JP2008176535A - Numerical analysis method in tube making process - Google Patents
Numerical analysis method in tube making process Download PDFInfo
- Publication number
- JP2008176535A JP2008176535A JP2007008852A JP2007008852A JP2008176535A JP 2008176535 A JP2008176535 A JP 2008176535A JP 2007008852 A JP2007008852 A JP 2007008852A JP 2007008852 A JP2007008852 A JP 2007008852A JP 2008176535 A JP2008176535 A JP 2008176535A
- Authority
- JP
- Japan
- Prior art keywords
- calculation
- making process
- roll
- numerical analysis
- analysis method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Abstract
Description
本発明は、電縫鋼管の造管工程を数値解析法により効率良く計算する方法に関するものである。 The present invention relates to a method for efficiently calculating a pipe making process of an electric resistance steel pipe by a numerical analysis method.
電縫鋼管は、コイルから払い出された鋼鈑を多数の成型ロールを用いて断面円形にロールフォーミングし、エッジ間を電縫溶接する方法で製造されている。各成型ロールの形状や加圧力などの成形条件を適切に設定しないと、成形ロール間で鋼鈑のスプリングバック等が発生し、電縫溶接部に段差が生じたり、真円度が低下したりする可能性がある。従来は主として試行錯誤により各成形スタンドの成形条件を調整していたが、最適条件は鋼鈑の鋼種やサイズによって変化するため、数値解析によって成形工程中の形状変化や内部応力を事前に正確に計算することができれば、試行錯誤の回数が減少され大幅なコストダウンが可能となる。 The electric resistance steel pipe is manufactured by a method in which a steel sheet discharged from a coil is roll-formed into a circular cross section using a large number of forming rolls, and the edges are electro-welded. If the molding conditions such as the shape and pressure of each molding roll are not set appropriately, a steel spring springback may occur between the molding rolls, resulting in a step in the ERW weld or reduced roundness. there's a possibility that. Conventionally, the molding conditions of each molding stand have been adjusted mainly by trial and error, but the optimum conditions change depending on the steel type and size of the steel plate. If it can be calculated, the number of trials and errors is reduced, and the cost can be significantly reduced.
そこでロールフォーミングの分野において、適切なロール設計やライン設計を行う指針を得る為に、有限要素法を用いた数値計算が試みられてきた。例えば、非特許文献1に示すように、成形ロール直下の板の断面だけを部分的に2次元ソリッド要素でモデルリングし、変形を近似的に計算したケースや、非特許文献2に見られるように数スタンドにまたがる長い板をモデルし、成形状態をシミュレートしたケースが挙げられる。 Therefore, in the field of roll forming, numerical calculation using a finite element method has been attempted in order to obtain a guideline for appropriate roll design and line design. For example, as shown in Non-Patent Document 1, only a section of a plate directly under a forming roll is partially modeled with a two-dimensional solid element, and deformation is approximately calculated, as seen in Non-Patent Document 2. In this case, a long plate that spans several stands is modeled and the forming state is simulated.
しかしながら、非特許文献1のような部分的なモデルを用いた解析では3次元的な板の変形状態を反映することができず、ロール半径の影響などを取り込むことができない欠点がある。一方で非特許文献2のように数スタンドにまたがる大規模な3次元モデルを解析する手法を用いると正確な予測が可能であるが、多大な計算時間が必要となる。 However, the analysis using the partial model as in Non-Patent Document 1 has a drawback that it cannot reflect the deformation state of the three-dimensional plate and cannot take in the influence of the roll radius. On the other hand, when a method of analyzing a large-scale three-dimensional model that spans several stands as in Non-Patent Document 2, accurate prediction is possible, but a great amount of calculation time is required.
