comprising goethite for lithium secondary battery and lithium secondary battery comprising same

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067499A (en) * 2008-09-11 2010-03-25 Idemitsu Kosan Co Ltd Manufacturing method of cathode mixture and cathode mixture obtained using it
JP2010067504A (en) * 2008-09-11 2010-03-25 Toyota Motor Corp Battery
JP2010080376A (en) * 2008-09-29 2010-04-08 Nissan Motor Co Ltd Electrochemical device
US20100124707A1 (en) * 2008-11-14 2010-05-20 Sony Corporation Secondary battery and anode
US9806333B2 (en) 2008-11-14 2017-10-31 Sony Corporation Secondary battery and anode
US9620810B2 (en) * 2008-11-14 2017-04-11 Sony Corporation Secondary battery and anode
JP5110094B2 (en) * 2009-02-09 2012-12-26 トヨタ自動車株式会社 Method for producing solid electrolyte material-containing sheet
WO2010089891A1 (en) * 2009-02-09 2010-08-12 トヨタ自動車株式会社 Method for producing solid electrolyte material-containing sheet
US8283388B2 (en) 2009-02-09 2012-10-09 Toyota Jidosha Kabushiki Kaisha Method for producing solid electrolyte material-containing sheet
US8557445B2 (en) 2009-04-28 2013-10-15 Toyota Jidosha Kabushiki Kaisha All solid state battery containing an electrolyte comprising chalcogens
JP2010257878A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp All-solid-state battery
JP2012028231A (en) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd Solid lithium ion secondary battery
US9735422B2 (en) 2011-05-30 2017-08-15 National University Corporation Gunma University Lithium ion secondary cell
JPWO2012164834A1 (en) * 2011-05-30 2015-02-23 株式会社豊田自動織機 Lithium ion secondary battery
CN103650217B (en) * 2011-05-30 2017-02-15 国立大学法人群马大学 Lithium ion secondary cell
CN103650217A (en) * 2011-05-30 2014-03-19 国立大学法人群马大学 Negative-electrode active material for lithium ion secondary cell, and negative electrode and secondary cell using negative-electrode active material for lithium ion secondary cell
WO2012164834A1 (en) * 2011-05-30 2012-12-06 株式会社豊田自動織機 Negative-electrode active material for lithium ion secondary cell, and negative electrode and secondary cell using negative-electrode active material for lithium ion secondary cell
JP2014082118A (en) * 2012-10-17 2014-05-08 Toyota Industries Corp Negative electrode material for lithium ion secondary battery, and negative electrode using the same, and secondary battery
JP2014160629A (en) * 2013-02-20 2014-09-04 Idemitsu Kosan Co Ltd Negative electrode material
JPWO2016017714A1 (en) * 2014-07-31 2017-04-27 富士フイルム株式会社 All-solid secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, battery electrode sheet, and method for producing all-solid secondary battery
US10763542B2 (en) 2014-07-31 2020-09-01 Fujifilm Corporation All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
US11817548B2 (en) 2014-07-31 2023-11-14 Fujifilm Corporation All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
WO2017109014A1 (en) * 2015-12-22 2017-06-29 Rhodia Operations Positive active material for rechargeable lithium-sulfur battery
US11038174B2 (en) 2017-06-20 2021-06-15 Lg Chem, Ltd. Method for preparing iron oxide-hydroxide (FeOOH) and positive electrode for lithium-sulfur battery comprising iron oxide-hydroxide
KR20180138133A (en) * 2017-06-20 2018-12-28 주식회사 엘지화학 METHOD FOR PREPARING FeOOH, AND CATHODE FOR LITHIUM-SULFUR BATTERY COMPRISING FeOOH
WO2018236060A1 (en) * 2017-06-20 2018-12-27 주식회사 엘지화학 Method for preparing iron hydroxide (feooh), and lithium-sulfur battery cathode comprising iron hydroxide
CN109792039B (en) * 2017-06-20 2022-07-19 株式会社Lg新能源 Method of preparing iron oxyhydroxide (FeOOH) and lithium-sulfur battery positive electrode including the same
CN109792039A (en) * 2017-06-20 2019-05-21 株式会社Lg化学 Prepare the method for FeOOH (FeOOH) and the lithium-sulphur cell positive electrode comprising FeOOH
JP2019531243A (en) * 2017-06-20 2019-10-31 エルジー・ケム・リミテッド Method for producing iron hydroxide (FeOOH) and positive electrode for lithium-sulfur battery containing iron hydroxide
KR20200133317A (en) * 2017-06-20 2020-11-27 주식회사 엘지화학 METHOD FOR PREPARING FeOOH, AND CATHODE FOR LITHIUM-SULFUR BATTERY COMPRISING FeOOH
KR102229454B1 (en) * 2017-06-20 2021-03-18 주식회사 엘지화학 METHOD FOR PREPARING FeOOH, AND CATHODE FOR LITHIUM-SULFUR BATTERY COMPRISING FeOOH
KR102268185B1 (en) 2017-06-20 2021-06-22 주식회사 엘지화학 METHOD FOR PREPARING FeOOH, AND CATHODE FOR LITHIUM-SULFUR BATTERY COMPRISING FeOOH
CN109494398B (en) * 2017-09-11 2022-08-30 现代自动车株式会社 All-solid-state battery and method for manufacturing same
CN109494398A (en) * 2017-09-11 2019-03-19 现代自动车株式会社 All-solid-state battery and its manufacturing method
CN110268555A (en) * 2017-11-08 2019-09-20 株式会社Lg化学 Lithium-sulfur cell anode comprising maghemite and the lithium-sulfur cell comprising the anode
WO2019107747A1 (en) * 2017-11-28 2019-06-06 주식회사 엘지화학 Positive electrode for lithium secondary battery and manufacturing method therefor
WO2019107752A1 (en) * 2017-11-30 2019-06-06 주식회사 엘지화학 Sulfur-carbon composite, method for manufacturing same and lithium secondary battery comprising same
KR102229459B1 (en) 2018-02-06 2021-03-18 주식회사 엘지화학 Cathode additives for lithium secondary battery and method for preparing the same
KR20190095115A (en) * 2018-02-06 2019-08-14 주식회사 엘지화학 Cathode additives for lithium secondary battery and method for preparing the same
US11349113B2 (en) 2018-04-10 2022-05-31 Lg Energy Solution, Ltd. Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
US12027700B2 (en) 2019-02-13 2024-07-02 Lg Energy Solution, Ltd. Positive electrode comprising goethite for lithium secondary battery and lithium secondary battery comprising same
JP2022076956A (en) * 2020-11-10 2022-05-20 株式会社亀山鉄工所 Lithium ion secondary battery and negative electrode material of them
WO2024128562A1 (en) * 2022-12-16 2024-06-20 포스코홀딩스 주식회사 All-solid-state battery cathode active material, preparation method therefor, and all-solid-state battery comprising same

