JP2010067504A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2010067504A
JP2010067504A JP2008233577A JP2008233577A JP2010067504A JP 2010067504 A JP2010067504 A JP 2010067504A JP 2008233577 A JP2008233577 A JP 2008233577A JP 2008233577 A JP2008233577 A JP 2008233577A JP 2010067504 A JP2010067504 A JP 2010067504A
Authority
JP
Japan
Prior art keywords
active material
battery
electrode active
material layer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008233577A
Other languages
Japanese (ja)
Other versions
JP5288346B2 (en
Inventor
Kenji Takahashi
賢司 高橋
Masahiro Tatsumisago
昌弘 辰巳砂
Akitoshi Hayashi
晃敏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Toyota Motor Corp
Osaka Prefecture University
Original Assignee
Osaka University NUC
Toyota Motor Corp
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Toyota Motor Corp, Osaka Prefecture University filed Critical Osaka University NUC
Priority to JP2008233577A priority Critical patent/JP5288346B2/en
Publication of JP2010067504A publication Critical patent/JP2010067504A/en
Application granted granted Critical
Publication of JP5288346B2 publication Critical patent/JP5288346B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high power and high capacity solid battery usable under high temperature. <P>SOLUTION: The battery includes a positive electrode active material layer 23 containing a positive electrode active material expressed in a chemical formula: Cu<SB>X</SB>Mo<SB>6</SB>S<SB>8-Y</SB>(0≤X≤4, 0≤Y≤0.2), a solid electrolyte layer 22 containing solid electrolyte expressed in a chemical formula: Li<SB>2</SB>S-P<SB>2</SB>S<SB>5</SB>in contact with the cathode active material layer, and a negative electrode active material layer 24 containing lithium and in contact with the solid electrolyte layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電池に関し、より特定的には二次電池に関するものである。   The present invention relates to a battery, and more particularly to a secondary battery.

従来、電池は、たとえば非特許文献1、非特許文献2および非特許文献3に開示されている。
Y. Takeda et al., Mat. Res. Bull., 20(1985)71. R. Kanno et al., Electrochem. Solid-State Lett., 7(2004)A455. A. Sakuda ed al., Electrochem. Solid-State Lett., 11(2008)A1.
Conventionally, the battery is disclosed by the nonpatent literature 1, the nonpatent literature 2, and the nonpatent literature 3, for example.
Y. Takeda et al., Mat. Res. Bull., 20 (1985) 71. R. Kanno et al., Electrochem. Solid-State Lett., 7 (2004) A455. A. Sakuda ed al., Electrochem. Solid-State Lett., 11 (2008) A1.

従来、固体電池では低電流密度でしか電池を作動させることができないという問題があり、高出力化が困難であるという問題があった。   Conventionally, a solid battery has a problem that the battery can be operated only at a low current density, and there is a problem that it is difficult to increase the output.

そこで、この発明は上述のような問題点を解決するためになされたものであり、高出力化が可能な固体電解質を有する電池を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and an object thereof is to provide a battery having a solid electrolyte capable of increasing output.

この発明に従った電池は、化学式CuXMo68-Y(0≦X≦4、0≦Y≦0.2)で表わされる正極活物質を含む正極活物質層と、化学式Li2S−P25で表わされる固体電解質を含む、正極活物質層と接触する固体電解質層と、リチウムを含む、固体電解質層と接触する負極活物質層とを備える。 A battery according to the present invention includes a positive electrode active material layer including a positive electrode active material represented by the chemical formula Cu x Mo 6 S 8-Y (0 ≦ X ≦ 4, 0 ≦ Y ≦ 0.2), and a chemical formula Li 2 S. -P comprising a solid electrolyte represented by 2 S 5, comprising a solid electrolyte layer in contact with the positive electrode active material layer comprises lithium and an anode active material layer which is in contact with the solid electrolyte layer.

このように構成された電池では、上記構成を採用することにより、高出力化が可能となる。   In the battery configured as described above, high output can be achieved by adopting the above configuration.

好ましくは、温度100℃以上で使用される。
好ましくは、電流密度が15mA/cm2以下での電池の容量は、電流密度が15mA/cm2超での電池の容量よりも大きい。
Preferably, it is used at a temperature of 100 ° C. or higher.
Preferably, the capacity of the battery with a current density of 15 mA / cm 2 or less is larger than the capacity of the battery with a current density of more than 15 mA / cm 2 .

