JP2008175133A - Combustion chamber structure of internal combustion engine - Google Patents

Combustion chamber structure of internal combustion engine Download PDF

Info

Publication number
JP2008175133A
JP2008175133A JP2007009327A JP2007009327A JP2008175133A JP 2008175133 A JP2008175133 A JP 2008175133A JP 2007009327 A JP2007009327 A JP 2007009327A JP 2007009327 A JP2007009327 A JP 2007009327A JP 2008175133 A JP2008175133 A JP 2008175133A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
ridge line
chamber structure
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007009327A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Suzuki
克由 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007009327A priority Critical patent/JP2008175133A/en
Publication of JP2008175133A publication Critical patent/JP2008175133A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure a stable combustibility by producing a reverse tumble flow having a rotation directivity even in the case where the lift amount is extremely small, in an internal combustion engine for controlling the intake air amount by the lift amount of an air intake valve. <P>SOLUTION: A pair of inclined planes 8a, 8b is provided on both sides of a ridgeline r as a line linking two air intake valves and two exhaust gas valves in the top surface of a piston 8. A pair of dent parts 8A, 8B is formed elongating from the inclined planes 8a, 8b so as to have the maximum depth at the piston outer circumferential side away from the ridgeliner. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の燃焼室構造に関し、特に、燃焼室内の吸気流動を保存(減衰を抑制)して燃焼安定性を良好に維持する技術に関する。   The present invention relates to a combustion chamber structure of an internal combustion engine, and more particularly to a technique for maintaining good combustion stability by preserving intake air flow in a combustion chamber (suppressing attenuation).

特許文献1には、水平軸線回りの一対の旋回流を形成するようにした内燃機関のピストンの頂面構造であって、各吸気バルブおよび各排気バルブを逃がすためのバルブリセスを備え、排気バルブ用の各バルブリセスから、それぞれが対面する吸気弁用の各バルブリセスまで連続的にかつ互いに独立して延びる一対の凹部を形成して上記一対の旋回流がこれら凹部内をそれぞれ進行するようにしたピストンの頂面構造が開示されている。   Patent Document 1 discloses a top surface structure of a piston of an internal combustion engine that forms a pair of swirling flows around a horizontal axis, and includes a valve recess for releasing each intake valve and each exhaust valve. A pair of recesses extending continuously and independently from each other from each valve recess to each valve recess for the intake valve facing each other so that the pair of swirling flows respectively advance in these recesses. A top surface structure is disclosed.

特許文献2には、ピストン冠面に、吸気側と排気側との間を通る中心線を稜線として両側に傾斜面を有した凹陥部を設けた構造が示されている。
特開平9−317555号 特開2002−364368号
Patent Document 2 shows a structure in which a concave portion having inclined surfaces on both sides with a center line passing between the intake side and the exhaust side as a ridgeline is provided on the piston crown surface.
JP-A-9-317555 JP 2002-364368 A

上記特許文献1では、タンブル流生成用の凹部は、底面が曲面になっており、低回転高負荷時など吸気バルブの中間リフト近辺では、タンブル流回転方向の指向性に乏しく不安定であるため、十分な燃焼安定性の確保は難しかった。   In the above-mentioned Patent Document 1, the concave portion for generating the tumble flow has a curved bottom surface, and in the vicinity of the intermediate lift of the intake valve, such as at low rotation and high load, the directivity in the tumble flow rotation direction is poor and unstable. It was difficult to ensure sufficient combustion stability.

また、特許文献2のものも、低回転高負荷時など吸気バルブの中間リフト近辺でタンブル流回転の指向性を強化する機能はなく、十分な燃焼安定性の確保は難しかった。   Also, Patent Document 2 does not have a function of enhancing the directivity of tumble flow rotation in the vicinity of the intermediate lift of the intake valve such as at low rotation and high load, and it has been difficult to ensure sufficient combustion stability.

このため、本発明は、
気筒毎に、2個の吸気バルブを備えた内燃機関の燃焼室構造において、
ピストン冠面に、ピストン中心部を通って2個の吸気バルブ間と排気側とを繋ぐ線を稜線として該稜線の両側に1対の傾斜面を設け、該傾斜面に連なり前記稜線から離れたピストン外周側で深さが最大となるように1対の凹陥部を形成したことを特徴とする。
For this reason, the present invention
In the combustion chamber structure of an internal combustion engine provided with two intake valves for each cylinder,
A pair of inclined surfaces are provided on both sides of the ridge line on the piston crown surface through the center of the piston and connecting the two intake valves and the exhaust side, and the ridge line is separated from the ridge line. A pair of recesses are formed so that the depth is maximum on the outer peripheral side of the piston.