Similar Documents

Publication Publication Date Title
JP2008176981A (en) Electrode for all solid lithium secondary battery and all solid lithium secondary battery
JP5341116B2 (en) Core-shell type negative electrode active material for lithium secondary battery, method for producing the same, negative electrode for lithium secondary battery including the same, and lithium secondary battery
US9647262B2 (en) Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
CN108306000A (en) Porous cellulose matrix for lithium ion cell electrode
JPH117942A (en) Total solid lithium battery
KR20180001518A (en) Composition for lithium secondary battery anode, manufacturing method of lithium secondary battery anode using the same, lithium secondary battery anode and lithium secondary battery made therefrom
EP3767709A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
US11322733B2 (en) Negative electrode material and negative electrode composite slurry for lithium ion battery
KR20150135434A (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
US20200035973A1 (en) Secondary battery and method for manufacturing the same
JP3456354B2 (en) Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode
JP4430778B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2000067918A (en) Lithium secondary battery
JP6709991B2 (en) Lithium ion secondary battery
TW201902008A (en) Electrode material, electrode, electrolyte and lithium ion second battery
KR102630117B1 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102438492B1 (en) Electrode structure and secondary battery including the same
CN202564478U (en) Carbon microballoon for lithium ion battery cathode
JP4147994B2 (en) Method for producing negative electrode for lithium secondary battery
CN106784643B (en) Lithium ion secondary battery
US10319987B2 (en) Active material with expansion structure for use in lithium ion batteries
KR101587882B1 (en) NbO Method for Preparing of Carbon-Coated NbO as Negative Electrode Material for Lithium-ion Secondary Battery
KR20180107008A (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
CN116705987B (en) Negative plate, electrochemical device and preparation method of electrochemical device
JP2010251256A (en) All solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322