JP2008176655A - Inspection method for gas alarm and gas alarm - Google Patents

Inspection method for gas alarm and gas alarm Download PDF

Info

Publication number
JP2008176655A
JP2008176655A JP2007010732A JP2007010732A JP2008176655A JP 2008176655 A JP2008176655 A JP 2008176655A JP 2007010732 A JP2007010732 A JP 2007010732A JP 2007010732 A JP2007010732 A JP 2007010732A JP 2008176655 A JP2008176655 A JP 2008176655A
Authority
JP
Japan
Prior art keywords
gas
inspection
concentration
carbon monoxide
alarm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010732A
Other languages
Japanese (ja)
Other versions
JP4917444B2 (en
Inventor
Hiromasa Takashima
裕正 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2007010732A priority Critical patent/JP4917444B2/en
Publication of JP2008176655A publication Critical patent/JP2008176655A/en
Application granted granted Critical
Publication of JP4917444B2 publication Critical patent/JP4917444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Alarm Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the inspection method of a gas alarm having an alarm function for gas leak and incomplete combustion, and the gas alarm implementing the checking method. <P>SOLUTION: This gas alarm is provided with: an inspection carbon monoxide gas concentration output detection means 11A for detecting the output of a sensing element 3a according to the concentration of carbon monoxide gas in the inspection gas containing hydrogen gas and carbon monoxide gas in place of methane gas in a low temperature heating period in an inspection mode; an inspection carbon monoxide gas concentration decision means 11B; an incomplete combustion alarm output means 11C for outputting an incomplete combustion alarm signal for inspection; an inspection hydrogen gas concentration output detection means 11D for detecting the output of the sensing element according to the concentration of the hydrogen gas in the inspection gas only when it is decided that the concentration of the carbon monoxide gas has reached the inspection carbon monoxide gas concentration level by the inspection monoxide gas concentration decision means 11B; an inspection hydrogen gas concentration deciding means 11E; and a gas leak alarm output means 11F for outputting a gas leak alarm signal for inspection. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガス漏れ警報機能及び不完全燃焼警報機能を併せ持つガス警報器の点検方法とこの点検方法を実施するガス警報器に関する。   The present invention relates to an inspection method for a gas alarm device having both a gas leak alarm function and an incomplete combustion alarm function, and a gas alarm device that implements the inspection method.

従来からガス警報器において用いられていたガスセンサは、専らアルコール類に反応するものが主流であり、センサが正常に作動しているかどうかを点検する際には、簡易的にエタノールをセンサに吹きかけて警報動作が起こるかどうかを確認していた。   Gas sensors that have been used in conventional gas alarms are mainly those that react with alcohols. When checking whether the sensor is operating normally, ethanol is simply sprayed onto the sensor. It was confirmed whether the alarm action occurred.

しかし、アルコール類に反応するセンサを用いたガス警報器では、調理時に使う酒類やワイン等の飲用アルコール類に反応して警報を誤って出力するケースが散見されたため、アルコール類に反応するものでなく濃度の監視対象となるガスを選択的に検出するセンサを用いるように、傾向がシフトしてきた。   However, in gas alarms using sensors that react to alcohols, there are some cases in which alarms are erroneously output in response to drinking alcohols such as alcohol and wine used during cooking. The tendency has shifted to use a sensor that selectively detects a gas whose concentration is to be monitored.

その結果、近年では、ガス警報器用ガスセンサとして、一般的に、アルコール類に対して不感化させた半導体式ガスセンサが用いられている。都市ガス用ガス警報器の場合、都市ガスの主成分であるメタン(CH4 )の濃度を検出してガス漏れ警報を行うのが一般的であり、最近では、燃焼器の不完全燃焼時に発生する一酸化炭素(CO)の濃度を検出する不完全燃焼警報機能を併せ持ったガス警報器が主流となっている。 As a result, in recent years, semiconductor gas sensors that are desensitized to alcohols are generally used as gas sensors for gas alarm devices. In the case of gas alarms for city gas, it is common to detect the concentration of methane (CH 4 ), which is the main component of city gas, and issue a gas leak alarm. Gas alarm devices having an incomplete combustion alarm function for detecting the concentration of carbon monoxide (CO) are becoming mainstream.

このようなガス警報器用のガスセンサとしては、メタン(CH4 )及び一酸化炭素(CO)の各ガスの濃度を同時に検出する、図6に示すような構造の半導体式ガスセンサ3が用いられる。半導体式ガスセンサ3は、酸化錫(SnO2 )等の金属酸化物を主体に形成され、ガスが存在した場合に抵抗変化を示す感知素子3aと、白金(Pt)等の金属抵抗体で形成されたコイル等からなり、感知素子3aを加熱するヒータ3bと、ヒータ3bからセンサ外部に導出されたヒータ電極3b1及び3b2と、感知素子3aの抵抗変化をヒータ電極との間で検出するためのセンサ電極3cとを有する。 As such a gas sensor for a gas alarm device, a semiconductor gas sensor 3 having a structure as shown in FIG. 6 is used, which simultaneously detects the concentrations of methane (CH 4 ) and carbon monoxide (CO) gases. The semiconductor gas sensor 3 is formed mainly of a metal oxide such as tin oxide (SnO 2 ), and is formed of a sensing element 3a that exhibits a resistance change when a gas is present, and a metal resistor such as platinum (Pt). A heater 3b for heating the sensing element 3a, heater electrodes 3b1 and 3b2 led out of the sensor from the heater 3b, and a sensor for detecting a resistance change of the sensing element 3a with the heater electrode. And an electrode 3c.

このような半導体式ガスセンサ3では、ガス検出時のヒータ3bによる感知素子3aの加熱温度とセンサ抵抗との関係が、図7に示すような特性を持っている。図7では、それぞれ、100ppmの一酸化炭素(CO)を含む空気(AIR)、3000ppmのメタン(CH4 )を含む空気および3000ppmの水素(H2 )を含む空気の各雰囲気中における、感知素子3aの加熱温度対センサ抵抗特性が示されている。このような特性を利用することにより、高温側ではメタンガスの濃度を、低温側では一酸化炭素ガスの濃度を、選択的に検出することが可能である。 In such a semiconductor gas sensor 3, the relationship between the heating temperature of the sensing element 3a by the heater 3b and the sensor resistance at the time of gas detection has a characteristic as shown in FIG. In FIG. 7, the sensing elements in each atmosphere of air containing 100 ppm carbon monoxide (CO) (AIR), air containing 3000 ppm methane (CH 4 ), and air containing 3000 ppm hydrogen (H 2 ), respectively. The heating temperature versus sensor resistance characteristic of 3a is shown. By utilizing such characteristics, it is possible to selectively detect the concentration of methane gas on the high temperature side and the concentration of carbon monoxide gas on the low temperature side.

このように、半導体式ガスセンサ3を用いてメタンガスの濃度を検出する場合は、ヒータ3bにより感知素子3aを約400℃に加温し、一酸化炭素ガスの濃度を検出する場合は、感知素子3aを約100℃の温度に加温しており、それぞれの温度に感知素子3aの温度を安定させるために、ヒータ電圧の高電圧期間や低電圧期間に大体5秒から10秒の時間を要している(例えば、特許文献1参照。)。
特開平10−283583号公報
Thus, when the concentration of methane gas is detected using the semiconductor gas sensor 3, the sensing element 3a is heated to about 400 ° C. by the heater 3b, and when the concentration of carbon monoxide gas is detected, the sensing element 3a In order to stabilize the temperature of the sensing element 3a at each temperature, approximately 5 to 10 seconds are required for the high voltage period and the low voltage period of the heater voltage. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 10-283583

一方、本出願人は過去に、図7に示すような水素を含む空気の雰囲気中における感知素子3aの加熱温度対センサ抵抗特性を利用して、メタン(CH4 )の検出温度域である高温側と一酸化炭素(CO)の検出温度域である低温側との中間温度域で水素(H2 )を選択的に検出することを、特願2005−247247において提案している。 On the other hand, the present applicant has previously used a high temperature which is a detection temperature range of methane (CH 4 ) using the heating temperature versus sensor resistance characteristics of the sensing element 3a in an atmosphere of hydrogen-containing air as shown in FIG. Japanese Patent Application No. 2005-247247 proposes to selectively detect hydrogen (H 2 ) in an intermediate temperature range between the side and the low temperature side, which is the detection temperature range of carbon monoxide (CO).

即ち、図8に示すように、半導体式ガスセンサ3のヒータ電圧とガス検出ポイントのタイミングチャートにおいて、ヒータ3bを400℃に加温する高電圧(HI)から低電圧(LO)にヒータ電圧が切り替わる直前のA部(メタンガス検出ポイント)と、ヒータ3bを100℃に加温する低電圧から高電圧にヒータ電圧が切り替わる直前のB部(一酸化炭素ガス検出ポイント)との間の、ヒータ3bを400℃に加温する高電圧から100℃に加温する低電圧にヒータ電圧が変化するC部(温度変化領域)を用いて、水素ガスの濃度を検出している。言い換えると、高温加熱期間から低温加熱期間への移行により感知素子3aの加熱温度が低下する過渡期間中の、感知素子3aが、点検用ガス中の水素ガスに対して高感度となる温度に加熱される感知素子3aの過渡温度加熱期間における検出ポイント(C部)で、水素ガスの濃度を検出している。   That is, as shown in FIG. 8, in the heater voltage and gas detection point timing chart of the semiconductor gas sensor 3, the heater voltage is switched from a high voltage (HI) for heating the heater 3b to 400 ° C. to a low voltage (LO). The heater 3b between the A part (methane gas detection point) immediately before and the B part (carbon monoxide gas detection point) immediately before the heater voltage is switched from a low voltage that heats the heater 3b to 100 ° C to a high voltage. The concentration of the hydrogen gas is detected by using a portion C (temperature change region) in which the heater voltage changes from a high voltage heated to 400 ° C. to a low voltage heated to 100 ° C. In other words, the sensing element 3a is heated to a temperature at which the sensing element 3a becomes highly sensitive to the hydrogen gas in the inspection gas during the transition period in which the heating temperature of the sensing element 3a is lowered due to the transition from the high temperature heating period to the low temperature heating period. The concentration of hydrogen gas is detected at a detection point (C portion) during the transient temperature heating period of the sensing element 3a.

上述のようなガス漏れ及び不完全燃焼警報機能を併せ持つ半導体式ガスセンサ3を用いたガス警報器の動作を点検する場合、ガス漏れ警報機能の点検には、ガス燃焼機器、たとえばガスコンロ等を燃焼させて、その炎の根本部分のガス吹き出し口にセラミックス等の耐熱性材料を吸い口に用いたスポイト等を押し当てて、都市ガスである12Aや13Aを採取して点検用ガスとし、不完全燃焼警報機能の点検には、ガスコンロの炎の内炎部より一酸化炭素を含むガスを採取して点検用ガスとしていた。また、不完全燃焼検知機能の点検に関しては、簡易的にライターの炎の内炎部より一酸化炭素ガスを採取して点検用ガスとすることも行われていた。   When checking the operation of the gas alarm using the semiconductor gas sensor 3 having both the above-described gas leak and incomplete combustion alarm function, the gas leak alarm function is inspected by burning a gas combustion device such as a gas stove. Then, press a dropper using a heat-resistant material such as ceramics into the gas outlet at the base of the flame to collect 12A and 13A, which are city gases, and use them as inspection gas for incomplete combustion. For inspection of the alarm function, gas containing carbon monoxide was collected from the inner flame part of the flame of the gas stove and used as inspection gas. In addition, regarding the inspection of the incomplete combustion detection function, carbon monoxide gas is simply collected from the inner flame portion of the lighter flame and used as an inspection gas.

しかしながら、上述の点検方法は、ガス漏れ警報機能点検用のガスと不完全燃焼警報機能点検用のガスを別々に採取するという作業をしなければならず、点検作業が面倒であった。   However, the above-described inspection method requires the work of collecting the gas for checking the gas leak alarm function and the gas for checking the incomplete combustion alarm function separately, and the inspection work is troublesome.

そこで、本発明の目的は、ガス漏れ警報機能及び不完全燃焼警報機能を併せ持つガス警報器における点検作業を簡単に行うことができかつ点検モード中に水素等の雑ガスで誤動作しないガス警報器の点検方法とこの点検方法を実施するガス警報器を提供することにある。   Accordingly, an object of the present invention is to provide a gas alarm device that can easily perform inspection work in a gas alarm device having both a gas leakage alarm function and an incomplete combustion alarm function and that does not malfunction due to miscellaneous gases such as hydrogen during the inspection mode. The object is to provide an inspection method and a gas alarm for carrying out this inspection method.

上記目的を達成するためになされた請求項1記載の発明のガス警報器の点検方法は、感知素子3aをヒータ3bにより高低2段階に交互加熱し、前記感知素子3aの高温加熱期間にメタンガス濃度に応じた前記感知素子3aの出力を検出し、検出した前記メタンガス濃度がガス漏れ警報濃度レベルに達した時に、ガス漏れ警報信号を出力するガス漏れ警報機能と、前記感知素子3aの低温加熱期間に一酸化炭素ガスの濃度に応じた前記感知素子3aの出力を検出し、検出した前記一酸化炭素ガス濃度が不完全燃焼警報濃度レベルに達した時に、不完全燃焼警報信号を出力する不完全燃焼警報機能を有するガス警報器の点検方法であって、ライターの炎中等から採取した、前記メタンガスの代用となる水素ガスと一酸化炭素ガスとを含む点検用ガスを前記感知素子3aに吹きかけて、前記点検用ガス中の前記一酸化炭素ガスの濃度検出に基づいて前記不完全燃焼警報機能の点検を行うと共に、検出した前記点検用ガス中の一酸化炭素ガス濃度が点検用一酸化炭素ガス警報濃度レベルに達した場合のみ、前記高温加熱期間から低温加熱期間への移行により前記感知素子3aの加熱温度が低下する過渡期間中の、前記点検用ガス中の前記水素ガスに対して高感度となる温度に加熱される前記感知素子3aの過渡温度加熱期間に、前記水素ガスの濃度検出に基づいて前記ガス漏れ警報機能を点検することを特徴とする。   In order to achieve the above object, the gas alarm inspection method according to the first aspect of the present invention is such that the sensing element 3a is alternately heated by the heater 3b in two steps, high and low, and the methane gas concentration during the high temperature heating period of the sensing element 3a. A gas leak alarm function for detecting a gas leak alarm signal when the detected methane gas concentration reaches a gas leak alarm concentration level, and a low temperature heating period of the sensor element 3a. Incompletely outputting an incomplete combustion alarm signal when the output of the sensing element 3a corresponding to the concentration of carbon monoxide gas is detected and the detected carbon monoxide gas concentration reaches the incomplete combustion alarm concentration level. A method for inspecting a gas alarm having a combustion alarm function, which includes hydrogen gas and carbon monoxide gas, which are substituted for the methane gas, taken from a lighter flame, etc. Is sprayed on the sensing element 3a to check the incomplete combustion alarm function based on the detection of the concentration of the carbon monoxide gas in the inspection gas and to detect the carbon monoxide in the detected inspection gas. Only when the gas concentration reaches the inspection carbon monoxide gas alarm concentration level, in the inspection gas during the transition period in which the heating temperature of the sensing element 3a decreases due to the transition from the high temperature heating period to the low temperature heating period. In the transient temperature heating period of the sensing element 3a heated to a temperature that is highly sensitive to the hydrogen gas, the gas leak alarm function is checked based on the detection of the hydrogen gas concentration.

上記目的を達成するためになされた請求項2記載の発明のガス警報器は、図1(A)に基本構成図で示すように、感知素子3aをヒータ3bにより高低2段階に交互加熱し、前記感知素子3aの高温加熱期間にメタンガス濃度に応じた前記感知素子3aの出力を検出し、検出した前記メタンガス濃度がガス漏れ警報濃度レベルに達した時に、ガス漏れ警報信号を出力するガス漏れ警報機能と、前記感知素子3aの低温加熱期間に一酸化炭素ガスの濃度に応じた前記感知素子3aの出力を検出し、検出した前記一酸化炭素ガス濃度が不完全燃焼警報濃度レベルに達した時に、不完全燃焼警報信号を出力する不完全燃焼警報機能を有するガス警報器であって、点検モード時に、前記低温加熱期間に、前記メタンガスの代用となる水素ガスと一酸化炭素ガスとを含む点検用ガス中の前記一酸化炭素ガスの濃度に応じた前記感知素子3aの出力を検出する点検用一酸化炭素ガス濃度出力検出手段11Aと、前記点検用一酸化炭素ガス濃度出力検出手段11Aが検出した前記一酸化炭素ガス濃度が、点検用一酸化炭素ガス濃度レベルに達した否かを判定する点検用一酸化炭素ガス濃度判定手段11Bと、前記一酸化炭素ガス濃度が前記点検用一酸化炭素ガス濃度レベルに達したと前記点検用一酸化炭素ガス濃度判定手段11Bが判定した際に、点検用不完全燃焼警報信号を出力させる不完全燃焼警報出力手段11Cと、前記一酸化炭素ガス濃度が前記点検用一酸化炭素ガス濃度レベルに達したと前記点検用一酸化炭素ガス濃度判定手段11Bが判定した場合のみ、前記高温加熱期間から低温加熱期間への移行により前記感知素子3aの加熱温度が低下する過渡期間中の、該感知素子3aが、前記点検用ガス中の前記水素ガスに対して高感度となる温度に加熱される前記感知素子3aの過渡温度加熱期間に、前記水素ガスの濃度に応じた前記感知素子の出力を検出する点検用水素ガス濃度出力検出手段11Dと、前記点検用水素ガス濃度出力検出手段11Dが検出した前記水素ガス濃度が、点検用水素ガス濃度に達した否かを判定する点検用水素ガス濃度判定手段11Eと、前記点検用水素ガス濃度が、前記点検用水素ガス濃度に達したと前記点検用水素ガス濃度判定手段11Eが判定した際に、前記点検用ガス漏れ警報信号を出力させるガス漏れ警報出力手段11Fと、を備えることを特徴とする。   In order to achieve the above object, the gas alarm device according to claim 2, as shown in a basic configuration diagram in FIG. 1A, alternately heats the sensing element 3 a in two steps by a heater 3 b, A gas leak alarm that detects the output of the sensing element 3a according to the methane gas concentration during the high temperature heating period of the sensing element 3a and outputs a gas leak alarm signal when the detected methane gas concentration reaches the gas leak alarm concentration level. When the function and the output of the sensing element 3a corresponding to the concentration of carbon monoxide gas are detected during the low temperature heating period of the sensing element 3a, and the detected carbon monoxide gas concentration reaches the incomplete combustion alarm concentration level A gas alarm device having an incomplete combustion alarm function for outputting an incomplete combustion alarm signal, and in the inspection mode, during the low temperature heating period, hydrogen gas and monoxide which substitutes for the methane gas Inspection carbon monoxide gas concentration output detecting means 11A for detecting the output of the sensing element 3a in accordance with the concentration of the carbon monoxide gas in the inspection gas containing the raw gas, and the inspection carbon monoxide gas concentration An inspection carbon monoxide gas concentration determination means 11B for determining whether or not the carbon monoxide gas concentration detected by the output detection means 11A has reached the inspection carbon monoxide gas concentration level, and the carbon monoxide gas concentration An incomplete combustion alarm output means 11C for outputting an incomplete combustion alarm signal for inspection when the carbon monoxide gas concentration determination means 11B determines that the inspection carbon monoxide gas concentration level has been reached; Only when the inspection carbon monoxide gas concentration determination means 11B determines that the carbon monoxide gas concentration has reached the inspection carbon monoxide gas concentration level, the low temperature heating is started from the high temperature heating period. The sensing element in which the sensing element 3a is heated to a temperature that is highly sensitive to the hydrogen gas in the inspection gas during a transition period in which the heating temperature of the sensing element 3a decreases due to transition to a period. The inspection hydrogen gas concentration output detection means 11D for detecting the output of the sensing element according to the concentration of the hydrogen gas during the transient temperature heating period 3a, and the hydrogen detected by the inspection hydrogen gas concentration output detection means 11D Inspection hydrogen gas concentration determination means 11E for determining whether or not the gas concentration has reached the inspection hydrogen gas concentration, and the inspection hydrogen gas when the inspection hydrogen gas concentration has reached the inspection hydrogen gas concentration And a gas leak alarm output unit 11F for outputting the inspection gas leak alarm signal when the concentration determination unit 11E makes a determination.

また、請求項3記載の発明は、図1(B)に基本構成図で示すように、感知素子3aをヒータ3bにより高低2段階に交互加熱し、前記感知素子3aの高温加熱期間にメタンガス濃度に応じた前記感知素子3aの出力を検出し、検出した前記メタンガス濃度がガス漏れ警報濃度レベルに達した時に、ガス漏れ警報信号を出力するガス漏れ警報機能と、前記感知素子3aの低温加熱期間に一酸化炭素ガスの濃度に応じた前記感知素子3aの出力を検出し、検出した前記一酸化炭素ガス濃度が不完全燃焼警報濃度レベルにおける低濃度判定点に達した時および高濃度判定点に達した時に、不完全燃焼警報信号を出力する不完全燃焼警報機能を有するガス警報器であって、点検モード時に、前記低温加熱期間に、前記メタンガスの代用となる水素ガスと一酸化炭素ガスとを含む点検用ガス中の前記一酸化炭素ガスの濃度に応じた前記感知素子3aの出力を検出する点検用一酸化炭素ガス濃度出力検出手段11Aと、前記点検用一酸化炭素ガス濃度出力検出手段11Aが検出した前記一酸化炭素ガス濃度が、点検用一酸化炭素ガス濃度レベルに達した否かを判定する点検用一酸化炭素ガス濃度判定手段11Bと、前記一酸化炭素ガス濃度が前記点検用一酸化炭素ガス濃度レベルにおける高濃度判定点に達したと前記点検用一酸化炭素ガス濃度判定手段11Bが判定した際に、点検用不完全燃焼警報信号を出力させる不完全燃焼警報出力手段11Cと、前記一酸化炭素ガス濃度が前記点検用一酸化炭素ガス濃度レベルにおける高濃度判定点に達したと前記点検用一酸化炭素ガス濃度判定手段11Bが判定した場合のみ、前記高温加熱期間から低温加熱期間への移行により前記感知素子3aの加熱温度が低下する過渡期間中の、該感知素子3aが、前記点検用ガス中の前記水素ガスに対して高感度となる温度に加熱される前記感知素子3aの過渡温度加熱期間に、前記水素ガスの濃度に応じた前記感知素子の出力を検出する点検用水素ガス濃度出力検出手段11Dと、前記点検用水素ガス濃度出力検出手段11Dが検出した前記水素ガス濃度が、点検用水素ガス濃度に達した否かを判定する点検用水素ガス濃度判定手段11Eと、前記点検用水素ガス濃度が、前記点検用水素ガス濃度に達したと前記点検用水素ガス濃度判定手段11Eが判定した際に、前記ガス漏れ警報信号を出力させるガス漏れ警報出力手段11Fと、を備えることを特徴とする。   Further, according to the third aspect of the present invention, as shown in the basic configuration diagram of FIG. 1B, the sensing element 3a is alternately heated by the heater 3b in two steps of high and low, and the methane gas concentration is increased during the high temperature heating period of the sensing element 3a. A gas leak alarm function for detecting a gas leak alarm signal when the detected methane gas concentration reaches a gas leak alarm concentration level, and a low temperature heating period of the sensor element 3a. And detecting the output of the sensing element 3a according to the concentration of carbon monoxide gas, and when the detected carbon monoxide gas concentration reaches a low concentration determination point at the incomplete combustion alarm concentration level and at a high concentration determination point. A gas alarm having an incomplete combustion alarm function that outputs an incomplete combustion alarm signal when the fuel gas reaches a hydrogen gas gas, which serves as a substitute for the methane gas during the low temperature heating period in the inspection mode. And carbon monoxide gas concentration output detecting means 11A for detecting the output of the sensing element 3a in accordance with the concentration of the carbon monoxide gas in the inspection gas containing the gas and the carbon monoxide gas, and the inspection monoxide Check carbon monoxide gas concentration determination means 11B for determining whether or not the carbon monoxide gas concentration detected by the carbon gas concentration output detection means 11A has reached the check carbon monoxide gas concentration level, and the carbon monoxide. When the inspection carbon monoxide gas concentration determination means 11B determines that the gas concentration has reached a high concentration determination point at the inspection carbon monoxide gas concentration level, an incomplete combustion alarm signal for inspection is output. Combustion warning output means 11C, and when the carbon monoxide gas concentration reaches a high concentration determination point at the inspection carbon monoxide gas concentration level, the inspection carbon monoxide gas concentration determination means 1 Only when B is determined, the sensing element 3a is in the hydrogen gas in the inspection gas during the transition period in which the heating temperature of the sensing element 3a is lowered due to the transition from the high temperature heating period to the low temperature heating period. The inspection hydrogen gas concentration output detection means 11D for detecting the output of the sensing element according to the concentration of the hydrogen gas during the transient temperature heating period of the sensing element 3a heated to a temperature at which the sensitivity becomes high, Inspection hydrogen gas concentration determination means 11E for determining whether or not the hydrogen gas concentration detected by the inspection hydrogen gas concentration output detection means 11D has reached the inspection hydrogen gas concentration, and the inspection hydrogen gas concentration Gas leak alarm output means 11F for outputting the gas leak alarm signal when the inspection hydrogen gas concentration determination means 11E determines that the inspection hydrogen gas concentration has been reached. Features.

また、請求項4記載の発明は、請求項2または3に記載のガス警報器において、前記点検用一酸化炭素ガス濃度が前記高濃度判定点に達したと前記点検用一酸化炭素ガス濃度判定手段11Bが連続して複数回判定した場合または感知素子3aの高温加熱期間に検出されたメタンガス濃度がガス漏れ警報濃度レベルに達した場合、前記点検用水素ガス濃度出力検出手段11Dの検出動作および点検用水素ガス濃度判定手段11Eの判定動作を行わないことを特徴とする。   According to a fourth aspect of the present invention, in the gas alarm device according to the second or third aspect, the inspection carbon monoxide gas concentration determination is made when the inspection carbon monoxide gas concentration reaches the high concentration determination point. When the means 11B continuously determines a plurality of times or when the methane gas concentration detected during the high temperature heating period of the sensing element 3a reaches the gas leak alarm concentration level, the detection hydrogen gas concentration output detection means 11D The determination hydrogen gas concentration determination means 11E is not determined.

また、請求項5記載の発明は、請求項2から4のいずれか1項に記載のガス警報器において、点検モード時に前記不完全燃焼警報出力手段および前記ガス漏れ警報出力手段から出力される警報信号は、通常モード時と形態の異なる警報信号であることを特徴とする。   According to a fifth aspect of the present invention, in the gas alarm device according to any one of the second to fourth aspects, an alarm is output from the incomplete combustion alarm output means and the gas leak alarm output means in the inspection mode. The signal is an alarm signal having a different form from that in the normal mode.

請求項1および2に記載の発明によれば、1回の点検用ガスの採取で点検作業を行うことができ、従来より簡単になると共に、水素等による雑ガスに対しても誤動作等の心配が無くなる。   According to the first and second aspects of the invention, the inspection work can be performed by collecting the inspection gas once, which is simpler than the conventional one, and is also concerned about malfunction due to miscellaneous gas such as hydrogen. Disappears.

請求項3に記載の発明によれば、点検用ガスで発生する高濃度のCOを検出しない限り、H2 側での判定を行うことをしないため、さらに誤作動のおそれが無くなる。なお、点検用のCO+H2 ガスを吹きかけてもCO警報またはCH4 警報が正常に確認できなければ、ガス警報器が異常状態であることが分かり、ガスセンサの交換等の適切な処置をとることができる。 According to the third aspect of the present invention, the determination on the H 2 side is not performed unless high-concentration CO generated in the inspection gas is detected. If the CO alarm or CH 4 alarm cannot be confirmed normally even when CO + H 2 gas for inspection is blown, it is known that the gas alarm is in an abnormal state and appropriate measures such as replacement of the gas sensor can be taken. it can.

請求項4に記載の発明によれば、点検作業中に高濃度以上のCOが継続して検出された場合や高濃度のCH4 が検出された場合は、通常モード時と同様なCO警報やCH4 警報を発生させるので、安全である。 According to the fourth aspect of the present invention, when a high-concentration CO or higher is continuously detected during inspection work or when a high-concentration CH 4 is detected, a CO alarm similar to that in the normal mode or Since CH 4 alarm is generated, it is safe.

請求項5に記載の発明によれば、点検モード時の警報と通常モード時の警報を識別することができる。また、点検作業中に高濃度以上のCOが継続して検出された場合や高濃度のCH4 が検出された場合は、点検警報とは形態の異なる本警報を発生させるので、点検作業中でも本警報を確認することができ、安全である。 According to the fifth aspect of the invention, it is possible to distinguish between an alarm in the inspection mode and an alarm in the normal mode. In addition, if high-concentration or higher CO is continuously detected during inspection work, or if high-concentration CH 4 is detected, this alarm is generated in a different form from the inspection alarm. The alarm can be confirmed and it is safe.

以下、本発明のガス警報器の実施形態を、図面を参照して説明する。   Hereinafter, embodiments of the gas alarm device of the present invention will be described with reference to the drawings.

(第1の実施形態)図2は、本発明のガス警報器の点検方法を実施する点検手段を備えたガス警報器の第1の実施形態の正面図である。本実施形態のガス警報器1は、ガス及び火災監視を行うガス漏れ警報機能及び不完全燃焼警報機能を有する複合型のガス警報器であり、その前面1aに、雰囲気取込孔1cを有する検知部1bと、火災センサによる火災検出時に赤色点灯する火災警報インジケータ1dと、電源オン時に緑色点灯する電源インジケータ1eと、一酸化炭素ガスの濃度が警報濃度レベルに達した時に黄色点滅または点灯する不完全燃焼ガスインジケータ1fと、メタンガスの濃度が警報濃度レベルに達した時に赤色点滅または点灯するガス漏れインジケータ1gと、音声出力用のスピーカ1hとを備えており、また前面1aには、火災センサとして機能するサーミスタ5(図3参照)の感熱部5aが配置されている。   (First Embodiment) FIG. 2 is a front view of a first embodiment of a gas alarm device provided with inspection means for carrying out the gas alarm device inspection method of the present invention. The gas alarm device 1 of the present embodiment is a composite gas alarm device having a gas leak alarm function and an incomplete combustion alarm function for performing gas and fire monitoring, and a detection having an atmosphere intake hole 1c on the front surface 1a. 1b, a fire alarm indicator 1d that lights red when a fire is detected by the fire sensor, a power indicator 1e that lights green when the power is turned on, and a yellow flashing or lighting when the concentration of carbon monoxide gas reaches the alarm concentration level It includes a complete combustion gas indicator 1f, a gas leak indicator 1g that flashes or lights red when the concentration of methane gas reaches the alarm concentration level, and a speaker 1h for audio output. A heat sensitive part 5a of the functioning thermistor 5 (see FIG. 3) is arranged.

前記検知部1bには、図3にガス警報器1の電気的な概略構成のブロック図で示すように、図6の構成による半導体式ガスセンサ3が収容されている。これら半導体式ガスセンサ3及びサーミスタ5は、火災警報インジケータ1d、電源インジケータ1e、不完全燃焼ガスインジケータ1f、ガス漏れインジケータ1g、及び、スピーカ1hや、このスピーカ1hから出力する音声メッセージが複数格納された音声IC7と共に、これらの動作を制御するマイクロコンピュータ(以下、「マイコン」と略記する。)11のCPU11aに接続されている。   As shown in the block diagram of the electrical schematic configuration of the gas alarm device 1 in FIG. 3, the detection unit 1b accommodates the semiconductor gas sensor 3 having the configuration of FIG. The semiconductor gas sensor 3 and thermistor 5 store a plurality of fire alarm indicators 1d, power supply indicators 1e, incomplete combustion gas indicators 1f, gas leakage indicators 1g, speakers 1h, and voice messages output from the speakers 1h. Along with the audio IC 7, it is connected to a CPU 11 a of a microcomputer (hereinafter abbreviated as “microcomputer”) 11 that controls these operations.

前記マイコン11は、CPU11aの他にRAM11b及びROM11cを有しており、これらRAM11b及びROM11cもCPU11aに接続されている。   The microcomputer 11 has a RAM 11b and a ROM 11c in addition to the CPU 11a, and these RAM 11b and ROM 11c are also connected to the CPU 11a.

前記RAM11bは、各種データ記憶用のデータエリア及び各種処理作業に用いるワークエリアを有しており、ROM11cには、CPU11aに各種処理動作を行わせるための制御プログラムが格納されている。   The RAM 11b has a data area for storing various data and a work area used for various processing operations, and a control program for causing the CPU 11a to perform various processing operations is stored in the ROM 11c.

そして、マイコン11のCPU11aは、ガス警報器1の電源コード(図示せず)がコンセントに接続されて電源が供給され始めると、電源インジケータ1eを緑色で低速点滅させ、その後、予め定められた待機時間(例えば1分)が経過すると電源インジケータ1eを緑色点灯させ、予め定められた点検時間(例えば20分)の間点検モードとなり、点検時間の経過後通常モードに入り、ROM11cに格納されたガス及び火災の監視に関する制御プログラムに従って、ガス及び火災監視モードの処理を実行する。   When the power cord (not shown) of the gas alarm device 1 is connected to the outlet and power is supplied, the CPU 11a of the microcomputer 11 causes the power indicator 1e to blink slowly in green, and then waits for a predetermined time. When the time (for example, 1 minute) elapses, the power indicator 1e is lit in green, the inspection mode is set for a predetermined inspection time (for example, 20 minutes), the normal mode is entered after the inspection time has elapsed, and the gas stored in the ROM 11c. And the process of gas and fire monitoring mode is executed according to the control program related to fire monitoring.

このガス及び火災監視モードの処理において、マイコン11のCPU11aは、ヒータ3bに対する図8のタイミングチャートのような高電圧(HI)と低電圧(LO)との交互通電により高低2段階に交互加熱されている感知素子3aの、図8中のメタンガス(CH4 )検出ポイント(A部)における抵抗値に応じた半導体式ガスセンサ3の出力が、予め定められたガス漏れ警報濃度レベルに達しているか否かを確認する。 In the gas and fire monitoring mode processing, the CPU 11a of the microcomputer 11 is alternately heated in two steps, high and low, by alternately energizing the high voltage (HI) and low voltage (LO) as shown in the timing chart of FIG. Whether the output of the semiconductor gas sensor 3 corresponding to the resistance value of the sensing element 3a at the methane gas (CH 4 ) detection point (A part) in FIG. 8 has reached a predetermined gas leak alarm concentration level. To check.

すなわち、CH4 検出ポイント(A部)で検出された半導体式ガスセンサ3の感知素子3aのCH4 抵抗値がガス漏れ警報濃度レベルにおけるCH4 低濃度判定点に達すると(つまり、検出されたCH4 濃度がCH4 低濃度警報判定点に達すると)、ガス漏れインジケータ1gを赤色点滅させる。また、CH4 低濃度判定点を超えて、CH4 低濃度判定点より低く設定されたCH4 高濃度判定点までに達すると(つまり、検出されたCH4 濃度がCH4 高濃度警報判定点に達すると)、ガス漏れインジケータ1gを赤色点滅から赤色点灯へ変えると共に、「ピッピッピッ、ガスが漏れていませんか。」等の音声メッセージを音声IC7から読み出してスピーカ1hにより鳴動(音声出力)させる。 That is, when the CH 4 resistance value of the sensing element 3a of the semiconductor gas sensor 3 detected at the CH 4 detection point (A part) reaches the CH 4 low concentration determination point at the gas leak alarm concentration level (that is, the detected CH When 4 concentration reaches the CH 4 low concentration alarm judgment point), the gas leak indicator 1g blinks red. Moreover, beyond the CH 4 low concentration determination points, CH 4 low concentrations set lower than the determination points have been CH 4 and reached to a high concentration determination point (i.e., is detected CH 4 concentration CH 4 high concentration alarm decision point When the gas leak indicator 1g is changed from blinking red to lit red, a voice message such as “Is gas leaking?” Is read from the voice IC 7 and sounded (voice output) by the speaker 1h. .

同様に、マイコン11のCPU11aは、図8中のB部(一酸化炭素ガス検出ポイント)における感知素子3aの抵抗値に応じた半導体式ガスセンサ3の出力が、不完全燃焼警報濃度レベルに達しているか否かを確認する。   Similarly, the CPU 11a of the microcomputer 11 determines that the output of the semiconductor gas sensor 3 corresponding to the resistance value of the sensing element 3a at part B (carbon monoxide gas detection point) in FIG. Check if it exists.

すなわち、CO検出ポイント(B部)で検出された半導体式ガスセンサ3の感知素子3aのCO抵抗値が不完全燃焼警報濃度レベルにおけるCO低濃度判定点に達すると(つまり、検出されたCO濃度がCO低濃度警報判定点に達すると)、不完全燃焼ガスインジケータ1fを黄色点滅させる。また、CO低濃度判定点を超えて、CO低濃度判定点より低く設定されたCO高濃度判定点までに達すると(つまり、検出されたCO濃度がCO高濃度警報判定点に達すると)、不完全燃焼ガスインジケータ1fを黄色点滅から黄色点灯へ変えると共に、「ピッポッピッポッ、空気が汚れて危険です。窓を開けて換気をして下さい。」等の音声メッセージを音声IC7から読み出してスピーカ1hにより鳴動(音声出力)させる。   That is, when the CO resistance value of the sensing element 3a of the semiconductor gas sensor 3 detected at the CO detection point (B part) reaches the CO low concentration determination point at the incomplete combustion alarm concentration level (that is, the detected CO concentration is When the CO low concentration alarm judgment point is reached), the incomplete combustion gas indicator 1f blinks yellow. When the CO low concentration determination point is reached and reaches a CO high concentration determination point set lower than the CO low concentration determination point (that is, when the detected CO concentration reaches the CO high concentration alarm determination point), In addition to changing the incomplete combustion gas indicator 1f from blinking yellow to lit in yellow, read out a voice message from the voice IC 7 such as “Pippippipop, air is dirty and dangerous. Sound (sound output).

さらに、マイコン11のCPU11aは、サーミスタ5が検知した温度が予め定められた火災警報レベルに達すると、火災警報インジケータ1dを赤色点灯させると共に、「ピーピー、火災警報器が作動しました。確認して下さい。」等の音声メッセージを音声IC7から読み出してスピーカ1hにより鳴動(音声出力)させる。   Further, when the temperature detected by the thermistor 5 reaches a predetermined fire alarm level, the CPU 11a of the microcomputer 11 turns on the fire alarm indicator 1d in red and “Peep, fire alarm activated. Please read a voice message such as “Please read” from the voice IC 7 and sound (sound output) through the speaker 1h.

上述のように、ガス警報器は、ガス及び火災監視モード時の動作を行うが、点検モード時には、メタンガスの代用となる水素ガスと一酸化炭素ガスとを含む点検用ガスを感知素子3aに吹きかけてガス漏れ警報機能と不完全燃焼警報機能の動作の点検を行うことを特徴としている。   As described above, the gas alarm device operates in the gas and fire monitoring mode, but in the inspection mode, the inspection gas containing hydrogen gas and carbon monoxide gas, which substitutes for methane gas, is sprayed on the sensing element 3a. It is characterized by checking the operation of the gas leak alarm function and the incomplete combustion alarm function.

すなわち、不完全燃焼排ガス中、たとえば上述したライターの炎の内炎部中より採取されるガスには一酸化炭素(CO)と水素(H2 )が含まれており、また、水素(H2 )と都市ガスの主成分であるメタン(CH4 )との検知ポイント及びセンサ抵抗変化特性には相関性があるため、たとえば、ライターの炎の内炎部等から一酸化炭素(CO)と水素(H2 )が含まれたガスを1回の採取作業で点検用ガスとしてスポイト等で採取し、採取した点検用ガスを半導体式ガスセンサ3の感知素子3aに吹きかけて、点検用ガス中のCOで不完全燃焼警報機能の点検を行うと共に、点検用ガス中の水素H2 をメタンに代用してガス漏れ警報機能の点検を行う。 That is, the gas collected from the incomplete combustion exhaust gas, for example, from the inner flame portion of the lighter flame described above, contains carbon monoxide (CO) and hydrogen (H 2 ), and hydrogen (H 2 ) And methane (CH 4 ), which is the main component of city gas, have a correlation between the detection point and the sensor resistance change characteristics. For example, carbon monoxide (CO) and hydrogen from the inner flame part of a lighter flame A gas containing (H 2 ) is sampled as an inspection gas by a single sampling operation with a dropper or the like, and the collected inspection gas is sprayed on the sensing element 3a of the semiconductor gas sensor 3 to detect CO in the inspection gas. In addition to inspecting the incomplete combustion alarm function, hydrogen H 2 in the inspection gas is substituted for methane and the gas leak alarm function is inspected.

次に、ROM11cに格納された制御プログラムに従いCPU11aが行う点検モード時の処理を、図4のフローチャートを参照して説明する。   Next, processing in the inspection mode performed by the CPU 11a according to the control program stored in the ROM 11c will be described with reference to the flowchart of FIG.

ガス警報器1への電源投入(ステップS1)により、マイコン11が起動しプログラムがスタートすると、半導体式ガスセンサ3のヒータ3bに対する図8のタイミングチャートのような高電圧と低電圧との交互通電を開始する。   When the microcomputer 11 is activated and the program is started by turning on the power to the gas alarm device 1 (step S1), the heater 3b of the semiconductor gas sensor 3 is alternately energized with a high voltage and a low voltage as shown in the timing chart of FIG. Start.

次に、点検モードになったか否かを判定する(ステップS2)。この判定は、マイコンの起動(電源投入)から例えば1分の待機時間の経過後、例えば20分の点検モードの時間帯が経過したかどうかを判定するものである。そこで、点検モード終了後、次いで待機モードになり、図8の水素(H2 )検出ポイント(C部)での水素(H2 )検出及び判定動作は行なわない(ステップS3)。待機モード中は、上述のガス及び火災監視動作を行う。 Next, it is determined whether or not the inspection mode has been entered (step S2). This determination is performed to determine whether, for example, a 20-minute inspection mode period has elapsed after a lapse of a standby time of, for example, 1 minute from the start-up (power-on) of the microcomputer. Therefore, after the inspection mode is completed, the standby mode is then entered, and the hydrogen (H 2 ) detection and determination operation at the hydrogen (H 2 ) detection point (part C) in FIG. 8 is not performed (step S3). During the standby mode, the above gas and fire monitoring operation is performed.

点検モードになっていれば、次に、CO検出ポイント(B部)で検出された半導体式ガスセンサ3の感知素子3aのCO抵抗値が点検用一酸化炭素ガス濃度レベルにおけるCO低濃度判定点以下になったか(つまり、検出されたCO濃度がCO低濃度警報判定点以上になったか)否かを判定する(ステップS4)。この判定は、点検時間内に点検作業者が上述の採取方法にて採取した点検用のCO+H2 ガスを点検用ガスとしてガス警報器1に吹きかけるので、点検用のCO+H2 ガスの吹きかけによって図8のCO検出ポイント(B部)において検出されたCO濃度がCO低濃度警報判定点以上になったかどうかを判定するものである。 If the inspection mode is set, then the CO resistance value of the sensing element 3a of the semiconductor gas sensor 3 detected at the CO detection point (part B) is equal to or less than the CO low concentration determination point at the inspection carbon monoxide gas concentration level. Whether the detected CO concentration is equal to or higher than the CO low concentration alarm determination point is determined (step S4). In this determination, since the inspection CO + H 2 gas collected by the inspection operator within the inspection time is sprayed to the gas alarm device 1 as the inspection gas, the inspection CO + H 2 gas is sprayed on the gas alarm 1 as shown in FIG. It is determined whether or not the CO concentration detected at the CO detection point (part B) is equal to or higher than the CO low concentration alarm determination point.

検出されたCO抵抗値がCO低濃度判定点以下になったと判定されなければ、次に、図8の水素(H2 )検出ポイント(C部)での水素(H2 )の検出及び判定動作は行なわず(ステップS5)、次いでステップS2に戻る。 If it is not determined that the detected CO resistance value is equal to or lower than the CO low concentration determination point, then the hydrogen (H 2 ) detection and determination operation at the hydrogen (H 2 ) detection point (part C) in FIG. Is not performed (step S5), and then the process returns to step S2.

検出されたCO抵抗値がCO低濃度判定点以下になったと判定されると、次に、点検用のCO警報を行う(ステップS6)。すなわち、不完全燃焼ガスインジケータ1fを黄色点灯させると共に、「ピッポッピッポッ、空気が汚れて危険です。窓を開けて換気をして下さい。」等の音声メッセージを音声IC7から読み出してスピーカ1hにより鳴動(音声出力)させる。   If it is determined that the detected CO resistance value is equal to or lower than the CO low concentration determination point, an inspection CO alarm is then performed (step S6). That is, the incomplete combustion gas indicator 1f is turned on in yellow, and a voice message such as “Pippippippop is dangerous because the air is dirty. Open the window and ventilate.” Is read from the voice IC 7 and sounded by the speaker 1h ( Audio output).

次に、高温加熱期間から低温加熱期間への移行により感知素子3aの加熱温度が低下する過渡期間中の、感知素子3aが、点検用ガス中の水素ガスに対して高感度となる温度に加熱される感知素子3aの過渡温度加熱期間におけるH2 検出ポイント(C部)で検出された半導体式ガスセンサ3の感知素子3aのH2 抵抗値が、H2 点検判定点以下になったか(つまり、検出されたH2 濃度がH2 点検濃度判定点以上になったか)否かを判定する(ステップS7)。この判定は、点検時間内に点検作業者が上述の採取方法にて採取した点検用のCO+H2 ガスをガス警報器1に吹きかける(H2 ガスは、ガス漏れ警報点検用のメタン(CH4 )ガスの代用とされる。)ので、点検用のCO+H2 ガスの吹きかけによって図8のH2 検出ポイント(C部)において検出されたH2 濃度がH2 点検濃度判定点以上になったかどうかを判定するものである。 Next, during the transition period in which the heating temperature of the sensing element 3a decreases due to the transition from the high temperature heating period to the low temperature heating period, the sensing element 3a is heated to a temperature that is highly sensitive to the hydrogen gas in the inspection gas. The H 2 resistance value of the sensing element 3a of the semiconductor type gas sensor 3 detected at the H 2 detection point (C portion) during the transient temperature heating period of the sensing element 3a to be detected is equal to or lower than the H 2 inspection determination point (that is, It is determined whether or not the detected H 2 concentration has reached or exceeded the H 2 inspection concentration determination point (step S7). This determination is made by inspecting the gas alarm device 1 with CO + H 2 gas for inspection collected by the inspection operator by the above-described sampling method within the inspection time (H 2 gas is methane (CH 4 ) for inspection of gas leak alarm). Therefore, it is determined whether or not the H 2 concentration detected at the H 2 detection point (C section) in FIG. 8 is equal to or higher than the H 2 inspection concentration judgment point by spraying CO + H 2 gas for inspection. Judgment.

検出されたH2 抵抗値がH2 点検判定点以下になったと判定されなければ、次に、ステップS2に戻り、H2 点検判定点以下になったと判定されると、次に、ガス漏れ警報を行う(ステップS8)。すなわち、ガス漏れインジケータ1gを赤色点灯させると共に、「ピッピッピッ、ガスが漏れていませんか。」等の音声メッセージを音声IC7から読み出してスピーカ1hにより鳴動(音声出力)させる。ステップS8の終了後は、ステップS2に戻る。 If it is not determined that the detected H 2 resistance value is equal to or lower than the H 2 inspection determination point, the process returns to step S2, and if it is determined that the detected H 2 resistance value is equal to or lower than the H 2 inspection determination point, then a gas leak alarm is issued. Is performed (step S8). That is, the gas leak indicator 1g is lit in red, and a voice message such as “Is gas leaking?” Is read from the voice IC 7 and is struck (voice output) by the speaker 1h. After step S8 ends, the process returns to step S2.

以上の説明から明らかなように、本実施形態のガス警報器1では、図4のフローチャートにおけるステップS4が、請求項中の点検用一酸化炭素ガス濃度出力検出手段11Aおよび点検用一酸化炭素ガス濃度判定手段11Bに対応する処理となっており、このステップS4のYESからステップS6にかけての処理が、請求項中の不完全燃焼警報出力手段11Cに対応する処理となっている。また、図4のフローチャートにおけるステップS7が、請求項中の点検用水素ガス濃度出力検出手段11Dおよび点検用水素ガス濃度判定手段11Eに対応する処理となっており、このステップS7のYESからステップS8にかけての処理が、請求項中のガス漏れ警報出力手段11Fに対応する処理となっている。そして、本発明のガス警報器の点検方法を実施する点検手段は、点検用一酸化炭素ガス濃度出力検出手段11A、点検用一酸化炭素ガス濃度判定手段11B、不完全燃焼警報出力手段11C、点検用水素ガス濃度出力検出手段11D、点検用水素ガス濃度判定手段11Eおよびガス漏れ警報出力手段11Fを含んでいる。   As is apparent from the above description, in the gas alarm device 1 of the present embodiment, step S4 in the flowchart of FIG. 4 is performed by the inspection carbon monoxide gas concentration output detection means 11A and the inspection carbon monoxide gas in the claims. The process corresponds to the concentration determination unit 11B, and the process from YES to step S6 in step S4 is a process corresponding to the incomplete combustion alarm output unit 11C in the claims. Further, step S7 in the flowchart of FIG. 4 is processing corresponding to the inspection hydrogen gas concentration output detection means 11D and the inspection hydrogen gas concentration determination means 11E in the claims, and from step S7 YES to step S8. The process up to is a process corresponding to the gas leak alarm output means 11F in the claims. And the inspection means which implements the inspection method of the gas alarm device of the present invention includes the inspection carbon monoxide gas concentration output detection means 11A, the inspection carbon monoxide gas concentration determination means 11B, the incomplete combustion alarm output means 11C, the inspection. It includes a hydrogen gas concentration output detection means 11D, an inspection hydrogen gas concentration determination means 11E, and a gas leak alarm output means 11F.

以上説明したように第1の実施形態では、CO濃度判定が行われCO濃度が点検用一酸化炭素ガス濃度レベルにおけるCO低濃度判定点以上の場合のみ、H2 検出ポイント(C部)での検出及び判定を実施する。したがって、仮に雑ガスとしてH2 のみガス警報器1に混入した場合は、H2 検出ポイント(C部)での判定は行わない。 As described above, in the first embodiment, only when the CO concentration determination is performed and the CO concentration is equal to or higher than the CO low concentration determination point at the inspection carbon monoxide gas concentration level, the H 2 detection point (part C) is used. Perform detection and judgment. Therefore, if only H 2 is mixed as miscellaneous gas into the gas alarm device 1, the determination at the H 2 detection point (C section) is not performed.

以上説明したように、第1の実施形態によれば、1回の点検用ガスの採取で点検作業を行うことができ、従来より簡単になる。   As described above, according to the first embodiment, the inspection work can be performed by collecting the inspection gas once, which is easier than the conventional one.

なお、ガス漏れ及び不完全燃焼警報機能を併せ持つ半導体式ガスセンサ3を用いる場合、そのヒータ電圧の制御は、図8に示すように高電圧(HI)−低電圧(LO)の繰り返しを、高電圧(HI)の期間約5秒、低電圧(LO)の期間約10秒〜15秒、トータル約15秒から20秒サイクルで実施している。このサイクル全ての時間帯で、点検用ガスを吹きかければ点検が可能であることが最も望ましい。   When the semiconductor gas sensor 3 having both gas leakage and incomplete combustion alarm functions is used, the heater voltage is controlled by repeating high voltage (HI) -low voltage (LO) as shown in FIG. (HI) period is about 5 seconds, low voltage (LO) period is about 10 seconds to 15 seconds, and the total cycle is about 15 seconds to 20 seconds. It is most desirable that the inspection is possible if the inspection gas is blown in all the time zones of this cycle.

しかしながら、簡易的に実施するライターの炎の内炎部分の一酸化炭素(CO)と水素(H2 )は、1.5%と0.7%程度の濃度しかなく、点検用ガス濃度としては非常に薄く、ヒータ電圧サイクルの条件を通常の5秒間高電圧(HI)−15秒間低電圧(LO)で動作させ、CO+H2 ガスで点検を実施すると、図9に示すように、点検用ガスの導入タイミング(ヒータ3bが高電圧(HI)通電になってからの時間)によっては、半導体式ガスセンサ3が反応するH2 濃度が500ppmレベルと低くなる。すなわち、C部を過ぎた直後に点検用のCO+H2 ガスを吹き付けた場合、約20秒後に検出されるH2 濃度が500ppmと非常に低濃度になるため、この500ppmという非常に低濃度に点検用警報判定点を設ける必要があり、雑ガスとしてH2 のみが混入した場合に誤作動等のおそれがあった。 However, carbon monoxide (CO) and hydrogen (H 2 ) in the inner flame part of a lighter flame that is simply implemented have concentrations of only 1.5% and 0.7%, and the inspection gas concentration is When the heater voltage cycle is operated at a high voltage (HI) for 15 seconds and a low voltage (LO) for 15 seconds under normal conditions, and inspection is performed with CO + H 2 gas, as shown in FIG. Depending on the introduction timing (time after the heater 3b is energized with high voltage (HI)), the H 2 concentration to which the semiconductor gas sensor 3 reacts becomes as low as 500 ppm level. That is, when CO + H 2 gas for inspection is blown immediately after passing C section, the H 2 concentration detected after about 20 seconds is as low as 500 ppm, so the inspection is performed at a very low concentration of 500 ppm. It is necessary to provide a warning judgment point, and there is a risk of malfunction when only H 2 is mixed as miscellaneous gas.

そこで、第1の実施形態では、点検用ガス濃度が非常に低い濃度状態であっても、COガスと同時発生しない限り、H2 側での判定を行うことをしないため、誤作動のおそれが無くなり、CO+H2 ガスで点検を実施する際に誤作動を軽減することができるガス警報器を提供することができる。なお、点検用のCO+H2 ガスを吹きかけてもCO警報またはCH4 警報が正常に確認できなければ、ガス警報器が異常状態であることが分かり、半導体式ガスセンサ3の交換等の適切な処置をとることができる。 Therefore, in the first embodiment, even if the concentration of the inspection gas is very low, the determination on the H 2 side is not performed unless it occurs simultaneously with the CO gas. It is possible to provide a gas alarm that can be eliminated and can reduce malfunctions when performing inspection with CO + H 2 gas. If the CO alarm or CH 4 alarm cannot be confirmed normally even when CO + H 2 gas for inspection is blown, it is found that the gas alarm is in an abnormal state, and appropriate measures such as replacement of the semiconductor gas sensor 3 are taken. Can take.

(第2の実施形態)通常、CO警報器は、日本ガス機器検査協会の検定規定の関係で、低濃度と高濃度の2段警報方式を実施するが、当然ながら、点検時の特性として非常に高濃度のCOガスに曝されるため、直接2段目警報濃度に達する。そこで第2の実施形態では、点検モード時に、直接半導体式ガスセンサ3のCO検出出力が高濃度判定を行った場合のみ、点検用ガスとみなしてH2 検出ポイント(C部)での判定を行うようにするものである。また、仮に、低濃度のCOが発生後、高濃度に移行する場合や、高濃度のCO濃度が継続的に維持される場合は、点検モード中であっても点検用ガス以外のガスによる本報と考えられるため、H2 検出ポイント(C部)での判定動作をさせない。また、点検モード中であっても、メタン(CH4 )検出ポイント(A部)での判定を行い、高濃度のCH4 が検出された場合は、本警報を行うと共に、H2 検出ポイント(C部)での判定動作を解除する。 (Second Embodiment) Normally, the CO alarm device uses the two-stage alarm system of low concentration and high concentration in accordance with the certification regulations of the Japan Gas Appliances Inspection Association. Because it is exposed to high-concentration CO gas, the second-stage alarm concentration is reached directly. Therefore, in the second embodiment, only when the CO detection output of the semiconductor gas sensor 3 directly makes a high concentration determination in the inspection mode, the determination is made at the H 2 detection point (C section) by considering it as the inspection gas. It is what you want to do. In addition, if a low concentration of CO is generated and then shifted to a high concentration, or if a high concentration of CO is continuously maintained, the main gas using a gas other than the inspection gas may be used even in the inspection mode. Therefore, the determination operation at the H 2 detection point (C section) is not performed. Even during the inspection mode, a determination is made at the methane (CH 4 ) detection point (part A), and if a high concentration of CH 4 is detected, this alarm is given and the H 2 detection point ( The determination operation in part C) is canceled.

図5は、第2の実施形態におけるROM11cに格納された制御プログラムに従いCPU11aが行う点検モード時の処理を示すフローチャートである。   FIG. 5 is a flowchart showing processing in the inspection mode performed by the CPU 11a according to the control program stored in the ROM 11c in the second embodiment.

以下、図5のフローチャートを参照しながら第2の実施形態における点検モード時の処理を説明する。   Hereinafter, the process in the inspection mode in the second embodiment will be described with reference to the flowchart of FIG.

ガス警報器1への電源投入(ステップS11)により、マイコン11が起動しプログラムがスタートすると、半導体式ガスセンサ3のヒータ3bに対する図8のタイミングチャートのような高電圧と低電圧との交互通電を開始する。   When the microcomputer 11 is activated and the program is started by turning on the power to the gas alarm device 1 (step S11), the heater 3b of the semiconductor gas sensor 3 is alternately energized with a high voltage and a low voltage as shown in the timing chart of FIG. Start.

次に、点検モードになったか否かを判定し(ステップS12)、点検モードになっていなければ、次いで待機モードになり、図8の水素(H2 )検出ポイント(C部)での水素(H2 )検出及び判定動作は行なわない(ステップS13)。待機モード中は、上述のガス及び火災監視動作を行う。 Next, it is determined whether or not the inspection mode has been entered (step S12). If the inspection mode has not been entered, then the standby mode is entered and the hydrogen (H 2 ) detection point (part C) in FIG. H 2 ) Detection and determination operations are not performed (step S13). During the standby mode, the above gas and fire monitoring operation is performed.

点検モードになっていれば、次に、CO検出ポイント(B部)で検出された半導体式ガスセンサ3の感知部3aのCO抵抗値が点検用一酸化炭素ガス濃度レベルにおけるCO低濃度判定点以下になったか(つまり、検出されたCO濃度がCO低濃度警報判定点以上になったか)否かを判定する(ステップS14)。この判定は、点検時間内に点検作業者は、上述の採取方法にて採取した点検用のCO+H2 ガスをガス警報器1に吹きかける(H2 ガスは、ガス漏れ警報点検用のメタン(CH4 )ガスの代用とされる。)ので、点検用のCO+H2 ガスの吹きかけによって図8のCO検出ポイント(B部)において検出されたCO濃度がCO低濃度警報判定点以上になったかどうかを判定するものである。 If in the inspection mode, the CO resistance value of the sensing unit 3a of the semiconductor gas sensor 3 detected at the CO detection point (B part) is equal to or lower than the CO low concentration determination point at the carbon monoxide gas concentration level for inspection. Whether the detected CO concentration is equal to or higher than the CO low concentration alarm determination point is determined (step S14). In this determination, the inspection operator blows the CO + H 2 gas for inspection collected by the above-described sampling method on the gas alarm device 1 within the inspection time (H 2 gas is methane (CH 4 for gas leak alarm inspection). Therefore, it is determined whether or not the CO concentration detected at the CO detection point (part B) in FIG. 8 is equal to or higher than the CO low concentration alarm determination point by spraying CO + H 2 gas for inspection. To do.

検出されたCO抵抗値がCO低濃度判定点以下になったと判定されなければ、次に、図8の水素(H2 )検出ポイント(C部)での水素(H2 )検出及び判定動作は行なわず(ステップS15)、次いでステップS12に戻る。 If it is not determined that the detected CO resistance value is equal to or lower than the CO low concentration determination point, the hydrogen (H 2 ) detection and determination operation at the hydrogen (H 2 ) detection point (part C) in FIG. It does not carry out (step S15) and then returns to step S12.

検出されたCO抵抗値が点検用一酸化炭素ガス濃度レベルにおけるCO低濃度判定点以下になったと判定されると、次に、CO抵抗値が点検用一酸化炭素ガス濃度レベルにおけるCO高濃度判定点以下になったか(つまり、検出されたCO濃度がCO高濃度警報判定点以上になったか)否かを判定する(ステップS16)。   If it is determined that the detected CO resistance value is equal to or lower than the CO low concentration determination point at the inspection carbon monoxide gas concentration level, then the CO resistance value is determined to be the CO high concentration at the inspection carbon monoxide gas concentration level. It is determined whether or not it is below the point (that is, whether or not the detected CO concentration is equal to or higher than the CO high concentration alarm determination point) (step S16).

検出されたCO抵抗値がCO高濃度判定点以下になったと判定されなければ、次に、CO低濃度警報を行い、すなわち、不完全燃焼ガスインジケータ1fを黄色点滅させ(ステップS17)、次いでステップS15に進む。   If it is not determined that the detected CO resistance value is equal to or lower than the CO high concentration determination point, then a CO low concentration alarm is performed, that is, the incomplete combustion gas indicator 1f blinks yellow (step S17), and then step Proceed to S15.

検出されたCO抵抗値がCO高濃度判定点以下になったと判定されると、次に、CO高濃度警報を行う(ステップS18)。すなわち、不完全燃焼ガスインジケータ1fを黄色点滅から黄色点灯へ変えると共に、「ピッポッピッポッ、空気が汚れて危険です。窓を開けて換気をして下さい。」等の音声メッセージを音声IC7から読み出してスピーカ1hにより鳴動(音声出力)させる。   If it is determined that the detected CO resistance value is equal to or lower than the CO high concentration determination point, then a CO high concentration alarm is performed (step S18). That is, the incomplete combustion gas indicator 1f is changed from blinking yellow to lit yellow, and a voice message such as “Pippippipop, air is dirty and dangerous. Please open a window and ventilate” from the voice IC 7 and read the speaker. Ring (sound output) by 1h.

次に、H2 検出ポイント(C部)で検出された半導体式ガスセンサ3の感知素子3aのH2 抵抗値が、H2 点検判定点以下になったか(つまり、検出されたH2 濃度がH2 点検濃度判定点以上になったか)否かを判定する(ステップS19)。この判定は、点検時間内に点検作業者が上述の採取方法にて採取した点検用のCO+H2 ガスをガス警報器1に吹きかける(H2 ガスは、ガス漏れ警報点検用のメタン(CH4 )ガスの代用とされる。)ので、点検用のCO+H2 ガスの吹きかけによって図8のH2 検出ポイント(C部)において検出されたH2 濃度がH2 点検濃度判定点以上になったかどうかを判定するものである。 Next, whether the H 2 resistance value of the sensing element 3a of the semiconductor gas sensor 3 detected at the H 2 detection point (C section) has become equal to or lower than the H 2 inspection determination point (that is, the detected H 2 concentration is H 2 ) Whether or not the inspection concentration determination point has been reached is determined (step S19). This determination is made by inspecting the gas alarm device 1 with CO + H 2 gas for inspection collected by the inspection operator by the above-described sampling method within the inspection time (H 2 gas is methane (CH 4 ) for inspection of gas leak alarm). Therefore, it is determined whether or not the H 2 concentration detected at the H 2 detection point (C section) in FIG. 8 is equal to or higher than the H 2 inspection concentration judgment point by spraying CO + H 2 gas for inspection. Judgment.

検出されたH2 抵抗値がH2 点検判定点以下になったと判定されなければ、次に、ステップS12に戻り、H2 点検判定点以下になったと判定されると、次に、ガス漏れ警報を行う(ステップS20)。すなわち、ガス漏れインジケータ1gを赤色点灯させると共に、「ピッピッピッ、ガスが漏れていませんか。」等の音声メッセージを音声IC7から読み出してスピーカ1hにより鳴動(音声出力)させる。 If it is not determined that the detected H 2 resistance value is equal to or lower than the H 2 inspection determination point, the process returns to step S12. If it is determined that the detected H 2 resistance value is equal to or lower than the H 2 inspection determination point, then a gas leak alarm is issued. (Step S20). That is, the gas leak indicator 1g is lit in red, and a voice message such as “Is gas leaking?” Is read from the voice IC 7 and is struck (voice output) by the speaker 1h.

次に、複数回(たとえば、3回)連続してCO抵抗値が点検用一酸化炭素ガス濃度レベルにおけるCO高濃度判定点以下になったか(つまり、検出されたCO濃度がCO高濃度警報判定点以上になったか)否かを判定する(ステップS21)。複数回(たとえば、3回)連続してCO抵抗値がCO高濃度判定点以下になっていれば、次に、次に、H2 検出ポイント(C部)でのガス漏れ警報を解除、すなわち、ガス漏れインジケータ1gを消灯させると共にスピーカ1hの鳴動(音声出力)を停止させる(ステップS22)。 Next, whether or not the CO resistance value has become equal to or lower than the CO high concentration determination point at the carbon monoxide gas concentration level for inspection consecutively (for example, three times) (that is, the detected CO concentration is determined as the CO high concentration alarm determination) It is determined whether or not the number of points has been reached (step S21). If the CO resistance value is continuously below the CO high concentration determination point a plurality of times (for example, 3 times), then the gas leak alarm at the H 2 detection point (C section) is canceled, that is, Then, the gas leak indicator 1g is turned off and the sounding (sound output) of the speaker 1h is stopped (step S22).

次に、CO抵抗値が通常モード時と同じ不完全警報濃度レベルにおけるCO低濃度判定点以下になったか(つまり、検出されたCO濃度がCO低濃度警報判定点以上になったか)否かを判定し(ステップS23)、CO抵抗値がCO低濃度判定点以下になっていなければ、次に、ステップS12に戻り、CO低濃度判定点以下になっていれば、次に、CO抵抗値が通常モード時と同じ不完全警報濃度レベルにおけるCO高濃度判定点以下になったか(つまり、検出されたCO濃度がCO高濃度警報判定点以上になったか)否かを判定する(ステップS24)。CO抵抗値がCO高濃度判定点以下になっていなければ、次に、CO低濃度警報を行い(ステップS25)、次いでステップS23に戻る。このCO低濃度警報は、たとえば通常モード時のCO低濃度警報と同様に、不完全燃焼ガスインジケータ1fを黄色点滅させるものである。CO抵抗値がCO高濃度判定点以下になっていれば、次に、CO高濃度警報を行い(ステップS26)、次いでステップS23に戻る。このCO高濃度警報は、たとえば通常モード時のCO高濃度警報と同様に、不完全燃焼ガスインジケータ1fを黄色点灯させると共に、「ピッポッピッポッ、空気が汚れて危険です。窓を開けて換気をして下さい。」等の音声メッセージを音声IC7から読み出してスピーカ1hにより鳴動(音声出力)させる。   Next, whether or not the CO resistance value is equal to or lower than the CO low concentration judgment point at the same incomplete alarm concentration level as in the normal mode (that is, whether or not the detected CO concentration is equal to or higher than the CO low concentration alarm judgment point). If the CO resistance value is not less than or equal to the CO low concentration determination point, the process returns to step S12. If the CO resistance value is less than or equal to the CO low concentration determination point, then the CO resistance value is It is determined whether or not the CO high concentration determination point at the same incomplete alarm concentration level as in the normal mode has become lower (that is, the detected CO concentration has become higher than the CO high concentration alarm determination point) (step S24). If the CO resistance value is not less than or equal to the CO high concentration determination point, then a CO low concentration alarm is given (step S25), and then the process returns to step S23. This CO low concentration alarm is for causing the incomplete combustion gas indicator 1f to blink yellow in the same manner as the CO low concentration alarm in the normal mode, for example. If the CO resistance value is less than or equal to the CO high concentration determination point, then a CO high concentration alarm is given (step S26), and then the process returns to step S23. This CO high concentration alarm, for example, causes the incomplete combustion gas indicator 1f to light yellow in the same way as the CO high concentration alarm in the normal mode, and “pipopipippop, the air is dirty and dangerous. Open the window and ventilate. Please read a voice message such as “Please read” from the voice IC 7 and sound (sound output) through the speaker 1h.

一方、ステップS21において、複数回(たとえば、3回)連続してCO抵抗値がCO高濃度判定点以下になっていなければ、次に、CH4 検出ポイント(A部)で検出された半導体式ガスセンサ3の感知素子3aのCH4 抵抗値が、CH4 点高濃度判定点以下になったか(つまり、検出されたCH4 濃度がCH4 高濃度判定点以上になったか)否かを判定する(ステップS27)。この判定は、点検時間内に点検用のCO+H2 ガス以外に高濃度のCH4 ガスが検出されたかどうかを判定するものである。 On the other hand, in step S21, if the CO resistance value is not less than or equal to the CO high concentration determination point continuously a plurality of times (for example, three times), then the semiconductor type detected at the CH 4 detection point (part A). It is determined whether the CH 4 resistance value of the sensing element 3a of the gas sensor 3 is equal to or lower than the CH 4 high concentration determination point (that is, whether the detected CH 4 concentration is equal to or higher than the CH 4 high concentration determination point). (Step S27). This determination is to determine whether or not high concentration CH 4 gas is detected in addition to the inspection CO + H 2 gas within the inspection time.

検出されたCH4 抵抗値が、CH4 点高濃度判定点以下になっていなければ、次にステップS20に戻り、CH4 点高濃度判定点以下になっていれば、次に、H2 検出ポイント(C部)でのガス漏れ警報を解除する(ステップS28)。次に、検出されたCH4 抵抗値が、通常モード時と同じガス漏れ警報濃度レベルにおけるCH4 点低濃度判定点以下になっているか否かを判定し(ステップS29)、CH4 抵抗値がCH4 低濃度判定点以下になっていなければ、次に、ステップS12に戻り、CH4 低濃度判定点以下になっていれば、次に、CH4 抵抗値がガス漏れ警報濃度レベルにおけるCH4 高濃度判定点以下になったか(つまり、検出されたCH4 濃度がCH4 高濃度警報判定点以上になったか)否かを判定する(ステップS30)。CH4 抵抗値がCH4 高濃度判定点以下になっていなければ、次に、CH4 低濃度警報を行い(ステップS31)、次いでステップS29に戻る。このCH4 低濃度警報は、たとえば通常モード時のCH4 低濃度警報と同様に、ガス漏れインジケータ1gを赤色点滅させるものである。CH4 抵抗値がCH4 高濃度判定点以下になっていれば、次に、CH4 高濃度警報を行い(ステップS32)、次いでステップS29に戻る。このCH4 高濃度警報は、たとえば通常モード時のCH4 高濃度警報と同様に、ガス漏れインジケータ1gを赤色点灯させると共に、「ピッピッピッ、ガスが漏れていませんか。」等の音声メッセージを音声IC7から読み出してスピーカ1hにより鳴動(音声出力)させる。 Detected CH 4 resistance, if is the following 4-point high concentration determination point CH, then returns to step S20, if equal to or less than four high concentration determination point CH, then, H 2 Detection The gas leak alarm at the point (C section) is canceled (step S28). Then, the detected CH 4 resistance, determines whether or not it is less than CH 4-point low concentration determination points in the same gas leak alarms concentration levels and normal mode (step S29), CH 4 resistance CH 4 unless equal to or less than a low concentration determination points, then returns to step S12, if equal to or less than CH 4 low concentration determination points, then, CH 4 CH 4 resistance in the gas leak alarms concentration levels It is determined whether or not it has become lower than the high concentration determination point (that is, whether or not the detected CH 4 concentration has become equal to or higher than the CH 4 high concentration alarm determination point) (step S30). If the CH 4 resistance value is not less than or equal to the CH 4 high concentration determination point, then a CH 4 low concentration alarm is issued (step S31), and then the process returns to step S29. The CH 4 low concentration alarm, for example similar to the CH 4 low concentration alarm during normal mode, is intended to flashing red gas leakage indicator 1g. If the CH 4 resistance value is less than or equal to the CH 4 high concentration determination point, then a CH 4 high concentration alarm is issued (step S32), and then the process returns to step S29. This CH 4 high concentration alarm, for example, turns on the gas leak indicator 1g in red as well as the CH 4 high concentration alarm in the normal mode, and a voice message such as “Are there a gas leak?” Read from the IC 7 and sound (sound output) by the speaker 1h.

このように、ステップS21〜S32の処理により、点検作業中に、低濃度以上のCOが継続して検出された場合や高濃度のCH4 が検出された場合、水素検出ポイント(C部)でのCH4 警報は行わない。 As described above, when the CO in the low concentration or higher is continuously detected or the high concentration of CH 4 is detected during the inspection operation by the processing in steps S21 to S32, the hydrogen detection point (part C). The CH 4 alarm is not performed.

以上の説明から明らかなように、本実施形態のガス警報器1では、図5のフローチャートにおけるステップS14からステップS16にかけての処理が、請求項中の点検用一酸化炭素ガス濃度出力検出手段11Aおよび点検用一酸化炭素ガス濃度判定手段11Bに対応する処理となっており、ステップS16のYESおよびNOからステップS17およびS18にかけての処理が、請求項中の不完全燃焼警報出力手段11Cに対応する処理となっている。また、図5のフローチャートにおけるステップS19が、請求項中の点検用水素ガス濃度出力検出手段11Dおよび点検用水素ガス濃度判定手段11Eに対応する処理となっており、このステップS19のYESからステップS20にかけての処理が、請求項中のガス漏れ警報出力手段11Fに対応する処理となっている。   As is apparent from the above description, in the gas alarm device 1 of the present embodiment, the processing from step S14 to step S16 in the flowchart of FIG. The process corresponds to the carbon monoxide gas concentration determination means 11B for inspection, and the process from YES and NO in step S16 to steps S17 and S18 corresponds to the incomplete combustion alarm output means 11C in the claims. It has become. Further, step S19 in the flowchart of FIG. 5 is processing corresponding to the inspection hydrogen gas concentration output detection means 11D and the inspection hydrogen gas concentration determination means 11E in the claims, and from step S19 YES to step S20. The process up to is a process corresponding to the gas leak alarm output means 11F in the claims.

以上説明したように第2の実施形態では、CO濃度判定が行われCO濃度がCO高濃度判定点以上の場合のみ、H2 検出ポイント(C部)での判定を実施する。したがって、仮に雑ガスとしてH2 のみガス警報器1に混入した場合は、H2 検出ポイント(C部)での判定は行わない。 As described above, in the second embodiment, the determination at the H 2 detection point (C section) is performed only when the CO concentration determination is performed and the CO concentration is equal to or higher than the CO high concentration determination point. Therefore, if only H 2 is mixed as miscellaneous gas into the gas alarm device 1, the determination at the H 2 detection point (C section) is not performed.

このように判定を行うことで、点検用ガス濃度が非常に低い濃度状態であっても、COガスと同時発生しない限り、H2 側での判定を行うことをしないため、誤作動のおそれが無くなる。なお、点検用のCO+H2 ガスを吹きかけてもCO警報またはCH4 警報が正常に確認できなければ、ガス警報器が異常状態であることが分かり、半導体式ガスセンサ3の交換等の適切な処置をとることができる。 By making the determination in this way, even if the concentration of the inspection gas is very low, the determination on the H 2 side is not performed unless it occurs simultaneously with the CO gas. Disappear. If the CO alarm or CH 4 alarm cannot be confirmed normally even when CO + H 2 gas for inspection is blown, it is found that the gas alarm is in an abnormal state, and appropriate measures such as replacement of the semiconductor gas sensor 3 are taken. Can take.

さらに、第2の実施形態では、点検作業中に低濃度以上のCOが継続して検出された場合は、COの本警報を発生させ、また点検作業中に高濃度のCH4 が検出された場合は、CH4 の本警報を発生させるので、安全である。 Further, in the second embodiment, when CO having a low concentration or higher is continuously detected during the inspection operation, this CO alarm is generated, and high concentration CH 4 is detected during the inspection operation. In this case, since this CH 4 alarm is generated, it is safe.

以上の通り、本発明の実施形態について説明したが、本発明はこれに限らず、種々の変形、応用が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various deformation | transformation and application are possible.

たとえば、上述した実施形態のガス警報器1において、点検用一酸化炭素ガス濃度レベルにおけるCO低濃度判定点とCO高濃度判定点は、それぞれ、通常モード時の不完全燃焼警報濃度レベルにおけるCO低濃度判定点とCO高濃度判定点と同じ値にしたり、通常モード時より低い任意の値にしたりすることができる。   For example, in the gas alarm device 1 of the above-described embodiment, the CO low concentration judgment point and the CO high concentration judgment point at the inspection carbon monoxide gas concentration level are the CO low level at the incomplete combustion warning concentration level in the normal mode, respectively. It can be set to the same value as the concentration determination point and the CO high concentration determination point, or an arbitrary value lower than that in the normal mode.

また、上述した実施形態のガス警報器1では、点検モード時の不完全燃焼警報信号およびガス漏れ警報信号を、通常モード時と同等にしているが、これに代えて、通常モード時と異なる形態としても良く、たとえば、インジケータの点滅速度等の表示形態を異ならせたり音声メッセージやブザー音等の警報音形態を異ならせたりしても良い。   Further, in the gas alarm device 1 of the above-described embodiment, the incomplete combustion alarm signal and the gas leak alarm signal in the inspection mode are made the same as those in the normal mode. For example, the display form such as the blinking speed of the indicator may be changed, or the alarm sound form such as a voice message or a buzzer sound may be changed.

また、上述した実施形態のガス警報器1では、半導体式ガスセンサ3の出力を警報濃度レベルに到達させる濃度にガス濃度が達した際の警報信号の出力を、インジケータの点灯表示と音声メッセージの鳴動という表示及び音声の両方で行う場合について説明したが、そのどちらか一方で警報信号の出力を行うようにしてもよい。   In the gas alarm device 1 of the above-described embodiment, the alarm signal output when the gas concentration reaches the concentration at which the output of the semiconductor gas sensor 3 reaches the alarm concentration level, the indicator lighting display and the sounding of the voice message However, either one of them may be used to output an alarm signal.

また、上述した実施形態のガス警報器1では、ガス警報器1の電源コードがコンセントに接続されて電源が供給され始めてから、予め定められた待機時間(例えば1分)が経過した後、通常モード(ガス火災監視モード)に入るまでの、予め定められた点検時間(例えば20分)の点検モードにおいて、点検動作を行う構成について説明したが、通常モード(ガス及び火災監視モード)中に点検ひも(図示せず)を引っ張り操作して簡易点検モードに入った場合に、点検動作が行える構成としてもよい。   Further, in the gas alarm device 1 of the above-described embodiment, after a predetermined standby time (for example, 1 minute) has elapsed since the power cord of the gas alarm device 1 is connected to the outlet and power is supplied, In the inspection mode of the predetermined inspection time (for example, 20 minutes) until entering the mode (gas fire monitoring mode), the configuration to perform the inspection operation was explained, but the inspection is performed in the normal mode (gas and fire monitoring mode) A configuration may be adopted in which an inspection operation can be performed when a string (not shown) is pulled to enter the simple inspection mode.

(A)および(B)は、本発明のガス警報器の基本構成図である。(A) And (B) is a basic block diagram of the gas alarm device of this invention. 本発明の第1の実施形態に係るガス警報器の正面図である。(第1の実施形態)It is a front view of the gas alarm device concerning a 1st embodiment of the present invention. (First embodiment) 図2のガス警報器の電気的な概略構成を示すブロック図である。(第1の実施形態)It is a block diagram which shows the electrical schematic structure of the gas alarm device of FIG. (First embodiment) 図3のマイクロコンピュータのROMに格納された制御プログラムに従いCPUが行う点検モード処理を示すフローチャートである。(第1の実施形態)It is a flowchart which shows the inspection mode process which CPU performs according to the control program stored in ROM of the microcomputer of FIG. (First embodiment) 第2の実施形態における図3のマイクロコンピュータのROMに格納された制御プログラムに従いCPUが行う点検モード処理を示すフローチャートである。(第2の実施形態)It is a flowchart which shows the inspection mode process which CPU performs according to the control program stored in ROM of the microcomputer of FIG. 3 in 2nd Embodiment. (Second Embodiment) 半導体式ガスセンサの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of a semiconductor type gas sensor. 図6に示す半導体式ガスセンサのガス検出時における感知素子の加熱温度とセンサ抵抗との関係を示す特性図である。It is a characteristic view which shows the relationship between the heating temperature of a sensing element at the time of gas detection of the semiconductor type gas sensor shown in FIG. 6, and sensor resistance. 図6に示す半導体式ガスセンサのヒーター電圧とガス検出ポイントのタイミングチャートである。It is a timing chart of the heater voltage and gas detection point of the semiconductor type gas sensor shown in FIG. CO+H2 ガスで点検を実施する際の点検用ガスの導入タイミングとH2 ガス濃度値を示す特性図である。It is a characteristic diagram showing the introduction timing and H 2 gas concentration value inspection gas in the practice of inspections in CO + H 2 gas.

符号の説明Explanation of symbols

3a 感知素子
3b ヒータ
11A 点検用一酸化炭素ガス濃度検出手段
11B 点検用一酸化炭素ガス濃度判定手段
11C 不完全燃焼警報出力手段
11D 点検用水素ガス濃度検出手段
11E 点検用水素ガス濃度判定手段
11F ガス漏れ警報出力手段
11 マイクロコンピュータ
11a CPU
11b RAM
11c ROM
3a sensing element 3b heater 11A inspection carbon monoxide gas concentration detection means 11B inspection carbon monoxide gas concentration determination means 11C incomplete combustion alarm output means 11D inspection hydrogen gas concentration detection means 11E inspection hydrogen gas concentration determination means 11F gas Leakage alarm output means 11 Microcomputer 11a CPU
11b RAM
11c ROM

Claims (5)

感知素子をヒータにより高低2段階に交互加熱し、前記感知素子の高温加熱期間にメタンガス濃度に応じた前記感知素子の出力を検出し、検出した前記メタンガス濃度がガス漏れ警報濃度レベルに達した時に、ガス漏れ警報信号を出力するガス漏れ警報機能と、前記感知素子の低温加熱期間に一酸化炭素ガスの濃度に応じた前記感知素子の出力を検出し、検出した前記一酸化炭素ガス濃度が不完全燃焼警報濃度レベルに達した時に、不完全燃焼警報信号を出力する不完全燃焼警報機能を有するガス警報器の点検方法であって、
ライターの炎中等から採取した、前記メタンガスの代用となる水素ガスと一酸化炭素ガスとを含む点検用ガスを前記感知素子に吹きかけて、前記点検用ガス中の前記一酸化炭素ガスの濃度検出に基づいて前記不完全燃焼警報機能の点検を行うと共に、検出した前記点検用ガス中の一酸化炭素ガス濃度が点検用一酸化炭素ガス警報濃度レベルに達した場合のみ、前記高温加熱期間から低温加熱期間への移行により前記感知素子の加熱温度が低下する過渡期間中の、前記点検用ガス中の前記水素ガスに対して高感度となる温度に加熱される前記感知素子の過渡温度加熱期間に、前記水素ガスの濃度検出に基づいて前記ガス漏れ警報機能を点検することを特徴とするガス警報器の点検方法。
When the sensing element is alternately heated by a heater in two steps of high and low, the output of the sensing element corresponding to the methane gas concentration is detected during the high temperature heating period of the sensing element, and when the detected methane gas concentration reaches the gas leak alarm concentration level A gas leak alarm function for outputting a gas leak alarm signal, and detecting the output of the sensing element according to the concentration of carbon monoxide gas during a low temperature heating period of the sensing element, and the detected carbon monoxide gas concentration is An inspection method for a gas alarm having an incomplete combustion alarm function that outputs an incomplete combustion alarm signal when a complete combustion alarm concentration level is reached,
For detecting the concentration of the carbon monoxide gas in the inspection gas by spraying the inspection element including hydrogen gas and carbon monoxide gas, which are substituted for the methane gas, collected from the lighter flame, etc. The incomplete combustion alarm function is inspected based on this, and only when the detected carbon monoxide gas concentration in the detected inspection gas reaches the inspection carbon monoxide gas alarm concentration level, the low temperature heating is started from the high temperature heating period. In the transient temperature heating period of the sensing element that is heated to a temperature that is highly sensitive to the hydrogen gas in the inspection gas during a transition period in which the heating temperature of the sensing element decreases due to transition to a period, An inspection method for a gas alarm device, wherein the gas leak alarm function is inspected based on detection of the hydrogen gas concentration.
感知素子をヒータにより高低2段階に交互加熱し、前記感知素子の高温加熱期間にメタンガス濃度に応じた前記感知素子の出力を検出し、検出した前記メタンガス濃度がガス漏れ警報濃度レベルに達した時に、ガス漏れ警報信号を出力するガス漏れ警報機能と、前記感知素子の低温加熱期間に一酸化炭素ガスの濃度に応じた前記感知素子の出力を検出し、検出した前記一酸化炭素ガス濃度が不完全燃焼警報濃度レベルに達した時に、不完全燃焼警報信号を出力する不完全燃焼警報機能を有するガス警報器であって、
点検モード時に、前記低温加熱期間に、前記メタンガスの代用となる水素ガスと一酸化炭素ガスとを含む点検用ガス中の前記一酸化炭素ガスの濃度に応じた前記感知素子の出力を検出する点検用一酸化炭素ガス濃度出力検出手段と、
前記点検用一酸化炭素ガス濃度出力検出手段が検出した前記一酸化炭素ガス濃度が、点検用一酸化炭素ガス濃度レベルに達した否かを判定する点検用一酸化炭素ガス濃度判定手段と、
前記一酸化炭素ガス濃度が前記点検用一酸化炭素ガス濃度レベルに達したと前記点検用一酸化炭素ガス濃度判定手段が判定した際に、点検用不完全燃焼警報信号を出力させる不完全燃焼警報出力手段と、
前記一酸化炭素ガス濃度が前記点検用一酸化炭素ガス濃度レベルに達したと前記点検用一酸化炭素ガス濃度判定手段が判定した場合のみ、前記高温加熱期間から低温加熱期間への移行により前記感知素子の加熱温度が低下する過渡期間中の、該感知素子が、前記点検用ガス中の前記水素ガスに対して高感度となる温度に加熱される前記感知素子の過渡温度加熱期間に、前記水素ガスの濃度に応じた前記感知素子の出力を検出する点検用水素ガス濃度出力検出手段と、
前記点検用水素ガス濃度出力検出手段が検出した前記水素ガス濃度が、点検用水素ガス濃度に達した否かを判定する点検用水素ガス濃度判定手段と、
前記点検用水素ガス濃度が、前記点検用水素ガス濃度に達したと前記点検用水素ガス濃度判定手段が判定した際に、前記点検用ガス漏れ警報信号を出力させるガス漏れ警報出力手段と、
を備えることを特徴とするガス警報器。
When the sensing element is alternately heated by a heater in two steps of high and low, the output of the sensing element corresponding to the methane gas concentration is detected during the high temperature heating period of the sensing element, and when the detected methane gas concentration reaches the gas leak alarm concentration level A gas leak alarm function for outputting a gas leak alarm signal, and detecting the output of the sensing element according to the concentration of carbon monoxide gas during a low temperature heating period of the sensing element, and the detected carbon monoxide gas concentration is A gas alarm device having an incomplete combustion alarm function that outputs an incomplete combustion alarm signal when a complete combustion alarm concentration level is reached,
Inspection that detects the output of the sensing element in accordance with the concentration of the carbon monoxide gas in the inspection gas containing hydrogen gas and carbon monoxide gas that substitutes for the methane gas during the low temperature heating period in the inspection mode Carbon monoxide gas concentration output detection means for use,
An inspection carbon monoxide gas concentration determination means for determining whether or not the carbon monoxide gas concentration detected by the inspection carbon monoxide gas concentration output detection means has reached the inspection carbon monoxide gas concentration level;
An incomplete combustion alarm that outputs an incomplete combustion alarm signal for inspection when the inspection carbon monoxide gas concentration determination means determines that the carbon monoxide gas concentration has reached the inspection carbon monoxide gas concentration level. Output means;
Only when the inspection carbon monoxide gas concentration determination means determines that the carbon monoxide gas concentration has reached the inspection carbon monoxide gas concentration level, the sensing is performed by the transition from the high temperature heating period to the low temperature heating period. During the transient period in which the heating temperature of the element decreases, the sensing element is heated to a temperature that is highly sensitive to the hydrogen gas in the inspection gas. Inspection hydrogen gas concentration output detection means for detecting the output of the sensing element in accordance with the gas concentration;
Inspection hydrogen gas concentration determination means for determining whether or not the hydrogen gas concentration detected by the inspection hydrogen gas concentration output detection means has reached the inspection hydrogen gas concentration;
A gas leakage alarm output means for outputting the inspection gas leakage alarm signal when the inspection hydrogen gas concentration determination means determines that the inspection hydrogen gas concentration has reached the inspection hydrogen gas concentration;
A gas alarm device comprising:
感知素子をヒータにより高低2段階に交互加熱し、前記感知素子の高温加熱期間にメタンガス濃度に応じた前記感知素子の出力を検出し、検出した前記メタンガス濃度がガス漏れ警報濃度レベルに達した時に、ガス漏れ警報信号を出力するガス漏れ警報機能と、前記感知素子の低温加熱期間に一酸化炭素ガスの濃度に応じた前記感知素子の出力を検出し、検出した前記一酸化炭素ガス濃度が不完全燃焼警報濃度レベルにおける低濃度判定点に達した時および高濃度判定点に達した時に、不完全燃焼警報信号を出力する不完全燃焼警報機能を有するガス警報器であって、
点検モード時に、前記低温加熱期間に、前記メタンガスの代用となる水素ガスと一酸化炭素ガスとを含む点検用ガス中の前記一酸化炭素ガスの濃度に応じた前記感知素子の出力を検出する点検用一酸化炭素ガス濃度出力検出手段と、
前記点検用一酸化炭素ガス濃度出力検出手段が検出した前記一酸化炭素ガス濃度が、点検用一酸化炭素ガス濃度レベルに達した否かを判定する点検用一酸化炭素ガス濃度判定手段と、
前記一酸化炭素ガス濃度が前記点検用一酸化炭素ガス濃度レベルにおける高濃度判定点に達したと前記点検用一酸化炭素ガス濃度判定手段が判定した際に、点検用不完全燃焼警報信号を出力させる不完全燃焼警報出力手段と、
前記一酸化炭素ガス濃度が前記点検用一酸化炭素ガス濃度レベルにおける高濃度判定点に達したと前記点検用一酸化炭素ガス濃度判定手段が判定した場合のみ、前記高温加熱期間から低温加熱期間への移行により前記感知素子の加熱温度が低下する過渡期間中の、該感知素子が、前記点検用ガス中の前記水素ガスに対して高感度となる温度に加熱される前記感知素子の過渡温度加熱期間に、前記水素ガスの濃度に応じた前記感知素子の出力を検出する点検用水素ガス濃度出力検出手段と、
前記点検用水素ガス濃度出力検出手段が検出した前記水素ガス濃度が、点検用水素ガス濃度に達した否かを判定する点検用水素ガス濃度判定手段と、
前記点検用水素ガス濃度が、前記点検用水素ガス濃度に達したと前記点検用水素ガス濃度判定手段が判定した際に、前記ガス漏れ警報信号を出力させるガス漏れ警報出力手段と、
を備えることを特徴とするガス警報器。
When the sensing element is alternately heated by a heater in two steps of high and low, the output of the sensing element corresponding to the methane gas concentration is detected during the high temperature heating period of the sensing element, and when the detected methane gas concentration reaches the gas leak alarm concentration level A gas leak alarm function for outputting a gas leak alarm signal, and detecting the output of the sensing element according to the concentration of carbon monoxide gas during a low temperature heating period of the sensing element, and the detected carbon monoxide gas concentration is A gas alarm device having an incomplete combustion alarm function that outputs an incomplete combustion alarm signal when a low concentration judgment point and a high concentration judgment point are reached at a complete combustion alarm concentration level,
Inspection that detects the output of the sensing element in accordance with the concentration of the carbon monoxide gas in the inspection gas containing hydrogen gas and carbon monoxide gas that substitutes for the methane gas during the low temperature heating period in the inspection mode Carbon monoxide gas concentration output detection means for use,
An inspection carbon monoxide gas concentration determination means for determining whether or not the carbon monoxide gas concentration detected by the inspection carbon monoxide gas concentration output detection means has reached the inspection carbon monoxide gas concentration level;
When the inspection carbon monoxide gas concentration determination means determines that the carbon monoxide gas concentration has reached a high concentration determination point at the inspection carbon monoxide gas concentration level, an incomplete inspection alarm signal for inspection is output. An incomplete combustion warning output means,
Only when the inspection carbon monoxide gas concentration determination means determines that the carbon monoxide gas concentration has reached the high concentration determination point at the inspection carbon monoxide gas concentration level, the high temperature heating period is changed to the low temperature heating period. The transient temperature heating of the sensing element during which the sensing element is heated to a temperature that is highly sensitive to the hydrogen gas in the inspection gas during a transition period in which the heating temperature of the sensing element decreases due to the transition of Hydrogen gas concentration output detection means for inspection for detecting the output of the sensing element according to the concentration of the hydrogen gas during a period;
Inspection hydrogen gas concentration determination means for determining whether or not the hydrogen gas concentration detected by the inspection hydrogen gas concentration output detection means has reached the inspection hydrogen gas concentration;
A gas leakage alarm output means for outputting the gas leakage alarm signal when the inspection hydrogen gas concentration determination means determines that the inspection hydrogen gas concentration has reached the inspection hydrogen gas concentration;
A gas alarm device comprising:
請求項2または3に記載のガス警報器において、
前記点検用一酸化炭素ガス濃度が前記高濃度判定点に達したと前記点検用一酸化炭素ガス濃度判定手段が連続して複数回判定した場合または感知素子の高温加熱期間に検出されたメタンガス濃度がガス漏れ警報濃度レベルに達した場合、前記点検用水素ガス濃度出力検出手段の検出動作および点検用水素ガス濃度判定手段の判定動作を行わないことを特徴とするガス警報器。
The gas alarm according to claim 2 or 3,
The methane gas concentration detected when the inspection carbon monoxide gas concentration determination means continuously determines a plurality of times when the inspection carbon monoxide gas concentration reaches the high concentration determination point or during the high temperature heating period of the sensing element When the gas leak alarm concentration level is reached, the detection operation of the inspection hydrogen gas concentration output detection means and the determination operation of the inspection hydrogen gas concentration determination means are not performed.
請求項2から4のいずれか1項に記載のガス警報器において、
点検モード時に前記不完全燃焼警報出力手段および前記ガス漏れ警報出力手段から出力される警報信号は、通常モード時と形態の異なる警報信号であることを特徴とするガス警報器。
The gas alarm device according to any one of claims 2 to 4,
An alarm signal output from the incomplete combustion alarm output means and the gas leak alarm output means in the inspection mode is an alarm signal having a different form from that in the normal mode.
JP2007010732A 2007-01-19 2007-01-19 Gas alarm inspection method and gas alarm Active JP4917444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010732A JP4917444B2 (en) 2007-01-19 2007-01-19 Gas alarm inspection method and gas alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010732A JP4917444B2 (en) 2007-01-19 2007-01-19 Gas alarm inspection method and gas alarm

Publications (2)

Publication Number Publication Date
JP2008176655A true JP2008176655A (en) 2008-07-31
JP4917444B2 JP4917444B2 (en) 2012-04-18

Family

ID=39703616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010732A Active JP4917444B2 (en) 2007-01-19 2007-01-19 Gas alarm inspection method and gas alarm

Country Status (1)

Country Link
JP (1) JP4917444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186290A (en) * 2009-02-12 2010-08-26 Yazaki Corp Gas alarm unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448076A (en) * 2016-10-31 2017-02-22 广州市弘宇科技有限公司 Harmful gas alarm system and harmful gas alarm method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230664A (en) * 2001-02-02 2002-08-16 Yazaki Corp Gas leak alarm
JP2004038660A (en) * 2002-07-04 2004-02-05 New Cosmos Electric Corp Gas alarm
JP2004102652A (en) * 2002-09-10 2004-04-02 Osaka Gas Co Ltd Safety equipment
JP2004192530A (en) * 2002-12-13 2004-07-08 Yazaki Corp Gas alarm
JP2004240941A (en) * 2002-12-13 2004-08-26 Yazaki Corp Gas alarm device
JP2006084298A (en) * 2004-09-15 2006-03-30 Fis Inc Gas detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230664A (en) * 2001-02-02 2002-08-16 Yazaki Corp Gas leak alarm
JP2004038660A (en) * 2002-07-04 2004-02-05 New Cosmos Electric Corp Gas alarm
JP2004102652A (en) * 2002-09-10 2004-04-02 Osaka Gas Co Ltd Safety equipment
JP2004192530A (en) * 2002-12-13 2004-07-08 Yazaki Corp Gas alarm
JP2004240941A (en) * 2002-12-13 2004-08-26 Yazaki Corp Gas alarm device
JP2006084298A (en) * 2004-09-15 2006-03-30 Fis Inc Gas detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186290A (en) * 2009-02-12 2010-08-26 Yazaki Corp Gas alarm unit

Also Published As

Publication number Publication date
JP4917444B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4989369B2 (en) Gas alarm
JP2017138018A (en) Combustion system
JP2008176656A (en) Inspection method for gas alarm and gas alarm
JP2011137719A (en) Gas detector and apparatus equipped with the same
JP4917444B2 (en) Gas alarm inspection method and gas alarm
JP6178135B2 (en) Alarm
JP5104014B2 (en) Gas alarm
JP4210758B2 (en) Gas alarm
JP2007323118A (en) Gas alarm
JP5155212B2 (en) Gas alarm
JP2007206859A (en) Gas alarm
JP2008164309A (en) Co detector for combustor, and co alarm device
JP2022029134A (en) Diagnosis supporting device and diagnosing method
JP4092266B2 (en) Alarm check circuit
JP4917445B2 (en) Combined gas alarm device
JP4079963B2 (en) Alarm
JP5038482B2 (en) Alarm
JP4219304B2 (en) Gas alarm
KR100441678B1 (en) Device and method for preventing wear of gas sensors
JPH102554A (en) Gas intercepting device
JP6306338B2 (en) Gas alarm
JP4362437B2 (en) Alarm device
JP2006106850A (en) Alarm unit
CN109631094A (en) A kind of starting and detection method of commercial bakeware
JP6388692B2 (en) Alarm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250