吸気バルブを、低回転高負荷時など吸気バルブの中間リフト近辺で運転した場合、吸気ポートから吸気バルブを介して燃焼室内に流入した1対の対称的な双子状の吸気流は、初期の吸気行程ではシリンダボア壁に沿って略水平に旋回するが、圧縮行程に入ると、ピストン冠面の凹陥部の傾斜面によって、吸気バルブ側に向かう流れは上側へ、また、排気バルブ側に向かう流れは下側へと斜め方向の旋回に変換され、圧縮行程後期では、縦方向の旋回流(逆タンブル流)に変換する。   When the intake valve is operated in the vicinity of the intermediate lift of the intake valve, such as at low rotation and high load, a pair of symmetrical twin intake flows that flow into the combustion chamber from the intake port via the intake valve In the stroke, it turns substantially horizontally along the cylinder bore wall, but when entering the compression stroke, the flow toward the intake valve side is upward and the flow toward the exhaust valve side is due to the inclined surface of the concave portion of the piston crown surface. It is converted into a swirl in an oblique direction downward, and in a later stage of the compression stroke, it is converted into a swirl flow in a vertical direction (reverse tumble flow).

そして、点火時期近傍で、上記のように十分に回転指向性を強化された逆タンブル流を崩壊させ、乱れに変換することで、燃焼安定性が向上し、ひいては燃費を向上できる。   Then, in the vicinity of the ignition timing, the reverse tumble flow with sufficiently enhanced rotation directivity as described above is disrupted and converted into turbulence, whereby combustion stability is improved, and fuel efficiency can be improved.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は、本発明の一実施形態を示す直噴火花点火式内燃機関(以下エンジンという)の要部縦断面図及び横断面図である。   FIG. 1 and FIG. 2 are a longitudinal sectional view and a transverse sectional view of a main part of a direct injection spark ignition internal combustion engine (hereinafter referred to as an engine) showing an embodiment of the present invention.

エンジンのシリンダ壁11とピストン8との間に形成される燃焼室1には、その上面(シリンダヘッド)側の略中央部に点火プラグ2が配置されている。そして、点火プラグ2を囲むように、2本ずつ吸気ポート3A,3B及び排気ポート4A,4Bが開口し、それぞれに吸気バルブ5A,5B及び排気バルブ6A,6Bが装着されている。   In the combustion chamber 1 formed between the cylinder wall 11 and the piston 8 of the engine, an ignition plug 2 is disposed at a substantially central portion on the upper surface (cylinder head) side. Then, two intake ports 3A and 3B and two exhaust ports 4A and 4B are opened so as to surround the spark plug 2, and the intake valves 5A and 5B and the exhaust valves 6A and 6B are mounted respectively.

燃料噴射弁7は、吸気ポート3A,3B間に設置され、燃焼室1の吸気バルブ5A,5B側の側部に斜め下向きに配置され、複数形成された各噴孔から、それぞれ所定の方向を指向して燃焼室1中心部側に燃料を噴射するようになっている。   The fuel injection valve 7 is installed between the intake ports 3A and 3B, is disposed obliquely downward on the side of the combustion chamber 1 on the intake valve 5A and 5B side, and has a predetermined direction from each of the plurality of formed injection holes. The fuel is injected toward the center of the combustion chamber 1 in the direction.

前記吸気バルブ5A,5B(または吸気バルブ5A,5B及び排気バルブ6A,6B)には、可変動弁装置として、吸気バルブ5A,5Bのバルブ作動角(開期間)及びリフト量を連続的に変化させることができるバルブ作動角及びリフト量可変装置(VEL)21が設けられ、ECU(電子制御ユニット)20により、電子制御されるように構成されている。   The intake valves 5A and 5B (or the intake valves 5A and 5B and the exhaust valves 6A and 6B) continuously change the valve operating angle (open period) and the lift amount of the intake valves 5A and 5B as variable valve actuating devices. A valve operating angle and lift amount variable device (VEL) 21 that can be controlled is provided, and is configured to be electronically controlled by an ECU (electronic control unit) 20.

前記ピストン8の冠面に、2個の吸気バルブ5A,5B間と2個の排気バルブ6A,6B間を繋ぐ線を稜線rとして、該稜線rの両側に1対の傾斜面8a,8bを設け、該傾斜面8a,8bに連なり前記稜線から離れたピストン外周側で深さが最大となるように1対の凹陥部8A,8Bを形成する。なお、前記稜線は、ピストン中心部を通って2個の吸気バルブ間と排気側とを繋ぐ線として定義され、気筒毎の排気バルブの数が2個のもの以外にも適用できる。   A line connecting the two intake valves 5A and 5B and the two exhaust valves 6A and 6B is defined as a ridge line r on the crown surface of the piston 8, and a pair of inclined surfaces 8a and 8b are formed on both sides of the ridge line r. A pair of recesses 8A and 8B are formed so as to have a maximum depth on the outer peripheral side of the piston that is connected to the inclined surfaces 8a and 8b and is separated from the ridge line. The ridge line is defined as a line that connects between the two intake valves and the exhaust side through the center of the piston, and can be applied to other than the number of exhaust valves per cylinder.

ここで、前記1対の傾斜面8A,8Bは、図3,4に示すように、略一定の傾斜度で直線状に傾斜しているが、図1に示すように、1対の凹陥部8A,8Bの前記稜線rと平行な方向の断面においては、それぞれ、中間部(ピストン中心部を通って稜線と直交する部分)で最も深く、その両側に離れるにしたがって浅くなるように形成されている。   Here, as shown in FIGS. 3 and 4, the pair of inclined surfaces 8A and 8B are inclined linearly with a substantially constant degree of inclination, but as shown in FIG. The cross sections of 8A and 8B in the direction parallel to the ridgeline r are formed so as to be deepest at the intermediate portion (portion perpendicular to the ridgeline through the center of the piston) and become shallower as they move away from both sides. Yes.

次に、吸気バルブ5A,5Bの可変動弁装置について、図5及び図6により説明する。   Next, variable valve gears for the intake valves 5A and 5B will be described with reference to FIGS.

吸気バルブ5A,5Bの端部のバルブリフタ40の上方には、図外のクランク軸に連動して軸周りに回転駆動されるカム軸41が気筒列方向に延在している。このカム軸41の外周には、吸気バルブ5A,5Bに対応して揺動カム42が揺動可能に外嵌されており、この揺動カム42がバルブリフタ40に当接してこれを押圧することにより、吸気バルブ5A,5Bが図外のバルブスプリングのバネ力に抗して開閉駆動される。   Above the valve lifter 40 at the ends of the intake valves 5A and 5B, a cam shaft 41 that is driven to rotate around the shaft in conjunction with a crankshaft (not shown) extends in the cylinder row direction. A swing cam 42 is fitted on the outer periphery of the cam shaft 41 so as to be swingable corresponding to the intake valves 5A and 5B. The swing cam 42 abuts on and presses the valve lifter 40. As a result, the intake valves 5A and 5B are driven to open and close against the spring force of a valve spring (not shown).

ここにおいて、カム軸41と揺動カム42との間で、両者41、42を機械的に連携するリンクの姿勢を変化させて、吸気バルブ5A,5Bのバルブ作動角(開期間)及びリフト量を連続的に可変制御可能なバルブ作動角及びリフト量可変装置(VEL装置)が設けられている。   Here, between the camshaft 41 and the swing cam 42, the posture of the link that mechanically links both 41 and 42 is changed, and the valve operating angles (open periods) and lift amounts of the intake valves 5A and 5B are changed. There is provided a valve operating angle and lift amount variable device (VEL device) capable of continuously variably controlling.

VEL装置は、カム軸41に偏心して設けられてカム軸41と一体的に回転する駆動カム43と、この駆動カム43の外周に相対回転可能に外嵌するリング状リンク44と、カム軸41と略平行に気筒列方向へ延在する制御軸45と、この制御軸45に偏心して設けられて制御軸45と一体的に回転する制御カム46と、この制御カム46の外周に相対回転可能に外嵌すると共に、一端がリング状リンク44の先端と相対回転可能に連結されたロッカアーム47と、このロッカアーム47の他端と揺動カム42の先端とに回転可能に連結され、両者47、42を機械的に連携するロッド状リンク48と、を有している。   The VEL device includes a drive cam 43 that is eccentrically provided on the cam shaft 41 and rotates integrally with the cam shaft 41, a ring-shaped link 44 that is fitted on the outer periphery of the drive cam 43 so as to be relatively rotatable, and a cam shaft 41. A control shaft 45 extending substantially parallel to the cylinder row direction, a control cam 46 provided eccentrically with respect to the control shaft 45 and rotating integrally with the control shaft 45, and rotatable relative to the outer periphery of the control cam 46 And a rocker arm 47 whose one end is rotatably connected to the tip of the ring-shaped link 44, and is rotatably connected to the other end of the rocker arm 47 and the tip of the swing cam 42. 42 has a rod-like link 48 that mechanically cooperates.

上記のカム軸41及び制御軸45は、軸受ブラケットを介してエンジンのシリンダヘッド側へ回転可能に支持されている。制御軸45の一端にはバルブ作動角変更用のアクチュエータ(VELソレノイド)49の出力端が接続されており、このVELソレノイド49によって制御軸45が所定の制御角度範囲内で軸周りに回転駆動されると共に、所定の回転位相に保持される。   The cam shaft 41 and the control shaft 45 are rotatably supported on the cylinder head side of the engine via a bearing bracket. One end of the control shaft 45 is connected to the output end of an actuator (VEL solenoid) 49 for changing the valve operating angle, and the control shaft 45 is driven to rotate around the shaft within a predetermined control angle range by the VEL solenoid 49. And at a predetermined rotational phase.

このような構成により、クランク軸に連動してカム軸41が回転すると、駆動カム43を介してリング状リンク44が実質的に並進作動すると共に、ロッカアーム47が制御カム46周りを揺動し、ロッド状リンク48を介して揺動カム42が揺動して、吸気バルブ5A,5Bが開閉駆動される。   With such a configuration, when the cam shaft 41 rotates in conjunction with the crankshaft, the ring-shaped link 44 substantially translates via the drive cam 43, and the rocker arm 47 swings around the control cam 46, The swing cam 42 swings through the rod-shaped link 48, and the intake valves 5A and 5B are driven to open and close.

また、VELソレノイド49により制御軸45を回動することにより、ロッカアーム47の揺動中心となる制御カム46の中心位置が変化して、各リンク44、48等の姿勢が変化し、揺動カム42の揺動角度範囲が変化する。これにより、バルブ作動角の中心位相が略一定のままで、バルブ作動角及びリフト量が連続的に変化する。より具体的には、制御軸45を一方向へ回動することにより、バルブ作動角及びリフト量が増加し、他方向へ回動することによりバルブ作動角及びリフト量が減少するようになっている。   Further, when the control shaft 45 is rotated by the VEL solenoid 49, the center position of the control cam 46, which is the rocking center of the rocker arm 47, is changed, and the postures of the links 44, 48, etc. are changed. The swing angle range of 42 changes. As a result, the valve operating angle and the lift amount continuously change while the central phase of the valve operating angle remains substantially constant. More specifically, the valve operating angle and the lift amount are increased by rotating the control shaft 45 in one direction, and the valve operating angle and the lift amount are decreased by rotating in the other direction. Yes.

従って、ECU20からの信号で、VELソレノイド49の通電量をデューティ制御することで、制御軸45の回転位相を変更して、吸気バルブ5A,5Bのバルブ作動角及びリフト量を変更することができ、これによりバルブ作動角及びリフト量可変装置(VEL装置)が構成される。   Therefore, duty control of the energization amount of the VEL solenoid 49 with a signal from the ECU 20 can change the rotation phase of the control shaft 45 and change the valve operating angle and the lift amount of the intake valves 5A and 5B. Thus, a valve operating angle and lift amount variable device (VEL device) is configured.

上記のような可変動弁装置によれば、スロットル弁は基本的に全開としたまま(吸気負圧要求時のみ絞り制御する)、吸気バルブ5A,5Bのリフト量を制御することによって、燃焼室直前で吸入空気量を制御することができ、上流側のスロットル弁で制御する場合より損失を低減できる。   According to the variable valve system as described above, the combustion chamber is controlled by controlling the lift amount of the intake valves 5A and 5B while the throttle valve is basically fully opened (throttle control is performed only when the intake negative pressure is required). The amount of intake air can be controlled immediately before, and the loss can be reduced as compared with the case of controlling with the upstream throttle valve.

この方式では、低回転高負荷時などで、吸気バルブ5A,5Bは、中間リフト近辺に制御される。   In this system, the intake valves 5A and 5B are controlled in the vicinity of the intermediate lift, for example, at the time of low rotation and high load.

このように、吸気バルブを中間リフト近辺に制御した場合の吸入空気の流動について説明する。   The flow of intake air when the intake valve is controlled near the intermediate lift will be described.

図7に示すように、吸入空気は、吸気バルブ5A,5Bのバルブヘッド上面と吸気ポート3A,3B開口部との環状の隙間から燃焼室1内に流入し、初期の吸気行程では図8に示すように、吸気側から排気側に向かってシリンダボア壁面に沿って流れた後、排気側からシリンダ中央部を通って吸気側に戻る略水平に旋回する双子状の吸気流が形成される。   As shown in FIG. 7, the intake air flows into the combustion chamber 1 through an annular gap between the valve head upper surfaces of the intake valves 5A, 5B and the intake ports 3A, 3B, and the initial intake stroke is as shown in FIG. As shown in the figure, a twin-like intake air flow is formed which flows along the cylinder bore wall surface from the intake side to the exhaust side, and then swivels horizontally from the exhaust side through the center of the cylinder to the intake side.

圧縮行程に入ると図9に示すように、凹陥部8A,8Bの傾斜面8a,8bを有した形状により、排気側から吸気側に向かう流れは、傾斜面8a,8bの稜線r近くの高い部分に沿って押し上げられ、吸気側から排気側に向かう外周側の流れは、傾斜面8a,8b端部側の深い部分に沿って下方に落ち込む作用が働き、斜め方向に旋回する渦流に変換される。   When entering the compression stroke, as shown in FIG. 9, due to the shape having the inclined surfaces 8a and 8b of the recessed portions 8A and 8B, the flow from the exhaust side to the intake side is high near the ridge line r of the inclined surfaces 8a and 8b. The flow on the outer peripheral side, which is pushed up along the portion and moves from the intake side to the exhaust side, acts to drop downward along the deep portion on the end side of the inclined surfaces 8a and 8b, and is converted into a vortex that swirls in an oblique direction. The

そして、圧縮行程後期では、上記変換作用が促進され、図10に示すように、略縦方向の旋回流(逆タンブル流)に変換する。   Then, in the latter stage of the compression stroke, the above conversion action is promoted, and as shown in FIG. 10, it is converted into a substantially vertical swirl flow (reverse tumble flow).

このように、凹陥部8A,8Bの傾斜面8a,8bによって縦方向の旋回流に変換されることにより、低回転高負荷時などで、吸気バルブ5A,5Bは、中間リフト近辺に制御したときでも、十分な指向性を有した逆タンブル流が形成され、最終的に点火時期近傍で、この逆タンブル流を崩壊させ、乱れに変換することで、燃焼安定性が向上し、ひいては燃費を向上できる。   As described above, when the intake valves 5A and 5B are controlled near the intermediate lift at the time of low rotation and high load by being converted into the vertical swirling flow by the inclined surfaces 8a and 8b of the recessed portions 8A and 8B. However, a reverse tumble flow with sufficient directivity is formed, and finally the reverse tumble flow is collapsed and converted into turbulence near the ignition timing, thereby improving combustion stability and eventually improving fuel efficiency. it can.

また、本実施形態では、図1に示すように、稜線rと平行な方向の断面において、それぞれ、中間部(ピストン中心部を通って稜線と直交する部分)で最も深く、その両側に離れるにしたがって浅くなるように湾曲させて形成したため、該湾曲に沿って円弧状に滑らかに流動するタンブル流を生成することができる。   Further, in the present embodiment, as shown in FIG. 1, in the cross section in the direction parallel to the ridge line r, the intermediate part (the part passing through the piston central part and perpendicular to the ridge line) is the deepest and is separated from both sides. Therefore, since it is formed to be curved so as to become shallow, a tumble flow that smoothly flows in an arc shape along the curve can be generated.

ただし、簡易的には、図11に示す第2の実施形態のように、凹陥部8A,8Bを、それぞれ、稜線rと平行な方向の断面において、深さ一定の直線状となるように形成してもよい。   However, simply, as in the second embodiment shown in FIG. 11, the recessed portions 8A and 8B are formed so as to be linear with a constant depth in the cross section parallel to the ridge line r. May be.

図12は、第3の実施形態を示し、稜線rの両側に連なる傾斜面8a、8bを、稜線に近い側で傾斜度が大きく、稜線から離れるにしたがって傾斜度が徐々に減少するように曲線状に傾斜させて形成したものである。   FIG. 12 shows a third embodiment in which the inclined surfaces 8a and 8b connected to both sides of the ridge line r are curved so that the inclination is large on the side close to the ridge line and gradually decreases as the distance from the ridge line increases. It is formed by inclining in a shape.

このようにすれば、特に、圧縮行程前半で斜め方向へ旋回する渦流を効率よく生成し、圧縮行程後半での逆タンブル流生成を容易にする。   In this way, in particular, a vortex swirling in an oblique direction in the first half of the compression stroke is efficiently generated, and a reverse tumble flow generation in the second half of the compression stroke is facilitated.

図13は、第4の実施形態を示し、稜線rの両側に連なる傾斜面8a、8bを、それぞれ、稜線rと平行な方向の断面において、最深部を挟んで対称となるように、2つの平面8ai、8ae(8ai、8ae)を接続して形成したものである。   FIG. 13 shows a fourth embodiment, in which two inclined surfaces 8a and 8b connected to both sides of the ridge line r are symmetric with respect to the deepest portion in a cross section in a direction parallel to the ridge line r. The planes 8ai and 8ae (8ai and 8ae) are connected to each other.

このようにすれば、ピストン冠面の面積を極力小さくし、熱損失を抑えつつ、逆タンブルを生成することができる。   In this way, the reverse tumble can be generated while minimizing the area of the piston crown surface and suppressing heat loss.

図14は、第5の実施形態を示し、稜線rの両側に連なる傾斜面8a、8bを、稜線rと平行な方向の断面において、最深部を、その両側の面に対し段差を有して凹ませた形状としたものである。   FIG. 14 shows a fifth embodiment, in which the inclined surfaces 8a and 8b connected to both sides of the ridge line r have a step in the cross section in a direction parallel to the ridge line r and the deepest part with respect to the surfaces on both sides. It has a concave shape.

このようにすれば、最深部のみ凹ませればよいので、燃焼室容積の増大を抑えつつ、逆タンブルを生成することができる。また、バルブリセス用の凹部を利用し該凹部を延長するなどして容易に加工できる。   In this way, since only the deepest part needs to be recessed, reverse tumble can be generated while suppressing an increase in the combustion chamber volume. Moreover, it can process easily, for example by extending the recessed part using the recessed part for valve recesses.

第1の実施形態に係る直噴火花点火式内燃機関の要部を示す縦断面図(図2のA−A断面図)FIG. 2 is a longitudinal sectional view showing a main part of the direct-injection spark ignition internal combustion engine according to the first embodiment (A-A sectional view of FIG. 2). 同上内燃機関の要部を示す横断面図Cross-sectional view showing the main part of the internal combustion engine 図2のB−B断面図BB sectional view of FIG. 図2のC−C断面図CC sectional view of FIG. 可変動弁装置の構成図Configuration diagram of variable valve gear 図5の要部断面図Cross-sectional view of the main part of FIG. 同上実施形態における中間リフト近辺での燃焼室内への吸気が流入するときの状態を示す要部縦断面図Main part longitudinal cross-sectional view which shows the state when the intake_air | air_inflow in the combustion chamber in the vicinity of an intermediate | middle lift in embodiment same as the above flows. 同じく吸気行程時の吸気流動の状態を示す横断面図Similarly, a cross-sectional view showing the state of intake air flow during the intake stroke 同じく圧縮行程前半時の吸気流動の状態を示す横断面図(図8のA−A断面図)Similarly, a cross-sectional view showing the state of intake air flow in the first half of the compression stroke (cross-sectional view taken along the line AA in FIG. 8). 同じく圧縮行程後半時の吸気流動の状態を示す縦断面図Similarly, a longitudinal sectional view showing the state of intake air flow in the latter half of the compression stroke 第2の実施形態における図2のA−A断面相当の図The figure equivalent to the AA cross section of FIG. 2 in 2nd Embodiment. 第3の実施形態における図2のB−B断面相当及びC−C断面相当の図The figure equivalent to the BB cross section and CC cross section of FIG. 2 in 3rd Embodiment 第4の実施形態における図2のA−A断面相当の図The figure equivalent to the AA cross section of FIG. 2 in 4th Embodiment. 第5の実施形態における図2のA−A断面相当の図The figure equivalent to the AA cross section of FIG. 2 in 5th Embodiment

符号の説明Explanation of symbols

1 燃焼室
2 点火栓
5A,5B 吸気バルブ
6A,6B 排気バルブ
8 ピストン
8a,8b 傾斜面
8ai,8be 傾斜面
8A,8B 凹陥部
20 ECU
21 バルブ作動角及びリフト量可変装置
r 稜線
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Spark plug 5A, 5B Intake valve 6A, 6B Exhaust valve 8 Piston 8a, 8b Inclined surface 8ai, 8be Inclined surface 8A, 8B Recessed part 20 ECU
21 Valve operating angle and lift variable device r Ridge line

Claims (7)

気筒毎に、2個の吸気バルブを備えた内燃機関の燃焼室構造において、
ピストン冠面に、ピストン中心部を通って2個の吸気バルブ間と排気側とを繋ぐ線を稜線として該稜線の両側に1対の傾斜面を設け、該傾斜面に連なり前記稜線から離れたピストン外周側で深さが最大となるように1対の凹陥部を形成したことを特徴とする内燃機関の燃焼室構造。
In the combustion chamber structure of an internal combustion engine provided with two intake valves for each cylinder,
A pair of inclined surfaces are provided on both sides of the ridge line on the piston crown surface through the center of the piston and connecting the two intake valves and the exhaust side, and the ridge line is separated from the ridge line. A combustion chamber structure for an internal combustion engine, wherein a pair of recesses are formed so that the depth is maximum on the outer peripheral side of the piston.
前記1対の傾斜面は、略一定の傾斜度で直線状に傾斜することを特徴とする請求項1に記載の内燃機関の燃焼室構造。   2. The combustion chamber structure of an internal combustion engine according to claim 1, wherein the pair of inclined surfaces are linearly inclined with a substantially constant inclination. 前記1対の傾斜面は、前記稜線に近い側で傾斜度が大きく、稜線から離れるにしたがって傾斜度が徐々に減少するように曲線状に傾斜することを特徴とする請求項1に記載の内燃機関の燃焼室構造。   2. The internal combustion engine according to claim 1, wherein the pair of inclined surfaces are inclined in a curved line so that the inclination is large on a side close to the ridge line, and the inclination gradually decreases as the distance from the ridge line is increased. Engine combustion chamber structure. 前記1対の凹陥部は、前記稜線と平行な方向において、それぞれ、中間部で最も深く、その両側に離れるにしたがって浅くなるように形成されていることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の燃焼室構造。   The pair of recesses are formed so as to be deepest at the intermediate portion and become shallower as they move away from both sides in a direction parallel to the ridge line. A combustion chamber structure of an internal combustion engine according to any one of the above. 前記稜線の両側に連なる傾斜面を、それぞれ、最深部を挟んで対称となるように、2つの平面を接続して形成したことを特徴とする請求項4に記載の内燃機関の燃焼室構造。   The combustion chamber structure for an internal combustion engine according to claim 4, wherein the inclined surfaces connected to both sides of the ridge line are formed by connecting two planes so as to be symmetrical with respect to the deepest portion. 前記各傾斜面の最深部は、両側の面に対し段差を有して凹ませた形状であることを特徴とする請求項4に記載の内燃機関の燃焼室構造。   5. The combustion chamber structure of an internal combustion engine according to claim 4, wherein the deepest portion of each inclined surface has a shape that is recessed with steps on both sides. 前記1対の凹陥部は、前記稜線と平行な方向において、略一定の深さに形成されていることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の燃焼室構造。   The combustion of the internal combustion engine according to any one of claims 1 to 3, wherein the pair of recesses are formed at a substantially constant depth in a direction parallel to the ridgeline. Chamber structure.
JP2007009327A 2007-01-18 2007-01-18 Combustion chamber structure of internal combustion engine Pending JP2008175133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009327A JP2008175133A (en) 2007-01-18 2007-01-18 Combustion chamber structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009327A JP2008175133A (en) 2007-01-18 2007-01-18 Combustion chamber structure of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008175133A true JP2008175133A (en) 2008-07-31

Family

ID=39702325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009327A Pending JP2008175133A (en) 2007-01-18 2007-01-18 Combustion chamber structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008175133A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196685A (en) * 2009-02-27 2010-09-09 Nissan Motor Co Ltd Piston for internal combustion engine
US7856958B2 (en) 2007-01-29 2010-12-28 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine, and internal combustion engine using the piston
JP2013113110A (en) * 2011-11-25 2013-06-10 Honda Motor Co Ltd Piston
JP2014122589A (en) * 2012-12-21 2014-07-03 Toyota Motor Corp Piston of internal combustion engine, and internal combustion engine
CN109973206A (en) * 2017-12-27 2019-07-05 丰田自动车株式会社 Internal combustion engine
JP2020165337A (en) * 2019-03-28 2020-10-08 ダイハツ工業株式会社 Piston of internal combustion engine
CN114592965A (en) * 2022-03-17 2022-06-07 中国第一汽车股份有限公司 Piston combustion chamber structure of gasoline engine and gasoline engine
CN115355082A (en) * 2022-10-20 2022-11-18 山东交通职业学院 Gas engine combustion chamber structure with combustion accelerating function

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7856958B2 (en) 2007-01-29 2010-12-28 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine, and internal combustion engine using the piston
JP2010196685A (en) * 2009-02-27 2010-09-09 Nissan Motor Co Ltd Piston for internal combustion engine
JP2013113110A (en) * 2011-11-25 2013-06-10 Honda Motor Co Ltd Piston
JP2014122589A (en) * 2012-12-21 2014-07-03 Toyota Motor Corp Piston of internal combustion engine, and internal combustion engine
CN109973206A (en) * 2017-12-27 2019-07-05 丰田自动车株式会社 Internal combustion engine
JP2020165337A (en) * 2019-03-28 2020-10-08 ダイハツ工業株式会社 Piston of internal combustion engine
JP7303002B2 (en) 2019-03-28 2023-07-04 ダイハツ工業株式会社 internal combustion engine piston
CN114592965A (en) * 2022-03-17 2022-06-07 中国第一汽车股份有限公司 Piston combustion chamber structure of gasoline engine and gasoline engine
CN114592965B (en) * 2022-03-17 2023-10-27 中国第一汽车股份有限公司 Piston combustion chamber structure of gasoline engine and gasoline engine
CN115355082A (en) * 2022-10-20 2022-11-18 山东交通职业学院 Gas engine combustion chamber structure with combustion accelerating function
CN115355082B (en) * 2022-10-20 2023-01-06 山东交通职业学院 Gas engine combustion chamber structure with combustion accelerating function

Similar Documents

Publication Publication Date Title
JP2008175133A (en) Combustion chamber structure of internal combustion engine
JP4905591B2 (en) High expansion ratio internal combustion engine
JP2005299536A (en) Variable valve system for internal combustion engine
JP6115197B2 (en) Combustion chamber structure of internal combustion engine
JP5338971B2 (en) Valve drive device for internal combustion engine
JP2008150973A (en) Variable valve gear of internal combustion engine
JP2007239550A (en) Compression ratio variable engine
Ha et al. Development of continuously variable valve lift engine
JP2009174432A (en) Engine intake/exhaust control method and engine intake/exhaust control device
JP2005139994A (en) Diesel engine
JP4265434B2 (en) Combustion chamber of internal combustion engine
JP2007285273A (en) Indirect injection engine
JP2009036124A (en) Cylinder direct injection engine
US10711685B2 (en) Internal combustion engine
JP5151901B2 (en) Variable valve operating device for internal combustion engine
WO2020229860A1 (en) Internal combustion engine
JP4017121B2 (en) In-cylinder fuel injection internal combustion engine
JP5556932B2 (en) Valve system for internal combustion engine
JP5407536B2 (en) Variable valve mechanism for internal combustion engine and internal combustion engine using the same
JP5148451B2 (en) Variable valve operating device for internal combustion engine
JP6011351B2 (en) Control device for internal combustion engine
JP5148450B2 (en) Variable valve operating device for internal combustion engine
JP5042963B2 (en) Variable valve operating device for internal combustion engine
JP2010242682A (en) Valve system for internal combustion engine
JP2010133421A (en) Variable valve gear for internal combustion engine