計算時間を短縮する手法として、シェル要素と呼ばれる簡易要素を用いて解析する手法が従来から存在する。例えば非特許文献2に示すような3次元のソリッド要素による大規模モデルについて、この手法を用いればおおよそ計算時間を10分の1程度に抑えることができる。しかしながら、この簡易要素は板厚中央面での変形だけで近似的に材料の変形を再現する手法であり、板の全体的な変形や曲がりを評価するには都合がよいものの、板の端部潰れやロールによる圧痕など板厚方向の局部変形を評価することができないという欠点がある。これらの局部的な変形は造管工程で問題となる重要な事項である。
本発明は上記した従来の問題点を解決し、多段の成形ロールを用いた電縫鋼管の造管工程を、膨大な計算時間を必要とせず、しかも成形時におけるエッジ部の挙動を含めて精度よく数値解析することができる造管工程の数値解析法を提供することを目的とするものである。 The present invention solves the above-mentioned conventional problems, and does not require enormous calculation time for the pipe making process of ERW steel pipes using multi-stage forming rolls, and also includes the behavior of the edge part during forming. The object of the present invention is to provide a numerical analysis method of a pipe making process which can be numerically analyzed well.
上記の課題を解決するためになされた本発明は、数値解析法により電縫鋼管の造管工程を計算するに当たり、先ず造管工程の全体を含む全体モデルについてシェル要素を用いた計算を行い、次に得られた厚み方向以外の計算結果を拘束条件として、部分モデルについてソリッド要素を用いた計算を行うことを特徴とするものである。 The present invention made in order to solve the above problems, in calculating the pipe making process of the ERW steel pipe by the numerical analysis method, first, using a shell element for the entire model including the entire pipe making process, Next, a calculation using a solid element is performed for the partial model using the obtained calculation results in directions other than the thickness direction as a constraint condition.
なお、数値解析法としては有限要素法を用いることができる。また、造管工程が多数の成形ロールを用いたロールフォーミング工程であり、全体モデルが少なくとも最初のロールの手前から電縫溶接位置に配置されたロールまでの範囲を含むものであることが好ましく、部分モデルが、最も長い隣り合うロール間隔よりも短い範囲のものであることが好ましい。さらに、シェル要素を用いた計算は厚み方向の計算精度を無視して行い、ソリッド要素を用いた計算は厚み方向まで精度よく行うことが好ましく、シェル要素を用いた計算を動的陽解法により行い、ソリッド要素を用いた計算を静的陰解法により行うことが好ましい。 As a numerical analysis method, a finite element method can be used. Further, the pipe forming process is a roll forming process using a large number of forming rolls, and it is preferable that the entire model includes at least the range from the front of the first roll to the roll arranged at the ERW welding position. However, it is preferable that it is a range shorter than the longest adjacent roll interval. Furthermore, the calculation using the shell element is performed while ignoring the calculation accuracy in the thickness direction, the calculation using the solid element is preferably performed accurately in the thickness direction, the calculation using the shell element is performed by a dynamic explicit method, It is preferable to perform the calculation using the solid element by the static implicit method.
本発明によれば、先ず造管工程の全体を含む全体モデルについてシェル要素を用いた計算を行う。シェル要素を用いた計算は板厚中心の形状は解析可能であるが、板厚方向の圧下や板角の潰れなどは解析できない。このように計算精度には劣るが、計算速度が速く、全体モデルの計算も短時間で可能である。従って厚み方向の計算精度を無視すれば、造管工程の各成形部分における形状は正確に把握することができる。 According to the present invention, first, a calculation using a shell element is performed for an overall model including the entire pipe making process. The calculation using the shell element can analyze the shape at the center of the plate thickness, but cannot analyze the reduction in the plate thickness direction or the collapse of the plate angle. Thus, although the calculation accuracy is inferior, the calculation speed is fast and the entire model can be calculated in a short time. Therefore, if the calculation accuracy in the thickness direction is ignored, the shape of each forming part in the pipe making process can be accurately grasped.
そして本発明では上記の計算によって得られた厚み方向以外の計算結果を拘束条件として、部分モデルについてソリッド要素を用いた計算を行う。このソリッド要素を用いた計算は計算精度が高く板厚方向の圧下や板角の潰れなども解析できる半面、計算時間がかかる欠点があるが、本発明では全長の短い部分モデルについての計算を行うので、短時間で解析可能である。しかも全体モデルの計算結果を拘束条件とするので、前後の成形スタンドの影響も含んだ解析が可能である。従って本発明によれば、多段の成形ロールを用いた電縫鋼管の造管工程を、端部潰れやロールによる圧痕などの局部変形まで含めて正確に予測でき、且つ計算時間は非特許文献2に示された従来手法の1/10〜1/5程度に抑えることが可能となる。 In the present invention, calculation using solid elements is performed for the partial model using the calculation results obtained in the above calculation other than in the thickness direction as constraint conditions. Although the calculation using this solid element has high calculation accuracy and can analyze the reduction in the thickness direction and the crushing of the plate angle, etc., there is a disadvantage that it takes calculation time. However, in the present invention, the calculation is performed for the partial model having a short total length. Therefore, analysis is possible in a short time. In addition, since the calculation result of the entire model is used as a constraint condition, analysis including the influence of the front and rear molding stands is possible. Therefore, according to the present invention, the pipe making process of the ERW steel pipe using the multi-stage forming roll can be accurately predicted including the local deformation such as the end crushing and the indentation due to the roll, and the calculation time is non-patent document 2. Can be reduced to about 1/10 to 1/5 of the conventional method shown in FIG.
なお請求項3のように、少なくとも最初のロールの手前から電縫溶接位置に配置されたロールまでの範囲を含む全体モデルを用いれば、電縫鋼管の造管工程の全体を含んだ正確な解析が可能となり、請求項4のように最も短いロール間隔よりも短い範囲の部分モデルを用いれば、ソリッド要素を用いた計算時間を短縮することができる。さらに請求項6のようにシェル要素を用いた計算を動的陽解法により行い、ソリッド要素を用いた計算を静的陰解法により行うようにすれば、動的陽解法の利点である計算コストの低さと、静的陰解法の利点である計算精度の高さを活かした計算が可能であり、計算コストと計算精度の両立が可能となる。 In addition, if the whole model including the range from the front of the first roll to the roll arranged at the ERW welding position is used as in claim 3, an accurate analysis including the entire pipe making process of the ERW steel pipe is performed. If a partial model having a range shorter than the shortest roll interval as in claim 4 is used, the calculation time using the solid element can be shortened. Further, if the calculation using the shell element is performed by the dynamic explicit method as in claim 6 and the calculation using the solid element is performed by the static implicit method, the low calculation cost which is an advantage of the dynamic explicit method can be obtained. In addition, the calculation utilizing the high calculation accuracy, which is an advantage of the static implicit method, can be performed, and both the calculation cost and the calculation accuracy can be achieved.
以下に本発明の好ましい実施形態を示す。
図1はロールフォーミングによる電縫鋼管の造管工程の全体図であり、図2は各成形ロールによる鋼鈑の断面変化の説明図である。
Preferred embodiments of the present invention are shown below.
FIG. 1 is an overall view of a pipe forming process of an electric resistance steel pipe by roll forming, and FIG. 2 is an explanatory view of a cross-sectional change of a steel plate by each forming roll.
図1に示すようにこの実施形態では、コイルから払い出された鋼鈑は、B1,B2,B3s,B4、B5s,B6の各成形ロールを通過するブレイクダウン工程と、F1s,F2,F3s,F4,F5の各成形ロールを通過するフィンパス工程とを連続的に通過する間に図2のように次第に断面円形に加工されて行き、最後のSQの成形ロールの位置で電縫溶接される。なお、sは板幅方向に配置された成形ロールによる加工を意味するものである。 As shown in FIG. 1, in this embodiment, the steel sheet discharged from the coil is subjected to a breakdown process in which each of the forming rolls B1, B2, B3s, B4, B5s, and B6 passes, and F1s, F2, F3s, While continuously passing through the fin pass process passing through each of the forming rolls F4 and F5, it is gradually processed into a circular cross section as shown in FIG. 2, and is electro-welded at the position of the forming roll of the last SQ. In addition, s means the process by the forming roll arrange | positioned in the board width direction.
このように鋼鈑は多数の成形ロールを順次通過しながら成形されて行くが、各成形ロール間の鋼鈑にはそれぞれ張力が存在するとともに、スプリングバックも発生するため、最終の成形ロールSQの位置で真円となり、しかも両エッジを段差のないように正確に突き合わすためには、部分的な数値解析では不十分であり、全部の成形工程を含んだ数値解析が必要となる。しかし全工程について厚み方向の変形を解析するには膨大な計算時間が必要となる。 In this way, the steel sheet is formed while sequentially passing through a large number of forming rolls. However, since the steel sheet between the forming rolls has a tension and springback occurs, the final forming roll SQ In order to make a perfect circle at the position and accurately match both edges so that there is no step, partial numerical analysis is insufficient, and numerical analysis including the entire molding process is necessary. However, enormous calculation time is required to analyze the deformation in the thickness direction for all processes.
そこで本発明では、計算コストの小さいシェル要素を用いて全体モデルの数値解析を行い、鋼鈑の3次元的変形履歴を計算する。この実施形態では、数値解析法として最も一般的な有限要素法を用いて数値計算を行ったが必ずしもこれに限定されるものではなく、例えば境界要素法を用いることもできる。周知のとおり、有限要素法は物体を有限の要素に分割し、各要素上の複数個の節点(ノード)に変形、歪み、応力などの物理量を代表させたうえ、連立方程式を解くことによって物体全体の変形量や応力を求める手法である。 Therefore, in the present invention, a numerical analysis of the entire model is performed using a shell element with a low calculation cost, and a three-dimensional deformation history of the steel sheet is calculated. In this embodiment, the numerical calculation is performed using the most common finite element method as the numerical analysis method, but the present invention is not necessarily limited to this, and for example, the boundary element method can also be used. As is well known, the finite element method divides an object into finite elements, represents physical quantities such as deformation, strain, and stress at multiple nodes (nodes) on each element, and solves simultaneous equations to solve the object. This is a technique for obtaining the total deformation and stress.
本発明において全体モデルの数値解析を行うために用いたシェル要素は、曲面の外板で構成するシェル構造物を有限要素モデリングするのに適した要素であり、板厚方向の節点数が少ないために厚み方向の計算精度は悪いが計算速度は速く、電縫鋼管の造管工程の全体をモデルとして板厚中心の形状を解析することが可能である。 The shell element used for the numerical analysis of the overall model in the present invention is an element suitable for finite element modeling of a shell structure composed of a curved outer plate, and has a small number of nodes in the plate thickness direction. However, the calculation accuracy in the thickness direction is poor, but the calculation speed is fast, and it is possible to analyze the shape at the center of the plate thickness using the entire pipe making process of ERW steel pipe as a model.
ここで全体モデルとしては、少なくとも最初のロールB1の手前から電縫溶接位置に配置されたロールSQまでの範囲を含むものとする。さらに好ましくは、最初のロールB1に入る前の鋼鈑の挙動もロールフォーミングに影響するため、全体モデルの始点は最初のロールB1よりも鋼鈑幅の3倍程度手前からの範囲とする。このように設定した全体モデルについてシェル要素を用いた計算を行うことにより、厚み方向の計算精度は悪いが、造管工程の各成形部分における形状は正確に把握することが可能となる。 Here, the entire model includes at least a range from the front of the first roll B1 to the roll SQ arranged at the electric welding position. More preferably, since the behavior of the steel plate before entering the first roll B1 also affects the roll forming, the starting point of the overall model is set to a range from about 3 times the steel plate width before the first roll B1. By performing the calculation using the shell element for the entire model set in this way, the calculation accuracy in the thickness direction is poor, but the shape of each forming part in the pipe making process can be accurately grasped.
次に本発明では、上記計算によって得られた厚み方向以外の計算結果を拘束条件として、部分モデルについてソリッド要素を用いた計算を行う。その関係は図3に示すとおりであり、全体モデルから一部分を切り出した範囲を部分モデルとする。ただしこの部分モデルの前後の板端部境界条件として、先の解析結果が与えられる。ここでソリッドモデルとは、3次元形状を中身の詰まった実体(ソリッド)として記述する数値モデルであり、データ量が多くコンピュータの計算負荷が重いが,3次元形状を完全に表現した数値モデルであるため、鋼鈑の厚み方向まで精度よく解析することができる。 Next, in the present invention, calculation using solid elements is performed for the partial model using the calculation results obtained by the above calculation other than the thickness direction as constraint conditions. The relationship is as shown in FIG. 3, and a range in which a part is cut out from the entire model is a partial model. However, the previous analysis result is given as the plate edge boundary condition before and after this partial model. Here, the solid model is a numerical model that describes a three-dimensional shape as a solid substance (solid), and it is a numerical model that completely represents the three-dimensional shape, although the amount of data is large and the computational load is heavy. Therefore, it is possible to accurately analyze the thickness direction of the steel plate.
本発明においてソリッドモデルを用いた数値計算の負担をできるだけ軽減させるためには、部分モデルの長さを短縮することが望ましい。ロールで成形される際の3次元的板形状を十分再現する為に必要な部分モデルの最適長さは、造管する管の径やロール径と関係があると考えられるが少なくとも、最も長いロール間隔よりも短い範囲とすれば、前ロールと次ロールの間の変形が再現できているため、十分な精度を得ることができる。それ故、部分モデルの長さはこれ以下とする事が好ましい。しかし逆に部分モデルの長さを短縮しすぎると、成形ロールを通過する際の数値解析の誤差が大きくなり、本来の目的を達成できなくなる。このため部分モデルは少なくとも直接ロールの拘束を受ける可能性がある最少ロール径の半分以上としておくことが好ましい。 In the present invention, in order to reduce the burden of numerical calculation using the solid model as much as possible, it is desirable to shorten the length of the partial model. The optimum length of the partial model necessary to fully reproduce the three-dimensional plate shape when formed with a roll is considered to be related to the diameter of the pipe to be formed and the roll diameter, but at least the longest roll If the range is shorter than the interval, the deformation between the previous roll and the next roll can be reproduced, so that sufficient accuracy can be obtained. Therefore, the length of the partial model is preferably less than this. On the other hand, if the length of the partial model is shortened too much, the error in numerical analysis when passing through the forming roll increases, and the original purpose cannot be achieved. For this reason, it is preferable to set the partial model to be at least half the minimum roll diameter that may be subject to direct roll restraint.
この部分モデルを用いた計算を各成形段階について実施すれば、板厚方向の圧下や板角の潰れなども精度よく解析することができ、ロールフォーミング後の電縫溶接部に段差が生じたり、真円度が低下したりする可能性の有無を、数値計算のみによって検証することができる。 If calculation using this partial model is carried out for each forming stage, it is possible to accurately analyze the reduction in the plate thickness direction and the crushing of the plate angle, etc., and a step occurs in the ERW weld after roll forming, Whether or not there is a possibility that the roundness is reduced can be verified only by numerical calculation.
なお、解析手法には動的陽解法と静的陰解法とがある。動的陽解法は構造物の動的挙動を運動方程式を陽的に解いて解析する手法であり、計算速度は速く、正確性の保証はないが必ず解を得ることが出来る。これに対して静的陰解法は静的な釣り合い式を解の繰り返し計算による収束を行うことで陰的に解く手法であり、計算速度は遅く、解が出るとは限らないが解が得られた場合には精度が高い。 Analysis methods include a dynamic explicit method and a static implicit method. The dynamic explicit method is a method for analyzing the dynamic behavior of a structure by explicitly solving the equation of motion. The calculation speed is fast and there is no guarantee of accuracy, but a solution can always be obtained. On the other hand, the static implicit method solves a static balance equation implicitly by performing convergence by iterative calculation of the solution, and the calculation speed is slow and the solution is not necessarily obtained but the solution can be obtained. The accuracy is high.
そこで、シェル要素を用いた全体モデルの計算は、精度に劣るが計算速度の速い動的陽解法により行い、ソリッド要素を用いた部分モデルの計算は、計算速度は遅いが精度の高い静的陰解法により行うようにすれば、それぞれの解法の長所を活かすことができるので、計算速度と計算精度を両立でき、好ましい。 Therefore, the calculation of the whole model using shell elements is performed by the dynamic explicit method, which is inferior in accuracy but high in calculation speed, and the calculation of partial models using solid elements is performed at a low calculation speed but with high accuracy. This is preferable because the advantages of each solution can be utilized, so that both the calculation speed and the calculation accuracy can be achieved.
以上に説明したように、本発明によれば多段の成形ロールを用いた電縫鋼管の造管工程を、膨大な計算時間を必要とせず、しかも成形時におけるエッジ部の挙動を含めて精度よく数値解析することができる。このため本発明によれば、実設備を用いた試行錯誤を繰り返すことなく、電縫鋼管の造管工程におけるロール形状を含む最適な成形条件を把握することが可能となる。
以下に本発明の実施例を示す。
As described above, according to the present invention, the pipe making process of the ERW steel pipe using the multi-stage forming roll does not require enormous calculation time and includes the behavior of the edge part at the time of forming with high accuracy. Numerical analysis is possible. For this reason, according to this invention, it becomes possible to grasp | ascertain the optimal forming conditions including the roll shape in the pipe making process of an ERW steel pipe, without repeating trial and error using an actual installation.
Examples of the present invention are shown below.
図4に示すようなロールスタンドからなる造管ラインにより、直径90mm、厚さ8mmの鋼管を造管する場合について数値解析を行い、本願発明と従来手法との解析時間を比較した。この造管ラインは上下ロール4段、サイドロール4段、フィンパスロール3段の計11段で構成されるものである。各スタンド間隔は図示の通りであり、ライン全長は3600mmである。なお図5に示すように、成形ロールが鋼鈑に接触する部分のうちの最大径を各成形ロールの直径Dとし、この実施例では各ロールともD=200mmとした。 Numerical analysis was performed on a case where a steel pipe having a diameter of 90 mm and a thickness of 8 mm was formed by a pipe forming line including a roll stand as shown in FIG. 4, and the analysis time of the present invention was compared with that of the conventional method. This pipe forming line is composed of a total of 11 stages including 4 stages of upper and lower rolls, 4 stages of side rolls, and 3 stages of fin pass rolls. The intervals between the stands are as shown in the figure, and the total length of the line is 3600 mm. As shown in FIG. 5, the maximum diameter of the portions where the forming rolls contact the steel plate is the diameter D of each forming roll. In this embodiment, each roll has D = 200 mm.
ケース1は、非特許文献2に記載の大規模モデルと同様のモデルであり、ソリッド要素を用いている。モデルの通板方向の板長さを1500mmとした。
ケース2は、ケース1と同じ板長さを持ち、要素をシェル要素としたものである。
ケース3は、本発明の解析手法であり、ケース2の解析結果から板の変形履歴を境界条件として、板長さ300mmのソリッド要素による解析を行った。
その結果を表1にまとめた。ケース3によれば、ケース1の1/6の計算時間で、ケース1と同様の計算精度の解析が可能となった。
Case 1 is a model similar to the large-scale model described in Non-Patent Document 2, and uses solid elements. The plate length in the plate passing direction of the model was 1500 mm.
Case 2 has the same plate length as Case 1 and uses the elements as shell elements.
Case 3 is an analysis method according to the present invention, and analysis was performed with a solid element having a plate length of 300 mm using the deformation history of the plate from the analysis result of case 2 as a boundary condition.
The results are summarized in Table 1. According to Case 3, the same calculation accuracy as in Case 1 can be analyzed in 1/6 the calculation time of Case 1.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007008852A JP4855279B2 (en) | 2007-01-18 | 2007-01-18 | Numerical analysis of pipe making process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007008852A JP4855279B2 (en) | 2007-01-18 | 2007-01-18 | Numerical analysis of pipe making process |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008176535A true JP2008176535A (en) | 2008-07-31 |
JP4855279B2 JP4855279B2 (en) | 2012-01-18 |
Family
ID=39703514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007008852A Active JP4855279B2 (en) | 2007-01-18 | 2007-01-18 | Numerical analysis of pipe making process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4855279B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049981A1 (en) * | 2017-09-08 | 2019-03-14 | 公立大学法人大阪府立大学 | Method and device for analyzing lamination-shaped article, and method and device for manufacturing lamination-shaped article |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005138120A (en) * | 2003-11-04 | 2005-06-02 | Toyota Motor Corp | Method for simulating deflection distribution of die in press forming |
JP2005275551A (en) * | 2004-03-23 | 2005-10-06 | Nissan Motor Co Ltd | Simulation method for roll forging |
JP2007001378A (en) * | 2005-06-22 | 2007-01-11 | Bridgestone Corp | Complex model analysis device, its analysis method, and its analysis program |
-
2007
- 2007-01-18 JP JP2007008852A patent/JP4855279B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005138120A (en) * | 2003-11-04 | 2005-06-02 | Toyota Motor Corp | Method for simulating deflection distribution of die in press forming |
JP2005275551A (en) * | 2004-03-23 | 2005-10-06 | Nissan Motor Co Ltd | Simulation method for roll forging |
JP2007001378A (en) * | 2005-06-22 | 2007-01-11 | Bridgestone Corp | Complex model analysis device, its analysis method, and its analysis program |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049981A1 (en) * | 2017-09-08 | 2019-03-14 | 公立大学法人大阪府立大学 | Method and device for analyzing lamination-shaped article, and method and device for manufacturing lamination-shaped article |
CN111093865A (en) * | 2017-09-08 | 2020-05-01 | 公立大学法人大阪 | Method and apparatus for analyzing layered shaped object, method and apparatus for manufacturing layered shaped object |
JPWO2019049981A1 (en) * | 2017-09-08 | 2020-08-27 | 公立大学法人大阪 | Laminated object analysis method, laminated object analysis apparatus, laminated object manufacturing method, and laminated object manufacturing apparatus |
JP7125764B2 (en) | 2017-09-08 | 2022-08-25 | 公立大学法人大阪 | Laminate-molded article analysis method, laminate-molded article analysis apparatus, laminate-molded article manufacturing method, and laminate-molded article manufacturing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP4855279B2 (en) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380536B2 (en) | Model setting method, molding simulation method, program, and computer-readable recording medium recording the program | |
JP2007229724A (en) | Method of analyzing press forming | |
Fan et al. | Quality control on crimping of large diameter welding pipe | |
CN108362561B (en) | Method for determining mechanical properties of materials of welding seam and welding heat affected zone | |
ZHU et al. | Sensitivity of springback and section deformation to process parameters in rotary draw bending of thin-walled rectangular H96 brass tube | |
Wen | On a new concept of rotary draw bend-die adaptable for bending tubes with multiple outer diameters under non-mandrel condition | |
Wang et al. | Ductile tearing analyses of cracked TP304 pipes using the multiaxial fracture strain energy model and the Gurson–Tvergaard–Needleman model | |
JP2009045627A (en) | Method and program for optimizing press forming condition | |
JP4855279B2 (en) | Numerical analysis of pipe making process | |
JP6694366B2 (en) | Press processing condition determination method | |
JP7111085B2 (en) | Press molding simulation method | |
Govik et al. | The effects of forming history on sheet metal assembly | |
CN115293054B (en) | Neural network-based dented pipeline failure evaluation method | |
Zhang et al. | Identification of constitutive parameters for thin-walled aluminium tubes using a hybrid strategy | |
Pholdee et al. | Process optimization of a non-circular drawing sequence based on multi-surrogate assisted meta-heuristic algorithms | |
Adrian et al. | Curating Datasets of Flexible Assemblies to Predict Spring-Back Behavior for Machine Learning Purposes | |
JP2008155227A (en) | Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium | |
JP5107595B2 (en) | Simulation analysis method and mold design method | |
JP4813999B2 (en) | Forging shape prediction method and program thereof | |
Elsayed et al. | An investigation and prediction of springback of sheet metals under cold forming condition | |
JP6437244B2 (en) | Constraint-specific deformation data calculation system and calculation program, welding deformation prediction system and welding deformation prediction program | |
Beulich et al. | Influence of tube rollforming on material properties and subsequent bending processes | |
Gantner et al. | FEA-simulation of bending processes with LS-DYNA | |
JP2012208884A (en) | Spring back factor analysis method in multi-process press molding | |
Bardelcik et al. | The effect of element formulation on the prediction of boost effects in numerical tube bending |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111025 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111026 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4855279 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |