JP2008176617A - Reference voltage generation circuit - Google Patents

Reference voltage generation circuit Download PDF

Info

Publication number
JP2008176617A
JP2008176617A JP2007010123A JP2007010123A JP2008176617A JP 2008176617 A JP2008176617 A JP 2008176617A JP 2007010123 A JP2007010123 A JP 2007010123A JP 2007010123 A JP2007010123 A JP 2007010123A JP 2008176617 A JP2008176617 A JP 2008176617A
Authority
JP
Japan
Prior art keywords
current source
junction
terminal
resistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007010123A
Other languages
Japanese (ja)
Inventor
Pascal Lore
パスカル ロレ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007010123A priority Critical patent/JP2008176617A/en
Publication of JP2008176617A publication Critical patent/JP2008176617A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reference voltage generation circuit which maintains PSRR in a low voltage operation and while preventing the increase in circuit area and compensating temperature. <P>SOLUTION: The reference voltage generation circuit includes a differential amplifier circuit 101, current sources Is1 to Is4, PN junctions D1 to D3, and resistors R2 to R4. The differential amplifier circuit 101 has an inverted input terminal connected to a positive terminal of the current source Is1 and has a non-inverted input terminal connected to a positive terminal of the current source Is2 and has an output terminal connected to respective control terminals of current sources Is1 to Is4, and respective negative terminals of current sources Is1 to Is4 are connected to a supply voltage, and the positive terminal of the current source Is1 is connected to a P-type area of the PN junction D1, and the positive terminal of the current source Is2 is connected to one end of the resistor R2, and the positive terminal of the current source Is3 is connected to one end of the resistor R3, and the positive terminal of the current source Is4 is connected to the other end of the resistor R3, and the other end of the resistor R2 is connected to a P-type area of the PN junction D2, and the other end of the resistor R3 is connected to a P-type area of the PN junction D3, and the resistor R4 has one end connected to a positive terminal of the current source Is3 and has the other end connected to a ground voltage, and respective N-type areas of PN junctions D1 to D3 are connected to the ground voltage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基準電圧発生回路、特に、低電圧動作する基準電圧発生回路に関する。   The present invention relates to a reference voltage generating circuit, and more particularly to a reference voltage generating circuit that operates at a low voltage.

従来のアナログ回路では、温度依存性及び電源電圧依存性の低いバイアス回路を実現するために、基準電圧発生回路として知られているバンドギャップリファレンス回路がよく使われている。   In a conventional analog circuit, a bandgap reference circuit known as a reference voltage generation circuit is often used in order to realize a bias circuit having low temperature dependency and low power supply voltage dependency.

ここで、図3は、従来の一般的なバンドギャップリファレンス回路を示している。このバンドキャップリファレンス回路2は、図3に示すように、入力電圧差(電圧Vb−電圧Va)に応じた制御電圧Vctrlを出力する差動増幅回路201、差動増幅回路201の入力電圧差の増加に応じて電流が減少する電流源として機能するPMOSトランジスタM1〜M3、ダイオードとして機能するベース端子及びコレクタ端子が相互に接続されたPNPバイポーラトランジスタQ1〜Q3、及び、抵抗R2、R3を備えている。差動増幅回路201は、反転入力端子がPMOSトランジスタM1のドレイン端子に、非反転入力端子がPMOSトランジスタM2のドレイン端子に接続され、出力端子がPMOSトランジスタM1〜M3のゲート端子に接続されている。更に、PMOSトランジスタM1〜M3夫々のソース端子が電源電圧に、PMOSトランジスタM1のドレイン端子がバイポーラトランジスタQ1のエミッタ端子に、PMOSトランジスタM2のドレイン端子が抵抗R2の一端に、PMOSトランジスタM3のドレイン端子が抵抗R3の一端に、抵抗R2の他端がバイポーラトランジスタQ2のエミッタ端子に、抵抗R3の他端がバイポーラトランジスタQ3のエミッタ端子に、バイポーラトランジスタQ1〜Q3夫々のベース端子が接地電圧に接続されている。   Here, FIG. 3 shows a conventional general band gap reference circuit. As shown in FIG. 3, the band cap reference circuit 2 outputs a control voltage Vctrl corresponding to an input voltage difference (voltage Vb−voltage Va), and an input voltage difference between the differential amplifier circuit 201 and PMOS transistors M1 to M3 functioning as current sources whose current decreases in accordance with increase, PNP bipolar transistors Q1 to Q3 whose base terminals and collector terminals function as diodes, and resistors R2 and R3 are provided. Yes. The differential amplifier circuit 201 has an inverting input terminal connected to the drain terminal of the PMOS transistor M1, a non-inverting input terminal connected to the drain terminal of the PMOS transistor M2, and an output terminal connected to the gate terminals of the PMOS transistors M1 to M3. . Further, the source terminals of the PMOS transistors M1 to M3 are the power supply voltage, the drain terminal of the PMOS transistor M1 is the emitter terminal of the bipolar transistor Q1, the drain terminal of the PMOS transistor M2 is one end of the resistor R2, and the drain terminal of the PMOS transistor M3. Is connected to one end of the resistor R3, the other end of the resistor R2 is connected to the emitter terminal of the bipolar transistor Q2, the other end of the resistor R3 is connected to the emitter terminal of the bipolar transistor Q3, and the base terminals of the bipolar transistors Q1 to Q3 are connected to the ground voltage. ing.

尚、PMOSトランジスタM1〜M3のトランジスタサイズは全て同じであり、バイポーラトランジスタQ2におけるPN接合の接合面積は、バイポーラトランジスタQ1におけるPN接合の接合面積のN倍であり、バイポーラトランジスタQ3におけるPN接合の接合面積は、バイポーラトランジスタQ1におけるPN接合の接合面積と同じである。   The transistor sizes of the PMOS transistors M1 to M3 are all the same, the junction area of the PN junction in the bipolar transistor Q2 is N times the junction area of the PN junction in the bipolar transistor Q1, and the junction of the PN junction in the bipolar transistor Q3. The area is the same as the junction area of the PN junction in bipolar transistor Q1.

図3に示すバンドキャップリファレンス回路2は、負の温度係数を有するバイポーラトランジスタQ3の順方向電圧の値に、バイポーラトランジスタQ1及びバイポーラトランジスタQ2の順方向電圧差(正の温度係数を有する)を所定数倍した値を加算するように構成されており、このような構成をとることによって、温度依存性の無い基準電圧(参照電圧)を発生する。尚、このバンドギャップリファレンス回路2では、ダイオードとして、バイポーラトランジスタが利用される。但し、上記バンドギャップリファレンス回路2は、各ダイオードの順方向電圧を加算する構成であるため、出力可能な基準電圧の最低値が約1.25Vとなる。   The band cap reference circuit 2 shown in FIG. 3 has a predetermined forward voltage difference (having a positive temperature coefficient) between the bipolar transistor Q1 and the bipolar transistor Q2 as a value of the forward voltage of the bipolar transistor Q3 having a negative temperature coefficient. A value multiplied by several times is added, and by taking such a configuration, a reference voltage (reference voltage) having no temperature dependency is generated. In the band gap reference circuit 2, a bipolar transistor is used as a diode. However, since the band gap reference circuit 2 is configured to add the forward voltage of each diode, the minimum value of the reference voltage that can be output is about 1.25V.

近年、プロセスの微細化が進んでおり、これに伴って、アナログ回路の電源電圧が小さくなり、1.2V以下の電源電圧が利用されるようになってきている。図3に示す従来のバンドギャップリファレンス回路2では、特に、電源電圧が1.2V以下の低電圧になると、通常動作をしなくなって温度補償ができなくなる可能性がある。このため、低電圧の電源電圧を用いるアナログ回路においても、温度補償を可能にする様々なバンドギャップリファレンス回路が提案されている(例えば、特許文献1、特許文献2、非特許文献1参照)。   In recent years, process miniaturization has progressed, and along with this, the power supply voltage of the analog circuit has been reduced, and a power supply voltage of 1.2 V or less has been used. In the conventional bandgap reference circuit 2 shown in FIG. 3, particularly when the power supply voltage becomes a low voltage of 1.2 V or less, there is a possibility that the normal operation is not performed and the temperature compensation cannot be performed. For this reason, various bandgap reference circuits that enable temperature compensation have been proposed even in an analog circuit that uses a low-voltage power supply voltage (see, for example, Patent Document 1, Patent Document 2, and Non-Patent Document 1).

ここで、図4は、低電圧の電源電圧で動作可能な従来のバンドギャップリファレンス回路の一例を示しており、図3に示すバンドギャップリファレンス回路2の出力電圧を、出力電流を分配して低電圧の基準電圧を生成するように構成されている。より具体的には、バンドギャップリファレンス回路3は、図4に示すように、図3に示すバンドギャップリファレンス回路2の各構成に加え、一端がPMOSトランジスタM3のドレイン端子(出力ノード)に、他端が接地電圧に接続された抵抗R4を備えて構成されている。   Here, FIG. 4 shows an example of a conventional bandgap reference circuit that can operate with a low power supply voltage. The output voltage of the bandgap reference circuit 2 shown in FIG. A voltage reference voltage is generated. More specifically, as shown in FIG. 4, the band gap reference circuit 3 has one end connected to the drain terminal (output node) of the PMOS transistor M3 in addition to the components of the band gap reference circuit 2 shown in FIG. A resistor R4 having an end connected to the ground voltage is provided.

次に、図4に示すバンドギャップリファレンス回路3の動作原理について説明する。   Next, the operation principle of the band gap reference circuit 3 shown in FIG. 4 will be described.

図4において、バイポーラトランジスタQ1の順方向電圧をVf、熱電圧をV、PMOSトランジスタM1に流れる電流の値をI1、トランジスタM1のトランスポート飽和電流をIsとすると、差動増幅回路201の反転入力端子の入力電圧Vaは、以下の数1で求められる。 4, assuming that the forward voltage of the bipolar transistor Q1 is Vf 1 , the thermal voltage is V T , the value of the current flowing in the PMOS transistor M1 is I1, and the transport saturation current of the transistor M1 is Is, the differential amplifier circuit 201 The input voltage Va of the inverting input terminal is obtained by the following formula 1.

[数1]
Va=Vf=V×{ln(I1/Is)}
[Equation 1]
Va = Vf 1 = V T × {ln (I1 / Is)}

一方、抵抗R2の抵抗値をr2、PMOSトランジスタM2に流れる電流をI2とすると、差動増幅回路201の非反転入力端子の入力電圧Vbは、以下の数2で求められる。   On the other hand, assuming that the resistance value of the resistor R2 is r2 and the current flowing through the PMOS transistor M2 is I2, the input voltage Vb of the non-inverting input terminal of the differential amplifier circuit 201 is obtained by the following equation (2).

[数2]
Vb=Vf+r2×I2=V×{ln(I2/(N×Is))}+r2×I2
[Equation 2]
Vb = Vf 2 + r2 × I2 = V T × {ln (I2 / (N × Is))} + r2 × I2

尚、上述したように、バイポーラトランジスタQ1とバイポーラトランジスタQ2のPN接合の接合面積は異なるが、バイポーラトランジスタQ1とバイポーラトランジスタQ2は同じ構造であるため、バイポーラトランジスタQ1とバイポーラトランジスタQ2を流れるトランスポート飽和電流Isは同じとなる。また、通常動作時、差動増幅回路201の非反転入力端子と反転入力端子は仮想短絡して夫々の入力電圧は同じになるため、通常動作時には数3の関係が得られる。   As described above, although the junction areas of the PN junctions of the bipolar transistor Q1 and the bipolar transistor Q2 are different, since the bipolar transistor Q1 and the bipolar transistor Q2 have the same structure, transport saturation flowing through the bipolar transistor Q1 and the bipolar transistor Q2 The current Is is the same. Further, since the non-inverting input terminal and the inverting input terminal of the differential amplifier circuit 201 are virtually short-circuited during normal operation and the respective input voltages are the same, the relationship of Equation 3 is obtained during normal operation.

[数3]
Va=Vb
[Equation 3]
Va = Vb

また、上述したように、PMOSトランジスタM1〜M3のトランジスタサイズは全て同じであることから、通常動作時は、PMOSトランジスタM1〜M3夫々のゲート・ソース電圧が同じになり、PMOSトランジスタM1〜M3に流れる電流I1〜I3は同じになる。   As described above, since the transistor sizes of the PMOS transistors M1 to M3 are all the same, during normal operation, the gate-source voltages of the PMOS transistors M1 to M3 are the same, and the PMOS transistors M1 to M3 have the same size. The flowing currents I1 to I3 are the same.

[数4]
I1=I2=I3=I
[Equation 4]
I1 = I2 = I3 = I

従って、数1〜数4から、バイポーラトランジスタQ1の順方向電圧Vfは以下の数5で求められる。 Therefore, the forward voltage Vf 1 of the bipolar transistor Q1 is obtained by the following equation 5 from the equations 1 to 4.

[数5]
Vf
=Vf+r2×I
=V×{ln(I1/Is)}
=V×{ln(I1/(N×Is))}+r2×I
[Equation 5]
Vf 1
= Vf 2 + r2 × I
= V T × {ln (I1 / Is)}
= V T × {ln (I1 / (N × Is))} + r2 × I

数5より、電流Iは以下の数6で求められる。   From Equation 5, the current I is obtained by the following Equation 6.

[数6]
I=(Vf−Vf)/r2=V×(lnN)×1/r2
[Equation 6]
I = (Vf 1 −Vf 2 ) / r2 = V T × (lnN) × 1 / r2

更に、抵抗R3の抵抗値をr3、抵抗R4の抵抗値をr4、バイポーラトランジスタQ3及び抵抗R3に流れる電流をI3a、抵抗R4に流れる電流をI3bとすると、バンドギャップリファレンス回路3の出力電圧である基準電圧Vrefは以下の数7で表される。   Furthermore, if the resistance value of the resistor R3 is r3, the resistance value of the resistor R4 is r4, the current flowing through the bipolar transistor Q3 and the resistor R3 is I3a, and the current flowing through the resistor R4 is I3b, this is the output voltage of the bandgap reference circuit 3. The reference voltage Vref is expressed by the following formula 7.

[数7]
Vref=r3×I3a+Vf=r4×I3b
[Equation 7]
Vref = r3 × I3a + Vf 3 = r4 × I3b

また、PMOSトランジスタM3に流れる電流I3=I3a+I3bから、以下の数8の関係が得られる。   Further, from the current I3 = I3a + I3b flowing through the PMOS transistor M3, the following relationship of Equation 8 is obtained.

[数8]
×(lnN)×1/r2=(Vref−Vf)/r3+Vref/r4
[Equation 8]
V T × (lnN) × 1 / r2 = (Vref−Vf 3 ) / r3 + Vref / r4

従って、バンドギャップリファレンス回路3の基準電圧Vrefは以下の数9で求められる。   Therefore, the reference voltage Vref of the bandgap reference circuit 3 is obtained by the following formula 9.

[数9]
Vref
={r4/(r3+r4)}×{Vf+(r3/r2)×V×lnN}
[Equation 9]
Vref
= {R4 / (r3 + r4)} × {Vf 3 + (r3 / r2) × V T × lnN}

ここで、Vfはダイオード(バイポーラトランジスタQ3)の順方向電圧であることから負の温度係数を持ち、熱電圧Vtは正の温度係数を持つため、数9より、N、r3及びr2を適当な値に設定することで、基準電圧Vrefの温度係数を0にすることが可能である。また、数9より、r3の値に応じてr4の値を適切に設定することによってVrefの値を設定できる。 Here, since Vf 3 is a forward voltage of the diode (bipolar transistor Q3) and has a negative temperature coefficient, and the thermal voltage Vt has a positive temperature coefficient, N, r3 and r2 are appropriately determined from Equation 9. By setting to a small value, the temperature coefficient of the reference voltage Vref can be made zero. Further, according to Equation 9, the value of Vref can be set by appropriately setting the value of r4 according to the value of r3.

ここで、{Vf+(r3/r2)×V×lnN}をVref0と規定すると、以下の数10が得られる。尚、Vref0は、抵抗R4が無い場合(図3の構成、r4=∞)の基準電圧に等しい。 Here, if {Vf 3 + (r 3 / r 2) × V T × lnN} is defined as Vref 0, the following formula 10 is obtained. Note that Vref0 is equal to the reference voltage when there is no resistor R4 (configuration in FIG. 3, r4 = ∞).

[数10]
Vref={r4/(r3+r4)}×Vref0
[Equation 10]
Vref = {r4 / (r3 + r4)} × Vref0

詳細には、一般的に、ダイオードの順方向電圧の温度係数は−1.6mV/℃であり、熱電圧Vtの温度係数は+0.087mV/℃であることから、数9において、N=8の場合、r3/r2を8.8に設定すれば、基準電圧Vrefの温度係数が0.0mV/℃になる。また、一般的に、ダイオードの順方向電圧は+0.7Vであり、熱電圧Vtは+0.025Vであることから、基準電圧Vrefの温度係数が0.0mV/℃の場合の電圧Vref0は1.15Vとなる。従って、r4の値を調整することによって、基準電圧Vrefを電圧Vref0(図3に示す基準電圧発生回路の基準電圧に相当)より小さく設定することができる。   In detail, since the temperature coefficient of the forward voltage of the diode is generally −1.6 mV / ° C. and the temperature coefficient of the thermal voltage Vt is +0.087 mV / ° C., in Equation 9, N = 8 In this case, if r3 / r2 is set to 8.8, the temperature coefficient of the reference voltage Vref becomes 0.0 mV / ° C. In general, since the forward voltage of the diode is +0.7 V and the thermal voltage Vt is +0.025 V, the voltage Vref0 when the temperature coefficient of the reference voltage Vref is 0.0 mV / ° C. is 1. 15V. Therefore, by adjusting the value of r4, the reference voltage Vref can be set smaller than the voltage Vref0 (corresponding to the reference voltage of the reference voltage generating circuit shown in FIG. 3).

特開2000−174600号公報JP 2000-174600 A 米国特許第6,642,778号明細書US Pat. No. 6,642,778 “A−Dコンバータ用フローティング参照電圧生成回路”、小川徹他、電子情報通信学会論文誌、Vol.J85−C、No.11、pp.1000−1003、2002年11月“Floating reference voltage generation circuit for AD converter”, Toru Ogawa et al., IEICE Transactions, Vol. J85-C, No. 11, pp. 1000-1003, November 2002

ところで、図4に示すバンドギャップリファレンス回路3では、低電圧動作時、例えば、電源電圧を1.2Vに、基準電圧Vrefを1.0Vに設定した場合、PMOSトランジスタM3のソース・ドレイン間電圧が0.2Vとなり、電圧マージンが小さくなる。電圧マージンが小さくなるほど、電源電圧のノイズが基準電圧に及ぼす影響が大きくなり、PSRRが劣化するため、基準電圧Vrefの値を小さくすることが望ましい。また、基準電圧Vrefを高く設定するためには、抵抗R4の抵抗値r4を大きく設定する必要があり、抵抗値が大きい抵抗ほど大きい回路面積が必要となる。従って、PSRR(Power Signal Rejection Ratio、電源電圧除去比)の維持及び回路面積の観点からは基準電圧Vrefの値を小さくすることが望ましい。   By the way, in the band gap reference circuit 3 shown in FIG. 4, when the power supply voltage is set to 1.2 V and the reference voltage Vref is set to 1.0 V, for example, when the power supply voltage is set to 1.0 V, the source-drain voltage of the PMOS transistor M3 is The voltage margin is reduced to 0.2V. As the voltage margin becomes smaller, the influence of the noise of the power supply voltage on the reference voltage becomes larger and PSRR deteriorates. Therefore, it is desirable to reduce the value of the reference voltage Vref. In order to set the reference voltage Vref high, the resistance value r4 of the resistor R4 needs to be set large, and a resistor with a larger resistance value requires a larger circuit area. Therefore, it is desirable to reduce the value of the reference voltage Vref in terms of maintaining PSRR (Power Signal Rejection Ratio) and circuit area.

しかしながら、図4に示すバンドギャップリファレンス回路3では、基準電圧Vrefを小さく設定する場合、抵抗R4の抵抗値r4を小さく設定する必要がある。この場合には、抵抗R4を流れる電流I3bの値が大きくなる。電流源であるPMOSトランジスタM3から供給される電流I3の値は一定であるため、I3=I3a+I3bの関係より、電流I3bの値が大きくなると、バイポーラトランジスタQ3を流れる電流I3aの値が小さくなる。特に、低電圧動作時は電流I3の値が小さいため、電流I3bの値が大きくなると、電流I3aの値が相当小さくなり、バイポーラトランジスタQ3の電流密度が変化する可能性がある。この場合には、バイポーラトランジスタQ3の温度係数が変化する場合がある。バイポーラトランジスタQ3の温度係数が変化すると、温度補償は非常に困難になる。   However, in the band gap reference circuit 3 shown in FIG. 4, when the reference voltage Vref is set to be small, it is necessary to set the resistance value r4 of the resistor R4 to be small. In this case, the value of the current I3b flowing through the resistor R4 increases. Since the value of the current I3 supplied from the PMOS transistor M3 which is a current source is constant, the value of the current I3a flowing through the bipolar transistor Q3 decreases as the value of the current I3b increases from the relationship of I3 = I3a + I3b. In particular, since the value of the current I3 is small during low voltage operation, if the value of the current I3b is large, the value of the current I3a is considerably small, and the current density of the bipolar transistor Q3 may change. In this case, the temperature coefficient of the bipolar transistor Q3 may change. If the temperature coefficient of the bipolar transistor Q3 changes, temperature compensation becomes very difficult.

即ち、従来の基準電圧発生回路では、低電圧動作時、PSRRの維持及び回路面積の増大防止のためには基準電圧Vrefの値を小さくする必要があり、温度補償のためには基準電圧Vrefの値を大きく設定する必要があるため、PSRRの維持及び回路面積の増大防止と、温度補償を同時に実現することが困難であった。このため、低電圧動作するアナログ回路において、低電圧動作、特に、1.25V以下の基準電圧Vrefを生成する場合に、PSRRの維持及び回路面積の増大防止と、温度補償を同時に実現可能な基準電圧発生回路が望まれている。   That is, in the conventional reference voltage generation circuit, during low voltage operation, the value of the reference voltage Vref needs to be reduced in order to maintain PSRR and prevent an increase in circuit area. Since it is necessary to set a large value, it has been difficult to simultaneously maintain PSRR, prevent an increase in circuit area, and perform temperature compensation. For this reason, in an analog circuit that operates at a low voltage, when generating a reference voltage Vref of 1.25 V or less, a reference that can simultaneously maintain PSRR and prevent an increase in circuit area and temperature compensation. A voltage generation circuit is desired.

本発明は上記の問題に鑑みてなされたものであり、その目的は、低電圧動作時に、PSRRの維持及び回路面積の増大防止と、温度補償を同時に実現可能な基準電圧発生回路を提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a reference voltage generation circuit capable of simultaneously maintaining PSRR and preventing an increase in circuit area and temperature compensation during low voltage operation. It is in.

上記目的を達成するための本発明に係る基準電圧発生回路は、入力電圧差に応じた制御電圧を出力する差動増幅回路と、前記差動増幅回路の前記入力電圧差の増加に応じて電流が減少する第1電流源、第2電流源、第3電流源及び第4電流源と、第1PN接合、第2PN接合及び第3PN接合と、第1抵抗、第2抵抗及び第3抵抗と、を備え、前記差動増幅回路は、反転入力端子が前記第1電流源のプラス端子に、非反転入力端子が前記第2電流源のプラス端子に、出力端子が前記第1電流源、前記第2電流源、前記第3電流源及び前記第4電流源夫々の制御端子に接続され、前記第1電流源、前記第2電流源、前記第3電流源及び前記第4電流源夫々のマイナス端子が第1電源電圧に接続され、前記第1電流源のプラス端子が前記第1PN接合のP型領域に接続され、前記第2電流源のプラス端子が前記第1抵抗の一端に接続され、前記第3電流源のプラス端子が前記第2抵抗の一端に接続され、前記第4電流源のプラス端子が前記第2抵抗の他端に接続され、前記第1抵抗の他端が前記第2PN接合のP型領域に接続され、前記第2抵抗の他端が前記第3PN接合のP型領域に接続され、前記第3抵抗の一端が前記第3電流源のプラス端子に、他端が前記第1電源電圧より低電圧の第2電源電圧に接続され、前記第1PN接合、前記第2PN接合及び前記第3PN接合夫々のN型領域が前記第2電源電圧に接続されてなることを第1の特徴とする。   In order to achieve the above object, a reference voltage generating circuit according to the present invention includes a differential amplifier circuit that outputs a control voltage corresponding to an input voltage difference, and a current that increases according to an increase in the input voltage difference of the differential amplifier circuit. The first current source, the second current source, the third current source, and the fourth current source, the first PN junction, the second PN junction, and the third PN junction, the first resistance, the second resistance, and the third resistance, The differential amplifier circuit has an inverting input terminal as a positive terminal of the first current source, a non-inverting input terminal as a positive terminal of the second current source, an output terminal as the first current source, and the first current source. 2 current sources, the third current source, and the fourth current source are connected to control terminals of each of the first current source, the second current source, the third current source, and the fourth current source. Is connected to the first power supply voltage, and the positive terminal of the first current source is connected to the first PN. A positive terminal of the second current source is connected to one end of the first resistor, a positive terminal of the third current source is connected to one end of the second resistor, and the fourth A positive terminal of a current source is connected to the other end of the second resistor, the other end of the first resistor is connected to a P-type region of the second PN junction, and the other end of the second resistor is connected to the third PN junction. Connected to a P-type region, one end of the third resistor is connected to the positive terminal of the third current source, the other end is connected to a second power supply voltage lower than the first power supply voltage, the first PN junction, A first feature is that N-type regions of the second PN junction and the third PN junction are connected to the second power supply voltage.

上記特徴の本発明に係る基準電圧発生回路は、前記第1電源電圧は、所定の正電圧であり、前記第2電源電圧は、接地電圧であることを第2の特徴とする。   The reference voltage generation circuit according to the present invention having the above characteristics is characterized in that the first power supply voltage is a predetermined positive voltage, and the second power supply voltage is a ground voltage.

上記特徴の本発明に係る基準電圧発生回路は、前記第1電流源、前記第2電流源、前記第3電流源及び前記第4電流源は、夫々、PMOSトランジスタを備え、前記PMOSトランジスタの各ソース端子が対応する前記各電流源のマイナス端子を、各ドレイン端子が対応する前記各電流源のプラス端子を、各ゲート端子が対応する前記各電流源の制御端子を夫々構成してなることを第3の特徴とする。   In the reference voltage generation circuit according to the present invention having the above characteristics, each of the first current source, the second current source, the third current source, and the fourth current source includes a PMOS transistor. The negative terminal of each current source corresponding to the source terminal, the positive terminal of each current source corresponding to each drain terminal, and the control terminal of each current source corresponding to each gate terminal are configured. The third feature.

上記特徴の本発明に係る基準電圧発生回路は、前記第1PN接合、前記第2PN接合及び前記第3PN接合は、夫々、ベース端子及びコレクタ端子が相互に接続されたPNPトランジスタを用いて構成され、前記PNPトランジスタの各エミッタ端子が対応する前記各PN接合のP型領域を、各ベース端子が対応する前記各PN接合のN型領域を夫々構成してなることを第4の特徴とする。   In the reference voltage generation circuit according to the present invention having the above characteristics, each of the first PN junction, the second PN junction, and the third PN junction is configured using a PNP transistor in which a base terminal and a collector terminal are connected to each other, A fourth feature is that a P-type region of each PN junction corresponding to each emitter terminal of the PNP transistor is configured as an N-type region of each PN junction corresponding to each base terminal.

上記特徴の本発明によれば、基準電圧発生回路を、基準電圧Vrefの値を小さく設定するための第3抵抗と、第3PN接合に流れる電流量を補償する第4電流源を備えて構成したので、低電圧動作時、基準電圧Vrefの値を小さく設定した場合に、第3PN接合の電流量の低下による電流密度の変化を防止することが可能になる。これによって、特に、低電圧動作時に、第3PN接合の温度係数の変化を防止でき、温度補償が可能になる。尚、低電圧動作時、基準電圧Vrefの値を小さく設定した場合には、電源電圧と基準電圧Vrefの間の電圧マージンが確保できるのでPSRRの劣化を防止でき、第3抵抗の抵抗値を小さくできるので回路面積の増大を防止できる。従って、上記特徴の本発明によれば、比較的簡単な回路構成で、特に、低電圧動作時に、PSRRの維持及び回路面積の増大防止と、温度補償を同時に実現可能な基準電圧発生回路を実現することができる。   According to the present invention having the above characteristics, the reference voltage generation circuit is configured to include the third resistor for setting the value of the reference voltage Vref to be small and the fourth current source for compensating the amount of current flowing through the third PN junction. Therefore, when the value of the reference voltage Vref is set to be small during low voltage operation, it is possible to prevent a change in current density due to a decrease in the current amount of the third PN junction. As a result, the temperature coefficient of the third PN junction can be prevented from changing, particularly during low voltage operation, and temperature compensation can be achieved. Note that, when the value of the reference voltage Vref is set to be small during low voltage operation, a voltage margin between the power supply voltage and the reference voltage Vref can be secured, so that the PSRR can be prevented from being deteriorated and the resistance value of the third resistor is made small. As a result, an increase in circuit area can be prevented. Therefore, according to the present invention having the above characteristics, a reference voltage generating circuit capable of simultaneously maintaining PSRR and preventing an increase in circuit area and temperature compensation with a relatively simple circuit configuration, particularly during low voltage operation. can do.

更に、上記特徴の本発明において、各電流源をPMOSトランジスタで構成し、各PN接合をPNPトランジスタで構成すれば、通常のCMOSプロセスで本発明に係る基準電圧発生回路を作成することが可能になる。   Furthermore, in the present invention having the above characteristics, if each current source is composed of a PMOS transistor and each PN junction is composed of a PNP transistor, the reference voltage generating circuit according to the present invention can be created by a normal CMOS process. Become.

以下、本発明に係る基準電圧発生回路(以下、適宜「本発明回路」と略称する)の実施形態を図面に基づいて説明する。   Embodiments of a reference voltage generation circuit according to the present invention (hereinafter, abbreviated as “the circuit of the present invention” as appropriate) will be described with reference to the drawings.

〈第1実施形態〉
本発明回路の第1実施形態について、図1を基に説明する。
<First Embodiment>
A first embodiment of the circuit of the present invention will be described with reference to FIG.

先ず、本発明回路の構成について、図1を基に説明する。ここで、図1は、本発明回路の基本構成例を示す概略回路図である。図1に示すように、本発明回路1は、入力電圧差に応じた制御電圧Vctrlを出力する差動増幅回路101、差動増幅回路101の入力電圧差の増加に応じて電流が減少する電流源Is1(第1電流源)、電流源Is2(第2電流源)、電流源Is3(第3電流源)及び電流源Is4(第4電流源)、PN接合D1(第1PN接合)、PN接合D2(第2PN接合)及びPN接合D3(第3PN接合)、抵抗R2(第1抵抗)、抵抗R3(第2抵抗)及び抵抗R4(第3抵抗)を備えている。更に、差動増幅回路101は、反転入力端子が電流源Is1のプラス端子に、非反転入力端子が電流源Is2のプラス端子に、出力端子が電流源Is1、電流源Is2、電流源Is3及び電流源Is4夫々の制御端子に接続され、電流源Is1、電流源Is2、電流源Is3及び電流源Is4夫々のマイナス端子が第1電源電圧に接続され、電流源Is1のプラス端子がPN接合D1のP型領域に接続され、電流源Is2のプラス端子が抵抗R2の一端に接続され、電流源Is3のプラス端子が抵抗R3の一端に接続され、電流源Is4のプラス端子が抵抗R3の他端に接続され、抵抗R2の他端がPN接合D2のP型領域に接続され、抵抗R3の他端がPN接合D3のP型領域に接続され、抵抗R4の一端が電流源Is3のプラス端子に、他端が第1電源電圧より低電圧の第2電源電圧に接続され、PN接合D1、PN接合D2及びPN接合D3夫々のN型領域が第2電源電圧に接続されている。   First, the configuration of the circuit of the present invention will be described with reference to FIG. Here, FIG. 1 is a schematic circuit diagram showing a basic configuration example of the circuit of the present invention. As shown in FIG. 1, the circuit 1 of the present invention includes a differential amplifier circuit 101 that outputs a control voltage Vctrl corresponding to an input voltage difference, and a current that decreases as the input voltage difference of the differential amplifier circuit 101 increases. Source Is1 (first current source), current source Is2 (second current source), current source Is3 (third current source) and current source Is4 (fourth current source), PN junction D1 (first PN junction), PN junction D2 (second PN junction), PN junction D3 (third PN junction), resistor R2 (first resistor), resistor R3 (second resistor), and resistor R4 (third resistor). Further, in the differential amplifier circuit 101, the inverting input terminal is the plus terminal of the current source Is1, the non-inverting input terminal is the plus terminal of the current source Is2, the output terminals are the current source Is1, the current source Is2, the current source Is3, and the current. The negative terminals of the current source Is1, the current source Is2, the current source Is3, and the current source Is4 are connected to the first power supply voltage, and the positive terminal of the current source Is1 is connected to the P of the PN junction D1. The positive terminal of the current source Is2 is connected to one end of the resistor R2, the positive terminal of the current source Is3 is connected to one end of the resistor R3, and the positive terminal of the current source Is4 is connected to the other end of the resistor R3. The other end of the resistor R2 is connected to the P-type region of the PN junction D2, the other end of the resistor R3 is connected to the P-type region of the PN junction D3, and one end of the resistor R4 is connected to the positive terminal of the current source Is3. End connected from the first power supply voltage to the second power supply voltage of the low voltage, PN junction D1, PN junction D2 and the PN junction D3 respective N-type region is connected to the second power supply voltage.

より詳しくは、本実施形態の本発明回路1は、各電流源Is1〜Is3の構成が同じであり、各電流源Is1〜Is3の制御端子に同じ制御電圧Vctrlが供給されるように構成されているため、電流源Is1〜Is3は同じ大きさの電流を回路に供給する。また、PN接合D1とPN接合D3の接合面積は同じであり、PN接合D2の接合面積はPN接合D1の接合面積のN倍に設定されている。また、本実施形態では、第1電源電圧としてアナログ回路の電源電圧を、第2電源電圧として接地電圧を想定しているが、これに限るものではない。   More specifically, the circuit 1 of the present embodiment of the present embodiment has the same configuration of the current sources Is1 to Is3, and is configured such that the same control voltage Vctrl is supplied to the control terminals of the current sources Is1 to Is3. Therefore, the current sources Is1 to Is3 supply the same current to the circuit. Moreover, the junction area of PN junction D1 and PN junction D3 is the same, and the junction area of PN junction D2 is set to N times the junction area of PN junction D1. In this embodiment, the power supply voltage of the analog circuit is assumed as the first power supply voltage and the ground voltage is assumed as the second power supply voltage. However, the present invention is not limited to this.

次に、本発明回路1の動作原理につて図1を基に説明する。   Next, the operation principle of the circuit 1 of the present invention will be described with reference to FIG.

図1において、PN接合D1の順方向電圧をVf、熱電圧をV、電流源Is1によって供給される電流をI1、各電流源のトランスポート飽和電流をIsとすると、差動増幅回路101の反転入力端子の入力電圧Vaは以下の数11で求められる。 In FIG. 1, when the forward voltage of the PN junction D1 is Vf 1 , the thermal voltage is V T , the current supplied by the current source Is1 is I1, and the transport saturation current of each current source is Is, the differential amplifier circuit 101 The input voltage Va at the inverting input terminal is obtained by the following equation (11).

[数11]
Va=Vf=V×{ln(I1/Is)}
[Equation 11]
Va = Vf 1 = V T × {ln (I1 / Is)}

一方、抵抗R2の抵抗値をr2、電流源Is2に流れる電流をI2とすると、差動増幅回路101の非反転入力端子の入力電圧Vbは、以下の数12で求められる。   On the other hand, assuming that the resistance value of the resistor R2 is r2 and the current flowing through the current source Is2 is I2, the input voltage Vb of the non-inverting input terminal of the differential amplifier circuit 101 is obtained by the following equation (12).

[数12]
Vb=Vf+r2×I2=V×{ln(I2/(N×Is))}+r2×I2
[Equation 12]
Vb = Vf 2 + r2 × I2 = V T × {ln (I2 / (N × Is))} + r2 × I2

また、通常動作時、差動増幅回路101の反転入力端子と非反転入力端子は仮想短絡して夫々の入力電圧は同じになるため、数13の関係が得られる。   Further, during normal operation, the inverting input terminal and the non-inverting input terminal of the differential amplifier circuit 101 are virtually short-circuited and the respective input voltages are the same, and therefore the relationship of Equation 13 is obtained.

[数13]
Va=Vb
[Equation 13]
Va = Vb

尚、上述したように、各電流源Is1〜Is3は同じ構成であり、同じ制御電圧Vctrlが供給されているため、各電流源Is1〜Is3によって供給される電流I1〜I3の大きさは同じになる。   As described above, since the current sources Is1 to Is3 have the same configuration and the same control voltage Vctrl is supplied, the magnitudes of the currents I1 to I3 supplied by the current sources Is1 to Is3 are the same. Become.

[数14]
I1=I2=I3=I
[Formula 14]
I1 = I2 = I3 = I

従って、数11〜数14から、PN接合D1の順方向電圧Vfは以下の数15で求められる。 Therefore, from the formulas 11 to 14, the forward voltage Vf 1 of the PN junction D1 is obtained by the following formula 15.

[数15]
Vf
=Vf+r2×I
=V×{ln(I1/Is)}
=V×{ln(I1/(N×Is))}+r2×I
[Equation 15]
Vf 1
= Vf 2 + r2 × I
= V T × {ln (I1 / Is)}
= V T × {ln (I1 / (N × Is))} + r2 × I

数15より、電流Iは以下の数16で求められる。   From Equation 15, the current I is obtained by the following Equation 16.

[数16]
I=(Vf−Vf)/r2=V×(lnN)×1/r2
[Equation 16]
I = (Vf 1 −Vf 2 ) / r2 = V T × (lnN) × 1 / r2

更に、抵抗R3の抵抗値をr3、抵抗R4の抵抗値をr4、PN接合D3及び抵抗R3に流れる電流をI3a、抵抗R4に流れる電流をI3bとすると、本発明回路1の出力電圧である基準電圧Vrefは以下の数17で表される。   Further, if the resistance value of the resistor R3 is r3, the resistance value of the resistor R4 is r4, the current flowing through the PN junction D3 and the resistor R3 is I3a, and the current flowing through the resistor R4 is I3b, the reference voltage that is the output voltage of the circuit 1 of the present invention. The voltage Vref is expressed by Equation 17 below.

[数17]
Vref=r3×I3a+Vf=r4×I3b
[Equation 17]
Vref = r3 × I3a + Vf 3 = r4 × I3b

また、電流源Is3に流れる電流I3=I3a+I3bから、以下の数18の関係が得られる。   Further, from the current I3 = I3a + I3b flowing through the current source Is3, the following relationship of Expression 18 is obtained.

[数18]
×(lnN)×1/r2=(Vref−Vf)/r3+Vref/r4
[Equation 18]
V T × (lnN) × 1 / r2 = (Vref−Vf 3 ) / r3 + Vref / r4

従って、本発明回路1の基準電圧Vrefは以下の数19で求められる。   Therefore, the reference voltage Vref of the circuit 1 of the present invention is obtained by the following equation (19).

[数19]
Vref
={r4/(r3+r4)}×{Vf+(r3/r2)×V×lnN}
={r4/(r3+r4)}×Vref0
[Equation 19]
Vref
= {R4 / (r3 + r4)} × {Vf 3 + (r3 / r2) × V T × lnN}
= {R4 / (r3 + r4)} * Vref0

ここで、Vref0={Vf+(r3/r2)×V×lnN}であり、Vref0は図3に示す基準電圧発生回路の基準電圧に相当する。尚、数19において、VfはPN接合D3の順方向電圧であることから負の温度係数を持ち、熱電圧Vtは正の温度係数を持つため、N、r3及びr2を適当な値に設定することで、基準電圧Vrefの温度係数を0にすることができる。また、数19より、r3の値に応じてr4の値を適切に設定することによってVrefの値を設定できる。 Here, Vref0 = a {Vf 3 + (r3 / r2 ) × V T × lnN}, Vref0 corresponds to the reference voltage of the reference voltage generating circuit shown in FIG. In Equation 19, since Vf 3 is a forward voltage of the PN junction D3, it has a negative temperature coefficient, and the thermal voltage Vt has a positive temperature coefficient, so N, r3, and r2 are set to appropriate values. By doing so, the temperature coefficient of the reference voltage Vref can be made zero. Further, from the equation 19, the value of Vref can be set by appropriately setting the value of r4 according to the value of r3.

本発明回路1では、電流源Is3から供給される電流I3の一部が抵抗R4に流れる。ここで、電流源Is4の構成を調整し、電流源Is4からPN接合D3に供給される電流I4を抵抗R4に流れる電流I3bと同じ大きさに設定すれば、PN接合D3を流れる電流I3dを、他のPN接合D1に流れる電流I1(=I)及びPN接合D2に流れる電流I2(=I)と等しくすることが可能になる。この場合のPN接合D3に流れる電流I3dは以下の数20で求められる。   In the circuit 1 of the present invention, a part of the current I3 supplied from the current source Is3 flows through the resistor R4. Here, if the configuration of the current source Is4 is adjusted and the current I4 supplied from the current source Is4 to the PN junction D3 is set to the same magnitude as the current I3b flowing through the resistor R4, the current I3d flowing through the PN junction D3 is The current I1 (= I) flowing through the other PN junction D1 and the current I2 (= I) flowing through the PN junction D2 can be made equal. In this case, the current I3d flowing through the PN junction D3 is obtained by the following equation (20).

[数20]
I3d=I3a+I4=(I3−I3b)+I4=I
[Equation 20]
I3d = I3a + I4 = (I3-I3b) + I4 = I

〈第2実施形態〉
本発明回路の第2実施形態について、図2を基に説明する。本実施形態では、上記第1実施形態において、各電流源Is1〜Is4としてPMOSトランジスタM1〜M4を、各PN接合D1〜D3としてPNPトランジスタ(バイポーラトランジスタ)Q1〜Q3を用いた場合について説明する。
Second Embodiment
A second embodiment of the circuit of the present invention will be described with reference to FIG. In the present embodiment, a case will be described in which PMOS transistors M1 to M4 are used as the current sources Is1 to Is4 and PNP transistors (bipolar transistors) Q1 to Q3 are used as the PN junctions D1 to D3 in the first embodiment.

図2は、本実施形態の本発明回路1の構成を示す概略回路図である。本実施形態の本発明回路1において、電流源Is1は、PMOSトランジスタM1を備え、PMOSトランジスタM1のソース端子が電流源Is1のマイナス端子を、ドレイン端子が電流源Is1のプラス端子を、ゲート端子が電流源Is1の制御端子を夫々構成している。同様に、電流源Is2は、PMOSトランジスタM2を備え、PMOSトランジスタM2のソース端子が電流源Is2のマイナス端子を、ドレイン端子が電流源Is2のプラス端子を、ゲート端子が電流源Is2の制御端子を夫々構成している。電流源Is3は、PMOSトランジスタM3を備え、PMOSトランジスタM3のソース端子が電流源Is3のマイナス端子を、ドレイン端子が電流源Is3のプラス端子を、ゲート端子が電流源Is3の制御端子を夫々構成している。電流源Is4は、PMOSトランジスタM4を備え、PMOSトランジスタM4のソース端子が電流源Is4のマイナス端子を、ドレイン端子が電流源Is4のプラス端子を、ゲート端子が電流源Is4の制御端子を夫々構成している。   FIG. 2 is a schematic circuit diagram showing the configuration of the inventive circuit 1 of the present embodiment. In the circuit 1 of the present invention of the present embodiment, the current source Is1 includes a PMOS transistor M1, the source terminal of the PMOS transistor M1 is the minus terminal of the current source Is1, the drain terminal is the plus terminal of the current source Is1, and the gate terminal is Each control terminal of the current source Is1 is configured. Similarly, the current source Is2 includes a PMOS transistor M2, the source terminal of the PMOS transistor M2 is the minus terminal of the current source Is2, the drain terminal is the plus terminal of the current source Is2, and the gate terminal is the control terminal of the current source Is2. Each is composed. The current source Is3 includes a PMOS transistor M3. The source terminal of the PMOS transistor M3 constitutes the minus terminal of the current source Is3, the drain terminal constitutes the plus terminal of the current source Is3, and the gate terminal constitutes the control terminal of the current source Is3. ing. The current source Is4 includes a PMOS transistor M4. The source terminal of the PMOS transistor M4 constitutes the minus terminal of the current source Is4, the drain terminal constitutes the plus terminal of the current source Is4, and the gate terminal constitutes the control terminal of the current source Is4. ing.

尚、本実施形態において、PMOSトランジスタM1〜M3は、同じ制御電圧Vctrlによって同じ大きさの電流を回路に供給するように構成するため、トランジスタサイズが同じに設定されている。また、PMOSトランジスタM4は、抵抗R4を流れる電流I3bと同じ大きさの電流を回路に供給するように、トランジスタサイズを設定する。   In the present embodiment, the PMOS transistors M1 to M3 are configured to supply the same current to the circuit by the same control voltage Vctrl, so that the transistor sizes are set to be the same. The PMOS transistor M4 sets the transistor size so that a current having the same magnitude as the current I3b flowing through the resistor R4 is supplied to the circuit.

更に、本実施形態の本発明回路1において、PN接合D1は、ベース端子及びコレクタ端子が相互に接続されたPNPトランジスタQ1を用いて構成され、PNPトランジスタQ1のエミッタ端子がPN接合D1のP型領域を、ベース端子がPN接合D1のN型領域を夫々構成している。同様に、PN接合D2は、ベース端子及びコレクタ端子が相互に接続されたPNPトランジスタQ2を用いて構成され、PNPトランジスタQ2のエミッタ端子がPN接合D2のP型領域を、ベース端子がPN接合D2のN型領域を夫々構成している。PN接合D3は、ベース端子及びコレクタ端子が相互に接続されたPNPトランジスタQ3を用いて構成され、PNPトランジスタQ3のエミッタ端子がPN接合D3のP型領域を、ベース端子がPN接合D3のN型領域を夫々構成している。   Furthermore, in the inventive circuit 1 of the present embodiment, the PN junction D1 is configured using a PNP transistor Q1 whose base terminal and collector terminal are connected to each other, and the emitter terminal of the PNP transistor Q1 is a P-type of the PN junction D1. Each of the regions constitutes an N-type region whose base terminal is a PN junction D1. Similarly, the PN junction D2 is configured using a PNP transistor Q2 having a base terminal and a collector terminal connected to each other. The emitter terminal of the PNP transistor Q2 is a P-type region of the PN junction D2, and the base terminal is a PN junction D2. N-type regions are respectively configured. The PN junction D3 includes a PNP transistor Q3 having a base terminal and a collector terminal connected to each other. The emitter terminal of the PNP transistor Q3 is a P-type region of the PN junction D3, and the base terminal is an N-type of the PN junction D3. Each area is composed.

表1は、図4に示す従来の基準電圧発生回路3及び本発明回路1において、PSRRの値及び温度補償の有無についての比較結果の一例を示している。尚、比較にあたって、従来の基準電圧発生回路3と本発明回路1の各パラメータについて、PMOSトランジスタM1〜M4のWを5μm、Lを1μm、抵抗R2の抵抗値r2を7.9kΩ、抵抗R3の抵抗値r3を47kΩ、抵抗R4抵抗値r4を70kΩ、PNPトランジスタQ1、Q3のWを10μm、Lを10μm(面積=10−10)、Nを24(PNPトランジスタQ2は、W=10μm、L=10μmのPNPトランジスタ24個を並列に接続して構成している)、電流I(=I1=I2=I3=I4)を10μAに設定した。 Table 1 shows an example of a comparison result regarding the value of PSRR and the presence or absence of temperature compensation in the conventional reference voltage generating circuit 3 and the circuit 1 of the present invention shown in FIG. For comparison, for each parameter of the conventional reference voltage generation circuit 3 and the circuit 1 of the present invention, the W of the PMOS transistors M1 to M4 is 5 μm, L is 1 μm, the resistance value r2 of the resistor R2 is 7.9 kΩ, and the resistance R3 Resistance value r3 is 47 kΩ, resistance R4 resistance value r4 is 70 kΩ, W of PNP transistors Q1 and Q3 is 10 μm, L is 10 μm (area = 10 −10 m 2 ), N is 24 (PNP transistor Q2 has W = 10 μm, 24 PNP transistors of L = 10 μm are connected in parallel), and the current I (= I1 = I2 = I3 = I4) is set to 10 μA.

Figure 2008176617
Figure 2008176617

表1の結果より、本発明回路1は、図4に示す従来の基準電圧発生回路3と比較して、低電圧動作時に、温度補償可能であり、且つ、PSRRの値が良好に維持されている。   From the results shown in Table 1, the circuit 1 of the present invention is capable of temperature compensation at the time of low voltage operation and maintains a good value of PSRR as compared with the conventional reference voltage generating circuit 3 shown in FIG. Yes.

本発明に係る基準電圧発生回路の基本構成例を示す概略回路図1 is a schematic circuit diagram showing a basic configuration example of a reference voltage generating circuit according to the present invention. 本発明に係る基準電圧発生回路の一構成例を示す概略回路図1 is a schematic circuit diagram showing a configuration example of a reference voltage generating circuit according to the present invention. 従来技術に係る基準電圧発生回路の一構成例を示す概略回路図Schematic circuit diagram showing a configuration example of a reference voltage generation circuit according to the prior art 従来技術に係る基準電圧発生回路の一構成例を示す概略回路図Schematic circuit diagram showing a configuration example of a reference voltage generation circuit according to the prior art

符号の説明Explanation of symbols

1 本発明に係る基準電圧発生回路
2 従来技術に係る基準電圧発生回路
3 従来技術に係る基準電圧発生回路
101 差動増幅回路
201 差動増幅回路
Is1 電流源
Is2 電流源
Is3 電流源
Is4 電流源
M1 PMOSトランジスタ
M2 PMOSトランジスタ
M3 PMOSトランジスタ
M4 PMOSトランジスタ
R2 抵抗
R3 抵抗
R4 抵抗
D1 PN接合
D2 PN接合
D3 PN接合
Q1 バイポーラトランジスタ
Q2 バイポーラトランジスタ
Q3 バイポーラトランジスタ
DESCRIPTION OF SYMBOLS 1 Reference voltage generation circuit 2 which concerns on this invention Reference voltage generation circuit 3 which concerns on a prior art Reference voltage generation circuit 101 which concerns on a prior art Differential amplifier circuit 201 Differential amplifier circuit Is1 Current source Is2 Current source Is3 Current source Is4 Current source M1 PMOS transistor M2 PMOS transistor M3 PMOS transistor M4 PMOS transistor R2 Resistor R3 Resistor R4 Resistor D1 PN junction D2 PN junction D3 PN junction Q1 Bipolar transistor Q2 Bipolar transistor Q3 Bipolar transistor

Claims (4)

入力電圧差に応じた制御電圧を出力する差動増幅回路と、
前記差動増幅回路の前記入力電圧差の増加に応じて電流が減少する第1電流源、第2電流源、第3電流源及び第4電流源と、
第1PN接合、第2PN接合及び第3PN接合と、
第1抵抗、第2抵抗及び第3抵抗と、を備え、
前記差動増幅回路は、反転入力端子が前記第1電流源のプラス端子に、非反転入力端子が前記第2電流源のプラス端子に、出力端子が前記第1電流源、前記第2電流源、前記第3電流源及び前記第4電流源夫々の制御端子に接続され、
前記第1電流源、前記第2電流源、前記第3電流源及び前記第4電流源夫々のマイナス端子が第1電源電圧に接続され、
前記第1電流源のプラス端子が前記第1PN接合のP型領域に接続され、
前記第2電流源のプラス端子が前記第1抵抗の一端に接続され、
前記第3電流源のプラス端子が前記第2抵抗の一端に接続され、
前記第4電流源のプラス端子が前記第2抵抗の他端に接続され、
前記第1抵抗の他端が前記第2PN接合のP型領域に接続され、
前記第2抵抗の他端が前記第3PN接合のP型領域に接続され、
前記第3抵抗の一端が前記第3電流源のプラス端子に、他端が前記第1電源電圧より低電圧の第2電源電圧に接続され、
前記第1PN接合、前記第2PN接合及び前記第3PN接合夫々のN型領域が前記第2電源電圧に接続されてなることを特徴とする基準電圧発生回路。
A differential amplifier circuit that outputs a control voltage according to the input voltage difference;
A first current source, a second current source, a third current source, and a fourth current source, the current of which decreases as the input voltage difference of the differential amplifier circuit increases;
A first PN junction, a second PN junction, and a third PN junction;
A first resistor, a second resistor, and a third resistor;
In the differential amplifier circuit, an inverting input terminal is a plus terminal of the first current source, a non-inverting input terminal is a plus terminal of the second current source, and an output terminal is the first current source and the second current source. , Connected to control terminals of the third current source and the fourth current source,
A negative terminal of each of the first current source, the second current source, the third current source, and the fourth current source is connected to a first power supply voltage;
A positive terminal of the first current source is connected to a P-type region of the first PN junction;
A positive terminal of the second current source is connected to one end of the first resistor;
A positive terminal of the third current source is connected to one end of the second resistor;
A positive terminal of the fourth current source is connected to the other end of the second resistor;
The other end of the first resistor is connected to the P-type region of the second PN junction;
The other end of the second resistor is connected to the P-type region of the third PN junction;
One end of the third resistor is connected to a positive terminal of the third current source, and the other end is connected to a second power supply voltage lower than the first power supply voltage;
An N-type region of each of the first PN junction, the second PN junction, and the third PN junction is connected to the second power supply voltage.
前記第1電源電圧は、所定の正電圧であり、前記第2電源電圧は、接地電圧であることを特徴とする請求項1に記載の基準電圧発生回路。   The reference voltage generation circuit according to claim 1, wherein the first power supply voltage is a predetermined positive voltage, and the second power supply voltage is a ground voltage. 前記第1電流源、前記第2電流源、前記第3電流源及び前記第4電流源は、夫々、PMOSトランジスタを備え、前記PMOSトランジスタの各ソース端子が対応する前記各電流源のマイナス端子を、各ドレイン端子が対応する前記各電流源のプラス端子を、各ゲート端子が対応する前記各電流源の制御端子を夫々構成してなることを特徴とする請求項1または2に記載の基準電圧発生回路。   Each of the first current source, the second current source, the third current source, and the fourth current source includes a PMOS transistor, and each source terminal of the PMOS transistor corresponds to a minus terminal of each current source. 3. The reference voltage according to claim 1, wherein a positive terminal of each of the current sources to which each drain terminal corresponds and a control terminal of each of the current sources to which each gate terminal corresponds are configured. Generation circuit. 前記第1PN接合、前記第2PN接合及び前記第3PN接合は、夫々、ベース端子及びコレクタ端子が相互に接続されたPNPトランジスタを用いて構成され、前記PNPトランジスタの各エミッタ端子が対応する前記各PN接合のP型領域を、各ベース端子が対応する前記各PN接合のN型領域を夫々構成してなることを特徴とする請求項1〜3の何れか1項に記載の基準電圧発生回路。
The first PN junction, the second PN junction, and the third PN junction are each configured by using a PNP transistor in which a base terminal and a collector terminal are connected to each other, and each of the emitter terminals of the PNP transistor corresponds to the corresponding PN. 4. The reference voltage generating circuit according to claim 1, wherein a P-type region of the junction is configured as an N-type region of each of the PN junctions to which each base terminal corresponds.
JP2007010123A 2007-01-19 2007-01-19 Reference voltage generation circuit Pending JP2008176617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010123A JP2008176617A (en) 2007-01-19 2007-01-19 Reference voltage generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010123A JP2008176617A (en) 2007-01-19 2007-01-19 Reference voltage generation circuit

Publications (1)

Publication Number Publication Date
JP2008176617A true JP2008176617A (en) 2008-07-31

Family

ID=39703585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010123A Pending JP2008176617A (en) 2007-01-19 2007-01-19 Reference voltage generation circuit

Country Status (1)

Country Link
JP (1) JP2008176617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115617113A (en) * 2022-11-08 2023-01-17 电子科技大学 Voltage reference source suitable for extremely low temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206633A (en) * 2002-12-26 2004-07-22 Renesas Technology Corp Semiconductor integrated circuit and electronic circuit
JP2005128939A (en) * 2003-10-27 2005-05-19 Fujitsu Ltd Semiconductor integrated circuit
JP2005537528A (en) * 2001-12-06 2005-12-08 スカイワークス ソリューションズ、 インコーポレイテッド Low power band gap circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537528A (en) * 2001-12-06 2005-12-08 スカイワークス ソリューションズ、 インコーポレイテッド Low power band gap circuit
JP2004206633A (en) * 2002-12-26 2004-07-22 Renesas Technology Corp Semiconductor integrated circuit and electronic circuit
JP2005128939A (en) * 2003-10-27 2005-05-19 Fujitsu Ltd Semiconductor integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115617113A (en) * 2022-11-08 2023-01-17 电子科技大学 Voltage reference source suitable for extremely low temperature
CN115617113B (en) * 2022-11-08 2023-03-10 电子科技大学 Voltage reference source suitable for extremely low temperature

Similar Documents

Publication Publication Date Title
US10152078B2 (en) Semiconductor device having voltage generation circuit
JP4817825B2 (en) Reference voltage generator
JP4616281B2 (en) Low offset band gap voltage reference
US10296026B2 (en) Low noise reference voltage generator and load regulator
KR101829416B1 (en) Compensated bandgap
US9678526B2 (en) Current generation circuit, and bandgap reference circuit and semiconductor device including the same
JP2008108009A (en) Reference voltage generation circuit
US8786271B2 (en) Circuit and method for generating reference voltage and reference current
US8791685B2 (en) Bandgap reference voltage generator
JP5326648B2 (en) Reference signal generation circuit
TWI694321B (en) Current circuit for providing adjustable constant current
JP2006262348A (en) Semiconductor circuit
JP2009059149A (en) Reference voltage circuit
US9141124B1 (en) Bandgap reference circuit
US10379567B2 (en) Bandgap reference circuitry
US7944272B2 (en) Constant current circuit
TWI716323B (en) Voltage generator
JP2008271503A (en) Reference current circuit
US11662761B2 (en) Reference voltage circuit
JP2008176617A (en) Reference voltage generation circuit
JP6136480B2 (en) Bandgap reference circuit
JP5957987B2 (en) Bandgap reference circuit
JP2006065439A (en) Band gap type reference voltage generating circuit
JP4445916B2 (en) Band gap circuit
JP2020123184A (en) Reference voltage source circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Effective date: 20110817

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220