以下、この発明の実施の形態について、図面を参照して説明する。図1は、この発明の実施の形態に従った電池の製造方法を説明するためのを示す図である。図1を参照して、この発明に従った電池1は、1対の金型27,28の間に配置された正極活物質層23と、固体電解質層22と、負極活物質層24とを備える。製造段階においては、正極活物質層23、固体電解質層22および負極活物質層24は型枠21で挟まれている。4対のシャフト31,32が押圧板11,12を拘束して押圧し、この圧力が金型27,28に加えられることで正極活物質層23,負極活物質層24および固体電解質層22が成形される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a battery manufacturing method according to an embodiment of the present invention. Referring to FIG. 1, a battery 1 according to the present invention includes a positive electrode active material layer 23, a solid electrolyte layer 22, and a negative electrode active material layer 24 disposed between a pair of molds 27 and 28. Prepare. In the manufacturing stage, the positive electrode active material layer 23, the solid electrolyte layer 22 and the negative electrode active material layer 24 are sandwiched between the molds 21. Four pairs of shafts 31 and 32 restrain and press the pressing plates 11 and 12, and this pressure is applied to the molds 27 and 28, whereby the positive electrode active material layer 23, the negative electrode active material layer 24, and the solid electrolyte layer 22 are formed. Molded.

正極活物質層23はCu2Mo6と、Li2S−P25(Li2SとP25の混合物)のガラスセラミックスと、導電助剤としてのアセチレンブラックを混合して得られる。 The positive electrode active material layer 23 is obtained by mixing Cu 2 Mo 6 , glass ceramics of Li 2 S—P 2 S 5 (mixture of Li 2 S and P 2 S 5 ), and acetylene black as a conductive additive. .

固体電解質層22は、Li2S−P25のガラスセラミックスである。負極活物質層24は、リチウム−インジウム合金により形成される。 The solid electrolyte layer 22 is a glass ceramic of Li 2 S—P 2 S 5 . The negative electrode active material layer 24 is formed of a lithium-indium alloy.

図2は、図1で示すこの発明に従った電池の正極活物質層を製造する方法を示す流れ図である。図2を参照して、出発材料として、Cu2Mo68と、Li2S−P25ガラスセラミックスと、アセチレンブラックとを準備する。これらの材料の割合、すなわち、Cu2Mo68と、Li2S−P25ガラスセラミックスと、アセチレンブラックとの重量比は、20:30:3とする。Cu2Mo68の粒径は約5μmであり、導電率は約1Scm1とする。 FIG. 2 is a flowchart showing a method of manufacturing the positive electrode active material layer of the battery according to the present invention shown in FIG. Referring to FIG. 2, Cu 2 Mo 6 S 8 , Li 2 S—P 2 S 5 glass ceramics, and acetylene black are prepared as starting materials. The ratio of these materials, that is, the weight ratio of Cu 2 Mo 6 S 8 , Li 2 S—P 2 S 5 glass ceramics, and acetylene black is 20: 30: 3. The particle size of Cu 2 Mo 6 S 8 is about 5 μm, and the conductivity is about 1 Scm 1 .

図3および図4は、上記の方法で製造された、この発明に従った固体電池の容量とセル電圧との関係を示すグラフである。図3は定電流充放電曲線を示している。充放電条件は室温で電流密度は1.28mAcm2とした。なお、負極活物質層、固体電解質層、正極活物質層の材料は、それぞれLi−In、80mol%Li2S−20mol%P25ガラスセラミックス、Cu2Mo68とした。図3で、1サイクル目(1st)と、100サイクル目(100th)の充放電特性を示している。図4は、サイクル数と放電容量との関係を示している。図3および図4で示すように、1.28mAcm-2の電流密度下で作動し、充放電効率もほぼ100%を示した。また、100サイクル後でも110mAhg-1の容量が得られ、比較的良好なサイクル特性を示したことがわかる。 3 and 4 are graphs showing the relationship between the capacity and the cell voltage of the solid state battery manufactured by the above method according to the present invention. FIG. 3 shows a constant current charge / discharge curve. The charge / discharge conditions were room temperature and the current density was 1.28 mAcm 2 . The materials of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer were Li-In, 80 mol% Li 2 S-20 mol% P 2 S 5 glass ceramics, and Cu 2 Mo 6 S 8 , respectively. FIG. 3 shows the charge / discharge characteristics of the first cycle (1st) and the 100th cycle (100th). FIG. 4 shows the relationship between the number of cycles and the discharge capacity. As shown in FIG. 3 and FIG. 4, it operated under a current density of 1.28 mAcm −2 , and the charge / discharge efficiency was almost 100%. It can also be seen that a capacity of 110 mAhg −1 was obtained even after 100 cycles, indicating relatively good cycle characteristics.

また、図5は、充放電前、1回目の放電、1回目の充電および100回目の充電後における正極活物質層の結晶構造をXRD(X線回折)で分析した結果を示す図である。また、図6は、図5におけるX線回折の角度(2θ)が11度から16度の部分を拡大して示す図である。図5および図6で示すように、この発明に従った正極活物質層では、100サイクル後においても充放電前のXRDパターンと殆ど同じことが示されている。これは比較的良好なサイクル特性を示している。すなわち、充電後の正極活物質層の結晶構造はCu2Mo67.8であり、放電後の結晶構造はLi4+XCu2-YMo67.8であり、この充電後の構造と放電後の構造が可逆的に変化していることがわかる。 FIG. 5 is a diagram showing the results of XRD (X-ray diffraction) analysis of the crystal structure of the positive electrode active material layer before charge / discharge, after the first discharge, after the first charge, and after the 100th charge. FIG. 6 is an enlarged view of a portion where the X-ray diffraction angle (2θ) in FIG. 5 is 11 degrees to 16 degrees. As shown in FIGS. 5 and 6, the positive electrode active material layer according to the present invention shows almost the same as the XRD pattern before charge / discharge even after 100 cycles. This indicates relatively good cycle characteristics. That is, the crystal structure of the positive electrode active material layer after charging is Cu 2 Mo 6 S 7.8 , and the crystal structure after discharging is Li 4 + X Cu 2 -Y Mo 6 S 7.8. It can be seen that the later structure is reversibly changed.

また、図7は、この発明の実施の形態に従った電池における室温での充放電前と第1回目の放電後とにおけるインピーダンス特性を示すグラフである。図7では、負極活物質層、固体電解質層および正極活物質層が、それぞれLi−In、80mol%Li2S−20mol%P25ガラスセラミックス、Cu2Mo68である例を示している。第1回放電時において、新たな円弧が生じていない。その結果抵抗の変化が殆どなく、良好な電極−電解質界面が保たれていることがわかる。 FIG. 7 is a graph showing impedance characteristics before and after charging and discharging at room temperature in the battery according to the embodiment of the present invention. FIG. 7 shows an example in which the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are Li-In, 80 mol% Li 2 S-20 mol% P 2 S 5 glass ceramics, and Cu 2 Mo 6 S 8 , respectively. ing. During the first discharge, no new arc is generated. As a result, it can be seen that there is almost no change in resistance and a good electrode-electrolyte interface is maintained.

図8は、この発明の実施の形態に従った電池における温度160℃での定電流充放電曲線を示すグラフである。図8で用いた電池は負極活物質層、固体電解質層および正極活物質層が、それぞれLi−In、70mol%Li2S−30mol%P25ガラスセラミックス、Cu2Mo68である例を示している。温度160℃で12.8mAcm-2の極めて高い電流密度下で充放電を行なった。その結果、10サイクル目でも270mAhg-1の大きい可逆容量を示した。これにより高性能な全固体リチウム二次電池を構築することができたことがわかる。 FIG. 8 is a graph showing a constant current charge / discharge curve at a temperature of 160 ° C. in the battery according to the embodiment of the present invention. In the battery used in FIG. 8, the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are respectively Li-In, 70 mol% Li 2 S-30 mol% P 2 S 5 glass ceramics, and Cu 2 Mo 6 S 8 . An example is shown. Charging / discharging was performed at a temperature of 160 ° C. under an extremely high current density of 12.8 mAcm −2 . As a result, a large reversible capacity of 270 mAhg −1 was exhibited even at the 10th cycle. This shows that a high-performance all-solid lithium secondary battery could be constructed.

図9は、この発明に従った電池の詳細構造を説明するための断面図である。図9を参照して、この発明に従った電池1では、集電体25,26の間に正極活物質層23、負極活物質層24および固体電解質層22が位置している。正極活物質層23は、活物質233と、硫化物系の固体電解質231と、導電助剤232とからなる。硫化物系の固体電解質層22はLi2S−P25系であり、セパレータの役割も兼ねている。負極活物質層24は、In−Li合金である。 FIG. 9 is a cross-sectional view for explaining the detailed structure of the battery according to the present invention. Referring to FIG. 9, in battery 1 according to the present invention, positive electrode active material layer 23, negative electrode active material layer 24, and solid electrolyte layer 22 are positioned between current collectors 25 and 26. The positive electrode active material layer 23 includes an active material 233, a sulfide-based solid electrolyte 231, and a conductive additive 232. The sulfide-based solid electrolyte layer 22 is a Li 2 S—P 2 S 5 system and also serves as a separator. The negative electrode active material layer 24 is an In—Li alloy.

図9で示すように、硫化物系固体電解質(Li2S−P25系)と銅シュブレル(Cu2Mo68)活物質を組合せ、温度100℃で作動させることにより、30mA/cm2以上の極めて高い電流密度下で固体電池の作動を可能にし、高出力化を実現している。通常、液体電池では電解液の分解が生じるため、100℃以上の高温域での使用が困難であり、この特徴は本発明に従った固体電池ならではの特徴である。また、今回の結果は、液系電池と同様の高電流密度下でも固体電池が使用可能であることを示している。 As shown in FIG. 9, by combining a sulfide-based solid electrolyte (Li 2 S—P 2 S 5 system) and a copper subrel (Cu 2 Mo 6 S 8 ) active material and operating at a temperature of 100 ° C., 30 mA / The solid battery can be operated under a very high current density of cm 2 or more, and high output is realized. Usually, in a liquid battery, the electrolytic solution is decomposed, so that it is difficult to use in a high temperature range of 100 ° C. or higher. This characteristic is unique to the solid battery according to the present invention. In addition, this result indicates that the solid battery can be used even under the same high current density as the liquid battery.

図10は、この発明に従った固体電池における10サイクル毎に電流密度を変化させたときの充放電測定結果(作動温度100℃)を示す図である。図11は、この発明に従った固体電池における充放電のサイクル数と、放電容量および効率との関係を示すグラフである。図10および図11で示すように、高温下の作動が安定していることがわかる。   FIG. 10 is a diagram showing a charge / discharge measurement result (operating temperature 100 ° C.) when the current density is changed every 10 cycles in the solid state battery according to the present invention. FIG. 11 is a graph showing the relationship between the number of charge / discharge cycles, the discharge capacity, and the efficiency in the solid state battery according to the present invention. As shown in FIGS. 10 and 11, it can be seen that the operation at high temperature is stable.

図12は、この発明に従った電池の温度をさまざまに変えて10サイクルの充放電を行なった後の10サイクル目の充放電曲線を示すグラフである。図12において、50℃、80℃、100℃、120℃は10サイクル目(それぞれ個別のセルで評価)、140℃、150℃、160℃は120℃で10サイクル測定後にそれぞれ昇温して測定した。すなわち、温度140℃では20サイクル目、150℃では30サイクル目、160℃では40サイクル目に測定した。電流密度は12.8mAcm-2とした。これにより、高温高サイクルの使用が可能であることがわかる。 FIG. 12 is a graph showing a charge / discharge curve at the 10th cycle after 10 cycles of charge / discharge at various battery temperatures according to the present invention. In FIG. 12, 50 ° C., 80 ° C., 100 ° C., and 120 ° C. are measured at the 10th cycle (each evaluated by individual cells), and 140 ° C., 150 ° C., and 160 ° C. are measured at 120 ° C. after measuring 10 cycles. did. That is, the measurement was performed at the 20th cycle at a temperature of 140 ° C, at the 30th cycle at 150 ° C, and at the 40th cycle at 160 ° C. The current density was 12.8 mAcm −2 . Thereby, it turns out that use of a high temperature high cycle is possible.

さらに本発明に従った電池を有する電池パックを車両へ搭載することを想定した場合、電池パックは以下の理由から車室外に置かれることが望ましい。   Furthermore, when it is assumed that a battery pack having a battery according to the present invention is mounted on a vehicle, the battery pack is desirably placed outside the vehicle compartment for the following reasons.

(1) 電池パックに異常が生じた場合、電池パックが車室外に置かれていることが好ましい。   (1) When an abnormality occurs in the battery pack, the battery pack is preferably placed outside the passenger compartment.

(2) 車室内のスペースが広がる。
しかしながら、車外に電池パックを置く場合、たとえばエンジンコンパートメントなどの高温雰囲気に搭載することを考えると高温で容量を劣化せずに作動することが前提となる。
(2) More space in the passenger compartment.
However, when the battery pack is placed outside the vehicle, it is assumed that the battery pack operates in a high temperature without degrading the capacity, considering that it is mounted in a high temperature atmosphere such as an engine compartment.

本発明は、上述のように電池が温度100〜160の温度域で作動し、さらにこの温度範囲では殆ど容量劣化することがなく良好なサイクル特性を示す)12.8mA/cm2の高電流密度下で充放電が繰返し可能である。 In the present invention, as described above, the battery operates in the temperature range of 100 to 160, and in this temperature range, there is almost no capacity deterioration and shows good cycle characteristics.) High current density of 12.8 mA / cm 2 The charge and discharge can be repeated under.

図13は、温度120℃における50サイクルまでの本発明に従った充放電曲線を示すグラフである。図14は、温度160℃における50サイクルまでの本発明に従った電池における充放電曲線を示すグラフである。図13および図14を参照して、高温下で高サイクル下においても本発明に従った電池は好ましい特性を示していることがわかる。したがって本発明に従った電池から作製した電池パックは、車室外の高温雰囲気下(たとえばエンジンコンパートメント)で使用しても長寿命である。通常の液系電池を使用する場合、電解液の分解が起こるため、高温雰囲気下に置くことは難しい。   FIG. 13 is a graph showing a charge / discharge curve according to the present invention up to 50 cycles at a temperature of 120 ° C. FIG. 14 is a graph showing a charge / discharge curve in a battery according to the present invention up to 50 cycles at a temperature of 160 ° C. Referring to FIGS. 13 and 14, it can be seen that the battery according to the present invention exhibits favorable characteristics even under high temperature and high cycle. Therefore, a battery pack made from the battery according to the present invention has a long life even when used in a high temperature atmosphere outside the passenger compartment (for example, engine compartment). When using an ordinary liquid battery, it is difficult to place in a high-temperature atmosphere because the electrolytic solution decomposes.

またエネルギ蓄電デバイス(電池やキャパシタ)は用途に応じて、高容量型と高出力型のものとが使い分けられる。また、高容量・高出力のいずれもが必要である場合には、2種類以上のエネルギ蓄電デバイスが必要とされるケースもある。この場合ハイブリッド電源になる。   In addition, energy storage devices (batteries and capacitors) are selectively used as high-capacity type and high-power type depending on the application. Moreover, when both high capacity and high output are required, two or more types of energy storage devices may be required. In this case, it becomes a hybrid power source.

しかしながら、2種類以上のデバイスを使用する場合には、コストがかかる。デバイスを搭載するために必要なスペースが大きくなるといった問題がある。   However, using two or more types of devices is expensive. There is a problem that a space required for mounting the device becomes large.

本発明に従った電池は作動温度にもよるが、電流密度約15mA/cm2以下では高容量型の電池として、それ以上の電流密度下では高出力型の電池として作動させることができる。 The battery according to the present invention can be operated as a high-capacity battery at a current density of about 15 mA / cm 2 or less, and as a high-power battery at a current density higher than that, depending on the operating temperature.

図15は、本発明に従った電池における電流密度と単位面積当りの放電容量を温度100℃、120℃および160℃のそれぞれで示すグラフである。図15で示すように、本発明に従った電池では、高容量型および高出力型をそれぞれの温度において使い分けることができる。そのため車両搭載を想定した場合、複数個の電池パックを搭載することなく、要求に応じて1つの電池パックで高容量および高出力を切換えることができる。高容量および高出力型のいずれとしても使用が可能なため、多種多様な用途で使用することができる。   FIG. 15 is a graph showing the current density and discharge capacity per unit area at a temperature of 100 ° C., 120 ° C. and 160 ° C. in the battery according to the present invention. As shown in FIG. 15, in the battery according to the present invention, the high-capacity type and the high-power type can be selectively used at each temperature. Therefore, when mounting on a vehicle is assumed, it is possible to switch between high capacity and high output with a single battery pack as required without mounting a plurality of battery packs. Since it can be used as either a high capacity or high output type, it can be used in a wide variety of applications.

硫化物系固体電池(たとえばLi2S−P25系固体電解質)を用いた全固体電池においては、通常の液系電池で使用されるLiCoO2などを電極活物質として使用すると、最初の充電反応時に電解質と活物質が反応して界面に抵抗層が形成される。そのため内部抵抗が増加し、出力低下を招く。この抵抗層の生成を防ぐために、活物質表面を他の材料でコーティングする方法が提案される。 In an all solid state battery using a sulfide type solid battery (for example, Li 2 S—P 2 S 5 type solid electrolyte), when LiCoO 2 or the like used in an ordinary liquid battery is used as an electrode active material, During the charging reaction, the electrolyte and the active material react to form a resistance layer at the interface. As a result, the internal resistance increases and the output decreases. In order to prevent the formation of the resistance layer, a method of coating the active material surface with another material is proposed.

しかしながら、本発明では、活物質として銅シュブレルを使用することで、表面コートなしでも抵抗層の生成を抑制することが可能となる。その結果、上述のような抵抗層の生成を低減するためのコーティングプロセスが不要となる。電池作製時の製造プロセスの単純化および必要材料(コスト)の低減に繋がる。   However, in this invention, it becomes possible to suppress the production | generation of a resistance layer even if there is no surface coat by using a copper sugar as an active material. As a result, a coating process for reducing the generation of the resistance layer as described above is not necessary. This leads to simplification of the manufacturing process at the time of manufacturing the battery and reduction of necessary materials (cost).

図16は、負極活物質層、固体電解質層および正極活物質層としてLi−In、Li2S−P25系固体電解質、Cu2Mo68を用いたサンプルにおける充放電前と第1回の放電後でのインピーダンスプロットを示すグラフである。図16で示すように、初期充電前後でインピーダンスプロットに変化が見られない。その結果、抵抗層の形成がされていないことがわかる。 FIG. 16 shows the results before and after charge and discharge in a sample using Li—In, Li 2 S—P 2 S 5 based solid electrolyte, and Cu 2 Mo 6 S 8 as the negative electrode active material layer, solid electrolyte layer, and positive electrode active material layer. It is a graph which shows the impedance plot after one discharge. As shown in FIG. 16, there is no change in the impedance plot before and after the initial charging. As a result, it can be seen that the resistance layer is not formed.

図17は、負極活物質層、固体電解質層および正極活物質層としてIn、Li2S−P25系固体電解質、LiCoO2を用いたサンプルにおけるインピーダンスプロットを示すグラフである。図17で示すように、初期充電後インピーダンスプロットに抵抗層の形成を示唆する半円が観測されている。その結果、電極と電解質界面との間の反応があることがわかる。 FIG. 17 is a graph showing impedance plots in a sample using In, Li 2 S—P 2 S 5 -based solid electrolyte, and LiCoO 2 as the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer. As shown in FIG. 17, a semicircle suggesting the formation of a resistance layer is observed in the impedance plot after initial charging. As a result, it can be seen that there is a reaction between the electrode and the electrolyte interface.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の実施の形態に従った電池の製造方法を説明するためのを示す図である。It is a figure for demonstrating the manufacturing method of the battery according to embodiment of this invention. 図1で示すこの発明に従った電池の正極活物質層を製造する方法を示す流れ図である。It is a flowchart which shows the method of manufacturing the positive electrode active material layer of the battery according to this invention shown in FIG. 上記の方法で製造された、この発明に従った固体電池の容量とセル電圧との関係を示すグラフである。It is a graph which shows the relationship between the capacity | capacitance of the solid battery according to this invention manufactured by said method, and cell voltage. 上記の方法で製造された、この発明に従った固体電池の容量とセル電圧との関係を示すグラフである。It is a graph which shows the relationship between the capacity | capacitance of the solid battery according to this invention manufactured by said method, and cell voltage. 本発明の実施の形態に従った電池における充放電前、1回目の放電、1回目の充電および100回目の充電後における正極活物質層の結晶構造をXRD(X線回折)で分析した結果を示す図である。The results of analyzing the crystal structure of the positive electrode active material layer by XRD (X-ray diffraction) before charge / discharge in the battery according to the embodiment of the present invention, after the first discharge, the first charge, and after the 100th charge. FIG. 図5におけるX線回折の角度(2θ)が11度から16度の部分を拡大して示す図である。FIG. 6 is an enlarged view showing a portion where the angle (2θ) of X-ray diffraction in FIG. 5 is 11 degrees to 16 degrees. この発明の実施の形態に従った電池における室温での充放電前と第1回目の放電後とにおけるインピーダンス特性を示すグラフである。It is a graph which shows the impedance characteristic in the battery according to embodiment of this invention before the charge / discharge at room temperature and after the 1st discharge. この発明の実施の形態に従った電池における温度160℃での定電流充放電曲線を示すグラフである。It is a graph which shows the constant current charging / discharging curve in the temperature of 160 degreeC in the battery according to embodiment of this invention. この発明に従った電池の詳細構造を説明するための断面図である。It is sectional drawing for demonstrating the detailed structure of the battery according to this invention. この発明に従った固体電池における10サイクル毎に電流密度を変化させたときの充放電測定結果(作動温度100℃)を示す図である。It is a figure which shows the charging / discharging measurement result (operating temperature of 100 degreeC) when changing a current density for every 10 cycles in the solid battery according to this invention. この発明に従った固体電池における充放電のサイクル数と、放電容量および効率との関係を示すグラフである。It is a graph which shows the relationship between the cycle number of charging / discharging in the solid battery according to this invention, discharge capacity, and efficiency. この発明に従った電池の温度をさまざまに変えて10サイクルの充放電を行なった後の10サイクル目の充放電曲線を示すグラフである。It is a graph which shows the charging / discharging curve of the 10th cycle after changing the temperature of the battery according to this invention variously and performing 10 cycles of charging / discharging. 温度120℃における50サイクルまでの本発明に従った充放電曲線を示すグラフである。It is a graph which shows the charging / discharging curve according to this invention to 50 cycles in temperature 120 degreeC. 温度160℃における50サイクルまでの本発明に従った電池における充放電曲線を示すグラフである。It is a graph which shows the charging / discharging curve in the battery according to this invention to 50 cycles at the temperature of 160 degreeC. 本発明に従った電池における電流密度と単位面積当りの放電容量を温度100℃、120℃および160℃のそれぞれで示すグラフである。4 is a graph showing current density and discharge capacity per unit area at a temperature of 100 ° C., 120 ° C., and 160 ° C. in a battery according to the present invention. 負極活物質層、固体電解質層および正極活物質層としてLi−In、Li2S−P25系固体電解質、Cu2Mo68を用いたサンプルにおける充放電前と第1回の放電後でのインピーダンスプロットを示すグラフである。Before charging and discharging in a sample using Li—In, Li 2 S—P 2 S 5 solid electrolyte, and Cu 2 Mo 6 S 8 as a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer It is a graph which shows an impedance plot after. 負極活物質層、固体電解質層および正極活物質層としてIn、Li2S−P25系固体電解質、LiCoO2を用いたサンプルにおけるインピーダンスプロットを示すグラフである。Negative electrode active material layer, solid electrolyte layer and the positive electrode active material layer as In, Li 2 S-P 2 S 5 based solid electrolyte is a graph showing the impedance plots in samples using LiCoO 2.

符号の説明Explanation of symbols

1 電池、11,12 押圧板、21 型枠、22 固体電解質層、23 正極活物質層、24 負極活物質層、25,26 集電体、27,28 金型、31,32 シャフト、231 固体電解質、232 導電助剤、233 活物質。   DESCRIPTION OF SYMBOLS 1 Battery, 11, 12 Press plate, 21 Mold, 22 Solid electrolyte layer, 23 Positive electrode active material layer, 24 Negative electrode active material layer, 25, 26 Current collector, 27, 28 Mold, 31, 32 Shaft, 231 Solid Electrolyte, 232 conductive aid, 233 active material.

Claims (3)

化学式CuXMo68-Y(0≦X≦4、0≦Y≦0.2)で表わされる正極活物質を含む正極活物質層と、
化学式Li2S−P25で表わされる固体電解質を含む、前記正極活物質層と、接触する固体電解質層と、
前記リチウムを含む、前記固体電解質層と接触する負極活物質層とを備えた、電池。
A positive electrode active material layer including a positive electrode active material represented by the chemical formula Cu X Mo 6 S 8-Y (0 ≦ X ≦ 4, 0 ≦ Y ≦ 0.2);
The positive electrode active material layer comprising a solid electrolyte represented by the chemical formula Li 2 S—P 2 S 5 , a solid electrolyte layer in contact therewith,
A battery comprising a negative electrode active material layer in contact with the solid electrolyte layer containing lithium.
温度100℃以上で使用される、請求項1に記載の電池。   The battery according to claim 1, which is used at a temperature of 100 ° C or higher. 電流密度が15mA/cm2以下での電池の容量は、電流密度が15mA/cm2超での電池の容量よりも大きい、請求項1に記載の電池。 The battery according to claim 1, wherein the capacity of the battery at a current density of 15 mA / cm 2 or less is larger than the capacity of the battery at a current density of more than 15 mA / cm 2 .
JP2008233577A 2008-09-11 2008-09-11 battery Expired - Fee Related JP5288346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233577A JP5288346B2 (en) 2008-09-11 2008-09-11 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233577A JP5288346B2 (en) 2008-09-11 2008-09-11 battery

Publications (2)

Publication Number Publication Date
JP2010067504A true JP2010067504A (en) 2010-03-25
JP5288346B2 JP5288346B2 (en) 2013-09-11

Family

ID=42192909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233577A Expired - Fee Related JP5288346B2 (en) 2008-09-11 2008-09-11 battery

Country Status (1)

Country Link
JP (1) JP5288346B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076180A (en) * 2013-10-07 2015-04-20 古河機械金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
CN112803077A (en) * 2021-02-04 2021-05-14 凌飞 Copper-based carbon source solid battery core, battery and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203482A (en) * 1995-01-25 1996-08-09 Matsushita Electric Ind Co Ltd Whole solid lithium battery
JPH11176236A (en) * 1997-12-09 1999-07-02 Toyota Motor Corp Lithium ion conducting solid electrolyte and battery
JP2003060090A (en) * 2001-08-10 2003-02-28 Matsushita Electric Ind Co Ltd Nonvolatile semiconductor memory, driving method and manufacturing method therefor
JP2004071303A (en) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd All solid battery device, its manufacturing method, and evaluation method for all solid battery
JP2005005024A (en) * 2003-06-10 2005-01-06 Nbc Inc Woven fabric for solid electrolyte carrier and solid electrolyte sheet for lithium battery
JP2005353309A (en) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium cell element
JP2008176981A (en) * 2007-01-17 2008-07-31 Toyota Motor Corp Electrode for all solid lithium secondary battery and all solid lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203482A (en) * 1995-01-25 1996-08-09 Matsushita Electric Ind Co Ltd Whole solid lithium battery
JPH11176236A (en) * 1997-12-09 1999-07-02 Toyota Motor Corp Lithium ion conducting solid electrolyte and battery
JP2003060090A (en) * 2001-08-10 2003-02-28 Matsushita Electric Ind Co Ltd Nonvolatile semiconductor memory, driving method and manufacturing method therefor
JP2004071303A (en) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd All solid battery device, its manufacturing method, and evaluation method for all solid battery
JP2005005024A (en) * 2003-06-10 2005-01-06 Nbc Inc Woven fabric for solid electrolyte carrier and solid electrolyte sheet for lithium battery
JP2005353309A (en) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium cell element
JP2008176981A (en) * 2007-01-17 2008-07-31 Toyota Motor Corp Electrode for all solid lithium secondary battery and all solid lithium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013004555; 町田信也,黒田菜未,木下俊二,重松利彦: '"触媒としてCu4Mo6S8を用いた全固体硫黄-リチウム電池の試作"' 粉体粉末冶金協会講演概要集 平成16年度春季大会 , 2004, p.46 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076180A (en) * 2013-10-07 2015-04-20 古河機械金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
CN112803077A (en) * 2021-02-04 2021-05-14 凌飞 Copper-based carbon source solid battery core, battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP5288346B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
CN107845830B (en) Solid electrolyte, lithium battery, battery pack, and vehicle
Tan et al. Solid-state li-ion batteries using fast, stable, glassy nanocomposite electrolytes for good safety and long cycle-life
JP2023011777A (en) Ion-conducting battery containing solid electrolyte material
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP5078120B2 (en) All solid battery
CN103069639B (en) Layered solid-state battery
JP5072110B2 (en) Positive electrode material used for lithium battery
KR20180091847A (en) Solid-state Li-S battery and method of manufacturing the same
Lu et al. Rational design and demonstration of a high-performance flexible Zn/V2O5 battery with thin-film electrodes and para-polybenzimidazole electrolyte membrane
CN103053061A (en) Layered solid-state battery
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
JP7269571B2 (en) Method for manufacturing all-solid-state battery
CN111864181A (en) Pre-lithiated silicon negative electrode and preparation method and application thereof
US20210257656A1 (en) Lithium phosphate coating for lithium lanthanum zirconium oxide solid-state electrolyte powders
JP2013020915A (en) Solid-state battery
JP2020126771A (en) Negative electrode layer and all-solid battery
JP7295265B2 (en) SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND DEVICE INCLUDING SAME SECONDARY BATTERY
JP2016058335A (en) All-solid battery, manufacturing method thereof, and method for recovering capacity
JP2014049198A (en) Sintered body for battery, all solid state lithium battery, and method for producing sintered body for battery
CN108539151B (en) Electrode material for secondary battery and secondary battery
JP5288346B2 (en) battery
KR20090074429A (en) Lithium secondaty battery comprising electrode composition for high voltage and high coulomb efficiency
WO2015159331A1 (en) Solid-state battery, electrode for solid-state battery, and production processes therefor
KR20110078307A (en) Metal based zn negative active material and lithium secondary battery comprising thereof
JP2013026187A (en) Negative electrode material for power storage device, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5288346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees